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Abstract—An operating system needs to fairly allocate shared
hardware resources among different applications, and Linux
uses Completely Fair Scheduler (CFS) to achieve this goal. To
ensure fairness, CFS implements bandwidth control that sets the
maximum limit on the resources that a process can use. Setting
the upper limit helps CFS to discover badly behaving applications
and hard cap them to limit the overall damage to the system and
other applications, thereby improving fairness.

We observe that, in an effort to ensure fairness, the bandwidth
control can unnecessarily throttle processes which results in
poor application performance. We investigate the root cause of
this limitation and discover that the CPU runtime accounting
mechanism of bandwidth control, which tracks if a process
has reached it maximum allocated limit, is responsible for it.
We also find that the overhead of fair resource allocation in
bandwidth control can become significantly high due to the way
it is implemented. We propose mechanisms to reduce throttling
as well as the overhead. Our experimental results show that the
proposed techniques are able to eliminate nearly all throttling,
thus providing up to 12% performance gain. Also, our approach
reduces the bandwidth control overhead by up to 24x.

Index Terms—System Software, Operating Systems, Linux,
Process Scheduling, Process Throttling

I. INTRODUCTION

One of the most fundamental tasks of an operating system
is to arbitrate among applications, or processes, to provide
them with access to shared hardware resources. To do so, it
employs a scheduler that selects a subset of ready processes
for execution on hardware based on a predetermined policy.
Different scheduler policies target different metrics and are
aimed at different environments. For example, a scheduling
policy focusing on fairness aims to evenly distribute CPU time
among all competing processes. A priority based scheduling
policy, in contrast, prioritizes processes, say, based on their
criticality, for example, in a real time system where a process
might need to finish before a deadline.

Linux is one of the most popular operating systems that
runs, in one form or other, on a wide variety of hardware rang-
ing from warehouse scale computers to small embedded de-
vices. Linux supports six scheduling policies with the default
scheduler, called Completely Fair Scheduler (CFS), imple-
menting a fairness oriented policy called SCHED_NORMAL.
Historically, to ensure fairness, the hardware resources were
distributed among processes using one of the four different
metrics: weights, limits, protections, and allocations. However,
irrespective of the metric used, the key idea in resource
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allocation was to set a minimum bound on resources that each
process or a set of processes should get.

About a decade ago, Google proposed CFS Bandwidth
Control [1]] that changed the way the resources are allocated
among processes. Instead of setting the minimum amount,
CFS Bandwidth Control sets the maximum limit on resources
that a process can use. Setting the maximum limit helps
discover badly behaving applications and hard cap them to
limit the overall damage to the system and other applications,
thereby improving overall fairness. As a result, bandwidth
control has not only become an integral part of all Linux
Container runtimes but also of container orchestration tool
Kubernetes [2]], [3]], Google’s internal container orchestrator
Borg [4], a well known container runtime Docker [5], etc.

Though CFS bandwidth control is excellent at providing
fairness among processes, we observe that it might unnec-
essarily throttle processes which not only increases process
execution time but also reduces overall throughput of the
system. We find that the root cause of this throttling is the
CPU runtime accounting mechanism of bandwidth control
which is responsible for tracking if a process has reached its
maximum allocated limit. Concretely, the bandwidth control
allocates resources, including CPU runtime, in fixed time
chunks, called periods. Due to the way runtime accounting
is done, it is possible for a process to run slightly longer than
its allocated runtime quota. However, when a process requests
more runtime after its quota expires, any extra time that the
process has already run for is adjusted before allocating more
runtime to the process. We discover that if the extra runtime
adjustment is not done during the same period in which
the extra runtime was consumed, rather in the next period,
the bandwidth control throttles the processes during the next
period before they reach their allocated quota limit. Such
throttling results in underutilization of resources and lowers
the performance and throughput.

In addition to throttling, we also discover that the overhead
of fair resource allocation in CFS bandwidth control can
become significantly high. This overhead mainly stems from
the spinlock used to guard the runtime available within a
period. The overhead can be especially high in a system
running large number of threads as the waiting time to acquire
the spinlock increases with the number of waiting threads.

