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Abstract

The net swelling dynamics in molecular responsive hydrogels can be viewed as an integrated effect of
discernible processes involving transport of actuating species, reaction with network components like
destabilization of physical crosslinks or cleavage of network strands and concomitant network relaxation.
Here, we describe a finite element modeling approach coupling these interdependent, underlying pro-
cesses in hydrogels including oligonucleotide duplexes as physical crosslinks that can be destabilized by
a particular molecule. These molecular responsive hydrogels based on acrylamide including either DNA
or oligomorpholinos, a DNA analogue, as functional elements can be made with various content of ds-
DNA or dsMO supported cross-links. The dsDNA or dsMO integrated in the hydrogel can be fabricated
with ssDNA designed to competitively displace the connectivity of the dsDNA supported crosslinks, and
similar for the MO hydrogels. The overall processes can be framed in a diffusion-reaction scheme. This
process is dependent on the concentration of the diffusing species, their diffusion coefficients and their
spatial coordinates. Thus, the reaction taking place in particular molecular responsive hydrogels is cou-
pled with the deformations due to swelling and mechanical constraints undergone by the gel. Numerical
examples show the importance of coupling reaction-diffusion with mechanical deformations for such gels.
Finally, our model is compared to swelling experiments of hemi-spheroidal molecular responsive hydro-
gels bounded to an optical fiber. Parameters of the reaction-diffusion model were obtained by fitting the
model to reported experimental data where molecular stimuli designed with different molecular parame-
ters for the competitive displacement reaction were employed in the swelling experiments.
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1 Introduction

Hydrogels are materials comprised of crosslinked polymers and water1, thus having both solid-like and
fluid-like properties. A rich plethora of polymers either from naturally existing components or synthe-
sized ones are explored for hydrogels. Responsive hydrogels are a group within these soft materials able
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to change their extent of swelling or other properties depending on environmental factors2,3. Stimuli
can either be of generic nature such as temperature, light or pressure, or specific molecules for hydro-
gels tailormade to recognize these compounds and change their state accordingly4–6. Examples of molec-
ular responsive hydrogels include e.g. antigen-antibody supported crosslinks in the hydrogel7–9, tumor
marker sensitive hydrogels based on combined lectin and antibody recognition10, enzyme sensitive hy-
drogels11,12, glucose sensitive hydrogels13–15 and hydrogels with responsive character mediated by DNA
structures12,16–19. Applications of molecular responsive hydrogels includes e.g. use as specific signal recog-
nition and transducing elements in biosensing, adaptive materials in tissue engineering, and drug release
materials20,21.
While solvent/network diffusion and relaxation are dominating processes in the stimuli responsive hydro-
gels22, the change of properties of the molecular responsive hydrogels additionally involve transport of
the specific analyte, recognition event, and subsequent change induced in the network structure. Overall,
these processes integrate with those discernible in the stimuli responsive hydrogel as a basis for the un-
derstanding of the overall effect. One example to indicate the particular molecules and processes in more
detail is the specific response triggered in hydrogels that include DNA. Hydrogels based on acrylamide
including DNA as a functional element initially reported by Nagahara and Matsuda23, can be made with
various content of dsDNA supported crosslinks, either only with these groups to support the crosslinked
state, or alongside covalent ones24–26. The dsDNA integrated in the hydrogel can be designed with user
specified base sequences to tailormake binding parameters and susceptibility to nucleases or Crispr CAS
cleaving the dsDNA, or complementary ssDNA designed to competitively displace the connectivity of the
dsDNA supported crosslinks12,19.
The overall processes can be framed in a diffusion-reaction scheme modified to also include the changes
in local swelling as may occur. For the DNA modified hydrogels, the experiments are typically initiated
with an initial constant concentration of the molecular stimuli in an aqueous immersing solution outside
the hydrogel, thus also setting up a step function as the initial condition for the diffusion-reaction pro-
cess. The initial concentration gradient drives the transport, and when the molecular stimuli is reaching
dsDNA within the hydrogel, it will bind according to the molecular properties. The concomitant effects
are both the reduction of the local concentration of the diffusible molecular stimuli, the reaction eventu-
ally leading to a reduction of the local crosslink density, concomitant swelling and, depending on whether
the reaction is retaining (ssDNA) or not retaining (enzyme) the stimuli, eventually return the molecu-
lar stimuli to the pool of diffusible molecules. Thus, there are coupled processes in the diffusion-reaction
scheme, where spatiotemporal changes in the various species depend on the actual parameter values.
Thombre and Himmelstein27 and Joshi and Himmelstein28 proposed a mathematical model combining
diffusion and reaction for predicting drug release from a poly (ortho ester) system. Other groups29–31

have used similar reaction-diffusion models to study drug delivery systems and transport in hydrogels.
In addition, Parlato and Murphy32 provided a comparison of the transport of soluble molecules between
synthetic hydrogels and extracellular matrix. These models are dependent on the concentration of the
diffusing species, their corresponding diffusion coefficients, their spatial coordinates and their net sum of
synthesis and degradation rate. Combined with these facets, Fick’s second law is used to describe tran-
sient diffusion, i.e., when the concentration within the diffusion volume changes with respect to time and
space.
In this work, we employ a reaction-diffusion model to describe spatiotemporal dynamics of molecular
responsive hydrogels. The reaction taking place in these gels may lead to a reduction in local crosslink
density thus inducing a local change in mechanical properties also including deformations, i.e., swelling.
As the reaction-diffusion process is dependent on the spatial position of ssDNA, it may have to be cou-
pled with the mechanical finite deformations.
We have previously reported on determination of various parameters in a reaction-diffusion scheme based
on experimentally determined spatiotemporal changes in the concentration of ssDNA as the molecu-
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lar stimulus in hydrogels with incorporated dsDNA as crosslinks. As a first approximation, it was as-
sumed that changes in hydrogel swelling occurring in this process could be ignored. The limited extent
of swelling for the particular hydrogel designs used in that work was used as an argument to simplify the
modeling approach in that case. In the present work, we also take into account changes in the swelling
state of the hydrogel occurring on changes in crosslink density, thus relaxing the previous assumption.
The swelling is also developing locally while the interrelated processes proceed, as also will be evident in
the following.
This is achieved by implementing our reaction diffusion model into the Finite Element code ABAQUS. De-
tails on the implementation are given. We compare our Finite Element implementation of the reaction-
diffusion model to results obtain with a built-in MATLAB function. Then, a simple numerical exam-
ple is developed for coupling of uniaxial swelling and reaction-diffusion for which results obtained with
MATLAB and ABAQUS are also compared. In addition, several numerical examples are presented to illus-
trate the influence of swelling and initial geometries on the reaction diffusion process. Finally, our model
is fitted to previously reported experimental data to identify the parameters of the reaction-diffusion
model.

