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Abstract

Photovoltaic (PV) generation has high impact on the decarbonization pathways of power
systems. Accuracy of day-ahead PV power forecasting has become crucial in the opet-
ation and control of power system with high PV penetration. This paper develops a
hybrid approach based on generative adversarial network (GAN) combined with convo-
lutional autoencoder (CAE) to improve PV power forecasting accuracy. Self-organizing
map method is first utilized as data pre-processing to classify target days into different
weather types based on solar irradiance. With the ability of GAN to reduce the burden of
loss and the advantages of CAE to extract multi-scale effective features from the weather
and PV power, PV power forecasting model consisting of GAN and CAE is proposed.
The developed method has been tested on a real dataset in a Chinese PV station and com-
pared with base reference PV forecasting methods. Numerical testing results demonstrate
the effectiveness of our method with high accuracy.
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1 | INTRODUCTION

Decarbonization of the energy sector plays an important role in
mitigating the effects of climate change and global warming. In
this respect, solar energy has been intensively investigated, given
its positive contribution to the most pressing energy problems
[1]. It is reported that in the first quarter of 2021, the installed
capacity of photovoltaic (PV) in China has been increased
by 5.33 million kW, and its cumulative installed capacity has
reached 260 million kW [2].

High-level penetration of PV power generation to the elec-
tric grid leads to many technical challenges in the power grid
stability and safety [3]. With the continuous expansion of the
grid-connected PV systems, the precision of day-ahead PV
power forecasting plays a crucial role in scheduling power
production and procuting enough reserve capacity in power
systems. Considering the variability and intermittency in PV
production, the forecasting problems become even difficult.

In this paper, a hybrid method based on the genera-
tive adversarial network (GAN) combined with convolutional

autoencoder (CAE) is developed for day-ahead PV power fore-
casting. The CAE is applied before the fully connected neural
network in the generator of the GAN in the forecasting model.
Its robustness and denoising ability based on spatial correlation
extraction is utilized to improve the performance of PV power
forecasting. The excellent performances of convolutional neu-
ral networks have directly contributed to the creation of CAEs.
CAE is applied to dimensionality reduction and anomaly detec-
tion, which can handle two-dimensional spatial information
well and improve the accuracy of input information. Combin-
ing CAE with the powerful unlabelled input data processing
capability of GAN and the adversarial training process, the com-
bination of the CAE and GAN can reduce the prediction error.
The main contributions of this paper are summarized below

1. To analyze and extract different features of weather types,
time seties correlation analysis and the self-organizing map
(SOM) method are applied. Weather types are clustered
according to the ratio of diffuse horizontal irradiance (DHI)
and global horizontal irradiance (GHI), and each type will
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2 | PAN ET AL.
be forecast individually to capture the features of different =~ TABLE 1  List of reviewed forecasting methods
weather types. Statistical Linear regression [8]
2. A hybrid method combining GAN with CAE is applied for time-series . .
. . . Exponential smoothing [9]
the day-ahead PV power forecasting. The CAE is applied to methods
. . . . . . Autoregressive moving average [10]
dimensionality reduction and anomaly detection, which can
improve the accuracy of input information. Combining this Autoregressive integrated moving (1]
with the powerful unlabelled input data processing capabil- average
ity of GAN, the hybrid approach can reduce the prediction Machine Decision tree [12]
learning 3 .
crroft. hods Support vector regression [13]
. . . . . . metho
3. Validation, testing and analysis of a real dataset in China as Artificial neural network [14,17, 18]
well as comprehensive comparisons with base references are RNN [15]
conducted to demonstrate the efficiency and high precision NN [P0
of the developed method.
LSTM [19]
The rest of the paper is organized as follows. Section 2 Deep learning (16, 21]
summatizes and reviews the main methods for PV power fore- DBN(deep belief networks) [22]
casting. Section 3 illustrates the PV power data and relevant DCNN(deep convolutional neural [23]
weather factors to investigate the features and extract the appre- network)
ciate input for the forecasting model. The developed hybrid AE, CAE [24, 25]
model of GAN combined with CAE is described in detail in GAN 26]
Secqon f¥ The numerical testing 'and analysls. are p%owded in Hybrid LSTM.RNN 27
Section 5 followed by the concluding remarks in Section 6. methods
CNN-LSTM 28, 29, 30]
CAE-CNN [31]
2 | LITERATURE REVIEW CNN-GAN [32]
LSTM-GAN [33]

The PV power forecasting methods have been variously investi-
gated and analyzed [4-7] in recent decades. The most popular
forecasting methods can be categorized into three types: the
statistical time-series based methods, machine learning meth-
ods and the hybrid methods. A summatization of reviewed
references and methods is presented in Table 1.