Based on our analysis of the root causes of the limitations
of bandwidth control, we propose mechanisms to mitigate



these bottlenecks while still preserving the fairness. To avoid
throttling, we propose a mechanism that gives an illusion
as if the extra runtime used by a process is accounted for
in the same period in which it was consumed even if it is
actually accounted for in the next period. As a result, the
bandwidth control does not need to throttle the processes in the
next period. To reduce the overhead of bandwidth control, we
propose to use atomic variables to guard the runtime available
in a period instead of spinlocks that are used in existing
implementation. Overall, this paper makes the following key
contributions:

« Identifying that the CFS Bandwidth Control can unnec-
essarily throttle processes, thus hurting performance.

« Identifying the root cause of throttling and bandwidth
control overhead.

o Proposing mechanism to mitigate throttling and band-
width control overhead.

o Evaluating our proposals and showing that the proposed
throttling mitigation technique eliminates nearly all throt-
tling, thus providing up to 12% performance benefit. Our
proposal also reduces the bandwidth control overhead by
up to 24x.

II. BACKGROUND AND MOTIVATION

Over the last three decades, the Linux kernel has evolved
from a small university hobby project to one of the world’s
most influential and well-functioning software projects. It runs
on all kinds of hardware, ranging from small energy-efficient
smartphones to the world’s biggest datacenters. All of the
world’s top 500 supercomputers are also running Linux [6].
All this while still being a fully open source and community
driven project where everyone can contribute.

A. Linux Scheduler

Like any operating system, the central piece of Linux that
decides what process to execute is called a process scheduler.
Linux supports six different scheduling policies, listed in Table
[ each with a different way of prioritizing what to execute in
what order. The default scheduling policy assigned to newly
created processes, SCHED_NORMAL, is the policy used for all
normal user tasks. It is the implementation of this scheduling
class (and its equivalent on other systems) that is often referred
to as the “Scheduler” of a given system.

Linux scheduler uses a mechanism, called cgroup (control
group), to organize processes hierarchically and distribute
system resources along the hierarchy in a controlled and
configurable manner. cgroup is largely composed of two parts
- the core and the controllers. cgroup core is primarily respon-
sible for hierarchically organizing processes, whereas cgroup
controller is usually responsible for distributing a specific type
of system resource along the hierarchy although there are
utility controllers which serve purposes other than resource
distribution.

'Named SCHED_OTHER in user space.

TABLE I: The different scheduling policies supported by
Linux

Policy Name Class
SCHED_NORMAIL['[  fair

Description
Normal time sharing scheduling

SCHED_FIFO 1t First in-first out scheduling
SCHED_RR rt Round-robin scheduling
SCHED_BATCH fair SCHED_NORMAL, less preemption
SCHED_IDLE idle Low priority tasks

SCHED_DEADLINE dl Deadline scheduling

Resource Distribution models: Depending on the resources a

cgroup controller is made for, it has a certain way of distribut-

ing resources. The general convention is that resources are
distributed in a top-down manner from the root control group.

This means that the effective value of a given resource that

a process can use is limited by the ancestor with the strictest

policy and/or limit. The four ways of resource distributions

are;

e Weights: The resources available at the parent control group
is distributed in a manner where each children control group
gets a fraction of the resources approximately to the ratio
between its weight and the sum of all the weights of its
siblings.

e Limits: Sets the maximum amount of a given resource
that a control the group can use. The limit is not tied to
the actual availability of the resource, thus allowing for
overcommitment.

e Protections: Protects a given resource from usage by all
processes in its control group children.

o Allocations: Allows access to a given amount of resources
that only have a limited amount available, and cannot be
overcommitted.

A cgroup controller can use either one or multiple of these
resource distribution models, depending on what resource it
controls.

B. CFS Bandwidth Control

Bandwidth Control is a mechanism used by Linux CFS
(Completely Fair Scheduler) to limit the amount of CPU
time that a set of processes can use. It was designed by an
engineering team at Google [1] to discover badly behaving
applications and hard cap them to limit the overall damage
to the system and other applications. The key difference
with prior mechanisms is that while prior mechanisms set
the minimum amount of CPU resources a cgroup should get,
bandwidth control sets the maximum limit. Bandwidth control
is also a part of the cpu cgroup controller.

Since its introduction in 2010, Bandwidth control has be-
come an integral part of all Linux Container runtimes as
it plays a vital role in controlling how much CPU time a
container or application can use at a maximum. It is also
used as the tool for limiting CPU usage by the container
orchestration tool Kubernetes [3], and it is used directly by
mapping container CPU limits to an equivalent CFS Band-
width configuration. The same applies to the well known
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Fig. 2: Timeline of a CPU bound process running with a quota to period ratio of 0.5, with two different periods. The actual

CPU time used will be the same in both cases.

container runtime Docker [5]. CFS Bandwidth control is
also mentioned as a critical aspect of Borg [4], the internal
container orchestrator at Google.

