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ABSTRACT
Serverless computing has seen rapid growth in the past few years
due to its seamless scalability and zero resource provisioning over-
head for developers. In serverless, applications are composed of a
set of very short-running functions which are invoked in response
to events such as HTTP requests. For better resource utilization,
cloud providers interleave the execution of thousands of serverless
functions on a single server.

Recent work argues that this interleaved execution and short
run-times cause the serverless functions to perform poorly on mod-
ern processors. This is because interleaved execution thrashes the
microarchitectural state of a function, thus forcing its subsequent
execution to start from a cold state. Further, due to their short-
running nature, serverless functions are unable to amortize the
warm-up latency of microarchitectural structures, meaning that
most the function execution happen from cold state.

In this work, we analyze a function’s performance sensitivity to
microarchitectural state thrashing induced by interleaved execu-
tion. Unlike prior work, our analysis reveals that not all functions
experience performance degradation because of microarchitectural
state thrashing. The two dominating factors that dictate the impact
of thrashing on function performance are function execution time
and code footprint. For example, we observe that only the functions
with short execution times (< 1 ms) show performance degrada-
tion due to thrashing and that this degradation is exacerbated for
functions with large code footprints.

CCS CONCEPTS
•Computer systems organization→Architectures; Cloud com-
puting; Client-server architectures; • Networks → Cloud comput-
ing; • General and reference →Measurement.
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1 INTRODUCTION
Serverless computing (or Function-as-a-Service (FaaS)) is emerging
as a prominent cloud computing model. Applications developed
for the serverless model are structured using one or more stateless
functions that are invoked in response to specific external events
such as an HTTP request or a timer trigger. The underlying design
philosophy of serverless applications is descendant from microser-
vices. As such, serverless application design heavily emphasizes
modularity to enable compositionality and reusability of functions.
This means that the execution time of most serverless functions
is very short, often as low as a few milliseconds. However, unlike
microservice applications, the resources needed for executing a
serverless function are transiently allocated. This enables signifi-
cant cost savings as the user only needs to pay for hosting resources
when they are used.

Though function execution times are very short, the majority of
functions are invoked very infrequently, often leaving a few seconds
or minutes between two consecutive invocations. Thus, to improve
resource utilization, cloud providers are forced to co-schedule thou-
sands of functions on each server. However, the downside of such
high degree of interleaving is the long startup delay of booting new
function instances because a server can keep only a certain number
of recently invoked function instances in warmed-up state [9, 14,
8]. Consequently, prior research has aimed at reducing this startup
delay to improve the performance of serverless functions [13, 4].
The key idea is to quickly load an execution-ready image of the
function into the main memory of the system.

Another downside of function interleaving, as reported by recent
work [11, 10], is that interleaved execution thrashes the microar-
chitectural states of functions. This means that when a function is
invoked it does not find any (or much) of its microarchitectural state
from its last execution in the microarchitectural structures such
as caches, branch predictors, etc. This is because the interleaved
functions evict this state as they bring their own microarchitectural
state in these structures. Further, prior work [11] also reports that
the short execution time of serverless functions prevent them from
amortizing the warm-up latency of microarchitectural structures.
Consequently, the majority of function executions happen with
cold microarchitectural state. As a result, serverless functions show
poor performance.
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Table 1: The functions used for characterization.

Name Language Description

autocomplete NodeJS Returns a list of autocomplete candidates.
sentiment_analysis Python Identifies the sentiment of a text.
deltablue Python Pure-python compute benchmark.
markdown2html Python Converts markdown to HTML. Relies heavily

on the sha256 implementation in the OpenSSL
library.

json_dumps Python Serializes a Python dict as JSON
img-resize NodeJS, libraries Produces resized versions of images. All of the

heavy-lifting in this function is done by native
image libraries such as libpng and libjpeg

ocr-img NodeJS, C++ Invokes Tessarect to OCR an image
dynamichtml NodeJS Generates HTML from a template
fib_js_NNN NodeJS calculates the NNN’th fibonacci number and returns it.
fib_py_NNN Python Same as fib_js but implemented in Python.
footprint_NN Python, C Synthetic function that claims a code footprint

of NN KB.