2.1 | Statistical time-series-based methods

With the development of data mining technology, statistical
methods based on historical data have been widely concerned
in academia and industry. Time series provide statistical infor-
mation to anticipate the characteristics of quantified elements
and to predict the upcoming situation by evaluating past infor-
mation [7]. The most popular statistical methods include simple
linear regression [8], exponential smoothing [9], autoregres-
sive moving average (ARMA) [10] and autoregressive integrated
moving average (ARIMA) [11].

2.2 | Machine learning methods

Machine learning methods can learn from historical data and
improve their predictive power through continuous iterative
training, which can obtain the final prediction results through
powerful training without predetermined formulas. The main
methods of machine learning are decision tree [12], sup-
port vector regression [13], artificial neural network (ANN)
[14], recurrent neural network (RNN) [15] and deep learning
methods [16].

To capture the non-linear mapping between the input and
output targets, ANN has been used in PV forecasting, Reference
[17] compared the ANN model with three traditional mathe-
matical schemes for PV output prediction and found that the
ANN had much higher prediction accuracy. In [18], four dif-
ferent architectures of ANN are compared and it demonstrated
high forecasting accuracy of ANN.

In the last few decades, ANN forecasting methods have
been modified and developed, for instance, the RNN method
with consideration of time correlation in data sequence, the
long short-term memory (LSTM) method with super mem-
ory [19] and the CNN approach with strong ability to extract
spatiotemporal correlation [20].

The non-linear processing capability of ANN facilitates
PV power prediction, while the neural networks with shal-
low structure have the shortcomings of network instability
and parameters non-convergence, which remain a problem that
needs to be addressed, and the emergence of deep learning
methods provides a good way to solve this problem [21].

Deep learning methods can learn from voluminous input
data, use numerous hidden layers and better parameters to
enhance the ability of forecast. A variety of research have
concluded that application of deep learning methods in PV
power forecasting has greatly improved the forecasting accu-
racy because of their strong feature extraction ability. The
deep belief network (DBN) method has high-level abstraction
extraction ability [22], the deep convolutional neural network
(DCNN) approach can fit complex non-linear mappings and
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processing different data sets [23], and the autoencoder (AE)
approach have the characteristic of dimensionality reduction
and denoising [24]. Furthermore, the encoding and decoding
structure of CAE also has already demonstrated strong sky
image prediction ability for spatiotemporal information in PV
power forecasting [25].

Recently, a new deep learning model named GAN is pro-
posed, which acts as a dominated approach in image synthesis
and language processing. The GAN approaches, for example,
the convolutional GANs and the conditional GANs, have been
widely applied into different scenarios. For instance, the convo-
lutional GAN performs outstandingly in PV power forecasting
[26]. However, the small-scale timing information for detailed
forecasting might be lost during the deep convolution process
when high-frequency features are converted into low-frequency
features.

2.3 | Hybrid methods

To incorporate different advantages of ANNs and to avoid
their possible disadvantages, hybrid methods have been pro-
posed and widely used recently in PV forecasting. In [27], a
hybrid method with a combination of LSTM-RNN was pro-
posed for PV power forecasting, and the coupling between
weather and electricity was incorporated into the forecasting
model, the proposed hybrid method had shown better perfor-
mance than individual LSTM and RNN. In [28], the authors
proposed a novel multivariate hybrid deep neural model named
WPD-CNN-LSTM-MLP for 1-h-ahead solar irradiance fore-
casting, In [29, 30], two hybrids of CNN-LSTM and ConvL.STM
were applied and the PV forecasting results show better fore-
casting accuracy than a normal LSTM model. Besides, in the
hybrid of CAE and CNN, the CAE method can enhance the
network depth and widen the network through establishing long
skip connections in deep CNN [31]. In [32], the method of
using GAN to enhance the training dataset and then training
by CNN not only improves the accuracy of prediction but also
has high efficiency compared with traditional methods. Mean-
while, the generator of GAN can be substituted with LSTM
structures to avoid the mean trap in time series forecasting.
However, with multiple input variables consideration, spatial
correlations extracted through convolutions by CNN have bet-
ter performance than temporal correlations extracted by LSTM
in PV power forecasting [33]. Compared with CNN, CAE
has stronger feature extraction and de-noising ability, and the
combination of CAE and GAN may produce better predictions.

