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Abstract—Traditional assessment indexes could not fully
describe offshore wind resource for the meteorological
properties of offshore are more complex than onshore.
And as a result, the uncertainty of offshore wind power
projects would be increased and final economic benefits
would be affected. Therefore, a study on offshore wind
resource assessment is carried out, including three processes
of “studying data sources, conducting multi-dimensional
indexes system and proposing offshore wind resource as-
sessment method based on Analytic Hierarchy Process
(AHP)”. Firstly, measured wind data and two kinds of
reanalysis data are used to analyze the characteristics
and reliability of data sources. Secondly, indexes such as
effective wind speed occurrence, affluent level occurrence,
coefficient of variation, neutral state occurrence have been
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proposed to depict availability, richness, and stability of
offshore wind resource, respectively. And combined with
the existing parameters (wind power density, dominant
wind direction occurrence, water depth, distance to coast),
a multi-dimensional indexes system has been built and
based on the above indexes system, an offshore wind energy
potential assessment method has been proposed. Further-
more, the proposed method is verified by the annual energy
production of five offshore wind turbines and practical
operating data of four offshore wind farms in China. This
study also compares the ranking results of the AHP model
to two multi-criteria decision making (MCDM) models
including a Weighted Aggregated Sum Product Assessment
(WASPAS) and Multi-Attribute Ideal Real Comparative
Analysis (MAIRCA). The results show that the proposed
method gains well in practical engineering applications,
where the economic score values has been considered based
on the offshore reasonable utilization hours of the whole
life cycle in China.

spheric stability

I. INTRODUCTION

OFFSHORE wind power is emerging as a boom-
ing renewable energy source for power genera-

tion, potentially mitigating climate change, increasing
energy security, and stimulating the global economy
[1]. Compared with onshore wind energy, offshore wind
energy has clear advantages, such as more significant
wind resource, lower visual and acoustic impacts, larger
untapped areas [2]–[5], closer to the load center. As a
result, offshore wind energy has overgrown in the last
decade: from just over 2 GW in 2009, the global installed
capacity of offshore wind energy has increased more
than 17 times to over 35 GW in 2020 [6], representing
an annual growth rate of nearly 30%, and it is still
expected to rise in the coming years [7]. The fast-growing
offshore wind energy sector brings both opportunities
and challenges in offshore wind energy utilization.

Offshore wind resource assessment plays a significant
role in developing and constructing offshore wind energy
projects [8] since the power is the cube function of
wind speed. A minor speed change can cause large
deviations in the output power [9], [10]. There are two
essential prerequisites to ensure the accuracy of offshore
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wind resource assessment. The first is the reliability
and continuity of wind measurement data. Generally,
satellite data, reanalysis data, and numerical simulation
data have been widely used in evaluating offshore wind
resource due to the complex meteorological properties,
short development time, and lack long-term observa-
tion of offshore wind energy [11]. The distribution of
offshore wind resource in the South China Sea has
been analyzed using the JRA-55 developed by the Japan
Meteorological Agency(JMA) [12]. The regularities of
wind speed distribution over China’s Bohai and Yellow
Seas have been analyzed according to the 35-year ERA-5
(European Center for Medium-Range Weather Forecasts
Reanalysis V5) data [13]. Besides, reanalysis data has
been widely used to evaluate the offshore wind resource
at various locations worldwide, such as in Oman [14], the
Mediterranean Sea [15], south and southeastern Brazil
[16], North America [17], the Black Sea [18], Morocco
[19] and the Indian Sea [20].

Another critical prerequisite that ensures the accuracy
of offshore wind resource assessment is the scientific
and comprehensive assessment method [21]. Traditional
wind resource assessment is mainly proposed from the
perspective of the total reserves and availability of wind
energy. Still, the large-scale development of offshore
wind energy is related to the characteristics of offshore
wind energy resource itself and other factors such as
economy, environment, and human activities. In terms
of influencing factors, the situation for offshore wind
energy is more complex and variable than for the onshore
case. The temperature difference between water and
atmosphere will affect the offshore atmospheric boundary
layer’s stability and vertical mixing trend, thus eventually
rising to change the distribution of wind resource [22].
Geographical factors such as water depth and distance
to coast [23] will also restrict the development and
utilization of offshore wind energy. Therefore, the de-
velopment of offshore wind projects requires an overall
assessment that quantifies the crucial constraints. Zheng
et al. [24] analyzed the distribution of global offshore
wind resource by considering wind power density, ef-
fective wind speed and other factors. [25] researched
the site selection method of potential areas for offshore
wind power development assessed with a multi-criteria
decision making analysis. Zheng et al. [26] proposed a
new classification standard for offshore wind resource
comprehensively considering resource and environmental
factors. Emeksiz et al. [27] evaluated the wind energy
resource in 31 coastal regions of Turkey. Costoya et
al. [28] used 12 regional climate models to simulate
the 30-year historical data of offshore wind power, and
proposed a new classification method of offshore wind
resource comprehensively considering wind resource,
environmental risks, and economic costs, and predicted

the future variation of offshore wind resource in North
America. Table I provides a brief comparison between
the relevant indexes and approaches discussed in the
literature.