2 Methods

2.1 Aspects of dsDNA-co-AAm and dsMO-co-AAm hydrogels

Figure 1: . Schematic illustration of the DNA-polyacrylamide hydrogel network and the process of
toehold-mediated strand displacement. The target DNA (T) binds to (rate constant k+ ) and dissociates
(rate constant k−) from the hybridized sensing-blocking SB dsDNA in the hydrogels (a,b), and a bound
target DNA undergoes branch migration with a rate kb to dissociate the SB duplex (b,c). The snapshots
of the Finite Element model show that as the diffusing front Target T advances into the hydrogels, SB
duplexes open thus reducing its crosslink density and causing swelling. S-Sensing, B-Blocking, T-Target
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The modeling developed here aims to provide more detailed description of the stimuli-responsive process
in hydrogels where a toehold mediated strand displacement eventually yielding crosslink destabilization,
is mechanistic (Fig. 1). This general molecular responsive process is realized for acrylamide based hy-
drogels where either dsDNA or dsMO are included as physical crosslinks that can be dissociated by a
specific molecule. In the following more detailed description we refer only to dsDNA based crosslinks for
simplicity. The dsDNA-co-Aam hydrogels covalently attached to the end of an optical fiber supporting
high resolution determination of overall changes of the optical lengths of the hydrogel were synthesized.
The dsDNA supported crosslinks with user selected base pair (bp) sequence were termed with the two
ssDNA as either blocking (B) or sensing (S) strand, where a total of 10 bp (14 bp for the MO) stabiliz-
ing the duplex. A third type of ssDNA, referred to as target (T) DNA, was designed with a longer bp
complementarity to the sensing ssDNA, and the excess complementarity compared to the S strand is the
toehold. The hydrogel swelling processes when exposed to target ssDNA with user selected toeholds of
3 and 7 base pairs, T3 and T7 target DNA, respectively, were included in this analysis of the DNA-co-
AAm and toehold lengths of 2 and 10 basepairs for the MO-co-AAm hydrogels. In the process of toehold
mediated strand displacement, the target DNA binds to the SB dsDNA in the toehold region yielding
a TSB DNA triplex, followed by strand displacement of the S ssDNA from B ssDNA, ending up with
a TS dsDNA duplex (Fig. 1). At difference with the B ssDNA, the target DNA is linked to the poly-
mer network, thus yielding an overall effect of destabilizing the DNA mediated crosslink at completion of
the competitive strand displacement. Fluorescently labelled target DNAs were included to support spa-
tiotemporal determination of target DNA following initiation of the experiment by adding the target to
the aqueous immersing solution.

2.2 Constitutive equations

2.2.1 Free energy function and Cauchy stress tensor

The constitutive modeling of hydrogel behavior applied herein is based on the work by Hong et al.33,34,
Kang and Huang35, and Toh et al.36. The free-energy function for the hydrogel is assumed to originate
from the additive contributions of stretching of the polymer network and mixing of the polymer and the
solvent molecules37–39

U (F, CS) =
1

2
NkBT (I1 − 3− 2 lnJ) +

kT

v

(
vCS ln

(
vCS

1 + vCS

)
+

χvCS

1 + vCS

)
, (1)

where N is the number of polymeric chains per reference volume (i.e. the crosslink density), kBT is the
temperature in the unit of energy, F is the deformation gradient tensor, I1 = trb is the first invariant of
the left Cauchy-Green tensor b = FFT, J = detF is the volume ratio of the material, v is the volume
per solvent molecule, CS is the nominal concentration of solvent molecules, and χ is the Flory-Huggins
parameter.

By assuming that both the polymer network and the solvent molecules retain their volumes through the
swelling process, we find that the volume increase of the gel only can come from an increase in the num-
ber of solvent molecules inside the gel, hence we can write
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J = detF = 1 + vCS . (2)

Further, to enable implementation for the finite element method, we introduce the free-energy function
Ŵ using a Legendre transformation as

Û (F, µ) = U (F, CS)−
µ

v
(J − 1) (3)

and hence ensure the deformation gradient F and the chemical potential µ to be the two independent
variables of the model. The Cauchy stress tensor σ can then be obtained from the free-energy potential
function as

σ =
1

J

∂Û (F, µ)

∂F
FT = NkBT

(
J−1b+

1

Nv

(
ln

J − 1

J
+

1−Nv

J
+

χ

J2
− µ

kBT

)
1

)
, (4)

where 1 is the second-order identity tensor.

As the chemical potential is singular in the dry state of the hydrogel K0, an intermediate configuration
K1 is introduced. K is the current configuration. Let x denote the present (deformed) position in K
in rectangular cartesian coordinates of a material particle that occupied the location X in K0. The de-
formation gradient F = ∂x

∂X maps K0 into K. Additionally, a multiplicative decomposition of the de-
formation tensor F is employed such as F = F1F0. F0 maps K0 into K1, and F1 maps K1 into K, as
illustrated in Figure 2. In the intermediate configuration K1, the gel is assumed stress-free and in a ho-
mogeneous state of isotropic strain such that F0 = λ0I. In the present study, all finite element simu-
lations start in the intermediate configuration K1 with a known homogeneous state of isotropic strain.
The value of the chemical potential µ in K1 is found by solving σ = 0. The constitutive model described
above was implemented in the FE code ABAQUS as a Fortran subroutine UMAT40.

