EXISTENCE OF DAVEY-STEWARTSON TYPE SOLITARY
WAVES FOR THE FULLY DISPERSIVE
KADOMTSEV-PETVIASHVILII EQUATION

MATS EHRNSTROM, MARK D. GROVES, AND DAG NILSSON

ABSTRACT. We prove existence of small-amplitude modulated solitary
waves for the full-dispersion Kadomtsev—Petviashvilii (FDKP) equation
with weak surface tension. The resulting waves are small-order pertur-
bations of scaled, translated and frequency-shifted solutions of a Davey—
Stewartson (DS) type equation. The construction is variational and
relies upon a series of reductive steps which transform the FDKP func-
tional to a perturbed scaling of the DS functional, for which least-energy
ground states are found. We also establish a convergence result showing
that scalings of FDKP solitary waves converge to ground states of the
DS functional as the scaling parameter tends to zero.

Our method is robust and applies to nonlinear dispersive equations
with the properties that (i) their dispersion relation has a global min-
imum (or maximum) at a non-zero wave number, and (ii) the associ-
ated formal weakly nonlinear analysis leads to a DS equation of elliptic-
elliptic focussing type. We present full details for the FDKP equation.

1. INTRODUCTION

1.1. Background. In this article we consider the (2 4 1)-dimensional full-
dispersion Kadomtsev—Petviashvili (FDKP) equation

vy + m(D)v, 4+ 2vv, =0, (1.1)
where the Fourier multiplier operator m(D) is given by
h(D)\? /.  2D2\?
ta 2 2
m(D) = (1+B[D|2)% tanh(|D}) 1—i——22 (1.2)
D Dy

with D = —i(0,, 0y). This equation was introduced by Lannes [15, chapter
8] (see also Lannes & Saut [16], and Pilod et al. [22] for a discussion of
the initial-value problem) as a model equation for weakly transversal, small-
amplitude, three-dimensional water waves which preserves the dispersion
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FIGURE 1. The dispersion relation (1.3) for 0 < 8 < % (left) and B8 > % (right)

relation

lw) = (1+ fu?)’ (““h“")) (13)

w

for linear sinusoidal water waves with speed ¢ and wave number w; here the
Bond number § is a dimensionless parameter measuring the relative strength
of surface tension. The FDKP equation is an alternative to the standard

KP equation
1

(Ut — 200, + %(/3 - §)'Umm:)x — VUyy = 0,

which is derived from (1.1) (or directly from the water-wave equations) by
making an additional long-wave approximation. Nontrivial solutions to the
above equations are termed steady waves if they depend upon x and ¢ only
through the combination = — ct, and solitary waves are steady waves which
are evanescent in all spatial directions.

For 0 < B < % (‘weak surface tension’) the function ¢ = c(w) has a
positive global minimum ¢y = ¢(wp) > 0 for some wy > 0 (see Figure 1,
right), and solitary-wave solutions to (1.1), that is, solutions of the form

’U(l‘, Y, t) = U(l‘ - Ct7 y)
which satisfy
—cu+m(D)u +u* =0, (1.4)

can be obtained formally by a modulational ansatz. We write ¢ = co(1—¢2),
substitute the formal series expansion

U(ZL‘, y) = Ul(l',y) + Ug(l',y) + u3($7y) + ey
where
ui(z,y) = Re (EC(E:U, £y) exp(iwox)),

2
us(z,y) = Re (az S Gojlen,ey) exp(ijwox)> ,

J=0

3
us(x,y) = Re (83 Z (35(ex, ey) exp(ijwmc)),

j=0
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FIGURE 2. Sketch of a modulated solitary wave of DS type

into equation (1.4) and equate powers of . Writing n(k) = m(k) — cg, so
that n(wp,0) = 0 and Ok, n(wo,0) = 0, we find that the O(e) equation is au-
tomatically satisfied, while the conditions that the coefficients of exp(2iwgz)
and exp(Oiwpz) in the O(£?) equation vanish are respectively

1
1 D2 2
C2,2:—mC27 C20=—35 <<1+D§2>2 —CO> ¢I?

(the coefficient of exp(iwpz) vanishes automatically). The coefficient of
exp(iwpz) in the O(g3) equation is

_QGIsz - QCLQny + 2@3( —+ %CZQZ + CZOC =0,
where
a“= %8;3171(0()0,0), a2 = %algzn(w(]ao% az = iCO;

the condition that this coefficient vanishes is therefore that ( satisfies the
Davey-Stewartson (DS) type equation

2\ 5 -1
— alem - GQCZ/Z/ + GSC o W{U0,0) |<|2C B %C <(1 * %) - CO) |<|2 -0

(1.5)
Equation (1.5) is of elliptic-elliptic, focussing type, and a similar equation is
obtained from the water-wave equations by the same method. Variational
existence proofs for solitary-wave solutions to various classes of elliptic-
elliptic, focussing DS equations have been given by Cipolatti [4], Wang,
Ablowitz & Segur [25] and Papanicolaou et al. [21] (see Figure 2 for a sketch
of the corresponding function uq(x,y)). In this paper we rigorously estab-
lish the existence of small-amplitude solitary-wave solutions to the FDKP
equation which are approximated by scaled solutions of (1.5).