In summary, researchers have carried out many studies
on the offshore wind resource assessment because of its
particularity, but the following limitations still urgently
need to be settled:
(1) The simulation and assimilation data applied in the
above studies usually deviated from the measured data,
which would increase the uncertainty of the assessment
of offshore wind resource.
(2) There are overlaps and omissions among the above
offshore wind resource evaluation studies, which could
not fully and accurately describe the distribution of
offshore wind resource.

Therefore, the main contributions of this paper are as
follows:
(1) The reliability of data source has been studied based
on wind mast measured data and two separate sources
of reanalysis data (MERRA-2, CFSv-2) to reduce the
assessment error due to data uncertainty.
(2) An offshore wind resource assessment method based
on AHP model has been proposed, which considered
a variety of factors such as total reserves, availability,
stability, and actual construction conditions, in order to
ensure the accuracy and comprehensive of the evaluation.
(3) The applicability and effectiveness of this method has
been rigorously verified by four offshore wind farms in
China. The results proved the high consistency with the
actual running data.
(4) The assessment results has also been compared with
two multi-criteria decision making (MCDM) models in-
cluding a Weighted Aggregated Sum Product Assessment
(WASPAS) and Multi-Attribute Ideal Real Comparative
Analysis (MAIRCA). The results show that the proposed
method gains well in practical engineering applications.

The rest of this study is structured as follows: Section
2 introduces the proposed assessment indexes system.
Section 3 presents multi-source data comparison and
screening. The proposed method and validation using
measured and operating data from four offshore wind
farms have been shown in Section 4, followed by a brief
conclusion in Section 5.

II. THE MULTI-DIMENSIONAL INDEXES SYSTEM OF
OFFSHORE WIND RESOURCE

The traditional onshore and offshore wind resource
assessment mainly determines the wind resource grade
by two parameters: annual mean wind speed and annual
mean wind power density. This paper proposes a multi-
dimensional indexes system based on reserves, stability,
and actual construction condition. Moreover, an offshore
wind resource assessment method based on the above

2

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other 
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, 

creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. 

This is the accepted version of an article published in CSEE Journal of Power and Energy Systems (JPES) 
http://dx.doi.org/10.17775/CSEEJPES.2021.09260



TABLE I: Comparison between the different offshore wind siting studies

Location,Year Data Index Method
Eygpt, 2018, [23] MERRA reanalysis data Wind intensity,

Distance to grid,
Water depth,
Distance to coast

Pairwise comparison

Global, 2014, [24] ERA-40 reanalysis data Wind power density,
Seasonal stability,
Coefficient of variation,
Storage of wind energy

Not defined

Thailand, 2015, [25] NCAR/NCEP reanalysis data Wind speed,
Distance to grid,
Water depth,
Distance to coast

Not defined

Global, 2018, [26] ERA-Interim reanalysis data Wind power density,
Monthly stability,
Rich level occurrence,
Effective wind,
Water depth,
Distance to coast

Delphi method

Turkey, 2019, [27] RET-screen database Pipelines,
Military zones,
Sea floor morphology,
Water depth,
Distance to coast

AHP

North America, 2020, [28] CMIP5 Mean wind speed,
Extreme wind speed,
Monthly stability,
Water depth,
Distance to coast

Delphi method

This paper MERRA-2 reanalysis data,
CFSv-2 reanalysis data,
Measured data

Wind power density,
Effective wind speed,
Affluent level,
Coefficient of variation,
Dominant wind direction,
Atmospheric stability,
Water depth,
Distance to coast

AHP

indexes system has been put forward by the form of score
values.

A. Offshore wind power reserves indexes

1) Wind power density (WPD)): The wind power
density is the most critical parameter to evaluate wind
power resources. wind power density at a certain height
is calculated as follows:

WPD =
1

2n

n∑
i=1

ρv3i (1)

For a selected region, the higher the WPD at the same
height, the better the wind resource in the area are. So
the paper defines WPD as a positive index.

2) Effective wind speed occurrence (EWSO): In gen-
eral, power can be generated at wind speeds between

3 m/s and 25 m/s, and EWSO is defined as the proportion
of available wind energy hours of the annual hours:

EWSO =
t3≤vi≤25

8760
(2)

Where, t3≤vi≤25 is the the hour of wind speed in range
3 m/s and 25 m/s . The higher the EWSO is, the greater
the wind resource potential of the evaluated region is.
Therefore, EWSO is a positive index.

3) Affluent level occurrence (ALO): In this paper,
the probability of wind power density greater than
200W/m2 is defined as ALO. Larger ALO values reflect
a higher utilization rate of wind resource in a specific
place. Therefore, ALO is also a positive index.

