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Abstract— Blade icing detection is critical to
maintaining the health of wind turbines, es-
pecially in cold climates. Rapid and accurate
icing detection allows proper control of wind
turbines, including shutting down and clearing
the ice, thus ensuring turbine safety. This pa-
per presents a wavelet-driven multiscale graph
convolutional network (MWGCN), which is a
supervised deep learning model for blade ic-
ing detection. The proposed model first uses
wavelet decomposition to capture multivariate
information in the time and frequency domains,
then employs a temporal graph convolutional
network to model the intervariable correlations
of the decomposed multiscale wavelets, as well as their temporal dynamics. In addition, this paper introduces scale
attention to the MWGCN for a further improvement of the model and proposes the method to address the class imbalance
problem of the training data sets. Finally, the paper conducts comprehensive experiments to evaluate the proposed model,
and the results demonstrate the effectiveness of the model in blade icing detection and its better performance over eight
state-of-the-art algorithms, with 17.2% and 11.3% higher F1 scores over the best state-of-the-art baseline on the labeled
datasets.

Index Terms— Graph Convolutional Network, Time Series Classification, Wavelet Transform, Wind Turbine

I. INTRODUCTION

REcently, the need of adopting renewable and green en-
ergy grows rapidly as the concerns about environmental

pollution and global warming increase year by year. As a
result, as one of the cleanest energy sources, wind energy
attracts ever-increasing attention and investment. The U.S.
Department of Energy, for example, has set an ambitious
goal of generating 20% of the country’s total electricity from
wind turbines by 2030 and 35% by 2050 [1], while the
European Commission has also presented its “Roadmap 2050”
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project, claiming that wind energy would meet half of Europe’s
electricity needs by 2050 [2]. To achieve this goal, more
turbines are expected to be installed in areas with high wind
speeds and dense cold air, such as high-altitude mountain
areas, where the wind resource is conducive to the increase
in wind power output. According to the International Energy
Agency, the cumulative wind installations in cold locations
account for more than 30% of the total installed wind turbine
capacity globally [3]. However, blade icing is common in
these places due to the cold environment, especially during
the winter months. During the icing process, supercooled water
droplets in the air collide with the incoming flow and impinge
on the blade surface. Water droplets freeze instantly when the
temperature and liquid water content (LWC) are low. However,
when the temperature and LWC are high, only a portion of the
droplets freeze on collision, while the rest form a water film
on the surface of the blade and eventually freeze [4], resulting
in problems in safety and efficiency for wind turbines [1].

The majority of research on wind turbine icing detection
focuses on blades. Traditionally, based on the physical proper-
ties of ice, applied physics researchers resolve this challenge
by designing and installing new physical detectors, such as
damping of ultrasonic [5], thermal infrared radiometry [6],
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ultrasonic guided waves [7], and so on. These methods directly
measure the physical properties of ice and are quite reliable.
However, they may have negative effects on the structure of the
blade, resulting in costly human and material resources, and
they are insensitive to small amounts of ice accretion [8]. As a
result, engineers adopt indirect methods to estimate blade icing
conditions in practice, such as monitoring the power curve [9],
anemometers [10], vibration time wave forms [11], dew point
and temperature [12], to determine whether to trigger the
deicing procedure. However, due to internal sensor instability,
these methods may yield many erroneous estimations [13].
Furthermore, these methods are ineffective in detecting blade
icing and are also insensitive to small levels of ice accre-
tion [14].

Methods based on wind turbine monitoring signals have
received a lot of attention to solve the deficiencies of tradi-
tional approaches, which can be separated into model-driven
and data-driven methods due to the cheaper cost and fewer
mechanical modifications. Model-based methods rely on high-
level domain knowledge to develop mathematical models
from various perspectives that reflect the correlations between
signals and blade icing conditions, such as rotor angular
speed [15], [16], power curve [17] and thermodynamics [18].
The limitations of model-based methods include an overre-
liance on prior domain knowledge and a lack of universality.
Furthermore, expensive and specialized tools such as wind
tunnels are necessary to fine-tune the model parameters.
Furthermore, when the operating environment changes, the
accuracy of the model decreases significantly [19].

Recently, data-driven machine learning methods, including
shallow machine learning and deep learning-based approaches,
seem to be a more powerful means of blade icing detection
with the plentiful availability of historical data collected by the
Supervisory Control and Data Acquisition system (SCADA).
Specifically, SCADA is a powerful data acquisition and mon-
itoring system, which is the most commonly used in fault
diagnosis of wind turbine components [20], [21]. It is worth
noting that the SCADA system collects not only wind turbine
operating parameters and signals but also environmental pa-
rameters such as temperature, wind speed, and wind direction,
providing an interface to connect various sensors across wind
turbines for various monitoring and controlling operations, and
providing a complete picture of the status of wind turbines.
Since the use of SCADA data for failure detection is a
potentially low-cost option that does not require additional
sensors, a number of approaches based on this have been
developed in recent years [20], [22]. Thus, the SCADA system
can manage the installed general-purpose sensors that monitor
wind turbine operation and provide multivariate time series
data of the real-time operating environment to data-driven
machine learning models, such as linear discriminant [23],
KNN [24], SVM [19] and some hybrid methods [25]–[27].
However, shallow machine learning methods rely heavily on
hand-crafted feature designs, which are time consuming and
costly, while deep learning methods do not require as much
manual feature extraction, which receive a great deal of inter-
est from researchers [8], [28]–[34]. Although many deep learn-
ing algorithms have been developed for detecting wind turbine

blade icing, they still face the following critical challenges:
First, blade icing can have a variety of dynamics depending
on weather conditions, while the resulting signals are highly
dependent on the frequency, duration, severity and intensity of
the icing conditions, implying that anomalous changes in the
patterns embedded in both time and frequency domains must
be considered and exploited. Second, although several attempts
have been undertaken to extract multiscale features from the
time and frequency domains using wavelet decomposition, the
scale-specific intervariable correlations among different scales
have not yet been exploited. Instead, existing models typically
learn the prominent and shared correlations for all scales. Last,
due to the imbalance problem of the training data, the results
of the blade icing detection classification task may be biased.