The formal modulational ansatz above also applies to the water-wave
problem with weak surface tension in (1.3), and similarly leads to a DS equa-
tion. This problem was recently treated by Buffoni, Groves & Wahlén [3],
who confirmed the validity of the DS approximation for solitary waves.
That paper is different from, but motivated by, a series of variational tech-
nique existence results on the full water-wave problem, including Groves
& Wahlén [11] on two-dimensional gravity waves including vorticity effects,
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and Groves & Sun [10] and Buffoni et al. [2] on three-dimensional waves
with strong surface tension. In our article we place the newer method from
reference [3] in a broader context, showing how it can be applied to equa-
tions where the modulational ansatz leads to an elliptic-elliptic focussing DS
equation and giving full details for the FDKP equation as a representative
example. As part of our analysis we also give an alternative proof of the
existence of solitary-wave solutions to DS equations of this type.

In the case 8 > % (‘strong surface tension’) the function ¢ = ¢(w) has a
global minimum ¢(0) = 1 at w = 0 (see Figure 1, left) and solitary waves are
obtained formally using a long-wave ansatz. Writing ¢ = 1 —&? and formally
expanding u in a series

u(z,y) = e*C(ex, %) + e'Golex, e%y) + - -,

one finds from (1.4) that ¢ satisfies the steady elliptic KP (‘KP-I’) equation,
which has an explicit solitary-wave solution. Ehrnstrom & Groves [7] have
confirmed the validity of this approach by showing that the FDKP equation
indeed has solitary-wave solutions with speed slightly less than unity which
are approximated by scaled KP-I solitary waves.

The formal derivations of ‘fully reduced’ model equations are analogous
to normal-form approaches used in local bifurcation theory, where the struc-
ture of the linear part of the equation is used to derive the canonical form of
the nonlinear part. It is for this reason that fully reduced model equations
derived from their full-dispersion counterparts are of the same type as the
corresponding model equations derived directly from the water-wave equa-
tions. A necessary condition for local bifurcation is that the linear part of
the equation is not invertible, and the simplest case arises when its (non-
trivial) kernel is minimal. In the context of a solitary wave modulating a
periodic wavetrain with wave number wg (with wy = 0 for long waves) these
conditions state that the wave number-wave speed map ¢ = c(w) satisfies
d(wo) = 0 and that ¢ '{co} contains only +wp, so that ¢y = c(wp) is a
global extremum. Under these hypotheses the ansatze described above lead
to model equations of KP or DS type which have solitary-wave solutions if
the relevant ellipticity and focussing conditions are satisfied. It then remains
to confirm a posteriori by a rigorous mathematical method that the original
equation has a corresponding solitary-wave solution.

There are a number of existence theories for solitary-wave solutions to
(1 + 1)-dimensional full-dispersion model equations for water waves. Aug-
menting the Korteweg-de Vries (KdV) equation with the full-disperson sym-
bol (1.3) with 8 = 0, one obtains the Whitham equation (see Whitham [26,
section 13.14]). Small-amplitude solitary-wave solutions to that equation
approximated by scaled KdV solitary waves have been found by Ehrnstrom,
Groves & Wahlén [8] and Stefanov & Wright [23] (see also Hildrum [12] for
low-regularity versions of the equation and Truong, Wahlén & Wheeler [24]
for large-amplitude solitary waves). The gravity-capillary version of the
Whitham equation, which is obtained by setting Do = 0 in (1.2), was treated
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by Arnesen [1], Maehlen [17], Johnson & Wright [14] and Johnson, Truong &
Wheeler [13]. For this equation the modulational ansatz yields the focussing
nonlinear Schrodinger (NLS) equation for 5 < %, while the long-wave ansatz
leads to a KAV equation for 8 > 1/3, and these papers indeed confirm the
existence of small-amplitude solitary-wave solutions approximated by scaled
NLS or KdV solitary waves. Note that the long-wave ansatz, while still lead-
ing to the KdV equation, is insufficient in the case 8 < % since ¢~'{1} also
contains nonzero wavenumbers (see above); solitary waves are subject to
periodic disturbances at these wavenumbers and form generalised solitary
waves which decay to periodic ripples at large distances (see references [13]
and [14]). Small-amplitude solitary waves for Whitham—Boussinesq equa-
tions and full-dispersion Green—Naghdi equations have been discussed in a
similar vein by respectively Nilsson & Wang [18], Dinvay & Nilsson [5] and
Duchéne, Nilsson and Wahlén [6]. Other (2 + 1)-dimensional full-dispersion
model equations have also been introduced, in particular systems of DS and
Benny—Roskes type (see Lannes [15, chapter 8], Obrecht [19] and Obrecht &
Saut [20]); at the time of writing it is unkown whether they admit solitary-
wave solutions.