B. Offshore wind power stability indexes
1) Coefficient of variation (CV): The reserves, avail-

ability, and stability of wind resource should be consid-
ered in utilizing wind power. CV is constructed through
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the mean and standard deviation of WPD, which mainly
measures the dispersion degree of WPD in time series. In
general, CV reveals the stability of wind resource, and
a more considerable value means the more significant
difference of WPD among different times; thus, CV is
defined as a negative index:

CV =
σp

P
(3)

Where, σpis the standard deviation of WPD, and P is
the mean WPD.

2) Dominant wind direction occurrence(DWDO): An
offshore wind farm with basically stable wind direction
is conducive to the wind farm layout and wind turbine
yaw control, which can minimize the interaction of flow
fields between turbines and increase the overall power
generation. In brief, the higher the frequency of the
dominant wind direction is, the more stable the wind
resource is. Therefore, DWDO is a positive index.

3) Neutral state occurrence(NSO): Atmospheric sta-
bility is the leading thermal factor causing vertical
variation of wind speed. The kinematic and thermody-
namic structure of atmospheric motion only depends
on atmospheric turbulence under the situation of the
stationary and horizontal ground layer without radia-
tion and phase transformation. The dimensionless value
Monin-Obukhov length (L) is usually used to represent
atmospheric stability [29] :

L = − u3
∗θv

κgωθv
(4)

Where κ a is von Karman coefficient, g is gravita-
tional acceleration, u∗ is friction velocity, θv is virtual
potential temperature, ωθv is surface buoyancy flux:
ωθv = H0

ρcp
+ 0.61Ta

L0

ρlv
, H0 and L0 are sensible heat

flux and latent heat flux, respectively. The classification
standard of atmospheric stability is shown in Table II
[30], [31]. As an essential issue in the design stage
of wind farms, atmospheric stability has been rarely
considered [32]. The paper takes atmospheric stability
as the primary consideration of offshore wind resource
assessment. The proportion of neutral state is used to
represent the influence of atmospheric stability on the
distribution of wind resource.

TABLE II: Standard of atmospheric stability classification

Atmospheric Stability L
unstable −600 ≤ L < 0
neutral L≥ 600, L < −600
stable 0 ≤ L < 600

C. Offshore wind power construction condition indexes

Distance to coast(DC) and water depth(WD) are two
crucial factors affecting site selection and the cost of
offshore wind power projects. Usually, further DC and
deeper WD values are unfavorable to offshore projects in
infrastructure construction, construction and installation,

submarine cable laying, electricity interconnection, and
operation and maintenance of wind turbines. Therefore,
from the perspective of project design and site selection,
WD and DC are defined as negative indexes. Fig.1 is the
multi-dimensional assessment indexes system of offshore
wind resource constructed in this paper, in which the
indexes marked with * are the indexes proposed in this
paper.

Fig. 1: The assessment indexes system of offshore wind resource

III. MULTI-SOURCE DATA COMPARISON

A. Data sources

The paper, based on different data sources (the mea-
sured data, operating data, MERRA-2 reanalysis data
by National Aeronautics and Space Administration, and
CFSv-2 reanalysis data by the National Center for Envi-
ronmental Prediction) of four offshore wind farms (WF1,
WF2, WF3, and WF4) in the areas of the Yellow Sea in
China, has studied the offshore wind resource assessment
method. The sampling period is 1h. The measured data
includes wind speed, wind direction at 10m, 30m, 50m,
70m, and 100m, and best of all, the four wind farms
are marked with no cutoffs during the data sampling
period. CFSv-2 reanalysis data includes wind speed and
wind direction at 10m, 100m, sensible heat flux, latent
heat flux, air density, air pressure, temperature, and
specific humidity. In comparison, MERRA-2 reanalysis
data includes wind speed and wind direction data at
100m height. According to the Chinese national standard,
GB/T18710 - 2002, and the industry-standard NB/T
31147-2018, the data integrity rate is above 90% after
data interpolation. Table III shows the basic information
of three data resources. Fig.2 shows the position of four
offshore wind farms.
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Fig. 2: Layout of four Offshore wind farms

TABLE III: The basic information of data resources

Temporal/Spatial
resolution

Data year

CFSv-2 1h, 0.2◦ × 0.2◦ 2017
MERRA-2 1h, 0.5◦ × 0.625◦ 2001-2020

Measured data 1h, – 2017

1) The essential characteristic of wind speed data:
Describing and studying the basic variation rules would
help improve the understanding of the characteristics of
offshore wind resource and increase the accuracy of the
assessment. Fig.3 shows the variation of the annual mean
wind speed of the four wind farms in recent 20 years
(data source: CFSv-2). The annual mean wind speed of
WF4 is lower than that of other wind farms since it is an
intertidal wind farm, and the annual mean wind speed of
four wind farms has stayed in a relatively stable variation
range in the past 20 years. Among the four wind farms,
the maximum annual mean wind speed appeared in 2018,
while the minimum appeared in 2020 and 2015. From a
long time scale analysis, 2017 is not a "strong or light
wind year", which would be more representative.

