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Abstract—Unlocking offshore wind farms’ high energy gen-
eration potential requires a comprehensive multi-disciplinary
analysis that consists of intensive technical, economic, logistical,
and environmental investigations. Offshore wind energy projects
have high investment volumes that make it essential to conduct
extensive site selection to ensure feasible investment decisions that
reduce the potential financial risks. Depending on the scenario
and circumstances, a ranking of alternative offshore wind energy
projects helps to prioritise the investment decisions. Decision-
making algorithms based on expert knowledge can support the
prioritisation and thus alleviate the work load for investment
decisions in the future. The case study considered here is to
find the best site for a floating offshore wind farm in Norway
from four pre-selected alternatives: Utsira Nord, Stadthavet,
Frøyabanken, and Træna Vest. We propose a hybrid decision-
making model as a combined compromised solution (CoCoSo)
based on the q-rung orthopair fuzzy sets (q-ROFSs) including
the weighted q-rung orthopair fuzzy Hamacher average (Wq-
ROFHA) and the weighted q-rung orthopair fuzzy Hamacher
geometric mean (Wq-ROFHGM) operators. In this model, the
q-ROFSs based full consistency method (FUCOM) is introduced
as a new methodology to determine the weights of the decision
criteria. The results of the proposed model show that the best
site among the investigated four alternatives is A1: Utsira Nord.
A sensitivity analysis has verified the stability of the proposed
decision-making model.

Index Terms—Decision-making, q-rung orthopair fuzzy sets,
Fuzzy hamacher, site selection, offshore wind farm, FUCOM.
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I. INTRODUCTION

W IND energy is rapidly developing and is expected
to be an essential part of the future energy system.

Most of today’s capacity is installed on land (620 GW out
of 650 GW), whereas offshore wind resources represent a
massive untapped potential [1]. Wind can supply about 35%
of the global electricity demand by 2050 with 5000 GW land-
based wind capacity and 1000 GW offshore wind capacity [2].
The most ambitious scenario defined by the European Com-
mission suggests 450 GW offshore wind capacity in Europe by
2050 [3]. To be successful, however, cost-competitive solutions
must be developed.

In 2019, 502 offshore wind turbines (OWT) across ten
offshore wind farms were connected to the grid all over
Europe. This upgrade translated into an additional 3627-MW
gross capacity, increasing the total number of grid-tied OWT
to 5047 and the total installed offshore wind power capacity
to 22072 MW across 12 countries, as shown in Fig. 1 [4]. The
UK, Denmark and Belgium set national installation records in
2019 by installing additional capacities of 1764 MW, 374 MW,
and 370 MW, respectively [4]. Norway, on the other hand, did
not connect additional offshore turbines to the grid in the same
year. However, the pre-commercial 88-MW Hywind Tampen
floating wind farm reached Final Investment Decision (FID)
in 2019 with an expected commissioning date in 2022 [4].
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Fig. 1. Annual offshore wind installations in Europe (left axis) and
cumulative installed capacity (right axis) [4]. (Data source: WindEurope, used
with permission.)

A recent review considers site selection as the most im-
portant criterion for successful investments in offshore wind
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power [5]. Most published studies on offshore site selection
focus on single courtries [6]–[22]. Only a few studies consider
larger areas such as the Baltic States [23], the North Sea [24],
and Europe [25]. No previous study in this category focused
particularly on floating offshore wind farms. However, a study
on offshore renewable energy platforms considers floating
wind turbines together with wave and tidal power [25].

The above-listed studies on the site selection for offshore
wind farms include three [18], [21], [25] to 55 [19] pre-
selected alternatives from which the best suited site is chosen
using decision-making algorithms. Fuzzy-based algorithms are
applied to consider expert judgement in the decision process.
Multi-criteria decision-making (MCDM) is the most common
methodology for site selection because various main criteria
can be ranked as a group including their sub-criteria. Rel-
evant main criteria for offshore site selection are technical,
economic, social, and environmental. However, not all studies
that analyse the offshore site selection include both main and
sub-criteria. The number of considered criteria varies tremen-
dously from three main-criteria with six sub-criteria [23]
to seven main-criteria with 23 sub-criteria [8]. Depending
on the decision-making algorithm, no differentiation between
main- and sub-criteria is applied. A meta-analysis investigates
the importance of various criteria for the site selection of
offshore wind farms [26]. Energy economic aspects are of
particular importance when judging sites for wind farms. Such
evaluations can be in the form of a cost-benefit analysis [12],
[15]–[17], the levelised cost of energy (LCOE) [13], [18],
[22], [24], or cost [Operational Expenditures (OPEX) and
Operational Expenditures (CAPEX)] [8], [14], [23]. However,
several of the mentioned site-selection studies do not include
energy economic considerations.

Exploiting the high potential of offshore wind energy re-
sources requires a well-structured multi-disciplinary analysis
that consists of technical, economic, logistical, ecological and
environmental evaluations. Commercial offshore wind energy
investments are realised with considerably high investment
costs. They can be effectuated by a number of experienced ex-
perts who can execute a comprehensive site selection strategy
and methods to make the best available investment decision.
The decision-making convention proposed in this study can
be considered a handy decision-support tool that can assist
experts and project investors in making better decisions. In
this perspective, this study proposes a q-Rung Orthopair fuzzy
sets (q-ROFSs) based multi-criteria decision-making (MCDM)
model to assess and rank Norway’s most promising floating
offshore wind sites.

The theory of fuzzy sets (FSs) known as a type-1 fuzzy
set, which is represented by the degree of membership, was
proposed by Zadeh [27]. Fuzzy sets have been successfully
used in many applications to address ambiguous and imprecise
information [28]. However, the modelling tools of FSs have
been limited to handle vague and inexact information in
which two or more sources of uncertainty arise simultane-
ously. Consequently, different generalisations and extensions
of fuzzy sets in the literature have been introduced by various
researchers [29] such as rough sets [30], intuitionistic fuzzy
sets [31], type-2 fuzzy sets [32], interval type-2 fuzzy sets [33],

hesitant fuzzy sets [34], Pythagorean fuzzy sets (PFSs) [35],
etc. In addition, various fuzzy sets have been applied to
decision-making problems such as picture fuzzy set [36],
spherical fuzzy sets [37], and bipolar soft sets [38]. These
generalised fuzzy forms have been applied specifically in many
real-world MCDM problems.

One such generalisation is intuitionistic fuzzy sets (IFSs)
which Atanassov introduced [31]. Intuitionistic fuzzy sets are
characterised by a degree of membership and non-membership
functions with the condition that the sum of these degrees is
less than or equal to 1. Nevertheless, it still appears that the
applicable region of IFSs is triangular, and access is limited
(see Fig. 2). For example, when decision-makers present their
evaluation for the degree of membership of the element with
0.8 and degree of non-membership of the element with 0.5,
IFSs cannot be effective because the sum of these two values
(0.8 + 0.5 = 1.3) is greater than 1.
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Fig. 2. Comparison of spaces of different fuzzy membership grades.

To overcome this issue and extend the searching space,
Yager and Abbasov [35] introduced the idea of Pythagorean
fuzzy sets (PFSs), which are general forms of the IFSs, char-
acterised by the degree of membership and non-membership
functions with the condition that the sum of these degrees is
less than or equal to 1 [39]. For example, let an expert evalu-
ation (0.8, 0.5) be handled with PFSs as 0.82 + 0.52 = 0.89.
While this situation is not possible with IFS as 0.8+0.5 > 1,
PFSs effectively overcome it (see Fig. 2).

q-Rung Orthopair fuzzy sets that Yager [40] has recently
introduced present an extension of IFSs and PFSs. The ge-
ometric interpretations of the space of IFSs, PFSs, and q-
ROFSs are illustrated in Fig. 2. The sum of the qth powers of
the membership and non-membership degrees of q-ROFSs is
limited to one [41]. As the rung q increases, the allowable area
of the orthopyres escalates, and, therefore, more orthopyres
meet the constraints. As a result, q-ROF numbers give us the
flexibility to express a broader scope of fuzzy information [42].
Recently, there has been a growing interest in the q-ROFSs
such as [43]–[45]. Consequently, we prefer q-ROFSs in this
study because of the advantage of the freedom to choose
the power degree. This study proposes a q-ROFSs based
integrated full consistency method (FUCOM) and combined
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compromised solution (CoCoSo) decision-making model to
better handle vagueness and imprecise information.

The primary aim of this study is to select the best site for
a floating offshore wind farm (OWF) among four alternatives
in Norway, which is proposed to be utilised as an advanced
decision-support tool for making feasible investment decisions.
To achieve this aim, a novel hybrid MCDM model including
q-ROF FUCOM and CoCoSo is proposed. In addition, there is
no other study in the literature that applied any MCDM model
for floating OWF.

The contributions of this study are as follows: (i) A novel
hybrid MCDM is proposed for the site selection of the OWF.
This hybrid MCDM model is named q-ROF FUCOM and q-
ROF CoCoSo, respectively, providing alternative evaluations
of subjective and objective expert perspectives. (ii) q-ROFSs
technique is implemented to handle the uncertainty in experts’
assessments. (iii) A modified q-ROF CoCoSo is proposed to
rank the alternative OWF sites. (iv) A q-ROF FUCOM is used
to calculate the criteria weights. (v) A Norwegian case study
for the floating offshore wind farms is presented to illustrate
the feasibility of the proposed model.

This study presents a hybrid multi-criteria methodology
based on improving the CoCoSo method using weighted q-
rung orthopair fuzzy Hamacher functions and extending the
FUCOM method in a q-rung orthopair fuzzy environment. The
original CoCoSo model uses comparisons based on weighted
averaging of alternative values. Weighted averaging is per-
formed in two ways. The first method involves the application
of weighted sum averaging (WSM), while the second method
involves the calculation of the overall relative importance of
alternatives using weighted geometric averaging (WPM). After
defining the weighted value, the values are aggregated to
obtain a unique ranking index. Aggregation is done through
the application of three aggregation strategies that are applied
to each given alternative.