F0

F1

F=F1F0

K0

K1

K

X
x

x1

x2

x3

Figure 2: Illustration of the reference, intermediate, and current configurations. All finite element simu-
lations herein start in the intermediate configuration.
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2.2.2 Mathematical model for reaction-diffusion process of target T DNA into the hydro-
gel

The conservation equation for a chemical species subject to reaction and diffusion can be written with
respect to the current coordinates x:

∂c(x, t)

∂t
+

∂qk
∂xk

= s(x, t), (5)

with qi = −D
∂c(x, t)

∂xi
. (6)

q is the spatial flux vector and is related to the deformed surface da with outer normal n in the current
configuration K. D is the diffusion coefficient of the free target T in the hydrogel. c(x, t) is the molar
concentration of the free target T in the current configuration (i.e. the true concentration). Here, the
variable s is a sink term expressed per current volume. When deformations occurs due to swelling or ex-
ternal loads, eq.(5) must be solved accounting for the variations of the spatial coordinates with respect
to time. It may be useful to rewrite eq.(5) with respect to the material coordinates X. The material de-
scription the reaction-diffusion process reads as follows:

∂C(X, t)

∂t
+

∂QK

∂XK
= S(X, t), (7)

with Qk = −MKL
∂C(x, t)

∂XL
. (8)

The nominal flux vector Q is related to the undeformed surface dA with outer normal N in the dry con-
figuration K0. M is the mobility tensor. C(X, t) is the nominal concentration of the free target T such
as C(X, t) = Jc(x, t). S is defined per reference volume and S(X, t) = Js(x, t). The relation between
the undeformed area dA in K0 and the corresponding deformed area da in K is given by the formula:
JNkdA = FiKnida. The number of free target T crossing the material element per unit time can be
written in two equivalent ways, in K or K0:

qinida = QKNKdA (9)

Consequently, this leads to the following relation between the true flux q and the nominal flux Q:

qi =
FiK

J
QK (10)

Using,

∂C(x, t)

∂XK
=

∂C(x, t)

∂xi

∂xi
∂XK

=
∂C(x, t)

∂xi
FiK , (11)

the relation between the mobility tensor M and the diffusion coefficient D reads:

M = DF−1F−T. (12)

The spatial formulation eq.(5) and the material formulation eq.(7) are equivalent, and one choose either
of these that is relevant for a given solver. In the FE solver ABAQUS, the reaction diffusion model has to
be given in the form presented in eq.(5). However, with the pdepe Matlab function the formulation de-
scribed by eq.(7) is more suitable as this solver uses a fixed spatial mesh.
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In this study, we use

s(x, t) = −k+cmt + k+cmc + k+cm0 + k−mc (13)

∂mc

∂t
= k+cmt − k+cmc − k+cm0 − k−mc − kbmc (14)

∂m0

∂t
= kbmc, (15)

mf , mc and m0 are the true concentrations of the free binding sites, the 3-strand complexes and the
open crosslinks. The total molar concentration mt of available binding sites is defined such as mt =
mf + mc + m0. The binding of the target to the hydrogel-bound strands and the subsequent crosslink
opening can be modelled as a two-step process characterized by the binding constant k+, the dissocia-
tion constant k− and the constant of junction point migration kb.

2.2.3 Dynamics of the crosslink density

The description of the dynamics of the total crosslink density, N , take into account that the overall N
consists of two contributions:

• One from the covalent, permanent crosslinks (Bis), Nbis

• One from the dsDNA supported crosslinks, NdsDNA

These are additive since the strain–energy contribution is linear with respect to N . Thus,

N = Nbis +NdsDNA. (16)

The NdsDNA is changing due to the interaction/reaction with the target DNA, thus locally reducing the
crosslink density; resulting in swelling.
While the elastic term is the main contributing factor to limit the extent of swelling, the Donnan term is
a larger driving factor for increased swelling volume (at the given charge densities). Although there are
changes also in the Donnan term on binding of target DNA to the embedded DNA, the data for T7b as
compared to T7 target indicate that the altered charge density associated with the target DNA binding
are less than the crosslink opening. As a first approximation: only consider changes in crosslink density
term:

NdsDNA(x, t) = NdsDNA(x, t0)− βm0(x, t), β =
γNdsDNA(x, t0)

m0(x, t → +∞)
, 0 ≤ γ ≤ 1 (17)

∂N

∂t
= −β

∂m0

∂t
= −βkbmc. (18)

The swelling process due to the opening of the dsDNA supported crosslinks is illustrated in Figure 1.

2.2.4 Diffusion coefficient

As a first approximation, D the diffusion coefficient of the target T in the gel may be assumed constant.
However, the diffusivity of a solute in a hydrogel may depend on the crosslinking density, the size of the

7



solute and the polymer volume fraction.41–43. Several mathematical models derived to explain and pre-
dict solute diffusion in hydrogels. Amsden44 provides a review of these mathematical expressions. In this
work, we use a hydrodynamic description of solute transport through gels based on the Stokes–Einstein
equation for solute diffusivity. We adopt the equation proposed by Cukier45 for the diffusion constant of
a solute in homogeneous hydrogels:

D = D0exp
(
−kcahφ

0.75
)
, (19)

where kc is an undefined constant for a given polymer-solvent system, φ is the polymer volume fraction
of the gel, ah is the hydrodynamic radius of the species diffusing and D0 is is the diffusion coefficient in
the solution that may be calculated with the Stokes–Einstein equation. kc is determined from the initial
values of D and φ in Configuration K1. In the present work, D0 is assumed equal to 155 µm2s−1 for the
18 bp DNA target probe as based on the determination of diffusion properties for ssDNA as a function
of number of bp’s46 . Thus, D is a solution-dependent material property: variations of the distance be-
tween crosslinks induce local alteration of the diffusion coefficient. The USDFLD user-subroutine is used
to implement eq.(19) in the FE solver ABAQUS.
In this study, the diffusion constant D is either constant or a function of the polymer volume fraction φ
as described in eq.(19).