1.2. Methodology. Our method is variational. The steady FDKP equa-
tion (1.4) (with ¢ = c(1 —€?)) and steady DS equation (1.5) are the Euler—
Lagrange equations for the variational functionals

Z.(u) = = /R2 (um(D)u + co(e* — 1)u?) dody + ;/W uddrdy.  (1.6)

70) = [ (a1 16 + 021G, + as 61 = sy 1) dody

1 —1
1 2k2\ 2 -
‘8/R2(<1+k§> —co> RO (L7)

which we study in the completion X of the Schwartz type space 0,S(R?)
with respect to the norm

k2 k3
o= [ (1 ) R ak s> 8,
R2 L

and the standard Sobolev space H'(R?) (the choice of function spaces and
related technical details are discussed in Section 2). We find a nontrivial
critical point of Z. by perfoming a rigorous local variational reduction which
converts it to a perturbation of 7y and employing a novel method for finding
critical points of 7y, which is robust under perturbations.

The modulational ansatz suggests that the Fourier transform of a solitary
wave (i.e. a nontrivial critical point of Z.) is concentrated near the points
(wo,0) and (—wp,0). We therefore decompose

U = Uy + u2,
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AF2

FIGURE 3. The bi-disc B = By U B_ in Fourier space

where u; = x(D)u € X7 := x(D)X, ug = (1 — x(D))u € X2 := (1 —x(D))X
and Y is the characteristic function of the set B shown in Figure 3. Observe
that w € U is a critical point of Z,, i.e.

dZ.[u](v) =0
for all v if and only if
dZ. [u1 + UQ](’Ul) =0, dZ. [u1 + 'LLQ] (’Uz) =0

for all v1 € X7 and v € X5. We proceed by applying a Lyapunov—Schmidt
type argument; the second of these equations can be solved for uo as a
function of w; for sufficiently small values of ¢, and we thus obtain the
reduced functional

Is(ul) = 1.5(’11,1 —|-UQ(U1)). (18)
In the derivation of (1.8) we take u; € Uy, where

Ui = {u1 € EA(O): ‘UI‘H&)O < €A},

B (0) is the closed ball of radius A in X7, and

1

2
lurlpn = (/ (k1| = wo)? + K3) | [ dk)
wo R2

is the frequency-shifted analogue of the homogeneous H'(R?)-norm. This
construction, which deviates from the approach of Buffoni, Groves & Wahlén
[3] necessitating a scaled H'(R?) norm for u, has the advantage of indicating
clearly that |u| i, is the ‘small quantity’ in the construction. It also allows

the use of standard Gagliardo—Nirenberg inequalities, in particular to derive
the estimate
0 1-6
|u1’oo S |u1’L2 |u1‘H},0 ) 6 € (0,1),

in Lemma 2.5. We find that
_ 140 1-0
Jug(u1) |y S &' Jualf% |ul|H3,0 :

with corresponding estimates for the derivatives of us. Applying the DS
scaling

ui(z,y) = Ree(((ex, ey) exp(iwoz))
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and noting that |u1(¢)|;2 = (]2, |u1(<)|H}JO = €|z, we ultimately find
that
e 1o (w) = T(C),
where
To(0) = To(¢) + Oe2[¢ln)
with corresponding estimates for the derivatives of the remainder term; each
critical point ¢ of T with € > 0 corresponds to a critical point u; of Z. which

in turn defines a critical point u; 4+ ua(u) of Z..
We study T as a functional on the set

Ba(0) = {C € Hz(R?): [Cl < M},

where H1(R?) = x.(D)H'(R?), x is the characteristic function of the disc
B;/c(0,0) containing the support of ¢, where § is an appropriately fixed
radius (see (2.3)) and M is large enough that Bjs(0) contains nontrivial
critical points of 7;; the constant A defining U; is chosen proportionally to
M. Note that our solutions to the FDKP equation have small amplitude
and finite but not necessarily small energy because

lulrz = |ur|z2 + |ualpz = 2|¢| g2 + O ?)
and
oo S [t |oe + Uzl S O(17)

where we have estimated

lug(u1)|p2 < |uz(u1)|x
and
[uz(u1)loo S |ug(ur)|psme) < luz(u)|x.

In Section 4 we present a short proof of the existence of a critical point
(oo Of T2 by restricting it to its natural constraint set

Ne ={¢ € Bu(0): ¢ # 0,dTe[¢](C) = 0},

noting that the critical points of 7 coincide with those of 7:|n.. We
strengthen the result in Section 5 by showing that (., is a ground state,
i.e. a minimiser of 7z|n.. The theory also applies to the case ¢ = 0 (and
thus gives an alternative variational theory for solitary-wave solutions to the
DS equation (1.5)). We exploit this fact to show that the critical points of
Te converge to critical points of 7y as ¢ — 0.

We conclude this section with a summary of our main results.

Theorem 1.1. There exists €, > 0 with the following properties.

(i) (The DS case.) For each € € [0,e,) there is a minimising se-
quence {(,} € HY(R?) for T. over its natural constraint set. This
sequence satisfies limy, o0 |dT:[Cn]| g1sr = 0 and converges weakly
in H'(R?) and strongly in L>°(R?) to a ground state (so.
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(ii)) (The FDKP case.) Suppose thate € (0,e4). There is a mapping
¢ — u(C) such that {u((,)} converges weakly in X and strongly
in L=(R?) to a nontrivial critical point us = u((s) of Ie.