In general, we can conclude that the described procedure
is based on a combination of compromise strategies. The
weighted values of the criterion functions obtained by apply-
ing WSM and WPM have a decisive influence on the final
ranking of alternatives. Both models (WSM and WPM) give
objective values of the criterion functions if the estimates of
the alternatives in the home matrix are uniform. However, there
is a disproportionate increase in the criterion function in cases
where there are extreme deviations in the values of the most
influential criteria. One of the reasons for such variations is
the character of the WSM function, which is linear. This is
especially important in cases where some limit values of the
home matrix can distort the result of aggregation and thus lead
to incorrect prioritization of alternatives, which can further
lead to wrong decisions. Deviations of the input values in the
home matrix can occur for several reasons. Some of them
are measurement errors and biased expert assessments (either
intentional or unintentional). Another disadvantage of WSM
and WPM aggregation is ignoring the interaction between the
criteria.

However, decision making in real systems requires the
elimination of such anomalies in decision-making tools. There-
fore, it is necessary to incorporate mechanisms/algorithms into

decision support systems to understand attribute relationships
rationally and eliminate the impact of extreme/awkward data.
To overcome the described problem in the CoCoSo model
Hamacher aggregation functions are proposed; i.e., the appli-
cation of weighted q-rung orthopair fuzzy Hamacher average
(Wq-ROFHA) and weighted q-rung orthopair fuzzy Hamacher
geometric mean (Wq-ROFHGM) functions. These aggregation
functions enable the recognition of connections between crite-
ria and their fusion into a unique criterion function. However,
to the best authors’ knowledge, there is no research in the
literature showing the integration of Hamacher functions into
the CoCoSo model. Therefore, this study’s logical goal and
motivation are to show that the Hamacher operator can be
used to fuse criterion functions in the home decision matrix
of the CoCoSo model. The main advantages of the improved
CoCoSo model are highlighted below: the model enables
flexible decision making; the model has the flexibility to
simulate risk in decision making; and the model enables
the verification of the robustness of the results through the
variation of the parameters q and Υ and the verification of
their influence on the final decision.

The second segment of the multi-criteria framework is the
advanced FUCOM method. The improvement of the FUCOM
method is shown through the extension of the nonlinear model
in q-rung orthopair fuzzy environment. Q-rung orthopair fuzzy
FUCOM methodology enables the objective perception of
uncertainty during pairwise comparisons of criteria, allows the
definition of objective values of criteria with a small number
of comparisons, i.e., requires only n−1 comparison of criteria,
provides the possibility of defining the quality of the obtained
values of weight coefficients by defining a coefficient that
shows the deviation from the ideal values of the weight of the
criteria, and the model fully respects mathematical transitivity
during comparisons in pairs of criteria.

II. BACKGROUND

Background information for the types of recent OWT
foundations and their share in today’s market is presented
here. In addition, the overall efficiency of a wind turbine
considering the sources of the losses are presented along with
our assumptions for further analyses in this work.

A. Offshore Wind Turbine Foundations
Figure 3(a) illustrates various fixed-bottom foundations and

support structure types for OWT according to the appropriate
water depths.

Gravity-based foundations and monopiles are suitable for
shallow waters up to 35-m depth where most OWTs are cur-
rently installed [46]. The monopile foundation, a hollow steel
tube hammered into the seabed, is the most preferred option
for shallow waters due to its simplicity and robustness [47].
The gravity-based foundation merely relies on its own weight
to achieve firm support for OWTs and requires a stable seabed.
Therefore, it is only economically feasible in very shallow
waters [46].

When installing wind turbines in deeper water (30–80 m),
however, such monopile and gravity-based foundations be-
come less attractive as a disproportional amount of material
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Fig. 3. Different foundation types for offshore wind turbines: (a) non-floating,
bottom-fixed turbines. (b) floating turbines.

is needed for it to withstand the more severe loading. More
complex types of foundations then become more attractive.
Suction buckets, tripods, and jackets are the other foundation
types for bottom-fixed structures with various advantages
and disadvantages that influence the final decision making.
Feasibility, costs, construction limitations and geotechnical
stability are among the most critical factors. For example, as
jackets are composed of many tubular elements connected in
welded nodes, the production costs of jackets are relatively
high.

Monopiles were the most chosen substructure type in 2019,
with a staggering 70% of all newly installed OWT [4]. With
the new installations in 2019, monopiles still top the list, with
4258 units (81%) to date (including all with and without grid
connection). Jackets were the second most popular foundation
accounting for 29% of all substructures installed in 2019,
increasing its accumulated share to 8.9% [4]. Gravity-based
foundations (5.7%) and tripods (3.9%) follow jackets in the
cumulative sum [4].

Floating foundations are favoured over bottom-fixed solu-
tions at deep waters (> 80 m) [46]. Spar, tension leg platform,
barge, and semi-submersible are the primary floating structure
types, as illustrated in Fig. 3(b). To date, only nine grid-
connected floating OWTs (out of 5258 OWT ≈ 0.17%) are in
operation: six spars, one barge and two semi-submersibles [4].
Although the number of floating OWTs may seem rather
low, the trend is climbing: the total share of floating OWT

in 2016 was only 0.02% whereas it is currently 0.17%.
With the growing interest in utilizing the wind potential at
deeper waters, the number of floating substructures is likely
to increase significantly in the coming years. According to a
study by IEA [1], 80% of the global wind resource is available
at sites with a water depth between 60 and 2000 m.

B. Wind Power Output
The average power that can be harvested from the wind

(Pw), striking on a surface with area A (e.g., equal to the
rotor swept area of a wind turbine [m2]) is calculated by:

Pw =
1

2
ρAv3 (1)

where ρ is the air density [kg/m3], and v is the wind speed
[m/s]. However, the theoretical limit to the maximum extracted
power from the wind Pw,e is 59.3% according to Betz’s
law. Modern wind turbines can extract as much wind power
as 45%–50%, which is close to the theoretical limit [48].
One of the main loss mechanisms that determine Pw,e are
aerodynamic (turbine blades) and mechanical losses (gearbox,
rotating parts, etc.) caused by the wind turbine. Besides, wind
power production is further inhibited as the placement of the
turbines in a wind farm becomes sub-optimal due to practical
and feasibility reasons.

The capacity factor (CF) of a single wind turbine or small-
scale wind farm cannot simply be extrapolated to a large
wind farm that consists of tens or hundreds of wind turbines.
A wake is generated between the front-row and back-row
turbines, causing a wind speed deficit. Since wind power is
proportional to the cube of wind speed, as shown in (1),
substantial exploitable wind energy will be lost in case of a
significant deficit in wind speed due to close array spacing.
Therefore, there should be enough space between the turbines
to extract as much energy as possible from the incoming wind
by reducing the wake power losses [49]. Wake power losses
can be alleviated by enabling wind speed recovery through
the renewal of kinetic energy, particularly in the vertical
direction for large arrays [48]. Besides choosing a farm layout
with sufficient turbine spacing, wind farm flow control which
manipulates the wake between wind turbines is investigated
to increase the power output during operation [50]. However,
several studies suggest that the wind turbine spacing (n) should
be no less than 7–10 rotor diameters, D (i.e., the swept area
by the blades) to minimise the array losses [48], [51], [52].

The turbine and array losses should then be reflected on Pw

such that the extracted power Pw,e becomes:

Pw,e =
1

2
ρAv3ηtηa (2)

where ηt and ηa stand for the turbine efficiency and array
efficiency, respectively, as illustrated in Fig. 4. As mentioned
above, modern large wind turbines offer maximum turbine
efficiencies closer to 85% of the Betz limit, i.e., ηtmax ≈ 50%.

We fitted the array efficiencies for different turbine spacing
and array sizes provided in [53] to the following mathematical
expression as a function of the turbine spacing n (by a factor
of the rotor diameter D), as plotted in Fig. 5:

ηa = aeb
π

4n2 (3)
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Fig. 4. Overall efficiency of a wind turbine including turbine, array and
electrical losses.
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Fig. 5. Influence of turbine spacing on the array efficiency for two different
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where a = 98.42, b = −11.19 for a 10 × 10 array size
while a = 97.88, b = −41.37 for a 50 × 50 array size.
Dupont et al. [48] and Meyers & Meneveau [51] claim 15 D
would be a more optimal spacing for extracting the most wind
over the conventionally favoured distancing of 7 D. However,
resulting electrical losses and CAPEX were not considered
in these analyses. Therefore, we chose a 10 × 10 array size
(100 turbines) with an array spacing of n = 10 D, as an
intermediate value for the analysis performed in the next
section. The resulting array efficiency was then calculated to
be 90.14%, as can be seen in Fig. 5. There are also losses
associated with outages due to faults, repair and service of
turbines or the connected grid. These typically account for
about 2%–5% of the annual energy output. In this study,
however, such losses are disregarded for the sake of simplicity.

Lastly, as depicted in the rightmost category in Fig. 4,
electrical losses incurred by the generator and the cable
connections (inter-array and grid connections) should also be
considered when calculating the electrical power output Po.
The number of wind turbines connected to the grid in a wind
farm, array spacing, location-specific parameters (distance to
the grid connection point and coast, water depth, average
wave height, etc.) determine the total length of inter-array
cable connections/types and the total cable length for the
grid connection, and hence, determine the total electrical
losses. The power losses associated with transmission and
distribution, i.e., after the grid connection point, are under the

liabilities of transmission and distribution system operators,
and therefore are not taken into account. Given the significance
of these parameters, a thorough analysis is required to estimate
electrical losses for each site. Since the main objective of this
work is to determine the best location for an offshore wind
farm among four alternatives in Norway (using a decision-
making algorithm based on multiple techno-economical, envi-
ronmental and societal criteria), such a comprehensive task is
beyond the scope of this paper. Consequently, electrical losses
are assumed to be 2% of the rated power for each site in this
work, leading to an electrical efficiency of ηe = 98%.

III. METHODOLOGY

Making investment decisions, especially for large-scale
projects such as OWFs, is a challenging task for companies
and other decision-makers. Such investment decisions require
multi-disciplinary analysis, accommodating various dimen-
sions such as energy, political, legislative, technical, economic,
social and environmental issues. In this study, four Norwe-
gian locations, identified as primary locations for floating
offshore wind farm projects, are scrutinised using state-of-the-
art decision-making algorithms and the corresponding analysis
to support the proposed framework.