This work analyzes the factors that make performance of server-
less functions sensitive to interleaved execution induced microar-
chitectural state thrashing. We analyze both real-world serverless
functions as well as synthetic functions with a wide range of exe-
cution times (from 0.25 ms to 1.1 s) and different implementation
languages. Synthetic functions give us better control over function
properties such as execution time, code and data footprints etc. Our
results reveal that not all functions show performance degradation
due to interleaving induced state thrashing; rather it depends on
function properties. Our studies further identify function execu-
tion time and code footprint to be the two dominating factors that
dictate the impact of thrashing on function performance. The exe-
cution time is a particularly interesting factor because real-world
deployments report high variability in the execution time of dif-
ferent functions. For example, a study [12] reported that 50% of
functions on the Azure cloud completed in less than 1s. Another
study [3] found that 50% of functions deployed on AWS Lambda
in 2020 completed in 60ms or less. However, the same study noted
a decreasing trend in function execution time as 50% of functions
completed within 130ms in 2019.

In our study, we find that only very short running functions
(median runtime < 1 ms) are adversely affected by being executed
on a cold microarchitectural state and that this trend is exacerbated
proportionally with increasing function instruction working sizes.
For functions with longer execution times (> 50 ms), we find that
the performance deterioration caused by interleaved execution is
small. This suggests that the microarchitectural state warm-up
latency is amortized and the most of function execution happens
from warmed-up state.

2 METHODOLOGY
2.1 Experimental setup
We perform our experiments on a server with a 4-core 3.8GHz Intel
Xeon E3-1275 v6 (Kaby Lake) processor. The processor has 8MB of
shared LLC, 256KB private L2, and 32KB each of private L1-I and
L1-D cache and has 64GB of DRAM, SSD drives and both the host
system and the application containers run Fedora Linux 36. SMT
and Turbo Boost were disabled during the experiments.

Each of the target functions are run inside a Podman container
which is pinned to a single processor core. The functions arewrapped

by a gRPC server that invokes the function on request. Since the
process executing the functions runs as a daemon, as opposed to
running as multiple processes, the microarchitectural state is shared
across contiguous invocations of the same function. The functions
are invoked by a client, implemented in Go, that issues gRPC re-
quests. Each gRPC request only triggers a single invocation and
thus, where required by the experiment, the client is configured
to repeatedly issue requests for a set amount of time. The client
is pinned to a different processor core than the functions. Before
statistics collection starts, the functions are warmed by repeated
invocations for 30 seconds. This is done to ensure that caches in
the execution path are warmed up and that JIT compiled functions
had time to reach a fixpoint. Then, the experiments are run for
300 seconds with data collection. The exception to this is the in-
struction working set estimation (Section 3.3) which is run only
for 30 seconds due to the large amount of data collected. All of the
invocations of a single benchmark use the same input data.

To simulate how a function is affected by interleaved execution,
we invoke a thrasher process between subsequent invocations of
a function. The container hosting the thrasher process is pinned
to the same processor core as the function and is invoked by the
client through a gRPC request after every invocation of the function.
Upon invocation, the thrasher performs two operations. First, it
fills the BTB and branch predictor with garbage using a process [3]
that executes a long series of conditional and unconditional jumps.
Then, to clear caches, it invokes the WBINVD x86 instruction that
writes back and invalidates the entire cache hierarchy (L1 to LLC).

To avoid unintentionally collecting data from the thrasher pro-
cess we configure perf to filter events not belonging to the cgroup
of the container running the function.

The evaluated functions are executed in two different configura-
tions. In both cases, function executions happen as fast as possible
depending on the function. To distinguish these, we use a consistent
naming scheme when presenting our results where the experiment
configuration is indicated by a suffix added to the benchmark name
as follows:

Back-to-back (benchmark_name suffix -none) Each benchmark
is repeatedly invoked by back-to-back requests.

Thrashing (benchmark_name suffix -thrashing) The thrasher
(as described above) is invoked after each invocation of the
function.

2.2 Function description
To perform our experiments, we use a mix of representative and
synthetic functions written in Python and NodeJS, the two most
popular application runtimes for serverless applications [3]. A de-
scription of the functions and their implementation is provided in
Table 1. The functions used are mainly derived from the FaaSProfiler
framework [11] but we use a custom setup for invoking the func-
tions. As mentioned, we also introduce two synthetic functions to
the suite in addition to the representative functions. One, fib_js and
fib_py calculates the Nth Fibonacci number and the other, footprint,
hogs a configurable instruction working set while it is running. Foot-
print achieves this by executing a sequence of jumps to randomized
locations in its instruction working set. The Fibonacci calculation
function is implemented in both Python and NodeJS allowing us
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Figure 1: The breakdown of where executed cycles are spent divided into categories.