1) Bandwidth Control API: The bandwidth control exposes
two configuration parameter per cgroup;

e Period: The time interval used when accounting CPU
bandwidth. Default: 100ms.

e Quota The total amount of CPU time that a cgroup can
use in each period. At the beginning of a new period, the
available quota will be set to this value. Default: unlimited
(disabled).

An example with 100ms guota and 100ms period is shown
in Figure The ratio between the quota and the period
can be seen as the number of logical CPUs a control group
can continuously use without being throttled. For example, a
period of, say, 100ms and a quota of 300ms can be viewed
as an equivalent to getting 3 logical Linux CPUs. There is
no special meaning to integer ratios, and non-integer ratios
are also supported. This is useful for small low priority tasks
where, for example, a period of 100ms and a quota of 50ms
can be viewed as the equivalent of half of a logical Linux
CPU, as shown in Figure [2a Another example for a half
logical Linux CPU equivalence would be a control group with
a period of 50ms and a quota of 25ms, as seen in Figure

It also exposes these statistics per control group;

Periods: The number of periods where processes in the
control group have been active and executing.

Periods throttled: The number of the periods where the
control group has been throttled, i.e., stopped from running
due to using too much CPU time on one or more logical
Linux CPU.

Time throttled: The total time the control group has spent
in throttled, i.e., stopped from executing due to using too
much CPU time, summed across all logical Linux CPUs.

2) Enforcement: The Linux scheduler itself enforces the
CFS Bandwidth control. If the quota is set to unlimited, all
bandwidth control accounting for the given control group is
disabled. The enforcement is divided into two main parts,
which exists on a per control group basis;

e The global pool: The global pool, an integer protected by a
spinlock, holds the runtime available for use. It is filled/set
to the given quota at the beginning of each period. When
the global pool is zero, there is no more runtime available in
the current period. The global pools exist per control group.

e The local pool: Each logical Linux CPU has a local pool
that is used to account for the runtime available and used.
Such local pools exist per logical Linux CPU in each control

group.
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Linux CPUs.

When a process in a Bandwidth Control enabled cgroup
has been executed for a given amount of time, that time
is removed from the corresponding CPU local pool. This
accounting happens either i) when the process is swapped out
or ii) on scheduler ticks while the process is running. For
example, Figure |3| shows the Global and Local Pool runtimes
of a cgroup. Local Pool for logical Linux CPU 0 and CPU 2
have Sms remaining while only 1 ms remains for CPU 1 and
CPU 3. If a local pool runs out of its allocated runtime, the
scheduler needs to acquire more runtime. To do so, it will try
to acquire the lock protecting the global pool and then take
an amount from it that can make the local pool equal to a
slice. The value of a slice is a system-wide value that system
administrators can configure at runtime, depending on use, and
defaults to 5ms. Given this default slice value, the Remaining
time in Figure [3| suggests that, the processes in CPU 0 and
CPU 2 have not executed after the last refill while processes
in CPU 1 and CPU 3 have executed for 4ms each.

When the local pool of a logical Linux CPU does not have
any runtime remaining and it is unable to refill from the global
pool, the Linux CPU will be throttled. The scheduler will
then mark all the scheduling entities in the hierarchy under
that logical CPU as throttled, making sure they will not be
scheduled. This will happen per local pool, and throttle of
one local pool does not mean that other local pools will be
throttled. In the next period, the timer responsible for refilling
the global quota will then try to distribute the newly released
quota between the throttled local pools to make them able to
run again. When the throttled local pools are filled, they will
be unthrottled, and the scheduler will mark their processes as
ready to schedule again.

III. LIMITATIONS OF LINUX CFS BANDWIDTH CONTROL

We observe that the Linux CFS Bandwidth Control mecha-
nism has two major limitations: i) Unnecessary throttling and
ii) high overhead.

A. Unnecessary Throttling

As seen in section as long as a local pool has a positive
amount of runtime remaining, it is allowed to continue running

one of its child processes. However, we observe that, due to the
runtime accounting mechanism of Linux Bandwidth Control,
local pools often end up with substantial amount of negative
runtime available. Especially for highly threaded applications
running simultaneously on multiple logical Linux CPUs, the
accumulated negative runtime can become very significant
compared to the total quota per period.