2.2.5 FE implementation of Reaction-Diffusion process of the free target

Eq.(5) is solved directly by the ABAQUS FE solver. However, its right-hand side s(x, t) (see relation (13))
needs to be implemented. To this end, we used the user-subroutine HETVAL.
Let’s consider a time increment n of size ∆t. We use a backward Euler method to solve eqs.(14) and
(15) for the true concentrations of 3-strand complexes mc and open crosslinks m0, respectively:

mn+1
c −mn

c

∆t
= k+cn+1mt − k+cn+1mn+1

c − k+cn+1mn+1
0 − k−mn+1

c − kbm
n+1
c (20)

mn+1
0 −mn

0

∆t
= kbm

n+1
c , (21)

where the superscripts n and n + 1 denote the values of the corresponding concentrations at the begin-
ning and at the end of the time increment n, respectively. Eq.(21) leads to:

mn+1
0 = kbm

n+1
c ∆t+mn

0 . (22)

Using eq.(22) into eq.(20) gives the following expression for the concentration of 3-strand complexes
mn+1

c ,

mn+1
c =

mn
c + k+c∆t(mt −mn

0 )

1 + k+c∆t+ k−∆t+ kB∆t+ k+kbc∆t2
. (23)

The numerical procedure used to compute s(x, t) is summarized in the following algorithm:

1: set: n = 0
2: initialization: set c0, m0

c , m
0
0 as boundary conditions

3: while Analysis is not completed
4: Inputs: ∆t, cn+1 from the FE solver
5: compute: mn+1

c using eq.(23)
6: compute: mn+1

0 using eq.(22)
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7: Output: s = −k+cn+1mt + k+cn+1mn+1
c + k+cn+1mn+1

0 + k−mn+1
c (eq.(13))

8: set: n = n+ 1
9: go to 4

10: end while

2.3 Experimental data

The numerical modeling in the present paper addresses the importance of swelling of molecular respon-
sive hydrogels, where data reported previously for DNA-co-AAm and Morpholino-co-AAm hydrogels47,48

serve as the proof of concept. In the fit to the experimental data, we employ the spatiotemporal data
for the molecular stimuli (either a ssDNA or Morpholino) as they are transported, bind and dissociate
physical crosslinks, and concomitant changes in extent of local swelling. An important facet of this is
that the molecular stimuli are retained bound to the open crosslinks, according to its association con-
stant, also after the crosslink opening, thus giving an observable signal that is aggregate of more than
one state.

The experimental procedure for the preparation of these molecular stimuli responsive hydrogels is de-
scribed more in detail in the supplementary, while we here summarize briefly the experimental setup and
post-processing of the data. The reader is referred to the aforementioned publications for further details.

A quasi-hemispherical hydrogel is prepared at the end face of an optical fiber (diameter of 125 µm) in
order to facilitate an interferometric size monitoring. However, in order to study the spatiotemporal dis-
tribution of the various target molecules in the hydrogels, confocal laser scanning microscopy (CLSM)
is employed for spatiotemporal monitoring of the target molecules which are tagged with a fluorescent
dye for this purpose. A small part of the fiber with the hydrogel on its end faced was pinched off using
tweezers and glued to a bottom of glass bottom microwell dish (p35G-1.5-10-C, MatTek) (Figure 3(a)).
Buffer solution was added to allow for the hydrogel to equilibrate. At the start of the image acquisition
using the CLSM, an aliquot of the target stock solution was added to the dish to a final target concen-
tration of 20 µM. Time lapse imaging was then performed at 22 ◦C by CLSM (Zeiss LSM800) with a
40x, NA = 1.2 water immersion objective, optical slice thickness of 0.9 µm). An image was acquired ev-
ery minute, starting 10-40 s after adding the target to the aqueous immersing solution of the hydrogel
thus initiating the reacion-diffusion process. The image plane was parallel to the glass dish and passed
through the middle of the hydrogel at depth of approx. 62 µm.

CLSM micrographs (an examples is shown in Figure 3(b)) were processed using custom Matlab scripts.
First, intensity profiles were extracted from images over several lines from a circular sector spanning 20
◦ around the long axis of the fiber with a step of 0.5◦ (circular sector depicted in Figure 3(a) and ex-
tracted intensity profiles seen in white in Figure 3(b)). The average of these profiles was used for further
analysis (black profile in Figure 3(b)). The profile was then smoothed by a Savitzky-Golay filter and
normalized so that the intensity of the immersing solution was 1 for T2, T3, T7 and T10 (target oligos
binding to the hydrogel) and so that the maximum intensity within the hydrogel was 1 for T0 (a target
DNA that did not bind to the hydrogel and was used as reference). The resulting intensity profiles are
referred to as ITX where TX, X = 0, 2, 3, 7 or 10, denotes the particular target molecule. An example of
a series of normalized fluorescence intensity profiles is depicted in Figure 3(c).

The close proximity of the glass optical fiber to the hydrogel during imaging leads to a decrease in the
observed fluorescence intensity in the vicinity of the fiber due to lateral step changes in the refractive in-
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Figure 3: (a) Schematics of a hydrogel at the end face of an optical fibre, as it is imaged using a confocal
laser scanning microscope. The imaging started after adding a solution of fluorescently labeled target
to the glass well. The micrographs were acquired in a plane shown in red. Subsequently, intensity pro-
files were extracted from the micrographs within a circular sector also depicted here. (b) An example
of a micrograph depicting the detected fluorescence from a target DNA T7. The image is taken at an
intermediate state before equilibrium was reached. As overlay, intensity profiles extracted within the
circular sector (as seen in (a)) are shown in white and their average is plotted in black. The fibre end
face is located at x2 = 0 (c) The fluorescence intensity profiles IT7 normalized such that the intensity of
the surrounding solution is 1. A profile is shown for every third minute. (d) In purple, intensity profile
of the nonbinding target T0 (IT0) inside and outside a hydrogel, smoothed and normalized so that the
maximum intensity within the hydrogel is 1. (e) Intensity profiles IT7 from (c) divided by a reference
profile acquired from T0 (d) to obtain an estimate of the relative concentration of the target IT7/T0. The
fiber end face is located at x2 = 0.
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dex49. This loss of fluorescence is an optical effect and does not represent a decrease in fluorophore con-
centration. Estimates of the spatiotemporal evolution of the target concentrations were obtained using
a reference intensity profile IT0 for each individual hydrogel47,49 (reference profile seen in Figure 3(d)).
Since T0 does not bind to the hydrogel, its concentration throughout the hydrogel can be assumed con-
stant. The concentration of the target relative to its concentration in the immersing solution (in 3C)(c)
referred to as relative concentration profile ITX/T0) is then obtained by dividing the intensity profile ITX

by its corresponding reference profile IT0. The relative concentration ITX/T0 and the known concentra-
tion of the target in the immersing solution is then used to estimate the total concentration of the target
within the hydrogel (i.e. both free and bound target molecules).