Table 2: Percentiles of the observed running times for the
functions in ms.

Benchmark 50% 90% 95% 99%

autocomplete 0.26 0.29 0.31 0.38
deltablue 8.82 9.56 9.65 15.10
dynamichtml 0.47 0.51 0.54 0.74
img_resize 747.69 793.62 799.36 803.95
json_dumps 14.54 14.63 14.65 14.90
markdown_to_html 38.24 38.43 38.78 38.92
ocr_img 1164.65 1177.91 1179.57 1180.89
sentiment_analysis 2.03 2.14 2.17 2.23
fib_js_1000 0.25 0.27 0.29 0.34
fib_js_10000 0.34 0.43 0.47 0.63
fib_js_100000 0.48 0.59 0.64 0.86
fib_py_1000 0.52 0.60 0.62 0.66
fib_py_10000 1.82 2.11 2.28 4.49
fib_py_100000 97.74 98.37 98.40 99.15
footprint_long_16 10.52 10.58 10.61 10.70
footprint_long_32 20.75 20.83 20.86 21.00
footprint_long_64 52.93 53.04 53.16 53.36
footprint_long_128 121.25 121.41 121.64 121.95
footprint_long_256 260.76 262.45 262.65 262.82
footprint_short_16 0.30 0.35 0.37 0.40
footprint_short_32 0.32 0.37 0.39 0.42
footprint_short_64 0.37 0.43 0.44 0.48
footprint_short_128 0.49 0.54 0.55 0.59
footprint_short_256 0.74 0.80 0.81 0.84

to directly compare the runtime behavior of these two platforms.
Since the runtime characteristics of the synthetic functions change
depending on their invocation parameters, we use them to corrob-
orate hypotheses derived from the behavior of the representative
functions. The observed execution times of the functions are shown
in Table 2.

3 MEASUREMENTS
This section presents the measurements we made with our func-
tions. For each of these measurements, we compare back-to-back
and interleaved function execution and discuss the consequences.

3.1 Where does time go?
The invocation machinery of a FaaS function is complex and multi-
layered as it involves multiple components that are not directly
related to a function’s core functionality. To understand the poten-
tial of these components to impact the function execution behaviour,
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Figure 2: The wall-time slowdown encountered when run-
ning functions interleaved instead of back-to-back.

we analyze their contribution to a request’s overall processing time,
Figure 1. The sampled cycles are categorized primarily based on the
Dynamic Shared Object (DSO, e.g. a shared library or executable)
they originated from and, in some cases, secondarily subdivided
based on the function that was executing when the cycle was sam-
pled. This subdivision is necessary to correctly decompose NodeJS
functions as they depend on platform-native libraries executed as
JIT-generated code that do not appear as separate DSOs.

The categories shown in Figure 1 were chosen to represent the
majority of the execution time. They are defined as follows:

Application Code The core part of the functionality of the
function.

gRPC Cycles spent in the gRPC and Protobuf libraries.
HTTP Cycles spent processing HTTP requests.
Kernel Cycles spent in the kernel. Note that we do not trace

cycles in this category back to the component that triggered
their execution.

Library Cycles spent in libraries that are directly related to
the core functionality of the function and only invoked from
application code. For example, an image processing library
is counted in this category whereas glibc is not.

Linker Cycles spent in the dynamic linker.
Stdlib Calls to C and C++ standard libraries. Like the kernel

category, we do not identify who made the standard library
calls.

In general, application or application-specific library code dom-
inates the CPU cycle distribution regardless of the function and
execution mode used. The principal pattern that emerges is that the
functions with the shortest execution times (cf. Table 2) spend rela-
tively more time in the function invocation machinery. This is not



WoSC’22, November 2022, Québec City, Québec, Canada Asheim et al.