A. Site Description

The Norwegian Water Resources and Energy Directorate
(NVE) identified potential sites for offshore wind in 2010 [54],
as shown in Fig. 6. The pink colour indicates the four sites
relevant for floating wind farms, from South to North: Utsira
Nord, Stadthavet, Frøyabanken and Træna Vest.

70°N

65°N

60°N

55°N

5°E 10°E 15°E 20°E 25°E

Fig. 6. Identified sites for offshore wind farms in Norway, adapted from [54].
(Data source: NVE, used with permission.)
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More detailed analyses of the proposed sites have been
conducted and published in a summary report by NVE in
2012 [55], upon which the following information is based.

1) Utsira Nord

Utsira Nord is located in southern Norway, west of Hauge-
sund. Fig. 7(a) shows the coordinates of the area. The area has
a total size of 1010 km2 which makes it the largest among
those for floating wind farms. Utsira Nord has a distance
of only 22 km to the floating site that lies closest to the
coast, settlements and harbours. The proximity to shore has
the consequence that wind turbines placed in Utsira Nord can
be visible from land.

An installed capacity of 500–1500 MW is considered realis-
tic. However, the maximum installed capacity depends on the
grid connection. An installed capacity of 500 MW is possible
with the existing infrastructure, and an additional 500 MW
should be possible by 2025 [56], while a connection of up
to 1500 MW can be examined [57]. Export of the produced
power is also possible.

2) Stadthavet
Stadthavet is located 58 km off the coast from Nordfjord.

The location is shown in Fig. 7(b) with a an area of 520 km2.
Among all evaluated sites, Stadthavet has the roughest weather
conditions with the highest average and 50-year values for both
wind speed and wave heights.

The wind conditions permit a capacity of 500–1500 MW.
Assuming an installed capacity of 1000 MW, the OWF could
not be connected to the regional grid before 2030.
3) Frøyabanken

Frøyabanken is located in Mid-Norway, at a distance of
34 km from the coast. The sea depth and coordinates of the
819 km2 area are shown in Fig. 7(c).

The wind conditions permit a capacity of 500–1500 MW.
Assuming an installed capacity of 1000 MW, the OWF could
not be connected to the regional grid before 2030.
4) Træna Vest

Træna Vest is the potential floating site that is located
farthest North. The site has a total size of 773 km2 and is

(a) Utsira Nord. Coordinates:
A 4°40′25′′E 59°28′56′′N
B 4°48′44′′E 59°06′18′′N
C 4°24′27′′E 59°04′10′′N
D 4°16′09′′E 59°26′53′′N

(b) Stadthavet. Coordinates:
A 3°52′44′′E 62°25′49′′N
B 3°54′12′′E 62°08′54′′N
C 3°34′44′′E 62°08′15′′N
D 3°34′01′′E 62°24′51′′N

(c) Frøyabanken. Coordinates:
A 7°21′35′′E 63°54′02′′N
B 7°36′48′′E 63°45′03′′N
C 7°00′15′′E 63°31′45′′N
D 6°45′09′′E 63°41′09′′N

(d) Træna Vest. Coordinates:
A 11°35′31′′E 66°23′31′′N
B 11°05′31′′E 65°59′25′′N
C 10°49′01′′E 66°03′48′′N
D 11°16′14′′E 66°27′51′′N

Fig. 7. Sea depths at the four OWF sites with coordinates, adapted from [54]. (Data source: NVE, used with permission.)
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located 45 km from land. The exact coordinates are shown in
Fig. 7(d).

The wind conditions permit a capacity of 500–1500 MW.
Assuming an installed capacity of 1000 MW, the OWF could
not be connected to the regional grid before 2030.

B. Determination of Decision-making Variables

The decision-making logic relies on a certain set of alterna-
tives and their criteria. The alternatives were four Norwegian
sites for OWFs where the floating foundation types were
eligible described in the previous section. In this section, the
definitions of the influencing criteria are explained. The hierar-
chical structure of OWF site selection is shown in Fig. 8. The
subject associated criteria definitions are investigated under
two main groups: 1) techno-economical, 2) environmental and
social.
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Fig. 8. The decision hierarchy of the OWF site selection problem.

1) Wind speed

Wind speed is one of the most important parameters as
technical criterion, which is used to identify the best available
wind power project location. The pressure difference occurring
in the atmosphere creates the wind flow. Wind power is related
to the wind flow or air in motion in terms of kinetic energy.
More precisely, wind power generated from the kinetic energy
of the wind flow is directly proportional to the cube of the
wind speed (see Section II-B).

2) Annual energy production (AEP)

AEP is a measure that represents the amount of electrical
energy which can be harvested from a wind turbine, wind farm
or an extended region within a year. The AEP is estimated
by considering the factors summarised in the previous section
and some other impacts such as the efficiency of the power
system components, cable length, cable type, location of the
wind farm, the layout of the wind turbines. kWh, MWh and
GWh are the units to quantify the AEP values.

3) Capacity factor
Ratio between the real or estimated AEP of a wind farm

or turbine and the maximum amount of energy that could be
generated if the system was be operated with the full load
hours (8760 hours a year).
4) Average water depth

Average water depth is calculated as the average for the
potential site because the water depth varies within each of
the sites. Floating offshore wind turbines are moored to the
ground to prevent drifting, and the length of the mooring lines
depends on the water depth.
5) Distance to grid connection point and electrical works

Distance to the closest power grid transformer or substation
is one of the most influencing parameters that impacts various
technical factors such as power losses and economic factors,
for example CAPEX figures related to the electrical works
like cabling. Power system losses are correlated with the type,
length of the cabling and the power system topology of the
planned OWF. The closest existing transformer station onshore
is used here if this station has capabilities for the additional
power from the potential, new OWF.
6) Distance to coast

Distance to coast is vital for construction, operation and de-
commissioning. During the operational life, the vessel transfer
time for maintenance is a significant cost factor. However, de-
tails such as locations of suitable harbours were not considered
in this study.
7) Average wave height

Average wave height is important due to the accessibility
of the OWF for service vessels to perform maintenance. The
wave climate also affects the motion of floating wind turbines,
the requirements of the mooring system, and the design and
tuning of a counteracting control system.
8) CAPEX

CAPEX stands for capital expenditures which describes
initial investment costs executed to realise the OWF. The cost
of wind turbines, foundations, electrical works, civil works,
project development, permits, and other relevant costs can be
considered as OWF-specific CAPEX values.
9) OPEX

OPEX stands for operational expenditures which describe
the operating costs of the OWF. The cost of operation and
maintenance, spare parts, staff salaries, insurance, overhead,
and other relevant expenses can be considered OWF-specific
OPEX values.
10) Impact on sea birds

The impact on sea birds is a metric averaging the qual-
itative impact on sea birds by commissioning, operation,
decommissioning, area use, migration of birds, barrier effects
and oil spill [55]. The evaluation is based on the known or
assumed presence of chosen bird species in the areas. There
was insufficient data to evaluate the impact on sea birds for
Frøyabanken and Træna Vest. For these two sites, we used the
qualitative values of the closest sites with available data in this
study. For Frøyabanken, the impact on sea birds at Nordøyen
- Ytre Vikan and Stadthavet was averaged. For Træna Vest,
the same impact as at Trænafjorden was assumed.
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11) Impact on fish
The impact on fish is a qualitative metrics rating the

highest impact that the wind farm may have on a single fish
species [55]. If the wind farm area overlaps with the spawning
grounds of several fish species that will be affected, the highest
reported impact is used.
12) Impact on fisheries

The impact on fisheries used here [55] is based on the
evaluation by the Norwegian Directorate of Fisheries [58]
which considers three factors: (i) the primary sales value,
(ii) the number of vessels under 15 m, and (iii) an expert
evaluation of the general value for fisheries. The sum of these
factors is used as impact metrics on fisheries.
13) Community/local acceptance

Community or local acceptance is a criterion aiming to
measure the support by the local community. Typical major
concerns regarding wind farms are the visual and audible
impact. Due to the plain landscape, offshore wind turbines
can be visible at a distance of up to 20 km [59]. Emitted
noise can be perceived as disturbing by local residents but
is not expected to travel that far. Recreational activities such
as sailing can also be affected by an OWF permitting only
commercial vessels to enter the surrounding area.
14) High-level governmental support

High-level governmental support is a qualitative criterion
that measures how the government is positioned towards
floating offshore wind power. The governmental support has
an impact on, for example, the process of granting a conces-
sion for a new OWF, the integration of wind power in the
national electricity system and the expected participation in
the wholesale electricity markets.

C. Designated Decision-making Variables

We determined the values of the selected decision-making
variables, C1–C14, in a hybrid approach. The reports listed
in [54]–[57], [60] compiled an extensive amount of data for
the possible offshore sites, including the relevant data for the
majority of the selected decision-making variables. However,
there was missing, incomplete, ambiguous and even contra-
dictory information for the sites discussed, such as turbine
hub height (HH), turbine type, wind speed and net capacity
factor. Also, the methods used when obtaining or calculating
these values were not provided explicitly: It was unclear if the
data was normalised for 100-m HH, if different turbine types
were assumed, and so forth. In addition, the current HH of
the commercial offshore wind turbines are above 100 m, i.e.,
as high as 140 m. Hence, estimating the average wind speed,
annual energy, and capacity factor values considering wind
turbines with 140-m HH will be more realistic and up-to-date.
For these reasons, we chose to perform simulations to obtain
the first three variables C1–C3 for each offshore site.
1) Simulation Model for the Wind Power Output

We used the Renewables.ninja [61] tool to simulate the wind
power output and the capacity factor at a chosen coordinate
and year based on the historic data and the chosen turbine
model (capacity and hub height) using MERRA-2 (global)
dataset. The simulated results were exported in the csv format

with the following information: local date & time, power
output, and wind speed in one-hour resolution. Table I shows
the selected parameters for all sites studied in this work and
the values of the calculated variables are presented in Table II.

TABLE I
SELECTED PARAMETERS FOR THE SIMULATION STUDY

Parameter Value
Array size 10× 10
Turbine spacing n 10 D
Array efficiency ηa 90.14%
Electrical efficiency ηe 98%
Turbine capacity 9500 kW
Hub height 140 m
Turbine model Vestas V164 9500

The simulation tool incorporated the turbine efficiency, ηt,
when calculating the estimated power output, Po, based on
the predetermined HH and turbine model. Then, array and
electrical losses were reflected on Po based on the efficiency
values (ηa and ηe) given in Table I.