Fig. 3: Wind speed variation during 20 years at four offshore wind
farms

Fig. 4: Wind rose of four offshore wind farms

Table IV summarizes the basic information of mea-
sured wind speed at 100m height of four offshore wind
farms, where k and c are shape and scale parameters of
wind speed Weibull distribution, respectively, v̄ is annual
mean wind speed, P(vi > v̄) is probability of wind speed
larger than v̄. R2 reflects the fitting quality of wind
speed using Weibull distribution. As can be seen from
Table IV, among the four offshore wind farms, WF3 has
the maximum annual mean wind speed at 100m, and
the wind speed distribution is closest to the Rayleigh
distribution. WF4 has the minimum yearly mean wind
speed of 100m. Besides, the probability of wind speed
of four offshore wind farms greater than the mean value
is basically between 0.44 and 0.46.

TABLE IV: The basic information of offshore wind resource

WF1 WF2 WF3 WF4
v̄(m/s) 6.553 7.117 7.854 5.943

k 3.000 2.225 2.148 2.402
c 7.333 8.039 8.887 6.697

P(vi > v̄) 0.443 0.458 0.442 0.448
R2 0.933 0.967 0.971 0.938

Fig.4 shows the wind direction distribution of four off-
shore wind farms in 2017. The dominant wind direction
of WF1, WF3, and WF4 are relatively consistent, all
in the order of E or ESE. The NE direction of WF2
has the highest proportion. The analysis of dominant
wind direction has essential reference significance for the
estimation of wind power generation under the influence
of the wake effect.

2) Atmospheric stabilities based on CFSv-2 reanal-
ysis data: Offshore wind power depends not only on
meteorological factors such as wind speed and direction
but also on complex sea-air interaction at a different
time and spatial scales inside and outside of the wind
farm. Under stable conditions, the phenomenon of air
cooling from bottom to top (the ocean is cooler than
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the atmosphere) strengthens atmospheric stratification
and inhibits vertical movement, resulting in higher wind
shear. Conversely, under unstable conditions, the phe-
nomenon of atmospheric heating from the bottom up (the
ocean is hotter than the atmosphere) promotes convection
and exchange of vertical momentum, resulting in lower
wind shear [33]. Hence, the study on the spatial-temporal
distribution of wind resource under the influence of at-
mospheric stability can improve the accuracy of offshore
wind resource distribution assessment in selected regions
[34].

TABLE V: WPD under different atmospheric stabilities

WF1 WF2 WF3 WF4

Annual (W/m2)
10m 126 245 238 59
50m 178 298 387 149
100m 241 382 536 212

Stable (W/m2)
10m 65 99 188 60
50m 76 196 342 155
100m 97 247 490 245

Neutral (W/m2)
10m 125 202 378 151
50m 227 382 767 482
100m 279 556 1170 785

Unstable (W/m2)
10m 93 256 259 55
50m 101 302 318 132
100m 143 353 357 209

NSO 62.27% 2.62% 14.34% 1.14%

Like wind speed and wind shear, atmospheric sta-
bility is also a vital characteristic relevant to wind
energy research, significantly impacting wind turbines’
aerodynamic and power performance [35]. However,
many current studies assume that the atmosphere always
keeps neutral, which would limit the further increase
in the accuracy of offshore wind resource assessment.
The paper has quantitatively considered the influence of
atmospheric stability on wind resource distribution in the
process of offshore wind resource assessment.

Firstly, CFSv-2 reanalysis heat flux data was applied
to calculate Monin-Obukhov length according to Eq.(4),
and the atmospheric stability was classified based on
classification criteria in Table II. Based on the above
classification method, the moments with the same at-
mospheric stability were selected, and Eq.(1) was used
to calculate the WPD to characterize the value of the
certain atmospheric stability. Annual mean value repre-
sents the conventional annual WPD. Table V shows mean
WPD under different atmospheric stabilities and annual
mean values of four wind farms. As shown in Table V,
when the WPD under different atmospheric conditions
is separately calculated, the neutral state reflects the
property with the highest value. The more significant
the proportion of neutral state is, the more outstanding
the contribution to WPD is. In both stable and unstable
conditions, WPD at 100m of WF1 is below 150 W/m2,
but thanks to the large neutral proportion, the annual
mean WPD is greater than that of WF4. Therefore, in the

comprehensive offshore wind resource assessment, NSO
has been taken as a parameter to consider atmospheric
stability.

In addition, we suggest that at least two heights of
temperature should be measured in the wind measure-
ment process, for measured data would be more accurate
in calculating atmospheric stability index to consider
the effect of atmospheric stability in the wind resource
assessment.