To address the above challenges, this paper proposes
a wavelet-driven multiscale graph convolutional network
(MWGCN) model for wind turbine blade icing detection. First,
this model uses a multiscale discrete wavelet decomposition
method to extract multiscale features in the time and frequency
domains and then applies scale-specific correlation learning to
automatically infer scale-specific graphs, allowing the model
to exploit implicit information about inter-variate relationships
in the time and frequency domains. More specifically, this
model employs a temporal graph convolutional network to
obtain multiscale information, rather than using traditional
RNN methods. That is, the network structure combines a graph
convolutional network (GCN) and a temporal convolutional
network (TCN). Second, to further improve the model, we
implement a scale attention module, which is able to weight
the importance of temporal patterns at different scales and cap-
ture the information of inter-scale correlations. Finally, most
of the data from wind farm SCADA systems are unlabeled,
which can lead to bias in the classification tasks. To address
the data imbalance problem, this paper further proposes a class
rebalancing classifier with focal loss to handle the dataset.

The contributions of this paper can be summarized as
follows:

1) We propose a wavelet-driven multiscale graph convolu-
tional network (MWGCN) model for wind turbine blade
icing detection. To the best of our knowledge, this is
the first attempt to apply a graph convolutional model
to wind turbine blade icing detection.

2) We propose a network structure to model the relation-
ship of multiscale wavelets in the time and frequency
domains. This network design allows for better extrac-
tion of the characteristics and features of inter-variate
correlations for multiscale wavelets.

3) We conduct comprehensive experiments to evaluate the
proposed model using real-world SCADA data from
wind farms, and the results validate the effectiveness
of the proposed model, as well as the superiority and
better performance compared to eight baselines.

The remainder of the paper is organized as follows. Sec-
tion II presents the related work; Section III describes the
proposed model in detail; Section IV conducts the experiments
to evaluate the model and compare it with the baselines; and
Section V concludes the paper and presents future work.
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II. RELATED WORK

A. Effects of Blade Icing of Wind Turbines
According to [35], the highest number of wind turbine

incidents is attributed to blade failures, causing 20–50% power
loss, which is much higher than other adverse factors [35],
[36]. Furthermore, cumulative wind installations in cold re-
gions exceed 30% of the total installed wind turbine capacity
worldwide [3], where blade icing develops. It can cause vibra-
tion of wind turbines as a result of uneven ice shedding, which
can alter the aerodynamic capability of blades by affecting the
blade surface roughness. Subsequently, the life span and power
generation rate of wind turbines are reduced [37]. Furthermore,
the studies of effects of blade icing can be categorized into: full
stop of the turbine, disruption of aerodynamics, overloading
due to delayed stalls, decreased fatigue life, and human safety
risks [36].

Jasinski et al. analyzed 1,337 full-stop records of wind
turbines in Sweden between 1998 and 2003, resulting in a total
downtime of 161,523 hours. Specifically, 7% of the full stop
incidents were caused by blade icing, leading to 5% power loss
[38]. Antikainen et al. studied the disruption of aerodynamics
caused by blade icing, and the findings revealed that even
in the early stages of icing, mass and aerodynamic imbal-
ance can occur [39]. Jasinski et al. demonstrated that blade
icing affects airfoil efficiency, resulting in higher maximum
power and deterioration of blade mechanical health [38]. The
WECO project (Wind Energy Production in Cold Climates)
investigated fatigue loads caused by blade icing, finding that
additional ice masses can cause higher deterministic loads,
increase the excitation of edge-wise vibrations, and resonance
may occur due to the changed natural frequencies of the
blades [40]. Besides, since ice thrown from rotating blades
poses a serious safety risk, the WECO also collected surveys
from European wind turbine operators and then proposed a
safe distance equation between the turbine and the nearest
object [40].

The aforementioned studies demonstrate the seriousness of
the potential risks and effects caused by blade icing, therefore,
it is necessary to analyze the mechanisms responsible for blade
icing and investigate advanced intelligent algorithms to detect
blade icing of wind turbines.

B. Data-driven Blade Icing Detection
There are two main types of data-driven blade ic-

ing detection methods: shallow machine learning-based and
deep learning-based data-driven approaches. Shallow machine
learning methods, such as linear discriminant, were adopted
by [23] to explore the features of the power and wind
speed distribution and adopted random forest classifiers for ice
detection. Besides, the K-Nearest Neighbors algorithm (KNN)
was employed with lateral vibration data from the nacelle and
power performances reduction to detect ice accretion [24].
Xu et al. [19] adopted a Support Vector Machine (SVM)
for wind turbine icing detection, with Particle Swarm Opti-
mization (PSO) to optimize its parameters. Yi et al. proposed
the Minority Clustering SMOTE approach (MC-SMOTE),
which employed minority sample clustering to alleviate the

imbalanced label nature of wind turbine fault detection [25].
The aforementioned shallow machine learning methods do not
rely on precise mathematical models but on the hand-crafted
feature design of these models, which is time consuming and
expensive.

Deep learning based methods have attracted great research
interest for their capability in feature extraction [28]. Jiang
et al. [29] proposed the multiscale Convolutional Neural
Networks (MSCNN) for the fault diagnosis of wind turbines,
which incorporated multiscale learning into the traditional
CNN architecture. Chen et al. [30] proposed a novel intel-
ligent diagnosis approach for wind turbine failure detection,
which addressed the problem of unbalanced distribution of
normal and abnormal data. Liu et al. [31] introduced ensemble
learning in a deep learning model to improve the accuracy
and generalization of the model. To determine the importance
of sensors among time-steps and automatically identify dis-
criminative features from raw sensor data, Cheng et al. [33]
proposed a temporal attention convolutional neural network.
In particular, since the label imbalance problem is serious in
the wind turbine SCADA data, Cheng et al. [34] presented a
semi-supervised model for wind turbine blade icing detection.
Yuan et al. [32] proposed a wavelet transformation and a fully
convolutional neural network (WaveletFCNN) to automatically
obtain multiscale wavelet features from the time domain and
frequency domains. Tian et al. [8] improved WaveletFCNN
by introducing a parallel structure consisting of an LSTM and
CNN branch network structure. However, although the detail
coefficients from Discrete Wavelet Transform (DWT) can be
interpreted as an additive decomposition of the signal, referred
as multi-resolution [32], the existing approaches still have not
specifically considered the scale-specific inter-variate correla-
tions between multiple wavelet scales sufficiently, which could
lead to inaccurate representations for real-world scenarios. For
example, inter-variate correlations are complicated from dif-
ferent perspectives and scales, including distinct time domains
and frequency domains at multiple scales [41], [42]. Besides,
wind turbines operate normally for most of the time, with just
a small period of time when the blades are icing, resulting in a
significant imbalance between these two labels, making data-
driven methods difficult to train. As a result, it is necessary to
take into account the data complexity when creating the blade
icing models.