The peak observed at low x2 values in IT7/T0 (Figure 3(e)) is caused by the correcting procedure, which
is sensitive to small misalignments in the position of the edge of the fiber in the main and the reference
profile. The precise position of the edge is difficult to estimate due to the low fluorescence intensity in
the immediate vicinity of the fibre and the nonzero confocal volume49.

3 Numerical investigations of reaction diffusion, swelling, constraints
and geometry

In this section, the finite element implementation presented in this work is compared with the MATLAB
pdepe function for radial diffusion in a sphere where swelling is ignored (Section 3.1) and for longitudi-
nal diffusion in a circular cylindrical hydrogel where swelling is accounted for (Section 3.2). In Sections
3.3 and 3.4, the influence of swelling, initial spheroidal geometries and mechanical constraints are investi-
gated.
For all finite element analyses reported herein, the models are axisymmetric and meshed with four-noded
elements (CAX4T ABAQUS type). Coupled temperature-displacement transient procedures are used with
the ABAQUS\Standard solver.
The parameters used for reaction-diffusion and the hydrogel are reported in Table 1. Note that in this
section the diffusion parameter D is constant.

Table 1: numerical values of the parameters used in Section 3

reaction-diffusion parameters
Diffusion coefficient D(φ = 0.045) 37.5 µm2s−1

Binding constant k+ 500 M−1s−1

Dissociation constant k− 0.02 s−1

Constant of junction point migration kb 1000 s−1

Available binding site concentration mt 0.006 M
Outer free target concentration cout 10−5 M

hydrogel parameters
Permanent crosslink density Nbisv 0.00044
Initial dsDNA supported crosslink density NdsDNAv

2
3Nbisv

see eq.(17) γ 0.7
Flory–Huggins parameter χ 0.45
Initial swelling ratio λ0 2.8
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3.1 Reaction-Diffusion into a spherical hydrogel

In this section, swelling is ignored. We consider a spherical gel of outer radius R submerged in an exter-
nal solution with c = 0. The sphere is at equilibrium when at time t=0, the concentration of free target
at the boundary of the gel in contact with the external solution is changed to c = cout. For diffusion
within a radially symmetric sphere the true concentration c(r, t) as a function of time and current radial
position r, is given as:

∂c(r̃, t)

∂t
=

1

r̃2
∂

∂r̃

(
r̃2α

∂c(r̃, t)

∂r̃

)
+ s(r̃, t), 0 ≤ r̃ ≤ 1,with r̃ =

r

R
, (24)

with s(r̃, t) = −k+cmt + k+cmc + k+cm0 + k−mc, (25)

∂mc

∂t
= k+cmt − k+cmc − k+cm0 − k−mc − kbmc, (26)

and
∂m0

∂t
= kbmc, (27)

where α = D
R2 . The following initial conditions are used:

c(r̃, t = 0) =

{
0 if 0 ≤ r̃ < 1
cout if r̃ = 1

, (28)

mc(r̃, t = 0) = 0 if 0 ≤ r̃ ≤ 1, (29)

m0(r̃, t = 0) = 0 if 0 ≤ r̃ ≤ 1. (30)

In addition, the following boundary conditions are used for t ≥ 0:

∂c(r̃ = 0, t)

∂r̃
= 0 (31)

c(r̃ = 1, t) = cout (32)

∂mc(r̃ = 0, t)

∂r̃
= 0 (33)

mc(r̃ = 1, t) = 0 (34)

∂m0(r̃ = 0, t)

∂r̃
= 0 (35)

m0(r̃ = 1, t) = 0 (36)

Herein, the system of partial differential equations described by eqs.(24-27) and the corresponding initial
and boundary conditions described above is solved for the different concentrations numerically in two
ways: first, using the pdepe MATLAB function where eqs.(24-27) are directly implemented and second
using the FE element solver ABAQUS where the formulation described in Section 2.2.5 is used.
Figure 4 shows the concentrations c, mc, m0 along the normalized radius r̃ of a sphere obtained using
the pdepe MATLAB function and the FE element solver ABAQUS against time. As can been seen, the
computed concentrations from both solvers are in excellent agreement.

3.2 Coupling of uniaxial swelling and reaction-diffusion

In this section, we consider a circular cylindrical hydrogel (see Figure 5). Its upper surface is in contact
with an external solution with c = 0 and the cylinder is constrained in its the lateral directions. The gel
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Figure 4: Concentrations c, mc, m0 (M) along the normalized radius r̃ of a sphere obtained using the
pdepe MATLAB (circles) function and the FE element solver ABAQUS (solid lines) against time.

can freely swell in its longitudinal direction. Initially, the gel is at equilibrium in configuration K1 in a
state of isotropic swelling and has a radius R1 (see Figure 5) and height H1. Thus, the deformation gra-
dient is F = F0 = λ01. We define 1 and 2 as the lateral coordinates and 3 as the longitudinal coordinate.
At time t=0, the concentration of free target at the upper surface in contact with the external solution is
changed to c = cout and the gel starts swelling. The deformation gradient at any particle in the gel takes
the following form in this coordinate system:

F =

 λ0 0 0
0 λ0 0
0 0 λ0λ

 . (37)

Namely, the principal stretches of this hydrogel are λ1 = λ2 = λ0 and λ3 = λ0λ and the Jacobian of
the deformation is J = λ3

0λ. In addition, we assume that the gel is free to deform in the 3-direction.
Therefore, this gel is in plane stress state with the Cauchy stress components σi3 = 0 (with i = 1, 2, 3).
Using σ33 = 0, we obtain the following relation:

0 =
λ

λ0
+

1

vN

(
ln

(
λ0

3λ− 1

λ0
3λ

)
+

1− vN

λ0
3λ

+
χ

λ0
6λ2

− µ

kBT

)
(38)
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Figure 5: Illustration of uniaxial swelling of a circular cylindrical hydrogel. Configuration K0 is the dry
state. K1 is the initial equilibrium configuration in which the hydrogel is in an isotropic state of strain.
K is current configuration in which the gel undergoes uniaxial swelling.