0

1

2

3

au
to

co
m

pl
et

e-
no

ne

au
to

co
m

pl
et

e-
th

ra
sh

de
lta

bl
ue

-n
on

e

de
lta

bl
ue

-th
ra

sh

dy
na

m
ic
ht

m
l-n

on
e

dy
na

m
ic
ht

m
l-t

hr
as

h

im
g_

re
siz

e-
no

ne

im
g_

re
siz

e-
th

ra
sh

js
on

_d
um

ps
-n

on
e

js
on

_d
um

ps
-th

ra
sh

m
ar

kd
ow

n_
to

_h
tm

l-n
on

e

m
ar

kd
ow

n_
to

_h
tm

l-t
hr

as
h

oc
r_

im
g-

no
ne

oc
r_

im
g-

th
ra

sh

se
nt

im
en

t_
an

al
ys

is
-n

on
e

se
nt

im
en

t_
an

al
ys

is
-th

ra
sh

fib
_j

s_
10

00
-n

on
e

fib
_j

s_
10

00
-th

ra
sh

fib
_j

s_
10

00
0-

no
ne

fib
_j

s_
10

00
0-

th
ra

sh

fib
_j

s_
10

00
00

-n
on

e

fib
_j

s_
10

00
00

-th
ra

sh

fib
_p

y_
10

00
-n

on
e

fib
_p

y_
10

00
-th

ra
sh

fib
_p

y_
10

00
0-

no
ne

fib
_p

y_
10

00
0-

th
ra

sh

fib
_p

y_
10

00
00

-n
on

e

fib
_p

y_
10

00
00

-th
ra

sh

fo
ot

pr
in

t_
lo

ng
_1

6-
no

ne

fo
ot

pr
in

t_
lo

ng
_1

6-
th

ra
sh

fo
ot

pr
in

t_
lo

ng
_3

2-
no

ne

fo
ot

pr
in

t_
lo

ng
_3

2-
th

ra
sh

fo
ot

pr
in

t_
lo

ng
_6

4-
no

ne

fo
ot

pr
in

t_
lo

ng
_6

4-
th

ra
sh

fo
ot

pr
in

t_
lo

ng
_1

28
-n

on
e

fo
ot

pr
in

t_
lo

ng
_1

28
-th

ra
sh

fo
ot

pr
in

t_
lo

ng
_2

56
-n

on
e

fo
ot

pr
in

t_
lo

ng
_2

56
-th

ra
sh

fo
ot

pr
in

t_
sh

or
t_

16
-n

on
e

fo
ot

pr
in

t_
sh

or
t_

16
-th

ra
sh

fo
ot

pr
in

t_
sh

or
t_

32
-n

on
e

fo
ot

pr
in

t_
sh

or
t_

32
-th

ra
sh

fo
ot

pr
in

t_
sh

or
t_

64
-n

on
e

fo
ot

pr
in

t_
sh

or
t_

64
-th

ra
sh

fo
ot

pr
in

t_
sh

or
t_

12
8-

no
ne

fo
ot

pr
in

t_
sh

or
t_

12
8-

th
ra

sh

fo
ot

pr
in

t_
sh

or
t_

25
6-

no
ne

fo
ot

pr
in

t_
sh

or
t_

25
6-

th
ra

sh

Benchmark

C
P

I

Backend_Bound
Bad_Speculation
Frontend_Bound
Retiring

Figure 3: CPI stack for the functions broken down based on the contribution from each bottleneck category.

surprising considering that, unlike functions with longer execution
times, they are unable to amortize the invocation overhead.

Next we look at how the cycle distribution changes when com-
paring back-to-back invocations of the functions to interleaved in-
vocations. Examining this change in distribution informs us about
how the various components involved in the function execution
lifecycle are affected by the interference from the thrasher. If a com-
ponent takes up relatively more cycles in the interleaved execution
case, it means that the component is disproportionally negatively
affected by the thrasher. Our results show that there are significant
differences in the degree to which different functions are affected
that largely depend on the function execution time. For example,
in autocomplete and dynamichtml, which have very small execu-
tion time, we observe an increase in the fraction of cycles spent
in application code with interleaved execution. In contrast, long
running functions such as img_resize and ocr_img do not show
much difference in cycle distribution.