We performed an extensive literature search for the CAPEX
(C8) and OPEX (C9) variables. Fig. 9 presents the repre-
sentative CAPEX and OPEX values found in literature [18],
[62]–[68]. We used box plots to summarise the variation of
the values where each box indicates the 25th (bottom) and
75th percentiles (top), respectively. The central red line and
the blue x marker show the median and mean, respectively.
The whiskers represent the minimum and maximum values
found in the literature. The corresponding references for the
retrieved values are included in the figure. The CAPEX values
span the range of 2.4–5 MC/MW whereas OPEX values
cover 0.038–0.088 MC/MW/yr (both converted to MCfor
convenience). The main cost articles are determined based on
the types of turbines, foundation types, platforms, moorings
and anchors, the electrical grid and connections to shore, and
installation. Therefore, the subject matter experts (SMEs)1,
who participated in the survey, executed within the scope of
this study, evaluated the impact of these aspects on C8 and
C9 for each site based on their professional judgement.

The rest of the variables C4–C7 and C10–C14 were retrieved
from the reports [54]–[57], [60]. Table II presents the desig-
nated variables for the four offshore sites where Simulation tab
provides the calculated variables using Renewables.ninja and
Reported tab depicts the retrieved data for the shown variables.

The investigations for C10–C12 were evaluated in a Likert
scale which was already compatible with the proposed fuzzy
algorithm. Therefore, reported C10–C12 were transformed into
a compatible Likert scale for the model accordingly. Similarly,
SMEs evaluated the impacts of C13 and C14 depending on
their engineering judgement and their long-term observation
of societal and energy political landscape.

In the next section, we introduce our proposed decision-
making model to choose the best alternative OWF site among
the four alternative locations and rank them using the desig-
nated decision-making variables in this section.

1The proposed decision-making procedure includes seasoned researchers
with more than 10 years experience in the field of wind energy in academia
and industry.
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TABLE II
DESIGNATED DECISION-MAKING VARIABLES FOR THE FOUR SITES STUDIED IN THIS WORK (DATA IN PARENTHESES PROVIDE THE SPECIFIED

ADDITIONAL INFORMATION)

Simulation Reported [54]–[57], [60]
C1 C2 C3 C4 C5 & C6 C7 C10, C11 & C12

Location
Wind
speed [m/s]†

Annual energy
production
[GWh/yr]

Simulated capacity
factor (net CF) [%]‡

Water depth
average min,
max) [m]

Distance to
the nearest
grid (coast) [km]

Average wave
height [m]

Impact on
birds, fishes,
fisheries∗

Utsira Nord 9.99 4439 53.30 (47.08) 267 (185,280) 45 (22) 2.2 1, 1, 1
Stadthavet 10.46 4578 55.01 (48.59) 208 (168,264) 115 (58) 2.8 2, 4, 4
Frøyabanken 9.37 3835 46.10 (40.72) 210 (160,314) 83 (34) 2.5 3, 2, 2
Træna Vest 9.23 3801 45.70 (40.37) 271 (181,352) 134 (45) 2.4 4, 1, 4
† Average wind speed simulated at 140 m.
‡ Resulting net capacity factor after array and electrical losses.
∗ Impact evaluated with the following Likert scale; 0: none, 1: very low, · · · , 5: very high in [54]–[57], [60].
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Fig. 9. Variation of the reported CAPEX (C8) and OPEX (C9) values in
the literature [18], [62]–[68]. On each box, the central red line indicates the
median, and the bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively, while the whiskers extend to the most extreme data
points [69].

IV. PROPOSED RESEARCH MODEL

A. Preliminaries

In this section, we introduce some fundamental definitions
of q-ROFSs.

Definition 1. A q-ROFS Z̆ in a finite universe discourse V =
v1, v2, · · · , vn is described by Yager [40]:

Z̆ =
{〈
v, σZ̆(v), ςZ̆(v)

〉∣∣ v ∈ V
}

(4)

where σZ̆ : V → [0, 1] represents the degree of membership
and ςZ̆ : V → [0, 1] represents the degree of non-membership
of the element v ∈ V to the set Z̆, respectively, with the
condition that 0 ≤ σZ̆(v)

q + ςZ̆(v)
q ≤ 1, where q ≥ 1.

The degree of hesitancy is expressed as:

τZ̆(v) =
q

√
1− σZ̆(v)

q − ςZ̆(v)
q (5)

For convenience, we call a
〈
σZ̆(v), ςZ̆(v)

〉
q-rung orthopair

fuzzy number (q-ROFN) and characterized by Z̆ =
〈
σZ̆ , ςZ̆

〉
.

Definition 2. Let Z̆ = (σZ̆ , ςZ̆), Z̆1 = (σZ̆1
, ςZ̆1

), and Z̆2 =
(σZ̆2

, ςZ̆2
) be three q-ROFNs. After that, their operations can

be expressed by Liu and Wang [70]:

Z̆p =
(
σZ̆ , ςZ̆

)
(6)

Z̆1 ∩ Z̆2 =
〈
min

{
σZ̆1

, σZ̆2

}
,max

{
ςZ̆2

, ςZ̆2

}〉
(7)

Z̆1 ∪ Z̆2 =
〈
max

{
σZ̆1

, σZ̆1

}
,min

{
ςZ̆2

, ςZ̆2

}〉
(8)

Z̆1 ⊕ Z̆2 =
〈

q

√
σq

Z̆1
+ σq

Z̆2
− σq

Z̆1
σq

Z̆2
, ςZ̆1

ςZ̆2

〉
(9)

Z̆1 ⊗ Z̆2 =
〈
σZ̆1

σZ̆2
, q

√
ςq
Z̆1

+ ςq
Z̆2

− ςq
Z̆1
ςq
Z̆2

〉
(10)

λZ̆ =
〈(

q

√
1− (1− σq

Z̆
)λ, ςλ

Z̆

)〉
(11)

Z̆λ =
〈(
σλ
Z̆
, q

√
1− (1− ςq

Z̆
)λ
)〉

(12)

where λ > 0, and p is the complementary set of Z̆.

Definition 3. A Let Z̆ =
(
σZ̆ , ςZ̆

)
be a q-ROFN, the score

function S(Z̆) of Z̆ can be expressed by Wei et al. [71]:

S(Z̆) =
1

2

(
1 + σq

Z̆
− ςq

Z̆

)
(13)

Peng and Dai [72] defined the score function differently:

Sλ(Z̆) =
1

3

(
σq

Z̆
− 2ςq

Z̆
− 1
)
+
λ

3

(
σq

Z̆
+ ςq

Z̆
+ 2
)

(14)

Definition 4. A Let Z̆ =
(
σZ̆ , ςZ̆

)
be a q-ROFN, the accuracy

function A(Z̆) of Z̆ can be expressed by Liu and Wang [70]:

A(Z̆) = σq

Z̆
+ ςq

Z̆
(15)

Definition 5. Let Z̆i = (σZ̆i
, ςZ̆i

) (i = 1, 2, · · · , n) be set of
q-ROFNs and w = (w1, w2, · · · , wn)

T be weight vector of
Z̆i with

∑n
i=1 wi = 1 and wi ∈ [0, 1]. q-rung orthopair fuzzy

weighted average (q-ROFWA) and q-rung orthopair fuzzy
weighted geometric (q-ROFWG) operators can be expressed
by Liu and Wang [70], respectively:

q-ROFWA
(
Z̆1, Z̆2, · · · , Z̆n

)
=(1− n∏

i=1

(
1− σq

Z̆i

)wi

) 1
q

,

n∏
i=1

ςwi

Z̆i

 (16)

q-ROFWG
(
Z̆1, Z̆2, · · · , Z̆n

)
= n∏

i=1

σwi

Z̆i
,

(
1−

n∏
i=1

(
1− ςq

Z̆i

)wi

) 1
q

 (17)

B. Weighted q-rung orthopair fuzzy Hamacher average oper-
ator

Definition 6. Let Z̆i =
(
σZ̆i

, ςZ̆i

)
(i = 1, 2, · · · , n) be set

of q-ROFNs and w = (w1, w2, · · · , wn)
T be weight vector of
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Z̆i with
∑n

i=1 wi = 1 and wi ∈ [0, 1]. The weighted q-rung
orthopair fuzzy Hamacher average (Wq-ROFHA) operator is
defined by Darko and Liang [73]:

Wq-ROFHA
(
Z̆1, Z̆2, · · · , Z̆n

)
=

w1(Z̆1)⊕ w2(Z̆2)⊕ · · · ⊕ wn(Z̆n) = ⊕n
i=1wi(Z̆i) (18)

Wq-ROFHA
(
Z̆1, Z̆2, · · · , Z̆n

)
=(

q

√ ∏n
i=1

(
1+(γ−1)(σZ̆i

)q
)wi−

∏n
i=1

(
1−(σZ̆i

)q
)wi∏n

i=1

(
1+(γ−1)(σZ̆i

)q
)wi

+(γ−1)
∏n

i=1

(
1−(σZ̆i

)q
)wi ,

q
√
γ
∏n

i=1(ςZ̆i
)wi

q

√∏n
i=1

(
1+(γ−1)(1−(ςZ̆i

)q)
)wi

+(γ−1)
∏n

i=1(ςZ̆i
)qwi


(19)

where γ > 0 and q ≥ 0.

C. Weighted q-rung orthopair fuzzy Hamacher geometric
mean operator

Definition 7. Let Z̆i = (σZ̆i
, ςZ̆i

) (i = 1, 2, · · · , n) be set of
q-ROFNs and w = (w1, w2, · · · , wn)

T be weight vector of
Z̆i with

∑n
i=1 wi = 1 and wi ∈ [0, 1]. The weighted q-rung

orthopair fuzzy Hamacher geometric mean (Wq-ROFHGM)
operator is defined by Darko and Liang [73]:

Wq-ROFHGM
(
Z̆1, Z̆2, · · · , Z̆n

)
=(

q
√
γ
∏n

i=1(σZ̆i
)wi∏n

i=1

(
1+(γ−1)(1−(σZ̆i

)q)
)wi

+(γ−1)
∏n

i=1

(
σZ̆i

)qwi ,

q

√ ∏n
i=1

(
1+(γ−1)(ςZ̆i

)q
)wi−

∏n
i=1

(
1−(ςZ̆i

)q
)wi∏n

i=1

(
1+(γ−1)(ςZ̆i

)q
)wi

+(γ−1)
∏n

i=1

(
1−(ςZ̆i

)q
)wi

)
(20)

where γ > 0 and q ≥ 0.