3 | PVPOWER AND AFFECTING
VARIABLE ANALYSIS

PV power data and relevant weather factors are analysed in this
section to dig into the time series correlations and charactet-
istics, and the appropriate input for the forecasting model is
selected.

3.1 | Data analysis

To analyse the features of PV power and weather data, one PV
power dataset from a regional PV station with 25-MW rated
power in Jiangsu Province, China is investigated. The station
faces south, with a tilt angle of 29°. The PV power data is col-
lected from 1 January, 2017 to 31 December, 2017 from 5 AM
to 7 PM in step of 5 min. The corresponding meteorological
data is collected from the numerical weather prediction (NWP)
by climate database Solargis v2.1.21 (https://solargis.com/cn).
The weather variables collected include GHI, DHI, global tilted
irradiance (GTI), temperature (TEMP), wind speed (WS), and
wind direction (WD).

Scatter plots of the weather data versus PV power are shown
in Figure 1. As can be seen, approximate linear relationships
exist between the PV power and weather factors of GHI and
GTI. Weather factors DHI, TEMP, and WS have highly non-
linear patterns with the PV power, while WD is almost irrelevant
with the PV power. The scatter plot indicates non-linear fore-
casting methods are necessary to capture the high non-linear
features among PV power and weather vatiables.

Time series autocorrelation analysis is also conducted for the
six weather variables, as shown in Figure 2. It can be seen that
the PV power to be estimated has a strong correlation not only
with the adjacent values, but also with distant values of the
input data. Therefore, the local reception characteristics of tradi-
tional ANN or CNN may lose importance features in the input
variables. Forecasting methods consisting of fully connected
network or hybrid methods would be thus suitable for forecast-
ing problems in view of their ability in keeping all features of the
input data.

3.2 | Modelinput selection

The Pearson correlation coefficient is used to investigate linear
correlations among time series {x} and {y}:

Z:=1 (>
\/Zt L= X)X\ T 0 -

-~ X)X, - Y)

©)

where 7 is the length of time series, X and ¥ are the average of
two time series, respectively. The parameter p,, € [—1,1] is the
correlation coefficient of two time series.

The Pearson correlation results between the collected histor-
ical PV power and six weather variables are shown in Figure 3.
It can be seen from Figure 3 that GHI, DHI and GTI have
high correlations with PV power, and this indicates that solar
radiation makes great contribution to the PV power output. In
addition, the correlations between TEMP, WS and PV power
are relatively high, with the value of 0.303 and 0.242, respec-
tively. This implies the positive impacts of TEMP and WS on
PV power production. Furthermore, it can find that WD has
a very low influence on the PV power production according
to the lowest correlation between WD and PV (with the value
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FIGURE 2  The autocorrelation results of the six input variables

of 0.00412). This means that WD can be removed from the
dataset. Therefore, the five weather variables (GHI, DHI, GTI,
TEMP and WS) with coefficient above 0.2 and historical PV
power are chosen as the input factors for the day-ahead PV
power forecasting. Selection criteria and threshold may vary
with different testing cases.

4 | METHODOLOGY

This section presents the forecasting methodology. Architec-
ture of the developed method is depicted in Figure 4. The data

pre-processing block focuses on clustering the weather types
according to the ratio of DHI and GHI. All weather data are
categorized into three parts corresponding to the sunny days,
cloudy day and rainy days. Individual forecasting model GAN
combined with CAE is then developed and applied to forecast
the PV power for each weather type data.

4.1 | SOM-based clustering

Data pre-processing is the first and mandatory step to conduct
the feature extraction for PV power forecasting. Many different
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FIGURE 3  Pearson correlation coefficient between meteorological
variables and PV power

approaches have been used in data pre-processing. However,
the clustering technologies highly depend on prior information
to obtain the number of target clusters [34]. The approach of
SOM neural network developed in [35] is a special type of neural
network used in clustering, which does not require prior infor-
mation or complicated formula and is less affected by noisy
data [36]. Therefore, correlation analysis and the SOM neural
network are applied for data pre-processing in this research.