(iii) (The limiting case.) Let {e,} C (0,ex) be a sequence with
limy, 00 €, = 0 and let (°* be a ground state of Tz, . There exists
a ground state (* of Ty such that {(°"} converges (up to subse-
quences and translations) in H'(R?) to *.

2. FUNCTION SPACES

Let S(R?) be the Schwartz space of smooth, rapidly decaying functions,
and let 9,S(R?) = {9,0: ¢ € S} be the space of x-derivatives of such
functions. The energy space Y for the FDKP functional Z; is the completion
of 9,S(R?) with respect to the norm

3
kol k|2 .
luf3 = /R2 <1 + T + ‘“ﬁ' la(k)|* dk,

while the energy space for the DS functional 7y is the standard Sobolev space
H'(R?). We shall need a smoother subspace X of Y with the property
that m(D)X < L?(R?) and consider the image of X under m(D) as a
separate space. To that aim, we introduce the completions X of 9,S(R?)
and Z =2 m(D)X of S(R?) with respect to the norms

2 k% k% 2s ~ 2
lul% :/ <1+2+2+|k] > la(k)|* dk, (2.1)
lly = [ b1+ 8 ) ) (22)

where s > % can be chosen arbitrarily. All function spaces in this article

should be considered complex-valued. (While the FDKP solution u is real,
the corresponding DS solution ( is in general complex-valued, as are some
of the Fourier transforms appearing throughout the paper.)

Lemma 2.1. One has the continuous embeddings
X =Y < L*(R?),
X < H*(R%) < H2(R?) — Z < L2(R?),
and
m(D)X — Z,
X - C™(R?) — Z,
for any integer m > s — %
Proof. The bilinear estimate is obtained by the calculation

juvly < Juol, g S ful g [olom S lulgs [olom < Julx [olon
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while the other results were proved by Ehrnstrém and Groves [7] (who use
the same definitions of X and Y). O

Remark 2.2. The calculation

Jur - unlg Slun - unl g Sl oy lunl oy Slualy - Junlx

yields the useful estimate
ur -+ unly S Jur
foruy, ..., u, € X.

Since n(D) = m(D) — ¢y we have the following corollary.

Corollary 2.3. The formula u +— —cu + n(D)u + u? defines a smooth and
weakly continuous mapping X — Z.

In accordance with the principle that there should be solitary-wave solu-
tions of the FDKP equation whose Fourier transform is concentrated near
the frequencies +wy, let

By = Bs(+wo,0) (2.3)
be discs of fixed radius § € (0, %) centered at (k1,k2) = (+wo,0), denote
their characteristic functions by y+, and set

B=B,UB_

and x = x+ + x—. The orthogonal decomposition

u =xD)u,  up=(1-x(D))u,
for functions u € L?(R?) induces the corresponding decomposition X =
X1 6@ Xo, where

X1 =x(D)X, Xp=(1-x(D))X,

and similarly for Y and Z. Note that the radius of B+ is chosen such that
the product u? belongs to Xz in spite of u; € X;. Our strategy consists of
reducing the main action of the FDKP equation to the low-frequency space
X1, thereby retrieving the DS equation (after a frequency shift). We now
prove that the operator n(D) = m(D) — ¢y from (1.5) is an isomorphism
on X, which in turn enables us to formulate the problem entirely in the
low-frequency space X;. Note that m(D) itself is not an isomorphism on
X2, and n(D) is not an isomorphism on all of X.

Lemma 2.4. The mapping n(D) is an isomorphism Xo — Zs.

Proof. According to Lemma 2.1, n(D) is bounded Xy — Zs, and we now
show that it has a bounded inverse. Let ¥ be the (broken) annulus

Y ={k¢B: ||kl —wo| < 3},
intersecting the bi-disc B (Figure 4). Using the linear wave speed
1
tanh 2
) = (14 At ()T,

w
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FIGURE 4. The set X in Fourier space

we expand n(k) = m(k) — ¢o as

2\ %
n(k) = c(|k]) (1+ 2:2) e

— (e(kl) - co) (1+2:;) +c0((1+2:§>é1>.

Because ¢y = ¢(wy) is the strict and unique minimum of ¢, and ¢(w) ~ /w
for large values of w, we have that

1 1 3
2k2 2 1 k2\ 2 |k|2
k) 2 (1 k l) >14+0klz([1+2) =1
for ||k| — wo| > g. If on the other hand k € X, then |k2| is bounded away
from zero and |k| is bounded from above, so that again

2k‘§> ko o o [kl2

k> (14—= 1 —_— 14+ —
””N( TR Tl ~ TR

A straightforward calculation now shows that
1+k2+k4+|k’ ( ) 2<1+|k|+k2‘k|2$—3
k2 k2 ~ ! ’

for k in the complement of B. O

Recall that H!(R?) is the energy space for the DS equation (1.5). One
could proceed by introducing the scaled version

o2 = [ ekl = )+ £) o

of the norm for this space, which is comensurate with the DS ansatz since
2 _ 142
v]Z = 3 |¢[ for

v(z, 2) = 3 Re((ex,e2) exp(iwo);
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the estimate

~

lur|Zm < €2 In(1 +72) |ual, (2.4)

for u; € X (see below) enables the use of fixed-point arguments to solve
locally for us € Xo in terms of u; € Xy when the latter is equipped with |-|..
This approach is used by Buffoni, Groves and Wahlén [3] in their study of the
water-wave problem. In this paper we do not use the scaled norm, taking
instead L?(R?) as our base space, and the analogue of the homogeneous
H'(R?)-norm, namely

1

2
lu| g = (/ (k1] — wo)* + K3) | |? dk)
“wo R2

as the ‘small quantity’. The following lemma presents a Gagliardo—Nirenberg
interpolation inequality which we use in place of (2.4).