D. Proposed Model

In this section, we introduce an integrated decision-making
model. Firstly, to determine the criteria weights, q-ROFSs
based FUCOM is proposed. Later, the CoCoSo approach,
which is proposed by Yazdani et al. [74] into the q-ROFSs
environment including Wq-ROFHA and Wq-ROFHGM to
choose the best alternative OWF site among four alternatives
and rank them. The flowchart of the proposed model is shown
in Fig. 10.

Step 1: In terms of the proposed model, we determine the
site selection criteria, and define the alternative offshore wind
farm areas, and form the committee experts. We identify the
set of alternatives Aj = A1, A2, · · · , Am (j = 1, 2, ,m), and
the set of the criteria Ci = C1, C2, · · · , Cn (i = 1, 2, , n)
is assessed by h experts of set E = E1, E2, · · · , Eh (e =
1, 2, , h).

Step 2: Select the linguistic terms and determine their
corresponding values for evaluating criteria and alternatives.

Step 3: Calculate the criteria weights using the q-ROF based
FUCOM methodology.

Determining the weight coefficients of the criteria is a cru-
cial phase in applying multi-criteria models and defining the

Start

Step 1. Determine the main and sub-criteria,
and alrernatives for evaluation

Step 2. Define the linguistic terms and
determine their corresponding values

Step 3. q-ROF FUCOM
Methodology (Determining

criteria weights)

Step 4. Structure the q-ROFSs decision
matrix of alternatives

Step 5. Aggregate the q-ROF performance
ratings of alternatives

Step 6.Normalize the aggregated q-RON decidion matrix

Step 7. Compute the total of the weighted
comparability sequence for each alternative

Step 8. Compute the whole of the power
weight for each alternative

Step 9. Compute the score values of the
alternatives

Step 10. Compute the relative weight of the
alternatives

Step 11. Compute the assesment values of
alternatives

Step 12. Rank the alternative

q-ROF CoCoSo Methodology
 (Evaluation of the alternatives)

Criteria identification and their ranking

Comparisons of the criteria using q-ROFNs

Defining the constraints of Q-ROF model

Forming FUCOM nonlinear model 

Optimal values of criteria weights

Sensitivity analysis

Validation of the results

End

min θ
∣∣∣∣∣
wj(k)

wj(k+1)

− ψk/(k+1)

∣∣∣∣∣ ≤ θ, ∀j
∣∣∣∣∣
wj(k)

wj(k+2)

− ψk/(k+1) ⊗ ψ(k+1)/(k+2)

∣∣∣∣∣ ≤ θ, ∀j

n∑

j=1

wj = 1, wj ≥ 0∀j

q-ROFHA
(
Z̆1, Z̆2, · · · , Z̆n

)
=
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∏n
i=1

(
1− (σZ̆i

)q
) 1

n

,

q
√
γ
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Ğ = (ğji)m·n = [σ̆ji, ς̆ji] =

{
(σ̆ji, ς̆ji) if i ∈ B

(ς̆ji, σ̆ji) if i ∈ C

Fig. 10. q-ROFSs based FUCOM and fuzzy Hamacher based CoCoSo model.

aggregated criterion functions of the alternatives. To objectify
the entire decision-making process using the q-ROF CoCoSo
methodology, the following section presents a novel q-ROF
FUCOM (Full Consistency Method) method. The q-ROF
FUCOM method was developed based on the conventional
FUCOM developed by Pamucar et al. [75]. This method
provides the possibility of objective and rational determination
of the weight coefficients of the criteria with a minimum
number of comparisons and maximum satisfaction of the
consistency of the comparison. In the following section, the
q-ROF FUCOM method is presented through the steps:

Step 3.1: The initial phase of the q-ROF FUCOM method
involves the individual definition of significance and ranking
of criteria by experts eh (h = 1, 2, · · · , b). Thus we get the
rank of the criterion Ch

j(1) > Ch
j(2) > · · · > Ch

j(k) (j =
1, 2, · · · , n), where Cx(k−1) > Cy(k) (Cx, Cy ∈ Cj , j =
1, 2, · · · , n) means that the criterion has a greater significance
than the criterion Cy , since (k − 1) > k.

Step 3.2: After defining the ranks of the criteria, the
experts compare the criteria in pairs. Comparison of criteria is
represented by a vector of comparative significance according
to (21):

Φh = (21)

( Cj1 Cj2 · · · Cjk

ϖh
Cj(1)

= (σh
Z1
, ςhZ1

) ϖh
Cj(2)

= (σh
Z2
, ςhZ2

) · · · ϖh
Cj(k)

= (σh
Zk
, ςhZk

)
)

where Φh represents the individual experts’ vector of compar-
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ative significance.
The criteria were compared using the fuzzy preference scale

shown in Table III.

TABLE III
FUZZY PREFERENCE SCALE [76]

Preference on pairwise comparison Fuzzy preference number
Extremely not preferred 0.1
Very strongly not preferred 0.2
Strongly not preferred 0.3
Moderately not preferred 0.4
Equally preferred 0.5
Moderately preferred 0.6
Strongly preferred 0.7
Very strongly preferred 0.8
Extremely preferred 0.9
Intermediate values Other values between 0.1 and 0.9

Step 3.3: Defining the constraints of a nonlinear q-ROF
FUCOM model. The first group of constraints is defined
based on vectors of comparative significance (see (21)).
The weighting coefficients should meet the condition that
wh

k/w
h
k+1 = ψh

k/(k+1), where ψh
k/(k+1) = ϖh

Cj(k+1)
/ϖh

Cj(k)

represents the significance that the rank criterion has in relation
to the criterion Cj(k+1).

The second group of constraints is defined based on the con-
ditions of transitivity between the comparative meanings of the
criteria. The transitivity between the significance of the criteria
is defined by the condition that ψk/(k+1) ⊗ ψ(k+1)/(k+2) =
ψk/(k+2), i.e., wk ⊗ wk+1/k+2 = wk/k+2.

Based on the defined constraints, we can present the q-ROF
FUCOM model to calculate the optimal values of the criteria
as in (22):

min θ

s.t.
∣∣∣∣ wj(k)

wj(k+1)
− ψk/(k+1)

∣∣∣∣ ≤ 0,∀j∣∣∣∣ wj(k)

wj(k+2)
− ψk/(k+1) ⊗ ψ(k+1)/(k+2)

∣∣∣∣ ≤ 0,∀j
n∑

j=1

wj = 1, wj ≥ 0,∀j (22)

By solving model (see (22)), we obtain a vector of weight
coefficients (w1, w2, · · · , wn)

T.
Step 4: Build the decision matrices F̆h = (f̆jih)m·n =

[σ̆jih, ς̆jih] based on q-ROFSs in terms of experts’ opinion
with the help of Table IV. Alternatives for each criterion are
evaluated by Experts (Eh) using the q-ROFSs in Table IV.

F̆ =
(
f̆jih

)
m·n

=



A1 A2 · · · Am

C1 ⟨(σ̆11h, ς̆11h)⟩ ⟨(σ̆12h, ς̆12h)⟩ · · · ⟨(σ̆1mh, ς̆1mh)⟩
C2 ⟨(σ̆21h, ς̆21h)⟩ ⟨(σ̆22h, ς̆22h)⟩ · · · ⟨(σ̆2mh, ς̆2mh)⟩
...

...
...

. . .
...

Cn ⟨(σ̆n1h, ς̆n1h)⟩ ⟨(σ̆n2h, ς̆n2h)⟩ · · · ⟨(σ̆nmh, ς̆nmh)⟩


(23)

TABLE IV
LINGUISTIC TERMS FOR EVALUATIONS OF EACH ALTERNATIVE [42]

Linguistic terms q-ROFN for alternatives
σ ς

Extremely low (EL) 0.15 0.95
Very low (VL) 0.25 0.85
Low (L) 0.35 0.75
Medium low (ML) 0.45 0.65
Medium (M) 0.55 0.55
Medium high (MH) 0.65 0.45
High (H) 0.75 0.35
Very high (VH) 0.85 0.25
Extremely high (EH) 0.95 0.15

where m and n denote the number of alternatives and criteria,
respectively. f̆jih = [σ̆jih, ς̆jih] represents the performance of
alternative Aj with respect to criterion Cj of hth expert.

Step 5: Aggregate the q-ROF performance ratings of alter-
natives regarding each expert and form the q-ROF decision
matrix (F̆ ). The individual decision matrices are aggregated
with the help of (24) and the q-rung orthopair fuzzy weighted
averaging (q-ROFWA) operator given in (16).

F̆ =
(
f̆ji

)
m·n

=



A1 A2 · · · Am

C1 ⟨(σ̆11, ς̆11)⟩ ⟨(σ̆12h, ς̆12)⟩ · · · ⟨(σ̆1m, ς̆1m)⟩
C2 ⟨(σ̆21, ς̆21)⟩ ⟨(σ̆22, ς̆22)⟩ · · · ⟨(σ̆2m, ς̆2m)⟩
...

...
...

. . .
...

Cn ⟨(σ̆n1, ς̆n1)⟩ ⟨(σ̆n2, ς̆n2)⟩ · · · ⟨(σ̆nm, ς̆nm)⟩


(24)

f̆ji = [σ̆ji, ς̆ji] represents the aggregated q-ROFN of jth
alternative in terms of ith criterion.

Step 6: Normalise the aggregated q-RON decision matrix
(Ğ) according to (25):

Ğ = (ğji)m·n = [σ̆ji, ς̆ji] =

{
(σ̆ji, ς̆ji) if i ∈ B

(ς̆ji, σ̆ji) if i ∈ C
(25)

where B and C indicate the set of benefit and cost criteria,
respectively.