According to the national standard formulated by China
Meteorological Administration, weather statuses (i.e. atmo-
spheric conditions) are divided into 33 weather types [37].
Among all these weather types, sunny, cloudy and rainy are
the three typical types occupying the majority of weather sta-
tuses. To reduce the complexity of classification, and to have
reasonable historical data of weather types with low occurrence
frequency, three typical weather types of sunny, cloudy and rainy
are considered in this paper.

Three typical weather types are clustered by the SOM neu-
ral network method before feeding into the forecasting engine.
Clustering process of the SOM method is illustrated in Figure 5
It consists of two layers including input layer and competi-
tive layer. The mean and standard deviation of the daily total
DHI and GHI ratio for each weather type are the inputs [38],
which are transformed by the SOM neural network into a two-
dimensional map of features in a topological-ordered fashion
in the input layer. In the competitive layer, the neurons are
classified into different reaction zones through self-organizing
learning. Hence, the input could be automatically classified.

4.2 | Inputdata formulation

According to the local sunrise and sunset in different seasons,
including the extreme conditions in both winter days and sum-
mer days, the PV power generation of the selected PV station
generally happens from 5 AM to 7 PM (time zone: GMT + 8).
For simplicity, we thus consider the consistent solar hours from
5 AM to 7 PM throughout the day. The input data to the gener-
ator of GAN is conducted as a two-dimensional matrix with six

rows (corresponding to six variables including five weather vari-
ables and historical PV power) and 15 columns (corresponding
to 15 houtly spans from 5 AM to 7 PM), which is shown in
Figure 6. The input matrix can be treated as a two-dimensional
pixel map, of which the inner spatial correlation is convenient
for CNN to extract. Similarly, the input data to the discrimina-
tor of GAN is also a two-dimensional map constructed from
the PV power time series of the predicted day.

4.3 | The model of GAN combined with CAE
Structure of CAE GAN is illustrated in the bottom red box of
Figure 4. The GAN consists of two networks: the generator
network and the discriminator network. The two-dimensional
historical PV power and five weather variables are the input of
the generator network, while the output of the generator net-
work is the predicted PV power /£ The discriminator network
works as a classifier, which aims to discriminate the predicted
power f from the actual PV power y. The adversarial GAN loss
promotes the generator network to calculate an accurate pre-
dicted value that approximates the distribution of the actual
value. After the training, the generator network of GAN will
be adopted for PV power prediction.

The CAE is implemented before fully connected neural net-
works in the generator of GAN to capture the inner feature
between input data (including historical PV power and five
weather variables) and the actual PV power of the forecasted
day. The CAE works as a symmetrical U-shaped connected con-
volution network, which contains two parts. The first encoder
part is used to extract low-frequency features and their inter-
action relationships from the input variables while the second
decoder part enables precise localization using up-convolutions
and reconstructs the denoised and effective feature map. As
shown in Figure 4, the encoder consists of a series of blue boxes
corresponding to the multi-channel feature map. The number
of channels denoted on the top of the box represents the num-
ber of convolution kernels in the last convolution process. The
decoder part consists of stacked blocks, which is similat to those
of the encoder. Furthermore, up-convolutions (green arrow in
Figure 4) are added between each two decoding blocks. There-
fore, the feature maps from different layers can be unified in
size and concatenated together. In addition, the encoder and
decoder parts are concatenated through long jump connections,
which provide different-level features for more contact infor-
mation until the output map fuses effective features of all layers.
The schematic of convolution and up-convolution is shown in
Figure 7.