This then leads to the following expression for the chemical potential:

µ = kBT

(
ln

(
λ0

3λ− 1

λ0
3λ

)
+

1

λ0
3λ

+ vN

(
λ

λ0
− 1

λ0
3λ

)
+

χ

λ0
6λ2

)
. (39)

In this example, we assume that the chemical potential remains constant at all times. However, at a
given particle in the gel the stretch is a function of time and, the crosslink density N is also varying with
time due to the opening of some crosslinks. Using eq.(39), this leads to the following evolution equation
for λ:

∂λ

∂t
=

−v ∂N
∂t (

λ
λ0

− 1
λ3
0λ
)

1
λ3
0λ

2−λ
− 1

λ0
3λ2 + vN

(
1
λ0

+ 1
λ0

3λ2

)
− 2 χ

λ0
6λ3

. (40)

In the coordinate system, described in Figure 5, the mobility tensor M in eq.(12) has the following ma-
trix representation:

M = D

 1/λ2
0 0 0

0 1/λ2
0 0

0 0 1/(λ2
0λ

2)

 . (41)

In this example, the stretch λ and the different concentrations are functions of time and the longitudi-
nal coordinate. In the dry configuration K0, we define the normalized coordinate X3 = X3/H0 where
X3 is the Lagrangian longitudinal coordinate and H0 the height of the gel. Note that H1 = λ0H0. The
conservation equation for the target subject to reaction and diffusion within this cylindrical gel in K0 is
derived from eq.(7):

∂C(X3, t)

∂t
=

∂

∂X3

(
D

H2
1λ

2

∂C(X3, t)

∂X3

)
+ s(X3, t)J(X3, t), 0 ≤ X3 ≤ 1 (42)
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Therefore, eqs.(42) and (18) and the following partial differential equations describe the coupled problem
between swelling and diffusion-reaction in the cylinder along its longitudinal direction:

s = −k+
C

λλ3
0

mt + k+
C

λλ3
0

mc + k+
C

λλ3
0

m0 + k−mc (43)

∂mc

∂t
= k+

C

λλ3
0

mt − k+
C

λλ3
0

mc − k+
C

λλ3
0

m0 − k−mc − kbmc (44)

∂m0

∂t
= kbmc (45)

∂λ

∂t
=

−v ∂N
∂t (

λ
λ0

− 1
λ3
0λ
)

1
λ3
0λ

2−λ
− 1

λ0
3λ2 + vN

(
1
λ0

+ 1
λ0

3λ2

)
− 2 χ

λ0
6λ3

. (46)

Figure 6 shows H
H1

against tD
H2

1
computed with our FE implementation and with Matlab pdepe solver.
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FE

Figure 6: H
H1

against dimensionless time tD
H2

1
obtained using the pdepe Matlab (circles) function and the

FE element solver ABAQUS (solid lines) against time.

As can be seen, the two analyses are in good agreement. At tD
H2

1
= 365 the concentration of the open

complex m0 is homogeneous and thus the cylinder has reached a new equilibrium with a homogeneous
state of strain characterized in this example by λ = 1.14 at any particle in the gel. The two analyses are
in excellent agreement with respect to this value.

3.3 Influence of swelling on the reaction-diffusion process

The reaction-diffusion process of target T into the hydrogel described by eqs.(5) and (6) is dependent
on the current configurations K, i.e. the deformations of the gel. In order to investigate the influence of
the deformations due to swelling and mechanical constrained that can be imposed to some part of the
gel, we run three FE simulations of a hemi-spherical hydrogel. To this end, we used an axisymmetric
FE model shown in Figure 7. The vertical edge of the gel is the axis of symmetry. Initially, the gel is
at equilibrium in configuration K1 and submerged in an external solution with a concentration of free
targets c = 0. Only the outer edge marked with the purple dashed line (see Figure 7a) is in contact with
the external solution. The horizontal edge marked with the white dotted line is in contact with a rigid
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optical fiber. Hence, the nodes along the white dotted horizontal line are constrained in the 2-direction.
Therefore, in K1 the height of the gel is L1 and its radius is R1. At time t = 0, the concentration of the
free target at the outer surface is increased to c = cout and the reaction diffusion process takes place and
the gel starts to swell with a current height l.
In the first analysis, deformations are not considered and consequently the gel does not change in di-
mensions. In the second analysis, the crosslink term N is dependent on the open crosslink concentration
as described in eqs.(16) and (17). Therefore, in the analysis the gel is swelling maintaining its hemi-
spherical shape with a current height l = lf (t) (see Figure 7c). We call this case ”Swelling without
constraint”. In the third analysis, the crosslink term N is still defined by eqs.(16) and (17) and in addi-
tion, the nodes in contact with the optical fiber (horizontal white dotted line in Figure 7a) are also con-
strained in the 1-direction. We call this case ”Swelling with constraints”. Thus, the length of this edge
remains constant during the analysis and the current height of the gel is defined as lc(t), Figure 7d.
The color plots in Figures 7b-d depict the concentration m0 of open crosslinks inside the gel at time t =
5400 s.
We define the material coordinate X2 in the initial configuration K1. For Points O and A defined in Fig-
ure 7a, X2 = 0 and X2 = L1, respectively. We also defined the normalized material coordinate X̄2 = X2

L1
.

Additionally, we define the current coordinate x2 in the current configuration K such as x2 = 0 and
x2 = l(t) at Points O and A, respectively. We also defined the normalized current coordinate x̄2 = x2

l(t) .