A local pool with negative runtime signifies that a logical
Linux CPU has run for more time than it was originally
allocated. When such a local pool refills from the global
pool, it has to pay back its negative runtime to compensate
for the extra runtime that is has already used. For example,
with a 5ms slice, when a local pool with —1ms runtime is
refilled from the global pool, the 1ms is first detected from
the global pool before refilling the local pool with 5ms. If
this refill happens during the same period in which the extra
1ms runtime was consumed, then the negative runtime is
compensated correctly and no unnecessary throttling happens.
However, if we have already entered into a new period at the
point of this refill, then the debt is paid back using the quota
from the new period, even though the extra runtime was used
in the previous period. Consequently, the new period sees a
reduced quota which often leads to processes being throttled at
the end of the period, even though they have used less runtime
in the new period than the quota.

Next, we discuss the sources of negative runtimes and how
they lead to unnecessary throttling, in details.

1) Unnecessary throttling due to negative runtimes: The
two most important parameters for runtime accounting, and
responsible for negative runtimes, are: i) scheduler tick interval
and ii) slice length, i.e., maximum runtime in local pool. The
scheduler tick interval, also called a jiffy, is important because
the runtime accounting happens only on scheduler ticks, in
addition to process swapping. Linux supports 1ms, 3.33ms,
4ms, and 10ms scheduler tick intervals. If a local pool has less
runtime remaining than the scheduler tick interval, running a
process from such a pool can result in negative runtime in
the local pool. For example, consider a 4ms jiffy and a local
pool with 1ms remaining runtime. Running a process from
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this local pool can result in negative runtime depending on
when the last scheduler tick arrived. If the process is scheduled
at tick, the next tick will arrive in 4ms and that is when the
bandwidth control will check if there is still runtime remaining
in the local pool to continue executing the process. However, at
the next tick, the process would already have executed for 3ms
extra time as the pool has only 1ms remaining. Consequently,
the local pool will be left with —3ms.

The other essential parameter for runtime accounting is slice
length, i.e., the amount of runtime a local pool tries to get
when refilling from the global pool. The slice length is a
compromise between increased accounting overhead and fine-
grained consumption [7]. A large slice length reduces com-
munication between the local and global pools because local
pools would need fewer refills, thereby reducing accounting
overhead. More importantly, fewer refills result in smaller
accumulated negative runtime because a local pool’s remaining
runtime can become negative only close to refills when the
remaining runtime is less than scheduler tick interval. On the
other hand, large slice lengths also increase the likelihood of
local pools taking more runtime from the global pool than
they can use for the rest of the period, possibly starving and
throttling other local pools. The default slice length in Linux
is dms.

To better understand how negative runtimes lead to throt-
tling, Figure 4| presents an example of runtime accounting of
one process executing over three periods. The example uses
a default slice length of 5ms and a scheduler tick interval of
4ms. Further, both period and global quota are 10ms each,
i.e., after a period of 10ms, the global pool is refilled with
10ms runtime. As the figure shows, the first scheduler tick,
tick,—o, arrives at t=0. At this point, the local pool gets 5ms,
i.e. slice length, runtime from the global pool which is also
left with 5ms of remaining runtime. At the next scheduler
tick, tick,—1 at t=4ms, the local pool still has 1ms remaining
runtime, so the bandwidth control keeps executing the process.
However, as the next tick, tick,,—2, comes at t=8ms, the local
pool at this point has accumulated —3ms of runtime as it
has run for 4ms since the last tick whereas it had only 1ms
of runtime available. The local pool is then refilled from the
global pool. However, before the refill, the —3ms of runtime
is first compensated and the global pool is left with 2ms. As
a result, the local pool gets refilled with only 2ms.

At 10ms mark, the second period starts and the global
pool is refilled with 10ms; however, the local pool remains
unchanged at this point. The next scheduler tick, tick,—s,
arrives at t=12ms and the local pool has accumulated —2ms
runtime at this point as it was refilled with only 2ms at
the last scheduler tick. Consequently, the —2ms runtime is
compensated from the global pool before filling the local
pool with 5ms runtime, thus leaving the global pool with
3ms remaining runtime. At the next scheduler tick, tick,—q4
at t=16ms, the local pool still has 1ms runtime reaming, so
the process keeps executing until the next tick at t=20ms and
the local pool accumulates —3ms by then. At t=20ms, the
third period starts, the global pool is refilled with 10ms, and
the —3ms of the local pool are compensated. Notice that,
in the prior two cases of negative runtime compensation, the
negative runtime was compensated from the global pool of the
same period in which the negative runtime was accumulated.
However, at t=20ms, the negative runtime was accumulated in
second period whereas it is compensated from the global pool
of the third period. Therefore, it leads to throttling towards the
end of the period.