Now, we demonstrate the significance of interleaved execution
on functions with a short execution time from another perspective
by comparing the elapsed per-invocation wall-clock time between
the two invocation modes. Figure 2 shows the difference in request
round trip time between back-to-back and interleaved executions
as measured from the client. For the majority of the functions there
is no significant difference in the execution time between the inter-
leaved and back-to-back executions. We only see marked increases
in execution time for very short functions with < 1 ms median
execution time. The most extreme example is the 17× increase in
execution time of the fib_js_1000 function.

Finally, we also observe that the execution time alone does not al-
ways explain a function’s sensitivity to interleaved execution. Com-
pare, for example, dynamichtml to fib_py_1000 which have very
similar execution times as depicted in Table 2. For the dynamichtml
function, we see that more cycles are spent on application code
in the interleaved execution case, whereas the characteristics of
fib_py_1000 are largely unchanged. A reason for this behaviour can
be that other function properties such as code and data footprints,
control flow behaviour, etc. influence performance sensitivity to
interleaved execution. As there can be a large number of function
properties, we first analyze the ones that have the largest impact
on function performance, in the next section, and then analyze the
impact of thrashing on them.

fib_py_10000 fib_py_100000

fib_js_1000 fib_js_10000 fib_js_100000 fib_py_1000

json_dumps markdown_to_html ocr_img sentiment_analysis

autocomplete deltablue dynamichtml img_resize
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Figure 4: The estimated instruction working set sizes of the
functions.

3.2 Microarchitectural analysis
To analyze the microarchitectural behaviour of our functions, we
use the established Top-Down methodology [16]. The Top-Down
methodology uses performance counters to estimate the fraction of
pipeline slots that are stalled due to bottlenecks in specific parts of
the processor. The top level of the analysis is broken down into four
categories: Retiring, Backend_Bound, Bad_Speculation, and Fron-
tend_Bound. The Retiring category covers slots containing retired
instructions, that is, instructions that completed and committed
their result. As such, this is the desirable category of Top-Down
and we want to maximize the number of pipeline slots that fall in
this category. Backend_Bound denotes slots that are stalled due to
the execution units of the processor backend being unable to accept
additional instructions. The Bad_Speculation category denotes slots
that are stalled due to incorrect speculations, for example, branch
mispredictions. Finally, the Frontend_Bound category contains slots
that are stalled due to the frontend’s inability to supply the back-
end with instructions at a sufficiently high rate. The identified
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Figure 5: The CPI for the different components of the application.

bottlenecks can be broken down in a hierarchical fashion making
it possible to identify a specific microarchitectural structure that is
put under stress by the evaluated function.

The cycles per instruction (CPI) stacks resulting from the Top-
Down analysis are shown in Figure 3. The CPI stack visualizes
the contributions of the individual bottlenecks to the overall per-
formance of the function. From the results, we see that there is a
strong correlation between the execution time of a function and
the instructions per cycle (IPC) rates that they achieve: shorter
running functions achieve lower IPC rates (i.e., high CPI). Addition-
ally, when comparing back-to-back and interleaved executions, the
functions with low IPC also show the largest relative performance
degradation in the interleaved execution mode.

The figure also implies that short running functions show low
IPC because of the front-end bottleneck, i.e., they are Frontend_Bound.
These results corroborate prior work which also found server-
less functions and conventional server applications to be Fron-
tend_Bound and proposed diverse mechanisms to mitigate this
bottleneck [1, 2, 5, 6, 7, 10]. Further, prior work [10] also reported
that instruction cache (L1-I) misses are the principal reason for this
front-end bottleneck in serverless functions. This finding suggests
that the instruction working set size of the functions also has the
most significant impact on their performance. To show the instruc-
tion working set of a function impacts its performance sensitivity
to interleaved execution, we estimate the instruction working set
of our functions in the next section.

3.3 Estimating instruction working set
Motivated by the Top-Down analysis results, we now estimate the
instruction working set size of our functions to understand how it
impacts function performance. To perform the estimation, we use
a method described in [15] adapted to work with traces gathered
using Intel PT. The result is shown in Figure 4 giving the Cumulative
Distribution Functions for the functions of the estimated MPKI rate
of each function’s shared objects depending on the instruction
cache size. When the MPKI for a cache size reaches zero, it means
that the entire instruction working set of the function fits the cache.
Therefore, this cache size corresponds to the instruction working
set of the function. For clarity, we only show the CDFs for shared

objects that combined contribute 99% of the executed instructions
or the single shared object that alone contribute more than 99% of
executed instructions.