B. Diurnal variation of wind speed from different data
sources

The diurnal variation of mean wind speed and mean
WPD from various data sources (measured data at differ-
ent heights, 100m MERRA-2 reanalysis data, and 100m
CFSv-2 reanalysis data) have been shown in Fig.5 and
Fig.6. Correlation coefficients between reanalysis data
and measured data have been shown in Table VI, where
M-M and C-M represents the correlation coefficient
between MERRA-2 and CFSv-2 reanalysis data and
measured data, respectively. This paper has calculated
Kendall, Spearman and Pearson correlation coefficient.
Compared with onshore wind resource, offshore wind
resource have no evident diurnal variation trend of "wind
is lighter at noon and stronger at night" according to
diurnal variation of measured data, especially in WF1,
WF2 and WF4. There appears to be little difference
in mean wind speed at different heights at the same
time, the same as the difference of mean wind speed
at the same height at different times, which reflects the
stable and low-shear characteristics of the offshore wind
resource.

TABLE VI: Correlation coefficient between reanalysis data and mea-
sured data

Kendall Spearman Pearson
M-M C-M M-M C-M M-M C-M

WF1 0.327 0.335 0.464 0.477 0.473 0.495
WF2 0.394 0.470 0.559 0.650 0.586 0.666
WF3 0.643 0.320 0.824 0.378 0.827 0.410
WF4 0.506 0.342 0.677 0.493 0.703 0.515

According to the comparison results of data sources,
the absolute error between measured data and MERRA-2
reanalysis data ranges from 0.16 m/s to 1.15 m/s in four
wind farms, and MERRA-2 reanalysis data would over-
estimate the mean wind speed and mean WPD except
for WF3. The absolute error between measured data and
CFSv-2 reanalysis data ranges from 0.13m/s to 1.30m/s
in four wind farms. The error range of MERRA-2
reanalysis data in the diurnal variation scale is minor than
CFSv-2 reanalysis data. The minimum error occurred
around noon when the intense atmospheric activity re-
sulted in little wind speed difference of different heights.
Therefore, data interpolation via the high correlation
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Fig. 5: Diurnal variation of wind speed of different data sources

Fig. 6: Diurnal variation of wind power density of different data sources

reanalysis data of this period is feasible in the case of
lack the measured data; The maximum error occurs at
21:00-23:00 and uses the reanalysis data of this period
to interpolate the measured data may bring a significant
error. Kendall correlation coefficient of M-M in WF1 and
C-M in WF3 is only 0.327 and 0.320, respectively, which
shows the low coefficient. Generally speaking, it is not
advisable to rely too much on reanalysis data in practical
application. Directly applying reanalysis data for wind
resource assessment in some offshore wind farms lacking
in measured data may lead to deviation of assessment
results from the actual situation.

IV. THE PROPOSED OFFSHORE WIND RESOURCE
ASSESSMENT METHOD

(1) In matrix X

The proposed assessment method of offshore wind
resource involves multi-dimensional evaluation indexes.
The dimension and attribute of each index are not the
same, making it difficult to compare and analyze directly.
In this paper, the min-max normalization method shown
in Eq.(5) and Eq.(6

A. Normalized important indexes

) is adopted to ze the indica-tors:

, for a positive index:

yij =

xij − min
1≤i≤m

xij

max
1≤i≤m

xij − min
1≤i≤m

xij
, (1 ≤ i ≤ m, 1 ≤ j ≤ n) (5)

(2) In matrix X, for a negative index:

yij =

max
1≤i≤m

xij − xij

max
1≤i≤m

xij − min
1≤i≤m

xij
, (1 ≤ i ≤ m, 1 ≤ j ≤ n) (6)

Where m and n denoted number of criteria (j =
1, 2, . . . , n) and alternatives (i = 1, 2, . . . ,m). xij is
the initial value, yij is the normalized value. The output
target values are in the interval , and the negative
indicators are processed positive after normalization.

Fig. 7: The offshore wind resource assessment method.

B. AHP Method
Analytic Hierarchy Process (AHP) is a multi-objective

decision analysis method combining qualitative and
quantitative approaches to determine the weight of mul-
tiple indexes. It provides a rational framework for a

7

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other 
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, 

creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. 

This is the accepted version of an article published in CSEE Journal of Power and Energy Systems (JPES) 
http://dx.doi.org/10.17775/CSEEJPES.2021.09260



needed decision by quantifying its criteria and alternative
options, and for relating those elements to the overall
goal. This paper has constructed an 8-order decision
matrix based on eight evaluation indexes, i.e., WPD,
EWSO, ALO, CV, DWDO, NSO, DC, and WD. The
construction principle of the decision matrix is pairwise
comparison, which can be expressed as:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

an1 an2

. . . ann

 (7)

Where A is a decision matrix, which is a standard
reciprocal matrix.

In our AHP analysis, we used the Pairwise Compari-
son method to obtain decision matrix A. The intensity of
importance has been indicated pairwise comparisons be-
tween evaluation indexes, which is range from 1 to 9. In
this paper, Satty’s [36] value criterion has been adopted
in the pair comparison. The intensity of importance has
been chosen by experts’ judgement, and the process is
accomplished by building the decision matrix, which has
equal rows and columns. Finally, the decision matrix A
is consistent with Mahdy’s [23] result in trend of the
same indexes. Table VIII shows the decision matrix A
obtained in this paper.