Except for Points O and A, X̄2 ̸= x̄2 because swelling develops locally. Note that in our experimental
setup, the acquisition of the spatial distribution of the target is achieved with respect to the current co-
ordinate x2 as it is not possible to track particles. However, with the FE method used herein, it is more
natural to use X2.
In Figures 8a-b, the total concentration (c + mc + m0) against time is presented at different locations
along the vertical edge of the gel defined in terms of the normalized spatial coordinate x̄2 and the nor-
malized material coordinate X̄2, respectively. These results illustrate the influence of swelling on the re-
sponse of the reaction-diffusion model. The reaction-diffusion process is faster in the case when swelling
is ignored and slowest when swelling is accounted for but without constraint. The difference between the
three cases is increasing as the output locations get closer to the optical fiber. The spatiotemporal distri-
bution of the concentration is very similar when using the normalized coordinates X̄2 or x̄2.
In Figure 9, the volume fraction of the polymer inside the hydrogel φ is plotted against time at different
locations along the vertical edge of the finite element model for the cases ”swelling without constraint”
and ”swelling with constraints”. As can be seen, the volume fraction of the polymer φ is constant after
t ≈ 9000 s in both cases. φ reaches an homogeneous value for the case ”swelling without constraint” of
0.031. However, in the case ”swelling with constraint”, the final φ field is inhomogeneous: the minimum
value of φ is 0.030 at Point A and increases towards Point O to 0.037.
In addition, Figure 9 shows that swelling induces an inhomogeneous response with respect to the vol-
ume fraction of the polymer φ. Besides, mechanical constraints due to the optical fiber lead to a final
inhomogeneous distribution of φ. These inhomogeneities are due to local swelling. As the diffusion coeffi-
cient D of the target T in the gel may be dependent on the polymer volume fraction (see Section 2.2.4),
it emphasizes the importance of accounting for both swelling and mechanical constraints in the reaction-
diffusion model. To this end, the FE method is well suited.

3.4 Influence of initial geometry

In the Section 3.3, the influence of swelling and mechanical constraints is illustrated on an initially hemi-
spherical geometry, i.e L1 = R1 (see Figure 7). We now investigate the influence of the initial ratio
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Figure 7: concentration m0 (M) of open crosslinks inside an hemi-spherical gel (a) at time t = 0 s, (b) at
time t = 5400 s without deformation, (c) at time t = 5400 s the case ”Swelling without constraint”, (d)
at time t = 5400 s the case ”Swelling with constraints”.
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Figure 8: Total concentration (c+mc+m0) in M against time at three different locations: (a)x̄2 = 1, x̄2 =
0.5, x̄2 = 0, (b) X̄2 = 1, X̄2 = 0.5, X̄2 = 0.

a = L1
R1

. Three analyses are run with the following ratios a 0.75, 1 and 1.25. Thus, the initial geometries
are hemi-spheroidal for a ̸= 1. The material properties, boundary and initial conditions are the same as
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Figure 9: Volume fraction of the polymer inside the hydrogel φ at three different locations (x̄2 = 1, x̄2 =
0.5, x̄2 = 0) along the vertical edge against time t for the cases ”swelling without constraint” (dashed
lines) and ”swelling with constraints” (crosses). Two snapshots of the FE analyses of the corresponding
cases are included on the right at t=11000s.

for the case ”swelling with constraints” from Section 3.3. Therefore, the radius of the gel R1 is constant
during the analyses while its height is varying and denoted lc in the current configuration K. The total
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Figure 10: Total concentration (c + mc + m0) in M at three different locations (x̄2 = 1, x̄2 = 0.75, x̄2 =
0.5) for three different ratio a = L1

R1
(see Figure 7) , (a) against time, (b) against normalized time.

concentration (c + m0 + mc) is plotted in Figures 10a and b against time t and against normalized time
t̄, respectively, for the three cases at different location along the vertical edge of the gel. The normalized
time t̄ is calculated as: t̄ = tDA

lcV
, where A is the initial outer area of the gel in contact with the external

solution and V its initial volume. Figure 10a shows that oblate and prolate spheroidal geometries lead
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to different concentration responses along their axis of revolution. These differences can be somewhat at-
tenuated by using a normalized time scale (see Figure 10b). Experimentally, idealized shapes may be dif-
ficult to fabricate. Therefore, the FE method can be a valuable tool as it can account for various types
of geometries.

4 Modeling reaction-diffusion in DNA and Morpholino hydrogels

Our reaction-diffusion model is fitted to four kinds of hydrogels, SB gels, CoumSB, SBF and Morpholino
hydrogels (see Section 2.3) by means of an inverse FE technique. The FE model used in the fitting pro-
cedure is similar to the model ”Swelling with constraints” described in Section 3.3. R1 is assumed equal
to the radius of the optical fiber on which the hydrogels are bounded, 62.5 µm. However, the initial
height of the gels L1 are obtained from experimental measurements and thus L1 ̸= R1.
In all cases, the initial polymer fraction φ is taken equal to 0.06 as estimated during experiments. There-
fore, all FE simulations starts in K1 (see Figure 2) with a deformation gradient F = F0 = λ01 with
λ0 = 2.554.
For each case, the dimensionless number Nv (see eq.(4)) is adjusted so that the final heights of the gel lc
in the simulations correspond to the ones measured during experiments. We assumed that the crosslink
term, N , consists of two contributions (see eq.(16)). Nbis is assumed to be constant and in Configuration
K1, NdsDNA = 2

3Nbis.
The value of µ

kBT (see eq.(4)) is computed such as σ = 0 in K1. The parameters mt, k
+, k−, kb and D