C. Wavelet-Driven Time Series Analysis

Various wavelet-driven models have recently been presented
for time series analysis to help model the important frequency
information of time series effectively [7], [32], [43]–[46]. The
Discrete Wavelet Transform (DWT) is particularly well suited
to noise filtering, data reduction, and singularity detection,
and unlike the discrete Fourier transform, which retains only
spectral information, the DWT retains information in both time
and frequency domains, making it a great choice for time
series data analysis [47]. DWT was used by Percival et al. to
analyze the geophysical time series of Arctic sea ice [46]. To
investigate trends in stream flow and precipitation in Canada,
Nalley et al. used DWT with the sequential Mann-Kendall test.
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Norbre et al. employed PCA, DWT, and an XGBoost classifier
to predict the next day’s market direction [45].

Blade icing is triggered by non-stationary and unstable
natural factors such as wind speed, live wind direction, am-
bient temperature, which may have diverse dynamics due to
the changing weather conditions. The period, severity and
intensity of blade icing can all have significant impacts on
the reflected signals. Thus, to detect changes in the pattern
inherent in multivariate signals in both time and frequency do-
mains, several studies have investigated wavelet-driven blade
icing detection models for wind turbines. WaveletFCNN is a
fully convolutional neural network integrated with the discrete
wavelet transform, as proposed by Yuan et al. [32]. Further-
more, Yuan et al. also proposed WaveletAE, an unsupervised
model that combines the autoencoder and the discrete wavelet
transform [48]. By introducing an LSTM branch network to
temporal information, Tian et al. improved WaveletFCNN and
proposed MCRNN [8].

Although the wavelet transformation was used to improve
time series data analysis in the approaches mentioned above,
the results of the wavelet transformation of time series were
simply used as the input, with no further exploration of the
inter-variate correlations of the multiple wavelet components
at different levels, which could help improve performance.

III. PROPOSED METHOD

This section will first present the overall framework of
the proposed MWGCN, then describe all modules in greater
detail, including the data preprocessing module, the multiscale
wavelet decomposition module, the scale-specific correlation
learning module, the Temporal Graph Convolutional (TGC)
module, the scale-attention module, and the blade icing clas-
sifier.

A. Overall Framework

Figure 1 shows the overall framework for wind turbine
blade icing detection, which consists of the following phases:
(a) the wind turbine SCADA system collects historical raw
data for further modeling; (b) data preprocessing; (c) the
preprocessed data are decomposed into multiple scales by
the MDWD module; (d) the scale-specific correlation learning
module learns the inter-variate relationships of the input data at
multiple wavelet scales; (e) the GCN submodule generates the
scale-specific features as inputs to the TCN submodule at each
scale and each timestep, which then extract the scale-specific
features of each wavelet detail coefficient within the window
size; (f) the scale-attention module further refines the scale-
specific features; (g) the class rebalancing classifier conducts
final classifications; (h) the trained model can be integrated
with the SCADA systems for online blade icing detection.
Algorithm. 1 presents the learning process of MWGCN.

B. Data Preprocessing Module

In this study, multivariate time series data are collected from
an SCADA system with general purpose sensors, including
wind speed, generator speed, power, wind direction, and yaw

speed. However, due to sensor or human errors, sensors
may stop recording or output some outlier readings. As a
result, to reduce the effects of outliers and missing data, a
data preprocessing module is necessary, which comprises data
labeling, data normalization, statistical analysis, and missing
data handling.

1) Data labeling: Wind turbine engineers were tasked with
labeling the raw blade icing data. Due to the inherent instabili-
ties of wind turbine operation, which are extremely difficult for
even the most experienced engineers to distinguish as normal
or icing conditions, some equivocal intervals are removed.
Also, within a fixed time step (window size), engineers assign
two types of labels to the internals: the normal label and the
blade icing label.

2) Data Normalization: The multivariate time series data
from SCADA systems often contain a lot of noise, thus the
raw data should be normalized to effectively reduce the effect
of noise. In addition, data normalization also increases the
efficiency of training and the convergence speed of the mod-
els. Thus, in this study, the Min-Max normalization method
is adopted. For a given SCADA signal from the dataset
X = (x1, x2, ..., xT ), where T is the number of points in
a time series. The normalization of X is calculated using the
following formula:

xi,norm =
xi − xmin

xmax − xmin
(1)

where Xnorm = (x1,norm, x2,norm, ..., xT,norm) represents
the normalized data, xmax and xmin are the maximum and
minimum of X , respectively.

3) Statistics Analysis: The wind turbine SCADA system
collects data from hundreds of different sensors. However,
most of the data contains redundant information, which can
degrade the performance of the detection model and increase
the computation. To this end, statistical analysis is required
to better understand SCADA data: 1) To identify and discard
redundant features that contribute little or nothing to blade
icing detection, in this study we adopt the Pearson correlation
coefficient. 2) To avoid multicollinearity, which could lead
to severe overfitting of the detection models, we replace the
highly correlated features with their average values.

4) Missing Data Processing: Due to sensor or communica-
tion errors, the SCADA system sometimes fails to collect data.
Thus, we present two methods for collecting missing values:
1) linear interpolation is used if the missing values last for a
very short period of time, such as only a few points; 2) the
history data of the same period are used to fill the gap if the
missing values last for a long period, such as several hours or
even several days. This is because the interpolation data can
mislead the detection model, resulting in high inaccuracy.