The weight of each index can be calculated based on
the decision matrix. In this paper, the root method is used
to solve it, and it is expressed as:

wj = n

√√√√ n∏
j=1

aij (8)

wj =
wj
n∑

j=1

wj

(9)

Where wj is weight of jth criterion. However, the
increase in the number of evaluation indexes would in-
evitably increase the complexity of the decision problem,
so it is necessary to conduct a consistency test on the
decision matrix to ensure the consistency of decision-
making. The calculation principle of consistency indexes
are as follows:

CI =
λmax − n

n− 1
(10)

CR =
CI

RI
(11)

Where CI is consistency index, λmax is a maximum
eigenvalue, n is the order of decision matrix, CR is
consistency ratio, CI is mean random consistency index
and its value under different orders has been given in
Table VII. The weight distribution of indexes obtained
in this paper is shown in Table IX.

The final stage is to calculate CR to measure how
consistent the judgements have been relative to large
samples of purely random judgements. If CR is much in

exceed of 0.1 the judgement are untrustworthy because
they are too close for comfort to minimum number
of judgements after which the rest can be calculated
to enforce a perhaps unrealistically perfect consistency.
[36], [37]. Finally, CR of decision matrix is 0.078, less
than 0.1, indicating that the decision matrix meets the
consistency test and the weight obtained by calculation
is consistent.

Taking four offshore wind farms as examples, the
proposed offshore wind resource assessment method is
shown in Fig.7:

The proposed assessment method of offshore wind
resource based on multi-dimensional indexes was finally
expressed by score values (SV), which is shown as
follows:

SV = 0.241WPD + 0.152EWSO + 0.111ALO

+ 0.121CV + 0.123DWDO + 0.079NSO

+ 0.071DC + 0.103WD

(12)

C. WASPAS Method

The WASPAS method was developed to solve MCDM
problems in 2012 [38].The steps of the WASPAS method
are listed as follows:

Step 1: The values of decision matrix are normalized
by Eq.(5) and Eq.(6).

Step 2: The weighted sum (WS) (ϕi) and weighted
product (WP) measures (ψi) for each offshore wind
resource are expressed as follows:

ϕi =
n∑

j=1

wjyij , (13)

and
ψi =

n∏
j=1

(yij)
wj . (14)

where yij denotes the normalized value, wj is weight
of jth criterion.

Step 3: The aggregated measure of WS and WP is
obtained by:

ϖi = γϕi + (1− γ)ψi, (15)

where the parameter of the WASPAS method is defined
as γ, which is the set of numbers between 0 and 1. If
γ = 1, the WASPAS method is transformed into WS,
whereas γ leads to WP.

Step 4: The alternatives are ranked in decreasing order
using the values of ϖi.

D. MAIRCA Method

Multi-Attribute Ideal Real Comparative Analysis
(MAIRCA) is one of the MCDM methods introduced by
Pamucar et al. [39]. They presented that this method is
stable compared to other popular MCDM methods such
as TOPSIS or ELECTRE. It uses a simple mathematical
algorithm and provides the possibility to combine it with
other methods. It is also easy to develop [39].
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TABLE VII: Average random consistency index under different orders

Order 1 2 3 4 5 6 7 8 9 10
RI 0.00 0.00 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49

TABLE VIII: Decision matrix of proposed evaluation index system

Index I1 I2 I3 I4 I5 I6 I7 I8
WPD(I1) 1 3 3 8 6 4 6 3

EWSO(I2) 1/3 1 1/2 2 4 1/3 1/3 2
ALO(I3) 1/3 2 1 2 2 2 1/3 2
CV(I4) 1/4 1/2 1/2 1 3 1/4 1/3 1/2

DWDO(I5) 1/6 1/4 1/2 1/3 1 1/3 1/3 1/2
NSO(I6) 1/4 3 1/2 2 3 1 1/3 1/2
DC(I7) 1/6 3 3 3 3 3 1 3
WD(I8) 1/3 1/2 1/2 2 2 2 1/3 1

TABLE IX: The weight distribution of indexes of the proposed assessment of offshore wind resources

Index Eigenvector Weight λmax CI
WPD(I1) 2.060 24.06%

8.765 0.109

EWSO(I2) 1.297 15.15%
ALO(I3) 0.951 11.11%
CV(I4) 1.037 12.11%

DWDO(I5) 1.052 12.29%
NSO(I6) 0.672 7.85%
DC(I7) 0.607 7.10%
WD(I8) 0.885 10.33%

The steps of the MAIRCA method are as follows [40]:
Step 1. The first step in the MAIRCA method is the

same as AHP and WASPAS methods.
Step 2. Determining the preferences according to the

selection of alternatives ΩAi .