Lemma 2.5. Fiz § € (0,1) and m € Ng. The estimate
. 9 —
[utlem S Jinlps S ferlge fual "
holds for all uy € X;.

Proof. Introduce the scaled H'(R?)-norm
w2 = [ @+ o2l - w0+ ) i i
R

for functions u; € X7 and parameter values o > 0. Since 47 is compactly
supported, we find that
2 L2
lutlgm < |07
<lu ‘2/ dk
= Jp 14 0 2((k | — w)2 + k)
So’ln(1+072) Jus |2
< 210 |y 2 (2.5)

~

Next note that
o' i, =~ o' |2 + 0 utl gy

and we now adjust o to the specific function u; to which the inequality
is applied. The function defined by the right-hand side of this inequality
attains its global minimum at

0 |“1\H3)0

o=—
1—0 fur|g2’

where it takes the value

1-6 —0
0 1-6 (7 1-6
(—129> |12 ‘UI|H3J0 + (7129> |u1}2 |UI‘H50 .
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Hence, for this choice of o, we find from (2.5) that
[urlom S |Gz Jual " O
wo

Remark 2.6. Note that |u1|;2 =~ |u1], =~ |u1|y for all uy € X1 because |k
is bounded above and |ki| is bounded away from zero for k € B.
3. VARIATIONAL REDUCTION

Having introduced n(k) = m(k) — ¢g, one can write the steady FDKP
equation (1.4) as
e2u+n(D)u +u? =0, (3.1)
and project it onto Z; and Zs using the characteristic function x introduced
in Section 2, so that

e2u1 +n(D)ug + x(D)(ug + uz)? = 0, in 7y, (3.2)
e2uy + n(D)ug + (1 — x(D))(u1 + uz)? =0, in Zs. (3.3)

Our strategy is to first solve (3.3) for ug € X9 as a function of u; € X using
the following version of the contraction-mapping principle.

Lemma 3.1. Let Vi C Wi be the closure of an open, convex, bounded
neighbourhood of the origin in a Banach space W1 and r be a continuous
function Vi — [0,00). Let furthermore F: Vi x Wo — Wa be a smooth
function into a Banach space Wy, satisfying

|F(w1,0)]yy, < 3r(w), o Flwy, wa]lyy, w, < 3
for all (wi,ws) € V4 x ET(wl)(O). The fized-point equation
wy = F(wi,ws)
admits a smooth solution map
Vidw — wy € Er(wl)(o)
with the properties that
|dw2 w1 ‘W < |d1F w1 ‘W ,

‘deg(w%,wl ‘W < |d2 w%,wl

=+ |dida F(wi, dws(w}))]
+ }d1d2F w17dw2 wi)) }

Wi

Wi

+ }dg (dws(w?), dwy(w?) ‘W ,

where the respective locations wi and (wy,w2(w1)) of the derivatives of wo
and F are implicitly assumed, and w%,w% are free directions in W7.

To compute the reduced equation for u; we need an explicit formula for
the quadratic, e-independent part of ua(u1), which is evidently given by

u? = —n(D) Tl
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because x(D)u? = 0 in view of our choice § < = for the radius of the discs

By. It is convenient to write ug = uq(u1) + uc already at this stage, and
formulate (3.3) as the fixed-point equation

ue = G(ug, ue), (3.4)
where
G(u1,uc)

__1-x(D)
n(D)

is a smooth and weakly continuous mapping X; x X — Xo.

[2u1 (uq(u1) + uc) + (uq(u1) + ue)® + €2 (uq(ur) + ue)]

Remark 3.2. Using Lemmata 2.1-2.5, Remark 2.6 and the fact that
d2uglur, ur](u1) = duglui](u1) = 2uq(ur), we find that
Juq(un)| x + [duglua)(un) ] + [dPuqlun] (ur, w)] ¢ S fulomlun|x
< |u1\1L42'9]u1|}I_3)9.

We now solve (3.4) in X5 by applying Lemma 3.1 with W7 = X7, Wy = Xo
and Vj a closed, convex subset of a fixed ball in X;; Lemma 2.4 ensures that
the X-norm of G(uj,uc) can be estimated by the Z-norm of the expression
in square brackets on the right-hand side of the above formula (and similarly
for derivatives). Here A > 0 is a large, but fixed, parameter, whose value
can be comfortably set later.