C. Multiscale Wavelet Decomposition Module
Since wind turbine is a complex system with fluctuating

operating conditions, the time series data collected by the wind
turbine SCADA system are complex and varied [8]. To this
end, we adopt wavelet decomposition to analyze the time se-
ries data not only in the time domain but also in the frequency



AUTHOR et al.: MULTISCALE WAVELET-DRIVEN GCN FOR BLADE ICING DETECTION OF WIND TURBINES 5

(a) SCADA Data Collection

(b) Data Preprocessing

Data labelling
Data analysis
Data cleaning

…
(c) MDWD Module

(d) Scale-specific Correlation
Learning Module

…

(e) TGC Module

GCN
Submodule

TCN 
Submodule

…

(f) Scale-attention Module

(g) Class
Re-balanced

Classifier 

(h) Online
Icing 

Detection

Scale L

Scale L

Scale 0

Scale 0
…

…

h 

l h 

l h 

l 

…

H ∈ R("#$)×'×(!

𝒉𝒎𝒆𝒂𝒏 ∈ R'×(! 𝒉𝒂𝒕𝒕 ∈ R#×%!

𝑿𝑯(𝑳) ∈ R#×
'
("

𝑨𝑳 ∈ R#×#

Scale 0

𝐸*+,-./+
∈ R#×%#

Scale 1
…
Scale L

𝐸$%&'()

∈ R*×,!

𝐸-.(%)

∈ R/×,!

⊙ ⊚

… 𝐴0) ∈ R/×/ 𝐴) ∈ R/×/

𝑀1
) ∈ R/×,!

Sparse(·)

𝑀*
)

∈ R/×,!

Fig. 1. The overall framework of blade icing detection model MWGCN for wind turbines.

domain to fully exploit the richer underlying information.
The multiscale wavelet decomposition module is capable of
extracting multiscale time-frequency features from an input
time series such as low- and high-frequency subseries and
a scale-by-scale basic using the Multilevel Discrete Wavelet
Decomposition algorithm (MDWD) [49], which discovers the
signal variance across different scales. Figure 1 (c) illustrates
the structure of the MDWD module.

In the MDWD module, we denote each input signal segment
in the SCADA dataset by xc = [xc,1, xc,2, ..., xc,T ] ∈ RT ,
c = 1, 2, 3, ..., N , where N is the number of signals, and T is
the length of the input segment (window size). Therefore, X =
[x1, x2, ..., xN ] ∈ RN×T represents the input multivariate
time series segment. In addition, the low and high subseries
generated at the i-th scale are represented by xl

(i) and xh
(i),

respectively. On the (i + 1)-th scale, a low-pass filter l =
[l1, l2, ..., lK ] and a high-pass filter h = [h1, h2, ..., hK ] (K ≪
T ) are adopted to convolute the approximate coefficients (low-
frequency subseries) of the upper scale as:

aln(i+ 1) =

K∑
k=1

xl
n+k−1(i) · lk,

ahn(i+ 1) =

K∑
k=1

xl
n+k−1(i) · hk,

(2)

where xl
n(i) is the n-th element of the approximate coefficients

(low frequency subseries) at the i-th scale, i = 1, ..., L, L is the
number of MDWD levels. The approximate coefficients xl(i+
1) and the detailed coefficients (high-frequency subseries)
xh(i+ 1) on the i+ 1 scale are generated from the 1/2 down
sampling of the intermediate variables al(i + 1) = [al1(i +
1), al2(i+1), ...] and ah(i+1) = [ah1 (i+1), ah2 (i+1), ...]. Then,
the concatenated segment for each signal can be represented by
Xc = [xc, x

h(1), ..., xh(L)]. Thus, the concatenated segment

for all input data is Xinput = [X,XH(1), ..., XH(L)]. In ad-
dition, to simplify the representations, the original multivariate
time series data is denoted by the wavelet detail coefficient at
the 0-th scale, which is XH(0).

D. Scale-specific Correlation Learning Module
After obtaining the wavelet detail coefficients of the input

signals on multiple scales, a scale-specific correlation learning
module is adopted, in order to automatically learn the scale-
specific inter-variate relationships of the input segment on
each scale, which was proposed in [50]. To our knowledge,
existing wavelet-based models [8], [32] do not specifically
consider scale-specific inter-variate correlations, which can
be different patterns at different time and frequency domain
scales. As a result, learning multiple scale-specific inter-variate
correlations is required. The general structure of the scale-
specific correlation learning module is shown in Figure 1 (d).

It is difficult to train the model since simply constructing
an adjacency matrix for each scale requires high computing
capacity and introduces a lot of noise. Consequently, the
adjacency matrix is built using two types of embedding
vectors: the shared feature embedding Efeature ∈ RN×de

and the unique scale embedding for each scale Ei
scale ∈

R1×de , i = 0, 1, ..., L, which contain shared and scale-
specific information, respectively, and de is the embedding
dimension. Both Efeature and Escale are randomly initialized
and updated during the training phase. The adjacency matrix
is then calculated on the i -th scale as follows:

Ei
spec = Efeature ⊙ Ei

scale

M i
1 =

[
tanh

(
Ei

specθ
i
)]T

M i
2 = tanh

(
Ei

specφ
i
)

Ai
f = ReLU

(
M i

1M2k −
(
M i

1M
i
2

)T)
Ai = Sparse

(
Softmax

(
Ai

full

))
(3)
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where Ei
spec is the embedding of the i-th scale adjacency

matrix, which is then weighted by two trainable parameters
θi and φi to generate two matrix factorization vectors M i

1

and M i
2. We then obtain the raw adjacency matrix on the i-

th scale Ai
full. A

i
full is finally modified to be sparse by the

function Sparse(·) in order to make the model more robust,
minimize computation, and reduce the impact of noise. :

Sparse(Ak
lr) =

{
Ak

lr, Ai
lr ∈ Top

(
Ai

l∗, τ
)

0, Ai
lr /∈ Top

(
Ai

l∗, τ
) (4)

where τ is the threshold of Top(·) function, i.e., the number
of neighbors of each node in the graph.

Thus, we can obtain the adjacency matrix on each scale,
which indicates the inter-variate relationships of each wavelet
scale A = [A0, A1, A2, ..., AL].