After compensating the —3ms runtime at t=20ms, the local
pool is refilled with 5ms, thus the global pool is left with 2ms
runtime. At the next scheduler tick, tick,—g, the local pool
still has 1ms remaining runtime, thus the process continues
to execute until tick,,—7. At this point, the local pool has again
accumulated —3ms runtime. However, the global pool has
only 2ms runtime remaining. Therefore, the local pool cannot
be refilled and the process is throttled until the end of this
period. Notice that the process has run only for 8ms in the
third period instead of full 10ms of global quota. However,
it has been throttled for 2ms because the negative runtime
accumulated in the second period is compensated from the
global quota of the third period.

In this simple example, the negative runtimes might be
avoided by making the slice length a multiple of scheduler tick
interval. However, in practice, the scheduling environment is
much more complex and such a solution does not always work.
For example process terminations and new process starts are
not always aligned with scheduler ticks. Therefore, if a process
starts between scheduler ticks, it’s local pool will still end up
accumulating negative runtime despite the slice length being a
multiple of scheduler tick interval. The other reasons include



TABLE II: Baseline results for Sysbench CPU Benchmark with 300 000 events with three processes, on three exclusive logical

Linux CPUs. Mean values of 10 executive runs.

Period Quota Periods  Periods Throttled  Throttled Ratio  Throttled Time
N/A Unlimited 734 0 0% 0 ms

100 ms 300 ms 735 50 6.8% 94 ms

50 ms 150 ms 1486 661 45% 2 457 ms

10 ms 30 ms 7840 3835 49% 14 608 ms

each local pool potentially having a hierarchy of processes to
schedule instead of just one, the quota to period ratio being
fractional, and so on. Also, the runtime accounting is not the
only factor in choosing scheduler tick frequency. As a result,
making slice length a multiple of scheduler tick interval is not
sufficient to eliminate negative runtimes.

2) Unnecessary throttling due to updating Bandwidth Con-
trol configuration: Another source of throttling is when the
bandwidth control is configured from userspace. When a user-
space application updates the CFS bandwidth configuration,
the controller will reset all local pools to zero and refill the
global pool even though the new values are the same as the
old values. In such a case, depending on how long the slice is,
it can cause throttling. System daemons or container runtimes
often set these values regularly to ensure the values are correct.

3) Performance loss due to throttling: Each time a local
pool gets throttled, its processes will have to wait before
starting executing again. This effectively means that if a
process gets throttled for, say, 30ms, it will take at least 30ms
longer to finish. To investigate the amount of throttling in CPU
intensive applications, i.e., how many times one or more local
pools are throttled and for how long, we use the Sysbench
CPU benchmark [8].

Table shows the number of periods where processes
were throttled and the total time spent while throttled for
different values of period. As the table shows, the number
of throttled periods and the throttling times increase as we
reduce the bandwidth control period while maintaining the
CFS bandwidth quota to period ratio, the number of running
processes, and logical Linux CPUs. With unlimited quota,
i.e. when bandwidth control is disabled, we do not see any
throttling as expected. With a 100ms period, we observe
throttling in about 6.8% of periods. As we reduce the interval
to 10ms, we observe throttling in about 49% of periods. To
better understand the impact of throttling on performance, we
also evaluate the amount of time spend throttled in addition to
the number of periods experiencing throttling. As the table
shows, the time spent throttled increases from 94ms with
100ms period to about 14 seconds with 10ms period. These
results show that throttling is a severe performance bottleneck
as about 18.6% of the execution time is spent throttled with
10ms period. Therefore, any technique to reduce this throttling
can provide significant performance benefits.

B. Scheduler Overhead

Linux bandwidth control uses a global spinlock to protect
the global pool. This spinlock is one of the most significant
factors that affects the overhead introduced by bandwidth

void refill_global_pool (cfs_global_pool global_pool)
{
global_pool->runtime = global_pool->quota;

}

Listing 1: Original global pool refill logic.

control. This is because the spinlock has to be acquired each
time the global pool is modified, for example when the global
pool is refilled at the beginning of a period or when local pools
are refilled from the global pool. The overhead increases with
the number of logical Linux CPUs running processes below
the same control group with bandwidth control enabled.