With these results, we can now shed further light on the data
presented in Section 3.1 and Section 3.2. Comparing the fib_py_1000
and fib_js_10000 functions using the data from Figure 4, we see
that the NodeJS version of the function has a significantly larger
instruction working set than the Python version. The instruction
working set of the Python version of the function is less than 4KB
while the NodeJS implementation requires more than 64KB, a 16×
difference. This observed correlation remains consistent across all
of the measured functions.

Next, we look at how the instruction working set of a function
affects its sensitivity to interleaved execution. Looking at the syn-
thetic footprint functions (right side of Figure 3) and comparing
them to fib_py_1000 we see that, again, only functions with a short
execution time are affected by interleaved execution. Additionally,
for short-running functions a large instruction working set exacer-
bates the impact of interleaved execution. On the other hand, the
performance of longer-running functions are unaffected by inter-
leaved execution regardless of their instruction working set. The
conclusion of this is that only functions with a very short execution
time and and a large instruction working set see a performance
degradation because of interleaved function execution.

Finally, our results highlight the importance of choice of pro-
gramming language and runtime environment for application per-
formance. For example, looking at fib_js and fib_py functions in
Figure 3, the NodeJS implementation show significantly worse CPI.
However, computing the 100,000th Fibonacci number takes 181×
longer using the Python implementation than with the NodeJS
implementation as shown in Table 2. This observation is far from
novel but it highlights the magnitude of the gains that are possible
by making purely application-level changes.

3.4 Category-wise performance
Lastly, we discuss the performance of the functions broken down
by category. We divide the executed cycles into the same categories
as in Section 3.1. The results are shown in Figure 5. The purpose
of this experiment is to assess if particular parts of the application
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exhibits worse performance than the average. For the back-to-back
executions, no particular component diverges significantly from
the average performance of the function. For the interleaved execu-
tion, a different pattern emerges. Again, only the functions with the
shortest execution times are affected but the components taking
the smallest part of the total execution time are disproportionally
affected. For example the Linker component contributes only a
negligible fraction of the executed cycles (see Figure 1) of the au-
tocomplete function and in the back-to-back execution scenario it
exhibits the same performance as the application as a whole, around
2 CPI. However, in the interleaved execution scenario, its perfor-
mance deteriorates more than 2×. Meanwhile, the performance of
the Application Code category deteriorates slightly, from 2 to 2.5
CPI, ending up just below the overall function performance of 2.9
CPI (as seen in Figure 3). The same pattern can be observed for the
dynamichtml, fib_js_1000 and fib_js_10000 functions.

4 DISCUSSION
The results of our study shows that functions with very short ex-
ecution times (< 1 ms) benefit significantly from being executed
on a processor with a warm microarchitectural state. However, as
noted in the introduction, such short functions are quite uncommon
in real-world applications. Additionally, even if the microarchitec-
tural efficiency of these functions are improved using targeted
optimizations the running time of the actual function may still only
constitute a small fraction of the total round trip time of a function
invocation. Meanwhile, larger functions, whose execution time con-
tribute significantly to the total request round trip time, will not
see any benefit from targeted microarchitectural optimizations.

These observationsmotivates research into high-level approaches
for improving the execution time of the shortest functions. For
example, functions that are executed in sequence as part of an
application graph could be dynamically compiled together into a
single component. Such an approach would preserve the function
compositionality and modularity that are essential to the serverless
application model while, at the same time, eliminate the overhead
arising from the execution of a large number of short functions on
both the microarchitectural and system level.

However, it is important to note that even if the execution over-
head of serverless application graphs can be reduced by dynamically
compiling functions into a single component, a large number of
serverless applications consist only of a single function [3]. Further-
more, many of these requests are interactive, that is, the user that
made the request expects an immediate response. The functions
responding to such requests have an inherently short running time
and are therefore likely to still see significant benefit from targeted
microarchitectural optimizations.