After that, the CoCoSo approach is implemented to the
model. The steps of this approach are as follows [74]:

Step 7: Compute the total of the weighted comparability
sequence (αj) for each alternative using Wq-ROFHA given in
(18) and (19).

Step 8: Compute the whole of the power weight (βj)
of comparability sequences for each alternative using the
weighted q-rung orthopair fuzzy Hamacher geometric mean
(Wq-ROFHGM) operator given in (20).

Step 9: Compute the score values of the alternatives using
the values of Wq-ROFHA and Wq-ROFHGM for each alter-
native with the help of (13).

Step 10: Compute the relative weight of the alternatives
using (26)–(28).

Xja =
αj + βj∑m

j=1(αj + βj)
(26)



1272 CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 8, NO. 5, SEPTEMBER 2022

Xjb =
αj

min(αj)
+

βj
min(βj)

(27)

Xjc =
ψαj + (1− ψ)βj

ψmax(αj) + (1− ψ)max(βj)
, 0 ≤ ψ ≤ 1 (28)

where Xja, Xjb, and Xjc represent the aggregation score
strategies as follows: (i) Xja is the arithmetic mean of sums
of weighted sum method (WSM) and weighted product model
(WPM) scores, (ii) Xjb is the sum of relative scores of WSM
and WPM, (iii) Xjc is the balanced compromise of WSM and
WPM models scores.

Step 11: Compute the assessment values (Xj) of the alter-
natives using (29).

Xj =
3
√
XjaXjbXjc +

Xja +Xjb +Xjc

3
(29)

Step 12: Rank the alternative according to the decreasing
value of Xj .

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the results of the application of the proposed
hybrid model are presented.

Step 1: A set of four experts participated in the survey to
evaluate four different OWF sites. These experts assess the
performance of four alternative sites in terms of two main and
fourteen criteria.

Step 2: Identified linguistic terms for evaluation of alterna-
tives are presented in Table IV.

Step 3: In this step, the calculation of criterion weights is
presented.

Steps 3.1 and 3.2: In the first step, it is necessary to define
the significance and rank of the criteria on the previously
defined q-ROF FUCOM algorithm. Since four experts partic-
ipated in this research, each expert defined their importance
separately within each cluster, as shown in Table V.

Step 3.3: Based on the expert assessments from Table V,
the constraints used to solve the q-ROF FUCOM model (22)

are defined. By applying (13), we obtain score values based
on which significant values are specified in Table VI.

Based on the vector of comparative significance (Tables V
and VI), we can define model constraints (22). Then, a
nonlinear model is defined for each level of criteria, based on
which the local weight coefficients of the criteria are obtained.
Since four experts participate in the research, 12 models are
formed, i.e., three models for each expert. The following
section presents the procedure for developing a nonlinear q-
ROF FUCOM model for the first expert and a group of techno-
economic (MC1) criteria.

Based on the score values (see Table VI) we can define the
first group of constraints according to the following:

ψ1
C3/C2

= φC3/φC2 = 0.600/0.500 = 1.20;

ψ1
C2/C1

= φC2
/φC1

= 0.625/0.600 = 1.04;

ψ1
C1/C8

= φC1
/φC8

= 0.725/0.625 = 1.16;

ψ1
C2/C1

= φC2
/φC1

= 0.775/0.725 = 1.07;

ψ1
C9/C4

= φC4
/φC9

= 0.825/0.775 = 1.06;

ψ1
C4/C5

= φC5/φC4 = 0.890/0.825 = 1.08;

ψ1
C5/C6

= φC6/φC5 = 0.925/0.890 = 1.04;

ψ1
C6/C7

= φC7
/φC6

= 0.975/0.925 = 1.05.

The second group of constraints is defined based on the
conditions of transitivity between the comparative meanings
of the criteria:

ψ1
C3/C1

= 1.20 · 1.04 = 1.25;

ψ1
C2/C8

= 1.04 · 1.16 = 1.21;

ψ1
C1/C9

= 1.16 · 1.07 = 1.24;

ψ1
C8/C4

= 1.07 · 1.06 = 1.14;

ψ1
C9/C5

= 1.06 · 1.08 = 1.15;

ψ1
C4/C6

= 1.08 · 1.04 = 1.12;

ψ1
C5/C7

= 1.04 · 1.05 = 1.10.

TABLE V
EVALUATIONS OF CRITERIA/SUB-CRITERIA

Rank Expert 1 Expert 2 Expert 3 Expert 4
Criteria q-ROF Criteria q-ROF Criteria q-ROF Criteria q-ROF

Main criteria
1 MC1 (0.50, 0.50) MC1 (0.50, 0.50) MC1 (0.50, 0.50) MC1 (0.50, 0.50)
2 MC2 (0.90, 0.00) MC2 (0.55, 0.45) MC2 (0.80, 0.18) MC2 (0.60, 0.45)

Techno-economical (MC1)
1 C3 (0.50, 0.50) C2 (0.50, 0.50) C3 (0.50, 0.50) C2 (0.50, 0.50)
2 C2 (0.55, 0.35) C1 (0.60, 0.35) C2 (0.55, 0.45) C8 (0.60, 0.45)
3 C1 (0.60, 0.35) C3 (0.65, 0.30) C1 (0.60, 0.35) C9 (0.65, 0.35)
4 C8 (0.70, 0.25) C8 (0.75, 0.25) C8 (0.65, 0.30) C1 (0.70, 0.30)
5 C9 (0.75, 0.20) C9 (0.75, 0.25) C9 (0.75, 0.25) C3 (0.75, 0.25)
6 C4 (0.80, 0.15) C4 (0.85, 0.20) C5 (0.80, 0.20) C5 (0.85, 0.20)
7 C5 (0.88, 0.10) C5 (0.90, 0.10) C6 (0.85, 0.15) C6 (0.85, 0.20)
8 C6 (0.90, 0.05) C6 (0.95, 0.00) C7 (0.90, 0.10) C4 (0.90, 0.10)
9 C7 (0.95, 0.00) C7 (0.95, 0.00) C4 (0.95, 0.05) C7 (0.95, 0.05)

Environmental and Social (MC2)
1 C14 (0.50, 0.50) C14 (0.50, 0.50) C14 (0.50, 0.50) C14 (0.50, 0.50)
2 C12 (0.60, 0.45) C11 (0.60, 0.45) C13 (0.70, 0.25) C13 (0.65, 0.35)
3 C11 (0.70, 0.30) C12 (0.70, 0.30) C10 (0.85, 0.15) C12 (0.70, 0.30)
4 C10 (0.80, 0.20) C10 (0.80, 0.20) C11 (0.90, 0.05) C10 (0.85, 0.20)
5 C13 (0.90, 0.00) C13 (0.90, 0.00) C12 (0.95, 0.00) C11 (0.95, 0.00)
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TABLE VI
SCORE VALUES OF CRITERIA/SUB-CRITERIA

Rank Expert 1 Expert 2 Expert 3 Expert 4
Criteria Score value Criteria Score value Criteria Score value Criteria Score value

Main criteria
1 MC1 0.500 MC1 0.500 MC1 0.500 MC1 0.500
2 MC2 0.950 MC2 0.550 MC2 0.810 MC2 0.575

Techno-economical (MC1)
1 C3 0.500 C2 0.500 C3 0.500 C2 0.500
2 C2 0.600 C1 0.625 C2 0.550 C8 0.575
3 C1 0.625 C3 0.675 C1 0.625 C9 0.650
4 C8 0.725 C8 0.750 C8 0.675 C1 0.700
5 C9 0.775 C9 0.750 C9 0.750 C3 0.750
6 C4 0.825 C4 0.825 C5 0.800 C5 0.825
7 C5 0.890 C5 0.900 C6 0.850 C6 0.825
8 C6 0.925 C6 0.975 C7 0.900 C4 0.900
9 C7 0.975 C7 0.975 C4 0.950 C7 0.950

Environmental and Social (MC2)
1 C14 0.500 C14 0.500 C14 0.500 C14 0.500
2 C12 0.575 C11 0.575 C13 0.725 C13 0.650
3 C11 0.700 C12 0.700 C10 0.850 C12 0.700
4 C10 0.800 C10 0.800 C11 0.925 C10 0.825
5 C13 0.950 C13 0.950 C12 0.975 C11 0.975

Based on the presented constraints, the q-ROF FUCOM
model is defined for the group of techno-economical (MC1)
criteria as follows:

Expert 1:min θ

s.t.∣∣∣∣w3

w2
− 1.2

∣∣∣∣ ≤ θ;

∣∣∣∣w2

w1
− 1.04

∣∣∣∣ ≤ θ; · · · ;
∣∣∣∣w8

w9
− 1.07

∣∣∣∣ ≤ θ;∣∣∣∣w9

w4
− 1.06

∣∣∣∣ ≤ θ;

∣∣∣∣w4

w5
− 1.08

∣∣∣∣ ≤ θ; · · · ;
∣∣∣∣w6

w7
− 1.05

∣∣∣∣ ≤ θ;∣∣∣∣w3

w1
− 1.25

∣∣∣∣ ≤ θ;

∣∣∣∣w2

w8
− 1.21

∣∣∣∣ ≤ θ; · · · ;
∣∣∣∣w8

w4
− 1.14

∣∣∣∣ ≤ θ;∣∣∣∣w9

w5
− 1.15

∣∣∣∣ ≤ θ;

∣∣∣∣w4

w6
− 1.12

∣∣∣∣ ≤ θ;

∣∣∣∣w5

w7
− 1.10

∣∣∣∣ ≤ θ;

9∑
j=1

wj = 1, wj ≥ 0,∀j

Models for the remaining criteria levels are defined simi-
larly. By solving the q-ROF FUCOM model, the final values of
the weight coefficients of the criteria are obtained, as presented
in Table VII.

Step 4: The experts expressed their opinions, as presented
in Table VIII, using the scale in Table IV with the help
of (23) for four alternatives in terms of fourteen criteria.
Then, the linguistic evaluations of experts are converted to
the corresponding q-ROFNs in Table IV.

Step 5: The experts’ evaluations are aggregated by (16)
and (24). The aggregated q-ROF decision matrix is given in
Table IX.

Step 6: The q-ROF normalised decision matrix is structured
with the help of Table IX using (25) and is presented in
Table X.