The discriminator network of GAN plays an adversarial
role to support the generator network to predict accurate PV
power. In this research, the CNN, which is based on classic
LeNet architecture [39], is used for the discriminator network.
The CNN comprises fully connected layers, convolutional lay-
ers and two non-linear activation functions: Leaky_Relu and
Sigmoid. The main objective of the convolutional layer is to
extract deep low-resolution features for accurate classification
of actual values and predictions, while the fully connected layer
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sunny day cloudy day  rainy day In GAN, the objective of the generator network is to analyze
the mapping from the input x to the actual data y, which can be
T T T expressed as: G © R¥ — R. The main purpose of the disctim-
inator is to distinguish the prediction f from the actual value
/" /'Q' '/Q /'Q '/Q '/;)' /'Q' Do y based on supervised {0, 1} classification, which can be rep-
4 resented as D : R/ X R — {0, 1}. In adversarial training, the
discriminator D attempts to distinguish generator G’s outputs f
from the actual data y with ‘fake’ and ‘real’ labels while generator
G aims to predict accurately and fools D to obtain ‘real’ labels.
The training of GAN is a two-player minimax game, and the
objective function is as follows [26, 40].
min max (G, D)
G D
Mean of Std of = min max {E,llog DO)] + E. [log(1 — D(G()))]}
DHI/GHI DHI/GHI
m m
1 o1 ,
. = mi - AN 4 — i
FIGURE 5  Schematic of SOM = minmax 4 — ; log DY) +~ ; log [1 =D(G ()]

linearly combines pixels of the feature map to a vector. The
non-linear activation functions are to investigate the non-linear
relationships.

)

where is the training objective of GAN, £ stands for averag-
ing, m is the data number, 1(y) is the possibility of actual sample
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FIGURE 7

Schematic of convolution and up-convolution

_y belonging to actual data and D(G(x)) is the possibility that the
predicted sample G{(x) belongs to the actual data. During the
training process, G tries to minimize the objective against an
adversarial D which tries to maximize it. When (y) is close to
1 and D(G{(x)) is close to 0, I{G, D) can be large enough. On
the contrary, when D(G(x)) is close to 1, (G, D) will be very
small. The optimal solution of both G and D can be achieved
when their confrontation reaches the Nash equilibrium.

References [40] and [41] have shown that mixing the adver-
sarial loss with traditional loss, such as MSE loss, can speed
up the convergence through facilitating the predicted values f
close to the actual values y from the point-to-point value. In this
paper, the MSE loss is defined as follows:

Luse == X 0= 6
=1

where 7 is the length of input time series, y is the actual output
time series, / is the output of the GAN generator.

Consequently, the ultimate training objective of the generator
can be described as

Le=(1-2) mGin max V(G,D) 4+ Amin Ly;:(G) (4
where 4 is the weight coefficient.

Flow chart of the above developed PV power forecasting
method is illustrated in Figure 8 with detailed steps as follows:

Step 1: Five weather variables (GHI, DHI, GTI, TEMP
and WS) are selected as input variables according to the

correlation analysis between PV power generation and
the weather variables.

Step 2: Based on the ratio of DHI and GHI, weather types
are clustered into three categories, that is, sunny, cloudy
and rainy day by SOM neural network.

Step 3: Two-dimensional data with time series as horizon-
tal coordinate and the historical PV power and weather
data as longitude coordinate is constructed as input to
GAN’s generator.

Step 4: Feature extraction is attained based on CAE.
The encoder extracts the deep features of the two-
dimensional input data, and the multiple frequency
effective features from different layers are fused in the
decoder part of CAE.

Step 5: The fully connected neural network in the generator
of GAN linearly transforms the output map from CAE
into the time series of PV power.

Step 6: The discriminator of GAN with the range [0,1]
works as a classifier to distinguish the predicted value
of PV power from the actual value. The higher the out-
put of discriminator, the closer between the predicted
value and the actual power.

Step 7: Calculation of the adversarial loss and MSE loss.

Step 8: When the mixture of adversarial loss and MSE loss
reaches the end of the epoch, the training ends and the
PV power time series output by the generator of GAN
are the forecasted values. Otherwise, the parameters of
GAN are continuously updated based on the gradient
feedback and correction and return to step 4 for the
next training iteration.

5 | CASE STUDY

The regional PV station with 25-MW rated power in Jiangsu
Province, China, is investigated for the testing and analysis. In
the following, weather type clustering, model parameter tuning,
the performance of the developed method and the comparison
with other popular methods are presented.
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FIGURE 8 TFlow chart of the developed PV forecasting approach

The PV power forecasting structure has been implemented
in Python 3.6, and tested on a 64-bit 19-10900 CPU 16G RAM
personal computer. Training and testing the model are based
on Pytorch 1.5.0 deep learning framework. The forecasting per-
formance is evaluated using three criteria: mean absolute error
(MAE), MAPE and RMSE:

1 n
MAE =~ 3 1y, = /] 5)
=1
1 n
- lel 3 X 100%  (6)
= DX 100% ()

where fand y are the predicted time series and actual time series
of PV power generation, respectively.