ΩAi =
1

l
;

m∑
i=1

ΩAi = 1, i = 1, 2, . . . , l (16)

where m represents the number of alternatives.
Step 3. Calculating the theoretical evaluation matrix

elements RA. This matrix RA is created in l×n matrix
(l represents the number of alternatives, and n represents
the number of criteria).

RAij = ΩAiwj (17)

Step 4. Calculating the real evaluation matrix Rp.

Rpij = yijRAij (18)

where yij denotes the normalized decision matrix.
Step 5. Computing the total gap matrix T.

Tij = Rpij −RAij (19)

Step 6. Computing the final values of the alternatives
(ω) in terms of criteria.

ωi =
m∑
i=1

Ti (20)

Step 7. The alternatives are ranked with the help of
ωi. Among the alternatives, the minimum value of "ωi"
is chosen as the best alternative.

E. Case study

1) Results of the offshore wind resource assessment
for four wind farms: The multi-dimensional evaluation
indexes of the four offshore wind farms were calculated
respectively and shown in Table X. The normalized
values according to Eq.(5)and Eq.(6) of each wind farm
were obtained according to the method proposed in this
paper, as shown in Fig.8.

TABLE X: Offshore assessment indexes of 4 offshore wind farms

Index WF1 WF2 WF3 WF4
WPD(W/m2) 241 431 536 212
EWSO(%) 97.13 91.52 91.82 90.84
ALO(%) 39.02 53.49 53.62 30.90

CV(-) 1.189 1.352 0.977 1.119
DWDO(%) 8.85 11.05 10.82 11.26
NSO(%) 62.27 2.63 14.33 1.14
DC(km) 25 20 36 0
WD(m) 15 18 11 0

The finally SV of the four wind farms obtained by
the method in this paper are WF1: 0.383, WF2: 0.435,
WF3: 0.654, WF4: 0.372, respectively. Considering the
evaluation results of multi-dimensional indexes, WF3 has
the highest SV, followed by WF2. The SV of WF1 and
WF4 are very similar to each other, and WF1 is slightly
higher. Judging from the mean wind speed and mean
wind power density, WF2 and WF3 almost have the
same offshore wind resource grade, according to the
traditional wind resource evaluation method. In contrast,
the difference of resource between the two wind farms
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Fig. 8: Normalized assessment indexes of 4 offshore wind farms.

would appear when the multi-dimensional indexes are
taken into account.

2) Verification of calculation results:
(1) Verification by annual energy production (AEP) of
offshore wind turbines

Five different offshore wind turbines have been se-
lected to evaluate the AEP in four offshore wind farms
to test the practicability and reliability of the proposed
method. Fig.9 shows the theoretical power curves of each
offshore wind turbine.

Fig. 9: Power curves of offshore wind turbines

Table XI shows the calculation results of AEP obtained
by different wind turbines. Comparing the result, the
maximum AEP appears in WF3, followed by WF2, and
WF4 has the minimum value. In terms of output, the AEP
of selected offshore wind turbines in WF3 is more than
1.5 times that of WF4, and there is not much difference
between WF1 and WF4 wind farms. From the theoretical
calculation perspective, the results are consistent with the
ranking results of SV obtained in this paper.

TABLE XI: Annual energy production of different offshore wind
turbines (GWh)

WF1 WF2 WF3 WF4
RE power-5MW 8.343 10.394 12.322 6.954
SWT-3.6-107 5.264 7.030 8.380 4.360
Gamesa G128-5MW 7.717 10.079 11.979 6.381
Vestas V112-3MW 6.433 7.422 8.713 5.252
Sinovol SL6000/128 8.469 10.585 12.718 7.053
Rank 3 2 1 4

(2) Verification by practical AEP of four offshore wind
farms

In addition to the theoretical calculation results, this
paper uses the practical operating data of four wind farms
to compare and verify the proposed assessment method
based on multi-dimensional indexes. Table XII shows
the practical AEP of four wind farms. As can be seen
from Table XII, WF3 has the highest practical full power
output hours and capacity coefficient, followed by WF2.
WF4 has the lowest practical full power output hours
2084h, and only 108 hours less than WF1.

TABLE XII: Annual energy production of different offshore wind farms

WF1 WF2 WF3 WF4
Installed capacity(MW) 150 300 200 100
Practical AEP(GWh) 328.77 888.22 711.78 208.45
Full power output hours(h) 2192 2960 3559 2084
Capacity coefficient 0.250 0.338 0.406 0.238
Rank 3 2 1 4

As the reasonable utilization hours of offshore wind
power in the whole life cycle are 52000h and the life
cycle is 25 years, the reasonable full power output hours
are 2080h, which is very close to WF4. Therefore, the
better economic benefits be obtained when the SV of
the offshore wind resource is above 0.37. To sum up,
the proposed assessment method with multi-dimensional
indexes can comprehensively and effectively evaluate off-
shore wind resource. The technique can also be applied to
micro-siting to reduce the uncertainty of wind resource
assessment in offshore wind power projects’ planning
and designing stage.