E. Temporal Graph Convolutional Module
The temporal graph convolutional module, which con-

sists of L TCNs and GCNs for each scale, is intro-
duced with the above-mentioned adjacency matrix set A =
[A0, A1, A2, ..., AL] obtained by the scale-specific correlation
learning module, and multiscale wavelet input Xinput =
[X,XH(1), ..., XH(L)] generated by the MDWD module.
Unlike other RNN-like modules, such as LSTM and GRU,
which involve a delay between the end of the forward pass
of the previous time step and the start of the forward pass
of the next time step, the parallel computing capacity of the
TCN submodule could improve the model efficiency in both
training and testing stages.

In this module, the input data at each time step is first
built by a GCN submodule to obtain the input of the TCN
submodule at different scales:

hi
t = GCN i

in

(
xi
t, A

i
)
+GCN i

out

(
xi
t,
(
Ai

)T)
(5)

where hi
t is the input of the i-th scale TCN at time step t, xi

t

is the wavelet input of the i-th scale at time step t, GCN(·)∗
denotes the GCN with the following graph convolution oper-
ation:

x ∗G θ = σ
(
θ
(
D̃− 1

2 ÃD̃− 1
2

)
x
)

(6)

where G denotes the graph represented by the weighted
adjacency matrix A, x is the representation of the nodes
that contain the N signals of the specific wavelet scale. σ
is the activation function, θ is a trainable parameter matrix,
Ã = In+A is the adjacency matrix with self-connection, and
D̃ is the diagonal degree matrix of Ã.

Then, the outputs of the GCN submodule at the i-th scale{
hi
1, h

i
2, ..., h

i
T

2i

}
are fed into the TCN submodule to obtain

the scale-specific representations hi of the i-th wavelet scale:

hi = TCN i(hi
1, h

i
2, ..., h

i
T

2i
) (7)

where TCN i(·) is the TCN for the wavelet detail coefficient
on the i-th scale, and the size of hi is set to ds.

F. Scale-attention Module

The scale-specific features H = [h0, h1, h2, ..., , hL] ∈
R(L+1)×N×ds are processed by the scale attention module
to determine the importance of temporal patterns of different
wavelet scales and capture cross-scale correlations.

First, an average pooling operation is performed on the scale
dimension to aggregate scale-specific information of the N
signal variables between different scales, which can reveal the
cross-scale correlations for the representations:

hj
mean =

∑L
i=0 H

i
j

K
(8)

where hj
mean ∈ R1×ds is the aggregate representation of

the signal variable j = 1, 2, ..., N , and the aggregate global
representation is hmean ∈ RN×ds .

Then, several fully connected layers are stacked to compute
the attention weights of each scale:

ain = ReLU(Winhmean + bin)

aout = Sigmoid(Woutain + bout)
(9)

where aout ∈ R1×(L+1) denotes the list of scale-attention
weights of scale-specific features H = [h0, h1, h2, ..., , hL] ∈
R(L+1)×N×ds . The weights of the fully connected layers are
Win and Wout, while the biases are bin and bout, respectively.
Last, the scale-specific features are weighted by aout to
generate the scale-attention representation hatt ∈ RN×ds :

hatt = ReLU(aout ⊗H) (10)

G. Class Rebalancing Blade Icing Classifier

The scale-attention representation hatt is input to a class
rebalancing classifier for the final blade icing detection. This
classifier consists of a fully connected network composed of f
fully connected layers with the ReLU and Sigmoid activation
functions:

o0 = ReLU(W0hatt + b0)

oi+1 = ReLU(Wioi + bi)

ŷ = Sigmoid(Wfof + bf )

(11)

where o0 is the output of the first fully connected layer, oi+1

is the output of the i-th fully connected layer, and ŷ is the
probability of the true label (blade icing) normalized to (0, 1)
by Sigmoid(·) function.

In addition, since wind turbine SCADA data are highly
imbalanced, we adopted the focal loss function [51], which
adds a modulating weight to cross-entropy loss to reduce the
relative loss for well-classified samples (normal samples) and
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focus on difficult samples (blade icing samples), to achieve an
improvement in class rebalancing.

FL (pt) = −αt (1− pt)
γ
log (pt) (12)

where pt is the probability of the true label (blade icing), αt

is the parameter to reconcile the weight ratios of positive and
negative samples, γ is the parameter to reduce the loss value
for negative samples (normal samples).

Algorithm 1 Learning process for MWGCN
Input: Number of epochs:Epoch, MDWD scale L;

Labeled samples:X ∈ RN×T , N is the number of signals,
and T is the length of the input segment (window size); and
the corresponding labels: Y

Output: Predicted label ŷ
Initialisation :
Randomly initialise trainable parameters Efeature, E

i
scale

A = CorrelationLearning(Efeature, E
i
scale) /*Eq.(3,4)*/

for epoch = 1 to Epoch do
X = Normalization(X) /*Eq.(1)*/
XL(0) = X
for l = 1 to L do
XH(l), XL(l) = MDWD(XL(l − 1)) /*Eq.(2)*/

end for
XH(0) = X
Xinput = [XH(0), XH(1), ..., XH(L)]
for l = 0 to L do

for t = 0 to T
2l

do
hl
t = GCN l

in(x
l
t, A

l) +GCN l
out(x

l
t, (A

l)T )
end for /*Eq.(5,6)*/
hl = TCNL(hl

1, h
l
2, ..., h

l
T

2l

) /*Eq.(7)*/
end for
H = [h0, h1, ..., hL]
hatt = SelfAttention(H) /*Eq.(8,9,10)*/
ŷ = Classifier(hatt) /*Eq.(11)*/
Loss = FL(ŷ, y) /*Eq.(12)*/
Update the model by descending the gradient of Loss.

end for

IV. EXPERIMENTS

This section will carry out experiments to evaluate the
proposed method. It first presents the experimental settings,
followed by data preprocessing, evaluation metrics, imple-
mentation details, baseline comparison, ablation study, and
sensitivity analysis.