Lemma 3.3. Let Uy = {uy € Ba(0): |u1]n < €A}, where By(0) is the
wo
closed ball of radius A in Xy. Equation (3.4) defines a smooth solution map

Ui du — uec € X9

which satisfies
e ()] + |duefur] (un)]x + |[d®uclu] (ur, w)] ¢ S "7 Jua |37 \m!}{ﬁ '

Proof. First note that

1-—x(D)

d1Glur, uc)(u1) = n(D)

[2(uq(u1) + uc)ug
— 2(2u1 + 2uq(u1) + 2uc + 62)uq(u1)],

doGluy, uc)(ul) = _1=x(D) [(2u1 + 2ug(u1) + 2ue + €%)ug],

¢ n(D)
and
diGlu, ue) (ur,u1) = —21;(>1<)()])) [(62 + 6uy + 6ug(ur) + 2uc)uq(ur)],
1—x(D)

dldQG[Ul, UC] (ul, ul) = -2

C

n(D) [(ul + 2uq(u1))u(1;]7
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1—x(D)
n(D)

1,2

d%G[ulqu](ul u2) = -2 [ucuc]v

cr) ¢

since duglu1](u1) = 2uq(u1), where ul, u2 € Xy are free directions.

Using Lemmata 2.1-2.5 and Remarks 2.6 and 3.2, we find that
|G (u1, )‘X ‘uluq(ul)‘z + ‘Uq (u1) ‘Z + & |uq(u1)]Z

< Jutlom [ug(un)|x + luq(ur) 5 + € Jug(u)lx

S urlom ful gz ([utlom + [utlom fua] e + %)
< |u1|1+9 ‘u1|11LIE,i <\u1|ig |u1]2:1}i + g2> ’
where m is a fixed integer with m > s — 1. It follows that
|G (u1,0) x S " ua|[° !mlllqjlj (3.5)
for u; € U;. Similarly,
|doGlur, ue](ug) | S (lualem + lutlgm [urlps + luelx +€%) |ue|
S (‘“1’L2 ‘ullHL})O + |uclx) ‘UC‘X
S 0 uely) ug| (3.6)

for uy € U;. Let r(up) be a sufficiently large multiple of the right-hand side
of (3.5), and consider uc € By(,;)(0) C X3 in (3.6). Lemma 3.1 guarantees

a unique fixed point uc(u1) € By(y,)(0) of (3.4) for sufficiently small values
of e.
Proceeding in the same manner, and estimating |uc(u1)|y < r(u1), we

find that

|1 Glur, we(wn)] (un) | x < Jurug(un)], + lurue(un)], + Jug(uuc(ur)]
+ |uq(ur)?|, + €% [ug(u)l

Set \HeIm!Hl ,

and

| Glun, e (u)](ur, )| S furug(un)l, + luq(ur)uc(ur)]

+ Juq(u1)?] , + € Juq(u)] 5

Sel’ |u1\230|U1\H1 :

}dldgG[ul,uc(ul)](ul,u}:)‘X < ‘ulué}z + |ug(us uC‘Z
S Juelx s
}dgG[ulqu(ul)]( Ug Ug ‘X ~ ‘ul‘x

e

from which the remaining estimates for u.(u;) follow by Lemma 3.1. O
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Substituting ug = uq(u1) + uc(u1) into equation (3.2), we obtain the
reduced equation

e®uy + n(D)uy + x(D)(u1 + uq(ur) + uc(uy))* =0

for uy, which is the Euler-Lagrange equation for the reduced functional
Z.: Uy — R defined by

i&(ul) = I&(ul + uq(ul) + UC(ul))

- ;/Rz (v/n(D)(u1 + uq(ur) + Uc(u1)))2dx dy
2
+ % R2(u1 + uq(u1) + te(ur))? da dy

1
g [+ () + () dedy,
R2

where the symmetrically weighted inner product (y/n(D)u, \/n(D)v) is well
defined for u,v € X since n(k) is real and non-negative. In Lemma 3.5
below we identify the leading-order terms in fe; in its proof we use the
following technical result, which shows that higher-order nonlinear terms in
our functional are small. Note that |u1|H$O Se,and 6 € (0,1) can be taken

arbitrarily small, so that the right-hand side of the estimate is essentially
dominated by e"+s+2¢,

Proposition 3.4. Let r,s,t > 0 be integers with r + s+t > 2. One has the
estimate

’/ wftgoun) e () dr dy| < !0 fuy [ O g [0

and this result remains true when all or some of the uq(u1) and uc(uy) are
replaced by their derivatives dug[ui](u1), d*uqlui](ur,u1) and ducfur](uy),
d?uefur](u1, uy), respectively.

Proof. Estimating the integral using the Cauchy-Schwarz inequality and Re-
mark 2.2, one finds that

] [ gt el iy € oo s 5

< Jun |gm g (ur)®| 2z |ue (u1)* | x

< Jua|Gom g (un) 5 Jue (ur) [

< 5 t(1-0) ‘ ’(7"+s+t) (1-6) \u1 fgs+t)+(r+s+t)6’
where the last line follows by Remark 3.2 and Lemmata 2.5 and 3.3. The
estimate evidently remains true if some or all of the uq(u;) and uc(up) are
replaced by one of their derivatives. O
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Lemma 3.5. The reduced functional Z.: Ui —» R satisfies

= S/ — 5|V uqle) s + eoclur 3 + Relun),
where
1Re(ur)] + [dRe[ur](u1)] + [d*Re[ug] (ur, u1)|
S O hal o+ ")