Although spinlocks are quite frequently used in kernel
code, they have some overhead. However, as long as there
are no (or few) other users waiting for the spinlock, the
overhead is negligible. The major bottleneck occurs when
there are many users, i.e. logical Linux CPUs in our case,
trying to acquire the same lock simultaneously; something
potentially happening multiple thousand times per second in
Linux bandwidth control.

IV. MITIGATING THE LIMITATIONS

This section proposes different solutions to mitigate the
bandwidth control limitations discussed in the previous sec-
tion. We first introduce two mechanisms to avoid throttling
and then discuss a technique to reduce the bandwidth control
overhead.

A. Mitigating unnecessary throttling

We propose the following two mechanisms to mitigate the
unnecessary throttling:

1) Slush fund for compensating negative runtimes: As dis-
cussed in Section throttling occurs when the negative
runtime of a local pool in one period is compensated from the
global pool of the next period. We observe that in the majority
of cases the negative runtime can simply be compensated from
the global pool of the period in which the negative runtime is
accumulated as the global pool has sufficient runtime available
at the end of the period. The reason it is compensated from the
global pool of the next period is that once we enter the next
period we lose the information of whether any runtime was
left in the previous period or not. This is because, as the code
listing [T shows, the remaining runtime quota from the previous
period is discarded during a refill. We define this runtime as
the runtime lost on quota refilling.




void refill_global_pool (cfs_global_pool global_pool)
{
global_pool->slush_fund = global_pool->runtime;
global_pool->runtime = global_pool->quota;
global_pool->period_nr += 1;

Listing 2: Proposed global pool refill logic.

int refill_local_pool_with_slush(cfs_global_pool
global_pool, cfs_local_pool local_pool)
{
if (global_pool->period_nr > local_pool->period_nr) {
int refill = min(global_pool->slush_fund,
—-local_pool->remaining_runtime) ;
global_pool->slush_fund -= refill;
local_pool->remaining_runtime += refill;
local_pool->period_nr = global_pool->period_nr;
}
return refill_local_pool (global_pool,
}

local_pool);

int refill_local_pool (cfs_global_pool global_pool,
cfs_local_pool local_pool)
{
int target_runtime = slice_length;
int amount = (target_runtime
- cfs_rg->remaining_runtime);
atomic_fetch_and_subtract (amount,
&global_pool->runtime) ;

int old =

if (old < amount) {
if (old <= 0){

amount = 0;
} else {
amount = old;

}
}
local_pool->remaining_runtime += amount;
return local_pool->remaining_runtime > 0;

Listing 3: Local pool refill using slush fund.

To mitigate this issue, we propose to account for negative
accumulated runtime in local pools from the global pool of
the same period in which negative runtime was accumulated,
if possible. To do so, we introduce a new attribute to the global
pools, called slush fund. During refill of the global pool,
we save the remaining global pool runtime of previous period
to the slush_fund, before refilling the global pool again,
as seen in listing [2|

We also update the local pool refill mechanism accordingly.
On a local pool refill, we use this slush fund to account for
the negative accumulated runtime we might see on the first
refill in a new period, as shown in listing [3]

As this technique compensates the negative runtime using
slush fund instead of the global pool of the new period, the
new period does not lose it’s runtime and, hence, does not
need to throttle the processes.

2) Modified CFS Bandwidth Update Logic: As discussed in
Section updates to bandwidth control configuration can
also lead to throttling. To avoid such throttling, we propose
to modify the configuration update logic to ensure that no
configuration updates are done unless strictly necessary. In
order to keep this simple, we first verify whether or not the
old and new configuration parameters are same. And if they
turn out to be the same we convert the update to a no operation
so that it doesn’t interfere with the normal operation.

When either the period or the quota is updated with a
new value, the behavior will continue as before. Due to how
high-resolution timers are implemented in Linux, changing the
period will only affect the period length of the next period,
not the current one. In the same way, setting a new value for
the quota will result in a quota refill with the new quota and

Listing 4: Atomic implementation refill_local_pool.

a reset of all the local pools.