A. Experimental Setups

1) Implementation Settings: The Pytorch deep learning
framework (v1.10.2) was used to implement the neural net-
works of the proposed model. All experiments were carried
out on an Ubuntu (v.18.04.5) server equipped with a 2.20GHz
Intel Xeon CPU, NVIDIA Tesla T4 GPU, and 16GB of RAM.

Experiment  group #1:
Sensit ivity Analysis and 
Hyperparameter T uning

Experiment  group #2:
Comparison with the Baseline 

Methods

Experiment  group #3:
Ablat ion Study

T o obtain the opt imal 
hyperparameters of 

MWGCN

T o compare the 
performance of MWGCN 

with baselines

T o evaluate the 
effect iveness of each 
component  of MWGCN

Fig. 2. Experiment groups.

Adam optimizer was used in model training [52]. We used
the same parameters as the corresponding baselines, instead
of tuning hyperparameters. The source code is made publicly
available on Github1.

2) Datasets: The experimental data are SCADA data from
two wind turbines installed in the Inner Mongolia Autonomous
Region, China, which were provided by the Chinese Ministry
of Industry and Information Technology (MIIT)2. The SCADA
data were sampled every 7 seconds, with a total operating
time of 696 and 306 hours, respectively. There are more than
hundreds of sensors inside wind turbines that provide readings
to the SCADA system. Wind turbine engineers have identified
26 signals associated with blade icing conditions based on
their industrial experience and knowledge. Table I shows the
details of the datasets. In the following, we refer to the two
datasets as Turbine-1 and Turbine-2, respectively.

TABLE I
DESCRIPTION OF THE DATASETS.

No. Parameter No. Parameter
1 wind speed 14 temperature of pitch motor 1
2 generator speed 15 temperature of pitch motor 2
3 active power 16 temperature of pitch motor 3
4 live wind direction 17 switching temperature of pitch 1
5 nacelle temperature 18 switching temperature of pitch 2
6 yaw position 19 switching temperature of pitch 3
7 yaw speed 20 charger’s DC current of pitch 1
8 angle of pitch 1 21 charger’s DC current of pitch 2
9 angle of pitch 2 22 charger’s DC current of pitch 3
10 angle of pitch 3 23 horizontal acceleration
11 speed of pitch 1 24 vertical acceleration
12 speed of pitch 2 25 environment temperature
13 speed of pitch 3 26 average wind direction with 25s

The data processing approach used in this study is based on
the relative literature [8]. As shown in Table II, wind turbines
operate normally most of the time, but with a small period of
time when the blades are icing, resulting in a large imbalance
between these two labels, normal and icing. In addition, due to
some unidentified errors, there are some data without labels.
Therefore, we first clean up these data.

Also, we segment the SCADA signals by fixed time steps,
which will be used as input to the model. The fixed-length time
step is referred to as the window size in the following. Each

1http://github.com/ryanlaics/MWGCN
2http://106.38.3.217/pages/datadown/dataset/dataSet06.jsp
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TABLE II
LABEL DISTRIBUTION OF THE DATASETS.

Dataset Total Normal Icing Invalid
Turbine-1 393,886 350,255 23,846 19,785
Turbine-2 190,494 168,930 10,638 10,926

segmented sample is paired with a binary label that indicates
whether the blades are iced or not during window size.

3) Metrics: A turbine operates normally most of the time,
with only a small percentage of the time the blades are icing,
resulting in significantly more negative samples (normal states)
than positive samples (icing states). As a result, the positive
and negative samples in the datasets collected by the SCADA
system are imbalanced (with a ratio of approximately 1:15).

Therefore, we refer to the literature [8], [32], [53], for
such imbalanced datasets, F1 score, which is obtained by
calculating the harmonic mean of precision and recall, can
increase the balance of precision and recall where two metrics
are equally important, and provide a more comprehensive
model evaluation. As a result, we calculate precision, recall,
and F1 score to evaluate the model performance, with the
F1 score serving as the primary assessment metric in the
experiments.

The results of blade icing detection can be described by
the confusion matrix, which is a 2 × 2 matrix consisting of
True Positive (TP), True Negative (TN), False Positive (FP)
and False Negative (FN). Note that the samples labeled with
the icing condition are designated as positive samples, while
the normal samples are designated as negative samples.

Then, the evaluation metrics of blade icing detection models
are calculated based on TP, TN, FP and FN, including preci-
sion, recall and F1 score, which are described in the following:

Precision =
TP

TP + FP
Recall =

TP

TP + FN

F1score =
2× Precision×Recall

Precision+Recall

(13)

It is worth noting that due to the imbalance in the dataset,
the accuracy is not used as a metric. For example, if a
model exclusively outputs normal labels, and 1,000 normal
samples are correctly labeled as normal samples and only 10
icing samples were incorrectly labeled as normal samples, the
model accuracy would still be 99%. Therefore, the metrics
cannot represent the model’s performance on the imbalance
datasets. Furthermore, for a similar reason, specificity (the
True Negative Rate, TNR) and the False Positive Rate (FPR)
(where FPR = 1− TPR) are also not used as metrics.

4) Model Settings: The window size is set to 32 for data
preprocessing. The input multivariate time series segments are
decomposed at 3 scales using the Haar wavelet transform for
the multiscale wavelet decomposition module. The embedding
size de for the scale-specific correlation learning module is set
to 4, and the maximum number of neighbors for each node
τ is set to 10. The number of graph convolution layers is
set to 2 for the GCN submodule, and the kernel sizes of the
TCN convolution layers at different scales are set to 32, 16, 8,

and 4, respectively. The class rebalancing blade icing classifier
has 3 fully connected layers with 26, 13 and one node(s),
and the focal loss function’s αt and γ are set to 0.25 and 3,
respectively. Sensitivity analysis of important hyperparameters
is presented in Section IV-C.

5) Computational Complexity: During the test phase, the
computationally intensive components of the MWGCN are the
MDWD module, the GCN submodule, the TCN submodule,
the scale-attention module, and the class rebalanced classifier,
and their computational complexity can be defined as O(N ·T ·
L), O(N2 ·T ·L), O(T 2 ·N ·ds ·L), O(d2s) and O(d2s), where
N is the number of signals, T is the length of the window
size, L is the number of MDWD levels, ds is the embedding
size of hi and hatt, respectively.