5.1 | Weather type clustering results

As discussed in Section 4.1, weather types are summarized as
sunny, cloudy and rainy days. To improve the performance
of the weather type clustering, 5-min interval historical PV
power and weather data is investigated. Figure 9 shows the typ-
ical PV power curves from 5 AM to 7 PM of three weather
types.

Both DHI and GHI are solar irradiance at horizontal direc-
tion, and DN is the direct normal irradiance. The GHI equals
DHI4+DNT*cos6 with 8 as the zenith angle. Since DNT is large
at sunny days, the ratio of DHI/GHI is thus be small. On
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FIGURE 10  Weather type clustering results of the regional PV station

the contrary, DNI is small at rainy days, and the ratio of DHI
and GHI is thus large. Based on the ratio of DHI and GHI,
weather clustering results by SOM neural network are presented
in Table 2 and Figure 10. It can be seen that the clusters are
centrally distributed, and the boundaties of each cluster are rel-
atively clear. The number of sunny days, cloudy days and rainy
days is 134, 141 and 90, respectively. The range of DHI/GHI is
[0, 0.532] at sunny days, [0.532, 0.803) at cloudy days and [0.803,
1] at rainy days.

5.2 | Training parameter setting

In this paper, considering the depth of map, both the input and
the output data of CAE are constructed as three-dimensional

structures with 1 depth, 6 rows and 15 columns (abbreviated as
1 X 6 X 15), and the output data of the generator in GAN is
PV power time series with a two-dimensional structure 1 X 15.
The input data of the discriminator in GAN is the actual power
of the PV station and has the same dimension with the out-
put of the GAN generator, which is one dimension as 15. To
achieve the efficiency of convolution neural networks, the inter-
nal use of GAN discriminator is 1 X 3 X 5 three-dimensional
map shown in Figure 11 through a sequential listing of the PV
power time series, and the output of the discriminator indicates
the probability that the input PV power follows the distribution
of actual ones.

Other parameters in the model of GAN combined with CAE
are presented in Table 3. To avoid the compatibility and adapt-
ability problem caused by the length and width change of the
feature map during convolution processes, the length and width
of the map are set to be constant. Therefore, the padding of
convolution is generally set to half of the kernel size, and the
stride of convolution is set to 1.

The forecasting performance with different CAE depths is
shown in Figure 12. It can be seen that when the number of
encoder blocks exceeds 3, the MAE is less than 1.01. However,
the computation time will experience twofold increase. There-
fore, three encoder blocks are selected in this paper. In the
future, we will further consider to improve the CAE efficiency
with less computational time.

Other hyperparameters are determined through the valida-
tion process. During the training process, the generator and
discriminator are updated with a consistent learning rate of
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TABLE 3  The network parameters of GAN

Compositions

Parameters

GAN Generator CAE Encoder part

Decoder part

Full Connection Network

GAN Discriminator Convolution

Leaky_Relu
FC

Sigmoid

Number of kernels: 32/64,/128
Size of kernels: 3 X 3

Convolution
Dropout Dropout rate: 0.5
Leaky_Relu Negative slope: 0.2

Number of kernels: 64,/32
Size of kernels: 1 X 1

Up-convolution

Convolution Number of kernels: 64,/32

Size of kernels: 3 X 3

Leaky_Relu Negative slope: 0.2
FC Number of nodes: 15
Leaky_Relu Negative slope: 0.2

Number of kernels: 64,32
Size of kernels: 3 X 3

Negative slope: 0.2
Number of nodes: 1

0.00015, and the gradient correction and network parameter
optimization are carried out by Adam algorithm. As for the
weighting coefficient of the adversarial loss and MSE loss, the
value of 4 is set to 0.9. Depending on the complexity of testing
cases, the termination of the iterations in the training can be set
as number of epochs or targeted training error. For this study
case, the number of epochs of the iterations is used, and the
value is set as 300.

5.3 | PV power forecasting based on GAN
combined with CAE

The 365-day dataset is first categorized into three parts based on
SOM clustering results. For each cluster, the number of sunny
days, cloudy days and rainy days is 134, 141 and 90, respectively.
Data of each weather type are then further divided in three
sets through three-way data split, that is, for each weather type
dataset, there are a training set (70%), a validation set (20%) and
a testing set (10%). Thus, each weather type is individually fore-
casted within its own three-way data split dataset. The model
of GAN combined with CAE is trained based on the training
and validation dataset, and then PV power is forecasted with
the testing data.