B. Reducing bandwidth control overhead

As seen in section the global spinlock used to protect
the global pool is one of the most significant factors contribut-
ing to the bandwidth control overhead. We observe that most
processor architectures implement atomic instructions that
allow for atomic modification of memory. For integer values,
these instructions can be used to increment or decrement the
value, together with getting or setting the value. As the most
essential part of the bandwidth control implementation is the
move of quota from a global to local pools, we propose a
new mechanism using atomic variables instead of the current
spinlocks as shown in listing

Linux has a wrapper for atomic variables via the atomic_t
and atomic64_t types [9], together with implementations for
each supported architecture. Architectures without native sup-
port for atomic variables fall back to transparently using a
spinlock, i.e., there is no performance penalties for systems
without such instructions. In order to use these types, we
introduce an atomic 64 bits integer on the global pool. This
replaces the old non-atomic version.

V. EVALUATION

To evaluate our proposals, we use a desktop machine
running Arch Linux [10] on an Intel® Core™i5-4670K with
4 non-SMT cores clocked at 4.0GHz, with a total of 24GB
of memory. The kernel version used is a self compiled Linux
kernel, with version v5.12.0. All experiments are performed
on an otherwise idle system and on a set of exclusive logical
Linux CPUs using the cpuset cgroup controller [[11]. The
experiments for evaluating the bandwidth control overhead are
performed on a server with two Intel Xeon Silver 4114, each
with a total of 20 SMT threads, clocked at 2.2GHz, and with
a total of 128GB of memory.
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Fig. 5: Sysbench CPU Benchmark result, showing periods
throttled with the given changes. All results with a 100ms
CFS Period and 300ms quota, and three threads. Values based
on 30 consecutive runs.

A. Evaluating throttling mitigation

To assess the effectiveness of the proposed techniques in
mitigating throttling, we use the Sysbench CPU benchmark
[|8]. Tt consists of a CPU bound algorithm that calculates prime
numbers, and is used as a long lived CPU bound benchmark.
The benchmark takes number of threads and number of events
(default 1000) as input and it outputs the time spent doing all
the computations. We evaluate the following three designs:

o Baseline: The unmodified bandwidth control in Linux
Kernel.

¢ Slush: Using slush fund to account for previous period’s
negative runtimes, as discussed in section

o All: In addition to slush fund, this desing also includes
the modified bandwidth update logic, as discussed in

section [V=A2] .

We first evaluate the reduction in the number of periods
experiencing throttling and then the reduction in execution
time.

1) Reduction in throttled periods: Figure [5] shows the
throttled periods, absolute and percentage, experienced by
different mechanisms with a 100ms period and 300ms quota,
and collected over 30 runs. The figure shows that the baseline
experiences a substantial amount of throttling as it throttles
in about 5%-10% of the periods. In contrast, slush is able
eliminate this throttling by using the slush fund to account for
the negative runtimes of the previous period. As slush itself is
very effective, applying the modified bandwidth update logic,
i.e. All in Figure [5] does not provide any additional benefit as
there is no opportunity left for it.

As discussed in section the throttling increases as
we reduce the CFS bandwidth control period. Figure [6] shows
the throttled periods, absolute and percentage, experienced by
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Fig. 6: Sysbench CPU Benchmark result, showing periods
throttled with the given changes. All results with a 10ms CFS
Period and 30ms quota, and three threads. Values based on 30
consecutive runs.

different mechanisms with a 10ms period and 30ms quota,
and collected over 30 runs. As the figure shows, the base-
line experiences throttling in substantially higher number of
periods than it did with 100ms period in Figure [5] However,
slush is able to significantly reduce the number of throttled
periods. Even though it does not entirely eliminate throttled
periods, as was the case with100ms period, it does reduce the
number of periods where throttling occurs from about 50%
to less than 1%. Furthermore, when we apply the modified
bandwidth update logic on top of slush, i.e. All in Figure [6}
we see a further reduction in throttled periods. In addition, we
observe that A/l delivers a much lower variance compared to
Slush.

2) Runtime impact: To assess the performance improve-
ments brought by the reduced throttling, we present the total
execution time in Figure [7] for 100ms period and in Figure [§]
for 10ms period. As the figures show, the baseline bandwidth
control with 10ms period requires more execution time than
with 100ms period because of the higher throttling at 10ms
as presented in Figure [5] Figure [6| and Table [l Figures [7] and
[§ also show that our proposed mechanism, All, significantly
reduces the execution time compared to baseline, concretely
about 5% reduction with 100ms period and about 12% reduc-
tion with 10ms period. These results show the effectiveness
of the proposed mechanism in reducing the execution time by
avoiding throttling.