B. Experimental Results and Discussion

1) Baseline Models: We will use the following eight state-
of-the-art models as a baseline to evaluate our model.

2) Comparison with the Baseline Methods: Table III presents
the blade icing detection performance in terms of precision, re-
call, and F1 score, of the proposed MWGCN and the baselines
on the Turbine-1 dataset. The results show that the proposed
MWGCN has the highest performance in terms of precision
and the main metric F1 score among all models. Compared to
the best baseline, MRCNN, MWGCN improves the F1 score
and precision by 17.2% and 43.4%. Although FCNN, MRCNN
and MLSTM-FCN outperform MWGCN in terms of recall,
they have poor performance in precision. With a high recall
but a low precision, the model may generate a large number
of false positive alarms, resulting in the misclassification of
many wind turbine’s regular operation periods as blade icing
states, resulting in significant additional maintenance costs.

Similarly, Table III shows the blade icing detection accuracy
of the proposed MWGCN and the baselines on the Turbine-
2 dataset. The proposed MWGCN also outperforms the best
baseline MRCNN in terms of F1 score and accuracy, with
improvements of 11.3% and 27.5%, respectively. There are
some false positives, indicating that current baseline models
do not adequately address precision and recall. In contrast, the
proposed MWGCN has balanced performance in terms of both
and consequently achieves the best F1 score in both datasets.

TABLE III
BASELINE COMPARISON ON THE DATASETS

Dataset Turbine-1 Turbine-2
Precision Recall F1 score Precision Recall F1 score

MSPCA 0.33 0.30 0.31 0.30 0.66 0.41
RF-XGBoost 0.33 0.79 0.47 0.31 0.71 0.43

LSTM 0.27 0.57 0.37 0.32 0.30 0.31
MLSTM-FCN 0.37 0.78 0.50 0.37 0.95 0.53

FCNN 0.26 0.82 0.39 0.38 0.73 0.50
WaveletFCNN 0.21 0.60 0.31 0.19 0.84 0.31

SSENET 0.53 0.59 0.56 0.35 0.90 0.50
MRCNN 0.53 0.81 0.64 0.69 0.72 0.71
MWGCN 0.76 0.74 0.75 0.88 0.72 0.79

C. Sensitivity Analysis and Hyperparameter Tuning

This section performs a sensitivity analysis to examine the
impact of key hyperparameters on the MWGCN, which is to
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find the optimal hyperparameters and optimize its structure.
We evaluated the following three key hyperparameters using
the Turbine-1 and Turbine-2 datasets: 1) the MDWD scale;
2) the maximum neighbor number of each node in the scale-
specific correlation learning module; and 3) the number of
graph convolution layers in the GCN submodule. We define
the range of possible values for all hyperparameters based on
the literature [8] and practical experience.

To study the impact of the MDWD scale, we implemented
four variants of MWGCN with different MDWD scales (1, 2,
3, and 4). To explore the influence of the maximum number
of neighbors in the scale-specific correlation learning module,
we choose five different parameters that range from 5 to 26.
Finally, to evaluate the importance of the number of graph
convolution layers in the GCN submodule, we set the number
of GCN layers to 1, 2, 3, 4, and 5. Therefore, there are a total
of 14 groups of sensitivity experiments for the Turbine-1 and
Turbine-2 datasets.

The results of the sensitivity analysis on two datasets are
shown in Figures 3, respectively. On the Turbine-1 dataset, the
highest F1 score is obtained when the MDWD scale is 2 and
3. If some blade-icing states were not detected, this could lead
to economic loss. Therefore, we adopt the MDWD scale of 3
because its recall is higher than the scale of 2’s. In addition,
the F1 score is the best when the number of neighbors is set
to 5. Moreover, with two GCN layers, the proposed MWGCN
achieves the best performance on the Turbine-1 dataset. For
the Turbine-2 dataset, we can observe similar results for the
MDWD scale and the number of GCN layers, while the F1
score reaches its highest value when the number of neighbors
is set to 10. Based on the above results, we were able to
find the optimal hyperparameter settings of MWGCN for each
dataset.

D. Ablation Study

The ablation study is to see if some of the model’s compo-
nents are effective and indispensable. For example, if a new
component is introduced to the model, we should compare the
results obtained by the model with that component removed to
the results obtained by the model with that component added
to evaluate whether that component is effective.

Specifically, we implement several variants of the MWGCN
by removing some components, and then observe their impact
on the performance of the MWGCN. The variants of MWGCN
are constructed as follows:MWGCN-1: MWGCN without
the multiscale wavelet decomposition module; MWGCN-
2: MWGCN without the scale-specific correlation learning
module; MWGCN-3: MWGCN without the scale-attention
module; MWGCN-4: MWGCN without the class rebalancing
loss function.

Table IV shows the results of the ablation analysis on the
two datasets. We can observe that the complete MWGCN
outperforms all other variants in terms of F1 score. This
result demonstrates the effectiveness of all components in the
proposed MWGCN. As illustrated in Table IV, it indicates
that the performance of all four MWGCN variants is worse
than that of the complete MWGCN, implying that all the

primary components of the proposed MWGCN have been
shown to improve the performance of the model, and the per-
formance of MWGCN will degrade as one of its components
is removed. Furthermore, there are some variances in impacts
in different datasets. MWGCN-3 has the worst performance
on the Turbine-1 dataset, suggesting that the scale-attention
module, which has been removed from MWGCN-3, may have
a significant impact on the results. However, in Turbine-2,
this module has the second most important impact of all
components. The explanation for this could be that Turbine-
1’s decomposed input from multiple scales has more variation
than Turbine-2, which requires the scale-attention module to
determine the weights of each scale to improve the classifier’s
performance. Furthermore, MWGCN-2 performs the worst on
the Turbine-2 dataset, suggesting that inter-variate correlations
at different scales might be quite different, implying that the
scale-specific correlation learning module may critical in this
turbine dataset.