Proof. Using the fact that uj is orthogonal to uq(u1), uc(u1) and u? in
L%(R?) and the relationship u? = —n(D)uq(u1), we find that

1 1 1
= VD)l — 1y /aDYug(wn)f3s + geoclur s + Re(u),
where
= 1[v/n(D) uc(u1)|2s + (u1, ua(u1)?)
+ %<UQ<U1),UQ<U1)2> + %Co&z ‘U2(U1)‘2L2
and ug(u1) = uq(u1) + uc(ur). Note that
[vV/n(D) uc|72 = (n(D) e, uc)
< [n(D) ue| z|ue| x
S ’UC|_2X
— —6 0
< 2201 G)WI@SJ )‘Ul i(2l+ )’

and the derivatives of this term clearly satisfy the same estimates. The
remaining terms in R.(u;) may all be estimated using Proposition 3.4; we
find that

a* (uy, ud) fun) (uf)| < o ) ”)\ 210,

k 1 0 1 0
d* (uz, ud) fun) ()| < ) >\ -,

a* (g, ua)fur] ()| < 5, ‘”\ W0 k=0,1,2, O

~—

We proceed to reduce the functional further by writing
up = uf + uqy,

where uy = x+(D)uy ﬁld X+ are the characteristic functions of the discs
B+ (note that u; = u] since uy is real). More specifically, we now sim-
plify the quadratic terms in the functional Z. and approximate the term

|v/n(D) ug(u1)[32 by two leading-order parts.
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Lemma 3.6. For all u; € Uy, one has that
je(ul ) —I (Ul +uy)

— /n, 20, + +2)2
‘ D)u; ‘L2 + Cog ‘ul ‘LQ - 2W0 0) ‘ L2
1 1
D2\ 2 2 o2 <
_2H<1+D;> —co] uf + Re(uf),
1 L2
where
[Re(u)] + [dRe[uf 1(uf)| + |[d*Refuy ) (uf, uf))|
_ 2(1-6 3(1-6

S (OO T e T 17
Proof. Since suppuf C Bxy, E = u] and uq(w1) = —n(D) " L(uf +up)?,
we ﬁnd that

<(u1) = ‘\/ ‘L? +0052‘“1 }LQ
+ ‘\/n_l u1 }LQ + 2‘\/n—1(D)(ufu1_)2|i2 + Re(uy).

Noting that supp(F[(u])?]) C Bas(2wo,0), we expand n~!(k) around the
centre of this disc, so that

|v/n=1(D)(uf)?]7,

— # qu 212 1 . 1 u+ 2112
_ n(QWOaO)‘( 1) ’L2+/R? <n(k‘) n(QwO,O)) | FlwH)3|” dk
=Ry (uf)

Observe that n~! is smooth with bounded derivative on Bag(2wy, 0), so that,
by the mean-value theorem, and monotonicity properties of the square root,

1
1 1 2 1 1
_ < _ 5 < . o L .
5 | S @0l Sl n,0) =l 4 s~ (o0, 0)

for k € Bys(2wp,0). Combining this fact with Young’s inequality and the
Cauchy—Schwarz inequality, we find that

/|k— (w0,0) — s/ |a (k — s)la (s)] ds

N

~ 1
Ri(uf)]? S

L2

=z\|k—(wo,0>|%af it
S Hk—(wm ‘U1 ‘LQ ﬂL? aﬂLl

S [t} *Jut 5

where we have also used Lemma 2.5.
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Similarly, since supp(F[ujui]) C Bas(0,0) we write
1
n(k) = p(k[, 12),  plar,ez) = o)1 +223)2 —

and approximate n(k) by p(0, ) so that

v/ D) (uf up )27 1
- 1+27k2% E—Co _1\}"[u1u1]\ dk
L10+%
4—/]R2 (n(k)_1 [<1 + 2:22) _ co] _1> ‘f[ufu;]f dk,

= Ro(uf)

(note that p(0,2z2) = (1 + 2x§)% — ¢ # 0 since ¢y € (0,1)). Observing that

d( ! )Z (1)
A1 \p(e1,22)) (14 2a3)% (e(an) — co1 +203) 732

is bounded on the set {(z1,72) € R? : |z1| < 26}, we find from the mean-
value theorem that

for k € Bys(0,0). Using the inequality
k]2 < [k — (w0,0) — 5|7 + |5 + (wo, 0)|2

and proceeding as above thus yields

~ 1
Ra(uf)]2 S

L2
1
|15+ 00 a5 = 9l (9]
L2
1 1
Ik = (wo, 0)13af | a7+ [k + (wo, 012 a7 | | [t
1
=2 |lk = (o, 0)1¥af | , it
<IUHH1 juf |52

Finally, note that d7'\’,-[u1 J(uf) and dzﬁ,[uf](uf,uf) satisfy the same
estimates as R;(u]) since these functionals are homogeneous in u]. The
stated result thus follows by defining

Es( = Rl(“1)+R2(u1)+R(U1 +uy)
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and noting that we can replace u; by uf in the estimates for R. because

the mapping uj + u; defines isometric anti-isomorphisms x~ (D)L (R?) —

X" (D)L?*(R?) and x~ (D) H,, (R?) — x* (D) H,, (R?). O
The next step is to replace the symbol n with the symbol
(k) = 0%, n(wo, 0) (k1 — w)?® + 9%, n(wo, 0)k3

of the elliptic operator appearing in the DS equation (1.5). However we

cannot merely expand the symbol n around the centre of the disc By because
the simple estimate

n(k) = (k) + Ok — (@, 0)*), k€ B, (3.7)

leads to an insufficient remainder term. This difficulty is overcome using a
change of variables.