F. Comparative Analysis

1) Method analysis: In order to test the rationality
and effectiveness of the proposed approach, the rank-
ing results are compared with WASPAS and MAIRCA
methods. The comparative analysis is given in Table
XIII and shown in Fig. 10. It can be seen that WF3 is
the best alternative, while WF4 is the worst alternative,
which indicates that the results of the three methods
are consistent. However, the calculation process of the
proposed method is more concise and easy to obtain.

The results showed that the ranking results of the
AHP model is consistent. it uses pairwise comparison
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questions to reveal a judgment matrix of relative pref-
erence between each pair of alternatives in terms each
criterion. AHP takes into account the relative priorities
of alternatives in terms of criteria. Since the number of
criteria and alternatives is low, the consistency rate is
high and gives successful results.

TABLE XIII: Comparative analysis with other exisitng WASPAS and
MAIRCA methods.

Proposed Method WASPAS MAIRCA
SV Rank ϖi Rank ωi Rank

WF1 0.383 3 0.191 3 -0.346 3
WF2 0.435 2 0.218 2 -0.359 2
WF3 0.654 1 0.327 1 -0.413 1
WF4 0.372 4 0.186 4 -0.343 4

Fig. 10: The results of proposed models.

2) Evaluation index analysis: The paper has also
compared the proposed indexes system with the existing
indexes to test the superiority and practicality of the
proposed method. when the existing evaluation indexes,
including WPD, DWDO, DC, and WD have been consid-
ered in the process of offshore wind resource assessment,
the expression of SV is as follows according to the
AHP method: SV = 0.516WPD + 0.062DWDO +
0.187DC + 0.235WD. Table XIV shows the evaluation
ranking result.

TABLE XIV: Comparative analysis with the existing evaluation indexes

SV Rank
WF1 0.143 4
WF2 0.489 2
WF3 0.658 1
WF4 0.484 3

As shown in Table XIV, the ranking result is different
from the actual running result in Table XII. In the case
study of this paper, the final assessment results of WF1
and WF4 are very close to each other. However, small
differences are easily identified by the indexes system

and method proposed in this paper while the conventional
evaluation indexes would cause the evaluation errors,
which further validates the effectiveness of the proposed
method.

V. CONCLUSIONS

MW-level offshore wind farm development projects
are highly interdisciplinary tasks such as technical, eco-
nomic, social and political aspects to be considered as
decision-making or decision-support process. Especially
technical parameters such as wind speed, wind power
and related parameters plays a primary role to make
feasible investment decisions for large-scale offshore
wind projects. High precision offshore wind resource
assessment is the key to improve the core competitive-
ness of offshore wind power. Considering the offshore
wind resource index scientifically and comprehensively
is very important for the planning and designing of
offshore wind power and the safe operation of the power
grid. The paper mainly focuses on a practical and robust
offshore wind resource assessment method. Specifically,
the measured data, operating data, and different sources
of reanalysis data have been utilized to analyze the
influence of data sources on wind resource assessment.
Then based on the multi-dimensional indexes reflecting
resource reserves, stability, and construction conditions,
the offshore resource assessment method has been pro-
posed, verified in four offshore wind farms from different
perspectives. Some conclusions and discussions have
been obtained as follows:

1) The diurnal variation characteristics of offshore
wind resource are not as evident as that onshore situation.
In detail, mean wind speed variation at different moments
is slight, and in addition, mean wind speed variation
at different heights is also tiny. Offshore wind resource
reveals a lower wind shear exponent and shows the
relatively stable characteristic.

2) The accuracy of reanalysis data is limited. In this
paper’s cases, the maximum error between the measured
and reanalysis data appears around noon, while the min-
imum usually occurs at night. The error range is 0.13m/s
to 1.30m/s, reflecting that reanalysis data could not be
directly applied to offshore wind resource assessment
to avoid the significant valuation error caused by data
sources itself and bringing poor wind farm economic
performances eventually.

3) The spatial and temporal distribution of atmospheric
stability would affect the allocation of offshore wind
resource. Compared with the stable and unstable atmo-
sphere, a neutral atmosphere reflects a higher mean wind
power density. The paper has considered the influence of
atmospheric stability by terms of neutral state occurrence
to make up for the engineering application error caused
by ignoring the influence of atmospheric stability.
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4) The proposed offshore wind resource assessment
method based on multi-dimensional indexes, including
wind power density, effective wind speed occurrence,
affluent level occurrence, coefficient of variation, domi-
nant wind direction occurrence, neutral state occurrence,
distance to coast, and water depth, has been proposed in
this paper. The score values of offshore wind farms above
0.37 is more likely to obtain acceptable economic ben-
efits, providing a reference for the practical application
of offshore wind resource assessment projects.

Since this study did not consider various economical,
social, environmental and sociology-political criteria, the
future related-work may be included as extension of the
demonstrated framework.
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