5 CONCLUSION
This paper aimed to identify properties of serverless functions that
predicts if a function is likely to benefit from warm microarchitec-
tural state. To do this, we evaluated a suite of both real-world and
synthetic functions to identify their per-invocation execution times
and their instructionworking set sizes. Subsequently we interleaved

the function executions with a process that thrashes the microar-
chitectural state of the previously invoked function. By comparing
the performance of the back-to-back and interleaved function ex-
ecutions across several metrics we identified key properties that
makes a function likely to benefit from being executed from a warm
microarchitectural state. We found that only the functions with a
very short execution time (< 1 ms) and large instruction working
sets are negatively affected by being interleaved with the thrasher.
However, functions with longer execution times (> 50 ms) were not
adversely affected by the microarchitectural state thrashing.

REFERENCES
[1] Truls Asheim, Boris Grot, and Rakesh Kumar. 2022. A specialized btb organiza-

tion for servers. In Proceedings of the 31st International Conference on Parallel
Architectures and Compilation Techniques (PACT ’22). Chicago, IL, USA.

[2] Truls Asheim, Boris Grot, and Rakesh Kumar. 2021. Btb-x: a storage-effective
btb organization. IEEE Computer Architecture Letters, 20, 2, 134–137.

[3] Datalog. 2021. The state of serverless. https://www.datadoghq.com/state-of-se
rverless-2021/. (2021).

[4] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang Qin,
Qixuan Wu, and Haibo Chen. 2020. Catalyzer: sub-millisecond startup for
serverless computing with initialization-less booting. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’20). Association for Computing
Machinery, Lausanne, Switzerland, 467–481.

[5] Tanvir Ahmed Khan et al. 2021. Twig: profile-guided btb prefetching for data
center applications. In MICRO-54: 54th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO ’21). Association for Computing Machinery,
Virtual Event, Greece, 816–829.

[6] Rakesh Kumar, Boris Grot, and Vijay Nagarajan. 2018. Blasting through the
front-end bottleneck with shotgun. In Proceedings of the Twenty-Third Interna-
tional Conference on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS ’18). Association for Computing Machinery, Williams-
burg, VA, USA, 30–42.

[7] Rakesh Kumar, Cheng-Chieh Huang, Boris Grot, and Vijay Nagarajan. 2017.
Boomerang: a metadata-free architecture for control flow delivery. In 2017 IEEE
International Symposium on High Performance Computer Architecture (HPCA),
493–504.

[8] H. Lee, K. Satyam, and G. Fox. 2018. Evaluation of production serverless com-
puting environments. In 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD). (July 2018), 442–450.

[9] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara. 2018. Serverless
computing: an investigation of factors influencing microservice performance.
In 2018 IEEE International Conference on Cloud Engineering (IC2E). (Apr. 2018),
159–169.

[10] David Schall, Artemiy Margaritov, Ustiugov Dimitrii, Andreas Sandberg, and
Boris Grot. 2022. Lukewarm serverless functions: characterization and opti-
mization. In Proceeding of the 49st Annual International Symposium on Computer
Architecuture (ISCA ’22). IEEE Press, New York, New York, USA, ??

[11] Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. 2019. Architec-
tural implications of function-as-a-service computing. In Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO
’52). Association for Computing Machinery, Columbus, OH, USA, 1063–1075.

[12] Mohammad Shahrad et al. 2020. Serverless in the wild: characterizing and
optimizing the serverless workload at a large cloud provider. In 2020 USENIX
Annual Technical Conference (USENIX ATC 20). USENIX Association, (July 2020),
205–218.

[13] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and Boris
Grot. [n. d.] Benchmarking, analysis, and optimization of serverless function
snapshots. In Proceedings of the 26th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS’21).

[14] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael
Swift. 2018. Peeking behind the curtains of serverless platforms. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18). USENIX Association, Boston,
MA, (July 2018), 133–146.

[15] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. 1995. The splash-2
programs: characterization and methodological considerations. In Proceedings
22nd Annual International Symposium on Computer Architecture, 24–36.

[16] A. Yasin. 2014. A top-down method for performance analysis and counters
architecture. In 2014 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). (Mar. 2014), 35–44.

https://www.datadoghq.com/state-of-serverless-2021/
https://www.datadoghq.com/state-of-serverless-2021/

	Abstract
	1 Introduction
	2 Methodology
	2.1 Experimental setup
	2.2 Function description

	3 Measurements
	3.1 Where does time go?
	3.2 Microarchitectural analysis
	3.3 Estimating instruction working set
	3.4 Category-wise performance

	4 Discussion
	5 Conclusion