TABLE IV
ABLATION ANALYSIS OF THE PROPOSED MWGCN

Dataset Turbine-1 Turbine-2
Precision Recall F1 score Precision Recall F1 score

MWGCN-1 0.80 0.65 0.71 0.77 0.70 0.74
MWGCN-2 0.80 0.67 0.73 0.67 0.55 0.60
MWGCN-3 0.76 0.60 0.67 0.69 0.75 0.72
MWGCN-4 0.80 0.62 0.70 0.78 0.59 0.67
MWGCN 0.76 0.74 0.75 0.88 0.72 0.79

E. Discussion

1) What are the main differences between the proposed
MWGCN and the others?: In this paper, we have developed
a blade icing detection model based on the deep learning
method that takes into account rich and implicit information on
different scales of the time and frequency domains. Compared
to MSPCA, RF-XGBoost, LSTM, MLSTM-FCN, FCN and
SSENET, which directly model the temporal pattern of the
original signals, the proposed MWGCN uses the discrete
wavelet decomposition module to be able to capture rich
and implicit information in the time and frequency domains.
More specifically, traditional convolutional neural networks
can learn information only within a fixed receptive field con-
strained by the filter size, while the multisacle wavelet module
provides much more helpful information among multiple time
and frequency scales for the convolutional neural networks.

WaveletFCNN and MRCNN both use a similar discrete
wavelet decomposition module, but they were not designed
to exploit the intervariable correlations of multiscale SCADA
data. In contrast, the proposed MWGCN uses the graph
convolution module and the scale attention module to model
scale-specific correlations. These modules are incorporated
with the structural information and the information of each
scale. Therefore, the proposed MWGCN has achieved a greater
ability to capture the signal information from multivariate time
series in both the time and frequency domains. These are
the main reasons for the effectiveness and superiority of the
proposed MWGCN over other methods.
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Fig. 3. Results of the sensitivity analysis on the Turbine-1 dataset(upper line) and the Turbine-2 dataset(lower line).

2) How does the multiscale wavelet transformation work?:
In this work, we adopt the scale-specific correlation learning
module to capture scale-specific intervariable correlations of
input data. Thus, we could collect the adjacency matrice of
the scale-specific intervariable correlations on the datasets,
and further analyze the difference of the adjacency matrice
at different scales. We take the wind speed for example, to
analyze how the scale-specific correlation learning module
works at different scales. At scale 0, the five most important
correlations are the temperatures of pitch motor 1,2 and 3,
the yaw position, and the switching temperature of pitch 3; at
scale 1, are the angles of pitch 1, 2, and 3 and the temperatures
of pitch motor 1 and 2; at scale 2 and 3, are the angles of
pitch 1, 2 and 3, the environment temperature, and the nacelle
temperature.

We can see that, at scale 0, the wind speed is more related
with the temperature of pitch motors, while the correlations
between the wind speed and the angles of pitches become
more important at higher scales. The reason may lie that the
information at scale 0 presents the prominent temporal trend
variations of the multivariate time series, while the information
at higher scales is the detail coefficients that may capture the
transient localized dynamic patterns. In our work, the scale-
specific correlation learning module automatically learns the
inter-variate relationships of the input data at multiple wavelet
scales, thus improving the classification performance.

3) How does the hyperparameters influence the perfor-
mance?: From Figure. 3, we can simply analyze how these
hyperparameters influence performance.

When it comes to the MDWD scale, the proposed MWGCN
performs best when the MDWD scale is set to 3, and it
degrades when the MDWD scale is increased. The reasons
for this could be that the model may be unable to process and
use the information of higher-level detail coefficients, which
becomes extra noise, thus degrading the deep learning model’s
performance.

As for the maximum number of neighbors in the scale-

specific correlation learning module, we can see that the
sparsification strategy can be effective, with less computation
cost of the graph convolution, reduce the impact of noise, and
make the model more robust. It shows that the information
aggregation of only a few nodes may present even better
performance than all nodes, indicating that a lot of noise may
be involved in the aggregated information of a node from
redundant nodes, and the sparsification strategy can alleviate
this kind of noise and make the model robust.

In terms of the number of GCN layers, the experimental
results show that the model with deeper GCN layers does not
perform better. [54], [55] investigated the graph representation
learning and discovered that GCN models cannot be stacked as
deeply as CNN models. The reasons could be that the GCN’s
information aggregation mechanism allows it to be considered
as a low-pass filter [56], and as the number of the GCN layers
increases, the signals of each node become smoother, which
is an inherent advantage of the GCN. However, performing
this signal smoothing operation too many times may cause the
signals to converge and become indistinguishable, resulting in
loss of node characteristics diversity. As a result, the number
of GCN layers should be carefully chosen.

V. CONCLUSION AND FUTURE WORK

Blade icing detection is crucial to the efficiency of wind tur-
bine power generation. In this paper, we presented a wavelet-
driven multiscale graph convolutional network, MWGCN,
to detect the icing condition of wind turbines. To improve
detection performance, we introduced a discrete wavelet de-
composition into the proposed MWGCN, which is capable
of capturing multiscale features of SCADA data in both the
time and frequency domains. In addition, we implemented a
scale-specific correlation learning module that can infer scale-
specific intervariable relationships of SCADA data at multiple
time and frequency scales. In addition, we used a temporal
convolution sub-module to improve the efficiency of parallel
processing without sacrificing accuracy. A scaling attention
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module was also added to capture inter-scale correlations.
The proposed model incorporates a class rebalancing classifier
to address the class imbalance problem of the input data.
Finally, we conducted comprehensive experiments to evaluate
the proposed model using real-world datasets, and the results
verify its effectiveness and superiority over others. There are
three interesting directions for future work. First, we will
continue to improve the model, for example, by investigating
how to effectively exploit cross-scale signal correlations, as
this can be useful for multivariate feature extraction. Second,
hyperparameter tuning is crucial to create efficient models
for different types of wind turbines and to adapt to different
environmental conditions. This can be done automatically and
adaptively, for example, by reinforcement learning to learn the
hyperparameter settings through the interaction between the
environment and the agent. This will be the other direction
of future research. Third, because the proposed MWGCN is
a supervised batch approach that requires the whole labeled
dataset to be a priori, we will improve and modify our model
in unsupervised and semi-supervised settings. We leave these
directions for future work seeking to improve the model.
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