(see Section 2.2.2) are estimated by minimizing the difference between the experimental and numerical
total concentration (c+mc +m0) profiles along the vertical edge of the gel, i.e., from x2 = 0 to x2 = lc(t)
at different instant of time. The minimization is performed with a nonlinear least square technique using
the lsqnonlin MATLAB function. Note that in this section, the diffusion parameter D is a function of
the polymer volume fraction φ given by eq.(19).
In all simulations, at time t = 0 s, the target concentration csol in the external solution is assumed
equal to 20 µM as described in the methods. Therefore, the concentration cout at the boundary of the
gel in contact with the external solution (purple dashed line in Figure 7a) is given by the relation cout =
KTXcsol where KTX is the partition coefficient of the Target TX.
The comparison between the experimental and obtained FE total concentration (c + mc + m0) pro-
files along the vertical edge of the gel is shown in Figures 11 and 12 for CoumSF and morpholino gels.
Additional comparisons are provided in Figure S1 in Supplementary for SB and SBF gels. The corre-
sponding fitted parameters are reported in Table 2. As can be seen, the FE simulations are in somewhat
good agreement with the experimental data. For the morpholino gel with Target T10 (Figure 12b), the
reaction-diffusion process happens too quickly in the simulation compared to the experimental results af-
ter 600 s. For the gel CoumSB T3 (Figure 11a), the slope of the concentration profile is overestimated
by the simulations until 1000 s. The FE simulations are in best agreement with the experimental data
in the central regions of the concentration slopes. The peak observed in the experimental data at low
values of x2, i.e. near the fiber end face, such as in Figure 11a is caused by the procedure used to cor-
rect for the loss of fluorescence due to the presence of the fibre, as discussed in section 2.3. Furthermore,
the maximum concentration reached within the hydrogel, as observed from the experimental data, is not
constant throughout the hydrogel, as would be expected at equilibrium based on the design of the sys-
tem, but is often observed to decline at the outer edge of the hydrogel. While a nearly step-change in
the total concentration (c + mc + m0) of target DNA could be expected when extending from a homo-
geneous gel to the immersing solution, there is some smoother transition as imaged via CLSM with a
nonzero confocal volume. Nevertheless, the less pronounced decline at the hydrogel - immersing solu-
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Table 2: Estimated parameters used in the simulations presented in Section 4. The parameters in shaded
grey are those determined from the inverse FE procedure. Note that the diffusion parameter D is pro-
vided for the initial polymer volume fraction φ = 0.06.

reaction-diffusion parameters crosslink
term

gel height
(µm)

Gel type D|φ=0.06

(µm2s−1)
k+

(M−1s−1)
k− (s−1) kb (s−1) mt(M) KTX Nbisv γ initial

(L1)
final
(lc)

SB T7 43 5.9e+4 8.8e−3 0.01 1.3e−4 0.20 0.0011 0.55 55.5 67.6
CoumSB T3 30 1.4e+3 1.3e−5 6.9e+3 2.6e−4 0.14 0.000946 0.7 48.7 61.2
CoumSB T7 26 2.0e+4 8.3e−6 1.4e+4 3.3e−4 0.14 0.00093 0.7 54.8 67.6
SBF T7 40 3.2e+4 4.2e−8 1.e+5 3.3e−4 0.079 0.00094 0.7 53.2 65.8
SBF T3 22 2.1e+3 3.3e−7 334 2.0e−4 0.079 0.00106 0.55 57.9 68.8
Morpholino T2 5.0 317 1.0e−2 0.01 5.3e−5 0.78 0.0018 0.05 77.8 79.5
Morpholino T10 9.9 1.5e+3 7.9e−4 3.1 1.6e−4 0.78 0.0022 0.05 80.0 82.0

tion boundary is not straightforward to explain. Possible factors contributing to this include e.g. non-
constant concentration of the target in the hydrogel due to a non-constant concentration of the binding
sites, as caused by inhomogeneities in concentration during preparation (such as of the oligonucleotides
or the photoinitiator, the latter possible arising from the use of photoinitiator in the immersing oil in the
preparation step), or changes to the concentration of the binding sites as a result of the local swelling.
In Table 3, the parameters estimated from our previous studies47,48 are reported. These parameters
were estimated by approximating the gel geometries as hemi-spherical and ignoring fiber constraints and
swelling. Ignoring these effects lead to lower values for the diffusion parameter except for the morpholino
gels. For the morpholino gels, swelling was quite limited as can be seen from the gel heights reported in
Table 2. And thus, the mechanical constraints due the fiber are also reduced. In this case, a simpler ap-
proach as the one described in Section 3.1 may be satisfactory. However, such an approach does not take
into account the geometrical effects described in Section 3.4.
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Figure 11: Comparison between the experimental and obtained FE total concentration (c + mc + m0)
(M) profiles along the vertical edge of the gel for the CoumSB gels a) CoumSB T3, b) CoumSB T7. The
edge of the fibre is positioned at x2 = 0 and the outer edge of the swelling gel is seen at the right.
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Figure 12: Comparison between the experimental and obtained FE total concentration (c+mc+m0) (M)
profiles along the vertical edge of the gel for the Morpholino gels a) Morpholino T2, b) Morpholino T10.
The edge of the fibre is positioned at x2 = 0 and the outer edge of the swelling gel is seen at the right.

Table 3: Estimated parameters from previous studies47,48

reaction-diffusion parameters
Gel type D

(µm2s−1)
k+

(M−1s−1)
k− (s−1) kb (s−1) mt(M)

SB T7 21.9 3.96e+4 7.93e−5 1.99 1.18e−4
CoumSB T3 24.2 1.09e−3 6.03e−3 3.71 2.25e−4
CoumSB T7 26.6 1.89e−4 2.78e−7 0.56 3.19e−4
SBF T7 35.5 4.84e+4 1.94e−3 2.21 3.31e−4
SBF T3 17.8 1.68e+3 8.75e−2 2.39 1.72e−4
Morpholino T2 - - - - -
Morpholino T10 11.8 2.5e+3 0.95 2.8 1.4e−4

5 Conclusion

In this work, we propose a finite element approach to model reaction-diffusion processes in DNA-reactive
hydrogels. Our modeling approach is capable to account for various geometries, constraints and swelling
of the gels. The numerical examples presented in this study show that these aspects need to be accounted
for in order to better evaluate the parameters of the reaction model. Finally, the numerical method is
applied to DNA and Morpholino hydrogels. The numerical results show a satisfying agreement with the
experimental data and that this modeling approach is able to capture the effect induced by the use of
different toehold of the target DNA.

The present work, where mechanistic details in a particular reaction-diffusion processes in molecular re-
sponsive hydrogels are included in the finite element framework, could also serve to inspire similar ap-
proaches for other mechanisms. Examples of this include cas12 digestion of DNA strands in hydrogels12

thus inducing decreased crosslink density, or enzyme catalyzed increased crosslinking50. It should also
be noted that similar strategies can be applied also for the coupled phenomena when enzyme induced
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degradation of the extracellular matrix by cell secreted enzymes are integrated in a model51,52. In these
examples, the representation of the molecular mechanism of the molecular specie triggering the network
structural changes can be different from the present work, and need to be changed accordingly in their
modeling representation.
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