Steps 7–8: The total of the weighted (αj) and the whole
of the power weight (βj) of comparability sequences for each
alternative are constructed by Wq-ROFHA operator given in
(18)–(19), and Wq-ROFHGM operator given in (20) using the

TABLE VII
WEIGHTING COEFFICIENTS OF THE CRITERIA

Criteria Expert 1 Expert 2 Expert 3 Expert 4 Average Global
MC1 0.6391 0.52381 0.6181 0.5362 0.5793 –
C1 0.1294 0.1319 0.1248 0.1130 0.1248 0.0723
C2 0.1350 0.1649 0.1419 0.1586 0.1501 0.0870
C3 0.1616 0.1225 0.1563 0.1057 0.1365 0.0791
C4 0.0979 0.0999 0.0817 0.0881 0.0919 0.0532
C5 0.0908 0.0914 0.0974 0.0959 0.0939 0.0544
C6 0.0872 0.0849 0.0918 0.0959 0.0899 0.0521
C7 0.0828 0.0843 0.0864 0.0832 0.0842 0.0488
C8 0.1113 0.1102 0.1156 0.1379 0.1188 0.0688
C9 0.1041 0.1100 0.1040 0.1218 0.1100 0.0637
MC2 0.3609 0.4762 0.3819 0.4638 0.4207 –
C10 0.1647 0.1675 0.1768 0.1681 0.1697 0.0712
C11 0.1944 0.2330 0.1619 0.1424 0.1785 0.0770
C12 0.2222 0.1911 0.1540 0.1982 0.1917 0.0805
C13 0.1388 0.1406 0.2070 0.2137 0.1758 0.0736
C14 0.2799 0.2677 0.3003 0.2776 0.2843 0.1184

normalised q-ROF values given in Table X. The values of each
alternative for Wq-ROFHA and Wq-ROFHGM operators are
reported in Table XI.

Step 9: The score values for each alternative in terms of αj

and βj are given in Table XII using Table XI and (13). For
example, the score values of the alternative A1 for αj and βj
can be calculated as follows:

S(αA1
) =

1

2
(1 + 0.761−−0.366) = 0.697,

and

S(βA1
) =

1

2
(1 + 0.612−−0.506) = 0.553.

Step 10: The relative weights Xja, Xjb and Xjc of the
alternatives are calculated using aggregation score strategies
with the help of (26)–(28). These values are presented in
Table XIII. For alternative A1, the relative weights can be
calculated as follows:

X1a =
0.697 + 0.553

4.116
= 0.304,
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TABLE VIII
THE PERFORMANCE RATING OF ALTERNATIVES IN TERMS OF CRITERIA

Alternatives Experts Criteria
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14

A1

E1 VH VH VH VH MH MH H H H VL VL VL H EH
E2 VH VH VH H VH H H VH VH ML H H M H
E3 H H H H H H H VH VH M ML ML M H
E4 H H H VH EH H H EH VH H VL H M H

A2

E1 H VH VH VH L ML H VH VH VL VL VL VH EH
E2 VH VH VH H H MH VH VH VH ML H H VL H
E3 H H H H ML M H VH VH M ML ML M H
E4 H H H EH VH M H EH VH H VL H L H

A3

E1 H VH VH VH H M H VH H VL VL VL M EH
E2 VH VH VH H EH VH VH VH H ML H H M H
E3 H H H H VH MH H VH H M ML ML M H
E4 H H H VH EH H H VH H H VL H M H

A4

E1 H VH VH VH H M H VH H VL VL VL M EH
E2 VH VH VH H EH VH VH VH H ML H H M H
E3 H H H H VH MH H VH H M ML ML M H
E4 H H H VH EH H H VH H H VL H M H

TABLE IX
THE AGGREGATED Q-ROF DECISION MATRIX

Alternatives C1 C2 C3 C4 C5 C6 C7

A1 [0.78, 0.322] [0.85, 0.25] [0.85, 0.25] [0.85, 0.25] [0.655, 0.451] [0.556, 0.545] [0.75, 0.35]
A2 [0.85, 0.25] [0.85, 0.25] [0.85, 0.25] [0.75, 0.35] [0.902, 0.211] [0.789, 0.315] [0.83, 0.272]
A3 [0.75, 0.35] [0.75, 0.35] [0.75, 0.35] [0.75, 0.35] [0.764, 0.345] [0.657, 0.444] [0.75, 0.35]
A4 [0.75, 0.35] [0.75, 0.35] [0.75, 0.35] [0.886, 0.22] [0.934, 0.17] [0.71, 0.392] [0.75, 0.35]
Alternatives C8 C9 C10 C11 C12 C13 C14

A1 [0.83, 0.272] [0.78, 0.322] [0.25, 0.85] [0.25, 0.85] [0.25, 0.85] [0.705, 0.403] [0.95, 0.15]
A2 [0.85, 0.25] [0.806, 0.296] [0.45, 0.65] [0.75, 0.35] [0.75, 0.35] [0.489, 0.613] [0.75, 0.35]
A3 [0.85, 0.25] [0.806, 0.296] [0.55, 0.55] [0.45, 0.65] [0.45, 0.65] [0.55, 0.55] [0.75, 0.35]
A4 [0.913, 0.194] [0.806, 0.296] [0.75, 0.35] [0.25, 0.85] [0.75, 0.35] [0.507, 0.594] [0.75, 0.35]

TABLE X
THE NORMALISED Q-ROF DECISION MATRIX

Alternatives C1 C2 C3 C4 C5 C6 C7

A1 [0.78, 0.322] [0.85, 0.25] [0.85, 0.25] [0.25, 0.85] [0.451, 0.655] [0.545, 0.556] [0.35, 0.75]
A2 [0.85, 0.25] [0.85, 0.25] [0.85, 0.25] [0.35, 0.75] [0.211, 0.902] [0.315, 0.789] [0.272, 0.83]
A3 [0.75, 0.35] [0.75, 0.35] [0.75, 0.35] [0.35, 0.75] [0.345, 0.764] [0.444, 0.657] [0.35, 0.75]
A4 [0.75, 0.35] [0.75, 0.35] [0.75, 0.35] [0.22, 0.886] [0.17, 0.934] [0.392, 0.71] [0.35, 0.75]
Alternatives C8 C9 C10 C11 C12 C13 C14

A1 [0.272, 0.83] [0.322, 0.78] [0.85, 0.25] [0.85, 0.25] [0.85, 0.25] [0.705, 0.403] [0.95, 0.15]
A2 [0.25, 0.85] [0.296, 0.806] [0.65, 0.45] [0.35, 0.75] [0.35, 0.75] [0.489, 0.613] [0.75, 0.35]
A3 [0.25, 0.85] [0.296, 0.806] [0.55, 0.55] [0.65, 0.45] [0.65, 0.45] [0.55, 0.55] [0.75, 0.35]
A4 [0.194, 0.913] [0.296, 0.806] [0.35, 0.75] [0.85, 0.25] [0.35, 0.75] [0.507, 0.594] [0.75, 0.35]

TABLE XI
THE αj AND βj VALUES OF ALTERNATIVES

Alternatives Wq-ROFHA Operator Wq-ROFHGM Operator
α β α β

A1 0.761 0.366 0.612 0.506
A2 0.604 0.515 0.467 0.653
A3 0.597 0.511 0.524 0.588
A4 0.575 0.539 0.449 0.679

X1b =
0.697

0.518
+

0.553

0.385
= 2.783,

and

X1c =
0.5 · 0.697 + (1− 0.5)0.553

0.5 · 0.697 + (1− 0.5)0.593
= 1.0.

Step 11: The assessment value Xj is found by (29) using
the Xja, Xjb and Xjc values in Table XIII and is presented
in Table XIII. For example, the assessment value of A1 can

TABLE XII
THE SCORE VALUES OF ALTERNATIVES FOR αj AND βj

Alternatives αj βj
A1 0.697 0.553
A2 0.544 0.407
A3 0.543 0.468
A4 0.518 0.385

be calculated as follows:

X1 =
3
√
0.304 · 2.783 · 1 + 0.304 + 2.783 + 1

3
= 2.308.

Step 12: The alternatives according to the decreasing value
of Xj (j = 1, 2, 3, 4) are ranked. A1 is the best among the
four OWF alternative sites, while A4 is the worst.

A. Comparative Analysis

In order to test the rationality and effectiveness of the
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TABLE XIII
THE RELATIVE SIGNIFICANCE AND THE FINAL RANKING OF THE

OWF SITES

Alternatives Xja Xjb Xjc Xj Rank
A1: Utsira Nord 0.304 2.783 1.000 2.308 1
A2: Stadthavet 0.231 2.107 0.761 1.751 3
A3: Frøyabanken 0.246 2.264 0.808 1.872 2
A4: Træna Vest 0.219 2.000 0.722 1.662 4

TABLE XIV
COMPARATIVE ANALYSIS WITH OTHER Q-ROFSS BASED

MCDM APPROACH

Techniques A1 A2 A3 A4 Final Ranking
q-ROFSs
based
CoCoSo

2.308 1.751 1.872 1.662 A1 > A3 > A2 > A4

q-ROFSs
based
TOPSIS [77]

0.902 0.295 0.474 0.365 A1 > A2 > A3 > A4

proposed hybrid model, the ranking results are compared with
Alkan and Kahraman’s [77] q-ROFSs based TOPSIS approach.
The ranking results are given in Table XIV. As can be seen,
A1 is the best alternative, while A4 is the worst alternative.
Considering the results obtained, it can be concluded that there
are changes in A2 and A3 rankings as a result of different
distance approaches in the application of the q-ROFSs-based
TOPSIS approach and the process of the weighted decision
matrix before normalization processs. The ranking results and
reliability of the proposed hybrid model are also verified by
the experts.

B. Checking the Stability of the Results

In most decision-making models, subjective parameters
are defined based on the perception of the problem by the

decision-maker and the risk that exists in the environment.
Therefore, the values of these parameters are not unique,
but their change depending on the conditions in which the
decision-making system is modelled. Therefore, when making
the final decision, it is necessary to answer the question: “Do
subjectively defined parameters in the mathematical model
have a decisive influence on the final results?”