The total 73-day testing dataset consists of 27 sunny days,
28 cloudy days and 18 rainy days. Figure 13 depicts the box
plot of hourly PV power forecasting MAE for the 73-day test-
ing data. The red line, the green triangle matk and the black
cycle represent the median, the mean value and the outliers,
respectively.

It can be found from Figure 13 that

1. The highest forecasting error happens on cloudy days, fol-
lowed by rainy days and the lowest on sunny days. Although

fully adaptive clustering does not require prior knowledge,
the boundary between cloudy days and sunny days might be
blurred, as shown in Figure 10. This may result in a mixed
cluster of a cloudy day and a slightly higher MAE for cloudy
days than rainy days.

2. The highest forecasting error happens between 12:00 and
13:00 during the day. It indicates that the PV power, when
solar radiation turns from vertical to decline, is the most
challenging period to predict.

After eliminating outliers in Figure 14, the 90%, 80% and
70% confidence intervals of the PV power forecasting MAE are
shown in Figure 14. The blue dot and the green line represent
the scatter of MAE and the mean of MAE, respectively. The
blue, purple and orange areas represent the 90%, the 80% and
the 70% confidence interval, respectively.

It can be found that the MAE volatility decreases with
the decrease of the confidence interval. On sunny day, the
MAE is typically low except for at 14:00, and the MAE dis-
tribution is relatively uniform at each time. There are high
MAE fluctuations between adjacent times on cloudy and rainy
days, the multi-peak trend in the MAE distribution can be
explained by the weather uncertainties. The maximum MAEs
tend to be happened at 12:00 for both on cloudy and rainy
days.

Cross-validation is often not used for evaluating deep
learning models because of the great computational expense.
However, it could help when the dataset is not sufficient. In
the following, cross validation for the rainy day PV power fore-
casting is applied since the number of rainy day is the smallest
among three weather types.

The 90 rainy days are split into 10 folds, in which 63 days
(70%) of data are used for training, 18 days (20%) of data are
used for validation and 9 days (10%) of data are for testing.
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TABLE 4  The average prediction performance of different models

MAPE RMSE
Model MAE (%) (%)

Training

time(s) Testtime(s)

CAE GAN 35,540 0.249
CNN 1.0263 18.56 21.49 5146 0.137

0.9215 16.73 19.87

LSTM 1.1187 19.46 23.67 2451 0.124

The CAE GAN model is trained using the training set, and
then evaluated on the validation set by calculating the validation
set error. Parameters are then turned accordingly. The perfor-
mance of the CAE GAN model according to 10-fold cross
validation is shown in Figure 15. It can be seen that the forecast-
ing model performs consistently through validation and testing
phases.

5.4 | PV power forecasting compared with
popular deep learning models

To further verify the superiority of the developed model, a
comparison between the developed hybrid method and other
base reference models, that is, CNN and LSTM, is conducted.
The base popular forecasting models are selected as reviewed
in Section 2, and the comparison results are summarized in
Table 4.

It can be seen from Table 4 that

1. Compared with the temporal correlation of wvariables
extracted by LSTM, the spatial correlation of variables
extracted through CNN has greater advantages to deal with
PV time series involving multiple input variables. This indi-
cates that the CAE GAN model can represent more complex
non-linear relationships in regression and predict better than
common neural networks such as CNN and LSTM.

2. For a small 25 MW PV plant, day-ahead PV forecast error is
generally large. A slight improvement in the forecasting accu-
racy could be a significant impact to the whole system. The
developed CAE GAN model has the highest precision, and
LSTM performs worst. Computation time of LSTM is the
shortest while CAE GAN has the longest one. Although the
computation time of deep learning models highly depends
on parameters such as batch size and learning rate, the com-
plicated computation process is the fundamental reason for
the long computation time.