B. Evaluating bandwidth control overhead

To assess the effectiveness of the proposed techniques in
reducing bandwidth control overhead, we use the Sysbench
Thread benchmark [|8)]. It is a thread-based scheduler bench-
mark comprised of a set of locks that is locked and unlocked
multiple time at each iteration, and results in a high amount of
short program executions and communication between threads.



W
(@)

w
Ne)
.

w
J
|

Execution time (lower is better)
W
oo

w
(@)
.

4y +

4
§
~N
9
¥
Q)

Configuration

Fig. 7: Sysbench CPU Benchmark result showing execution
time with 100ms period. Values based on 30 consecutive runs,
all using two threads.

It is a commonly used benchmark for measuring scheduler
overhead. We use a 100ms period, together with a quota
that will never be reached which ensures that we are never
throttled. This makes sure that we measure only the scheduler
overhead without any interference from throttling. We evaluate
the following three different slice lengths:

o 5 ms: The default value
e 1 ms
e 1 us: The smallest possible value

The 1ps slice length is especially interesting as it will
significantly increase the lock congestion allowing us clearly
differentiate the overheads of the standard spinlock based
approach and our proposed atomic variable approach.

Figure [9] shows the overall execution time for spinlock
and atomic variable based approaches with different slice
lengths. In addition, it also shows the execution time without
bandwidth control, i.e., when there is no overhead. As the
figure shows the difference between spinlock and atomic
variable based approaches is clearly visible at 1 ps slice length
where our proposed atomic variable approach brings down
the execution time from 210 seconds to 28 seconds, i.e. 7.5x
performance improvement over spinlock based approach. By
defining the overhead as the time spent over No bandwidth
control (as it does not incur any overhead), we observe
that for 1us slice length, the overhead is 190 seconds for
the spinlock implementation and 8 seconds for the atomic
variable implementation, i.e., atomic implementation reduces
the overhead by nearly 24x.

At slice lengths other than 1us, both spinlock and atomic
variable based approaches perform similar. This is because
we used only 38 threads in our experiments which are not
enough to sufficiently stress the bandwidth control at these
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Fig. 8: Sysbench CPU Benchmark result showing execution
time with 10ms period. Values based on 30 consecutive runs,
all using two threads.
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Fig. 9: Sysbench Threads Benchmark results. 38 threads on
38 logical Linux CPUs, 500 000 events and 10 locks. Values
based on 30 consecutive runs.

slice lengths, hence a spinlock based approach works just fine.
However, with 1 us slice length, the waiting time to acquire
the spinlock becomes very high even with 38 threads. Our
atomic variable approach gracefully handles this pressure and
keeps the overhead to minimal as is suggested by the results



in Figure O] As 1pus slice length is unlikely to be commonly
used in practice, we observe that as the number of threads
increases the pressure on spinlock starts to increase at higher
slice lengths as well, thus increasing the overhead. Hence,
the atomic variable based approach is likely to perform better
than spinlocks in heavily loaded systems even at higher slice
lengths.

VI. CONCLUSION

This work investigated the bandwidth control mechanism of
Linux Completely Fair Scheduler (CFS). CFS is an integral
component of Linux process scheduling and is key to ensur-
ing fair allocation of hardware resources among completing
processes. CFS bandwidth control sets the maximum limit on
the resources that a process can use. Setting the upper limit
helps CFS to discover badly behaving applications and hard
cap them to limit the overall damage to the system and other
applications, thereby improving overall fairness.

Despite providing excellent fairness, our analysis revealed
that the bandwidth control has a major limitation that it
can unnecessarily throttle processes which results in poor
application performance. Further investigation revealed that
the root cause of this limitation is the CPU runtime accounting
mechanism of bandwidth control. This mechanism is responsi-
ble for tracking if a process has reached it maximum allocated
limit. In addition to unnecessary throttling, we also found that
the overhead of bandwidth control can become significantly
high because of the use of spinlocks.

To mitigate the unnecessary throttling, we proposed to
use slush fund to compensate for the negative accumulated
runtime of a cgroup in a period. Since the negative runtime is
compensated from the slush fund, the global quota of the new

period remains intact. As a result, the bandwidth control does
not need to throttle the processes. Our results show that we
are able to eliminate nearly all throttling, thus providing up
to 12% performance improvement. To reduce the bandwidth
control overhead, we proposed to use atomic variables instead
of spinlocks. Our results show that the atomic variable based
approach reduces the overhead by up to 24x compared to
spinlocks.
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