In the FUCOM-CoCoSo q-ROF based model, three param-
eters (q, γ, and λ) have been identified, which are defined
based on the subjective preferences of the decision-maker. In
the next section, through three experiments, the dependence
of the initial solution on the change of the parameters q, γ,
and λ is presented. In the first two experiments, the influence
of the parameters q and γ on the change in the values of the
weighted q-ROF Hamacher function and the weighted strategy
of the q-ROF CoCoSo model was analysed. In the third
experiment, the influence of the parameter λ on the definition
of compromise strategies of alternatives was analysed. In the
following section, the described analysis is presented through
the variation of the stated parameters.
1) Experiment 1 – Influence of parameter q on ranking results

When defining the initial solution, the experts adopted the
value of the parameters q = 1. In the following section, the
change of the parameter q in the interval 1 ≤ q ≤ 100 is
simulated. Fig. 11 shows the dependence of the integrated
values of the q-ROF Hamacher function on the parameter q.

It can be seen from Fig. 11 that an increase in the parameter
q in the interval 1 ≤ q ≤ 100 affects the decrease in the
integrated score function of alternative A1. Furthermore, the
remaining alternatives (A2, A3, and A4) generally increase
the value of integrated score functions. Since alternative A1

is initially ranked first, such changes can lead to a change in
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Fig. 11. Influence of parameter change 1 ≤ q ≤ 100 on change of q-ROF Hamacher function.
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initial rank, which is analysed in the following section. To
see the influence of the parameter q on the difference in the
rankings of alternatives, Fig. 12 shows a relative change in the
integrated score functions of all alternatives.
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Fig. 12. Dependence of integrated score function alternatives on coefficient
change 1 ≤ q ≤ 100.

Changes in the parameter q through the considered 100
scenarios (Fig. 12(a)) influenced the change in the values of the
integrated score functions as follows: 1.8777 ≤ X1 ≤ 2.3077,
1.7512 ≤ X2 ≤ 1.8770, 1.8719 ≤ X3 ≤ 1.8770, and
1.6624 ≤ X4 ≤ 1.8766. The results show that the increase
in the parameter q affects the approximation of the criterion
functions of the alternatives. Higher values of the parameter
q lead to equalisation of alternatives, making it difficult to
arrive at a final decision, while values of 1 ≤ q ≤ 15
allow a clear definition of the advantages between alternatives.
Therefore, it is recommended that when defining the initial
solution, the parameter q be in the interval 1 ≤ q ≤ 15.
From the presented analysis, we can conclude that the initial
rank A1 > A3 > A2 > A4 is confirmed (Fig. 12(b)), i.e.,
alternative A1 is the dominant solution from the set.
2) Experiment 2 – Influence of parameters γ on ranking
results

Changes in the value of γ affect the mathematical formula-
tion of q-ROF Hamacher functions and change the integrated
score strategies of alternatives (Xi). For the calculation of
the initial solution, the value γ = 1 was arbitrarily adopted.
Since this is a subjectively defined parameter, the following
part analyses the impact of changing the parameter γ by 100
scenarios (1 ≤ γ ≤ 100). Fig. 13 shows the dependence of the
q-ROF Hamacher function on the change of the parameter γ.

The parameter γ represents the stabilisation parameter of the
q-ROF Hamacher function and significantly impacts the final
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Fig. 13. Influence of parameter change 1 ≤ γ ≤ 100 on change of q-ROF
Hamacher function.

values of the integrated score strategies of the alternatives.
Fig. 13 indicates that an increase in parameter 1 ≤ γ ≤
100 affects the increase in the integrated score function of
alternative A1(2.3077 ≤ X1 ≤ 2.3750). Furthermore, in
all other alternatives, there is a decrease in the integrated
score function. Since alternative A1 is the first ranked, these
results indicate that an increase in the value of the parameter
γ leads to an increase in the advantage of alternative A1

over the remaining alternatives in the set. With the remaining
alternatives, there are no extreme changes in the values of the
integrated score functions, which is confirmed by the following
values 1.7351 ≤ X2 ≤ 1.7512, 1.8607 ≤ X3 ≤ 1.8720 and
1.6337 ≤ X4 ≤ 1.6624. Based on the presented values, we
can conclude that the initial rank A1 > A3 > A2 > A4

is confirmed and the alternative A1 represents the dominant
solution from the considered set.
3) Experiment 3 – Influence of λ parameters on ranking
results

The calculation of the integrated score functions in the q-
ROF Hamacher CoCoSo model requires the definition of the
value of the parameter λ. Based on the recommendations of
Yazdani et al. [74] for calculating the initial solution, the
value λ = 0.5 was adopted. This enabled weighted Hamacher
functions to have an equal impact on defining the trade-offs of
alternatives [74]. In the next part, 50 scenarios were formed
through which the change of the parameter 0 ≤ λ ≤ 1
was simulated. In the first scenario, the value λ = 0 was
adopted, while in each subsequent scenario, the parameter
value was increased by 0.02. The influence of the change of
the parameter λ on the change of the integrated functions is
shown in Fig. 14.

The results in Fig. 14 show that changing the parameter
0 ≤ λ ≤ 1 does not lead to changes in the initial ranking of
alternatives and that the initial ranking A1 > A3 > A2 > A4

is credible.

C. Offshore Energy-specific Results and Discussion

Companies planning such large-scale energy investments
spend several months even years to make the most effective
decisions for their investments. The decision-making process
relies on various, mostly complex, investigations and analyses
of various technical, economic, financial, environmental and
political issues. Hence the demonstrated approach aims to
simplify the decision-making process of the OWF investors.
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The easiest accessible information regarding any potential
wind energy project and its location would be the wind speed
values. If the investors proceed with a swift estimate and
ranking using wind speed information, the order of the selected
OWF locations would be as follows: A2 > A1 > A3 > A4.
Net capacity factor is one of the most critical decision-making
metrics used in the wind industry, among other similar metrics.
All investigated OWFs have very high offshore wind potential
with net capacity factors over 40%. If the decision was made
according to only the capacity factor results, as indicated in
Table II, the ranking would be as follows: A2 > A1 > A3 >
A4. The net capacity factor depends on various factors, as
mentioned in the previous sections. In this case, the ranking
based on wind speed and net capacity factor yields the same
results. Since the annual energy yield is also a derivative
metric of the net capacity factor, the order based on these
metrics would not change the results. The ultimate project
investment decision relies on more sophisticated analyses
and investigations that consider all the techno-economic and
other criteria such as distance to the nearest grid connection
point, water depth, ecological and environmental constraints
which shall be considered integrally to give the best available
decision in terms of the best OWF location and project.
According to the results of the proposed approach, A1 (Utsira
Nord) ranked as the best and A4 (Træna Vest) as the worst
OWF among four alternatives. Again, according to Table XIII,
A3 (Frøyabanken) ranked second and A2 (Træna) ranked third.
Indeed, this ranking shall be understood as an example only
and not as a conclusive ranking of the sites. It serves to
illustrate the novel methodology described in this paper.

VI. CONCLUSION AND POLICY IMPLICATIONS

This study proposes an efficient q-rung orthopair fuzzy sets
based on FUCOM and CoCoSo method for solving the floating
OWF site selection problem in Norway. The proposed q-
ROFSs based MCDM model is comprised of two main stages.
In the first stage, the q-ROF FUCOM is used to calculate
the weight coefficients of the criteria. In the second stage, q-
ROF CoCoSo is applied to rank the OWF alternative sites in
Norway.

Taking multiple technical, economic, environmental, and
social criteria into account, the proposed decision-making ap-
proach was demonstrated to evaluate four potential Norwegian
OWF sites where floating offshore wind turbines are eligible.

If the proposed decision-making algorithm was executed, the
ranking of the investigated OWF location alternatives would
be A1 > A3 > A2 > A4.

Since the project investment volumes of offshore wind
energy projects and the associated consequences of any failure
or wrong estimations in decision-making are critical, it is
vital to perform a detailed site selection methodology to make
feasible investment decisions. The demonstrated methodology
is proposed to serve as an advanced and practical decision-
support tool when making project-related verdicts and choices.
Depending on the use case, policy-makers may prefer to utilise
such decision-support tools to investigate the feasibility of
potential locations for commercial use.

Even though this study proposes new methods implemented
in the Norwegian OWF context, it contains some limitations
that offer further development opportunities in future research.
Firstly, the decision-making model was applied to a single
sector (i.e. energy) within a case study. Another limitation is
the potential dependency and interaction between criteria not
considered in the proposed model. A third limitation is the
number of experts who are members of the decision-making
committee. It is also possible to consider additional criteria
such as detailed techno-economic metrics, for example the
levelised cost of electricity (LCoE), or additional constraints
like military zones and shipping routes. In future, the proposed
MCDM model with q-rung orthopair fuzzy Einstein average
(q-ROFEA) and q-rung orthopair fuzzy Einstein average (Wq-
ROFEA) operators can be extended.

In Norway, at the moment, Utsira Nord is opened for the
development of offshore wind farms. Several companies are
interested in developing a floating wind farm at the site, and
these will compete for the license issued by the Norwegian
government. A possible alternative application of the method-
ology described is to modify it for the ranking of competitive
bids.

Q-Rung orthopair fuzzy sets were used in this study to
represent vagueness and uncertainty in expert estimates. In the
q-ROFS approach, uncertainties in information are represented
through the degree of membership and the degree of non-
membership. For a more objective presentation of expert
assessments in future research, linguistic estimates can be
presented using three segments: the degree of membership, the
degree of abstinence, and non-membership. Applying the T-
spherical fuzzy approach, i.e., adding the degree of abstinence
for presenting expert preferences, would objectify the multi-
criteria framework and enable experts to more rationally
express their judgements. Additionally, the decision-making
problem may be expanded with Pythagorean fuzzy sets in the
future.

The main limitation of methodology is the complex math-
ematical algorithm for the calculation of Hamacher functions.
Changes in the values of the parameters q and Υ further
complicate the application of this algorithm. This limitation
can be eliminated by creating a user-friendly software solution
that will allow a more comprehensive implementation of the
presented algorithm to solve real-world problems. The authors
developed a software solution using MATLAB and Microsoft
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Excel software while working on this study. This solution was
then used to validate the results shown in Section V-B.
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