The computation time includes data processing, data load-
ing, training and testing. The reason why the hybrid method
takes much longer to compute is due to the increased complex-
ity of the model training. The CAE increases the convolutional
computation of the model significantly. Since the training pro-
cess can be done offline meaning we can train the models in
advance. For daily operation, the testing/prediction phase is fast
(in seconds), and CAE GAN is able to obtain the most accurate
prediction with a well-trained model.

training set
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TABLE 5 The forecasting performance of four models under different
weather types

Weather MAE,
type Model MW MAPE RMSE
Sunny day CAE GAN 0.6610 7.23 8.62
CNN GAN 0.7170 7.85 9.30
FC GAN 0.6736 7.37 8.76
LSTM GAN 0.7408 8.60 10.58
Cloudy day CAE GAN 1.1194 15.31 18.58
CNN GAN 1.1755 16.08 18.94
FC GAN 1.1447 15.65 18.81
LSTM GAN 1.2365 18.13 22.02
Rainy day CAE GAN 0.9990 33.09 38.64
CNN GAN 1.1680 38.68 46.98
FC GAN 1.0805 35.79 42.44
LSTM GAN 0.9856 34.08 41.19
Overall CAE GAN 0.9215 16.73 19.87
CNN GAN 1.0053 18.63 22.31
FC GAN 0.9559 17.58 20.95
LSTM GAN 0.9927 18.56 22.55
5.5 | PV power forecasting accuracy

compared with other GAN-based models

To validate advantages of the CAE GAN, forecasting accuracies
of the other three GAN-based models: CNN GAN, FC GAN
and LSTM GAN are tested and compated. Forecasting errors
of each weather types are summarized in Table 5.

It can be seen from Table 5 that FC GAN outper-
forms CNN GAN and LSTM GAN. Meanwhile, the error
of CNN GAN is smaller than the prediction error produced
by LSTM GAN, and this result is similar to the results of
CNN vs. LSTM in Table 4, confirming that compared with
the temporal correlation of variables extracted by LSTM, the
spatial correlation of variables extracted through convolutions
by CNN has greater advantages to deal with the PV time
series involving multiple input variables. We can know that
the PV power forecasting has a strong correlation not only
with adjacent values, but also with distant values of input
data.

The developed CAE GAN model has the best performance
with small errors on different weather types and the small-
est overall errors (average MAE of 0.9215, average MAPE
of 16.73% and average RMSE of 19.87%) among four mod-
els. The better performance of the CAE GAN model can
be explained by the stronger feature extraction ability of
the CAE method. It can maintain robustness when deepen-
ing the network depth and extracting deeper features than
CNN. The global skip connections between multiple layers can
extract lower-frequency effective features from deeper layers
for predicting the trend component of PV power and preserve

some effective high-frequency features from shallow layers for
predicting the detailed volatility component, which is difficult to
be predicted accurately.

6 | CONCLUSIONS

PV power forecasting highly affects the power system schedul-
ing and operation. In this paper, a hybrid day-ahead PV power
forecasting method based on GAN combined with CAE is
developed. A CAE-based generator for GAN is utilized for
PV power forecasting, With the ability of feature enhancement
of CAE and adaptive loss of GAN, this hybrid method can
extract deep non-linear correlation between input and output
data and improve forecasting accuracy. In contrast with the
existing GAN-based models, it has a strong feature extraction
ability from input data with the CAE. Testing results based on
datasets from a Chinese PV station in Jiangsu province show
that the developed method has higher forecasting accuracy than
FC GAN, CNN GAN and other base forecasting methods as
reviewed in Section 2. The developed new approach thus repre-
sents an effective and valid way to forecast day-ahead PV power
generation.

The developed model makes contribution to improve the
PV forecasting accuracy, and there are still challenges with the
hybrid method in the PV forecasting field. (1) In the future
work, we would like to consider the low prediction accuracy of
cloudy and rainy days, new clustering methods for more detailed
weather types are necessary. (2) As the accuracy of PV power
forecasting is closely related to the accuracy of NWP, improving
the accuracy of NWP is also an issue that needs further research.

NOMENCLATURE
Abbreviations

AE autoencoder
CAE convolutional autoencoder
CNN  convolutional neural networks
DBN  deep belief network
DHI diffuse horizontal irradiance
DNI  direct normal irradiance
FC fully connected neural network
GAN  generative adversarial network
GHI global horizontal irradiance
GTI global tilted irradiance
LSTM long-short term memory
MAE mean absolute error
MAPE  mean absolute percentage error
PCA  principal component analysis
PV photovoltaic
RMSE  root mean square error
SOM  self-organizing map
TEMP temperature
VMD  variant mode decomposition
WD  wind direction
WS wind speed
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