Lemma 3.7. The formula

o= (35

defines automorphisms on x*(D)L?(R?) and X+(D)Hu1)0 (R2).
Proof. 1t follows from (3.7) that

n(k) (k)
ﬁ(k)_l)’ _1'5|k—(W070)!§5, ke B.. 0

n(k)

The next result shows that both the form of jg(uf) and the estimates
for its remainder term remain essentially unchanged when n and u] are
replaced by n and ﬂf.

Lemma 3.8. For all u; € Uy, one has that
Ke(iif) = . (uf)
- 2
= ‘ V(D) ’LZ +60€2‘UI+‘L2 - m‘(“fﬂﬂ

_ 2‘ { (1 + 2DD;> - co}_é(af)Q 2

+ & (uf)
|E-(af)| + |dEclaf ) (a])| + |d2Elaf ) (af , af)]

L2
0) 2—30\ |~ ~
S (0 a0 gy oz

~

where

Proof. By construction

[VnD)uf |7, = |[VaD)if |,

while
0052|u1 ‘LQ = coaz‘ul ‘L2 + 60525’1( ),
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where
. 2
5y _ | (D) %~+ a2
&) = (n(D)) “ 12 }ul L2
i) |7 |
n 2 4
=||—= —1| uf
k) | M
12,12
’k_ (w0>0)|2u1~_ 12

S
S

because of the estimate n(k)/n(k)—1 = O(|k — (wo,0)]) (see equation (3.7)).
Furthermore

@[3 =@ P + &),
where
~ 1 2
E(uf) = | [(;L(g;)ﬂlfr — |(@)? 322
~ 1 L24
- /R ( (Zg)?ﬁf !UTI“) dz dz
n 1 2
“ (Z(B;)NQW ) (|G e |+ e
(B 1)t

~ 1 13-20)|~+1+20
S \Uf!m UT!Lz .
wo
Between the fourth and fifth lines we have used Lemmata 2.5 and 3.7 for the

first factor, Lemma 3.7 for the second, and the estimate (ﬁ(k)/n(k:))% -1=
O(|k — (wo,0)]) (see equation (3.7)) for the third. Similarly,

1 1 1 1
oD2\2 ]2 2 oD2\2 17z, _
L0 5) o] T, =[5 =] T

L2
where

=1+ )] (3B
_H<”2D%); —co]_éww

may be estimated in the same way as & (i), because

2
—1—53(1]1),
L2

1

2k2\ 2

(1+/<:22> —cp>1—co>0.
1
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Finally, note that dg’j [uf](ui) and dzg’j [uf](uf, u]) satisfy the same esti-

mates as &j(u]) since these functionals are homogeneous in u; . The stated

result thus follows by defining
~ ~ ~ ~ ~ (D) &
E(ih) = &) + Ex(al) + &) + R <(ZED;) 2u1+>
and noting that we can replace u]” by @] in the estimates for R. because of
Lemma 3.7. U
Finally, we apply the DS scaling by writing

1 .
ﬂ’1+ ('Ia y) = §€C(€IE, gy)elwom.

The mapping 4] ~ ¢ defines isomorphisms ™ (D)L?(R?) — x.(D)L?*(R?)
and xT(D)H} (R?) — xe(D)H(R?), where x. = XB;,.(0) 18 the character-
istic function of the ball of radius §/e, since

5 1 12 (k1 —wo ke

Tk =1 —F,2).

ul( ) € C c ) c

We define N
T-(¢) = e 2K(af (0)),

and perform the final step of the variational reduction.
Lemma 3.9. Let H(R?) = x.(D)H*(R?) and fix 6 € (0,%). For all { €
H!(R?), one has that

T(¢) = To(¢) + &(C); (3-8)
where Ty is the DS functional (1.7) and
[£(0)] + [AE[CI(O)] + [d2E-[C1(¢. O)] S €2 ([ (3.9)

Proof. We have that

K.(af (¢)) = & /R2 ((11 10:C)* + a2 |8,C)* + a3 \C|2> dx dy

2

€ 4
T Ton(200.0) Jpe ¢ AT
2 2\ 5 - _
- <<1+2]f22> —CO> 1P ik + &t ()
R2 1
= T(C) + E-(af (),

so that (3.8) holds with
E-(Q) = e %E(uf (0))-
It follows from the calculations }ﬂf(()’LQ = |C] 2, }ﬁf(()‘m =[]z and
wo

the estimates for g’a given in Lemma 3.8 that
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[E(Q)] + [dE[CI(Q)] + |A*E[CI(¢, O] S e (1 + 1¢1%.%) 16 g IS
<ezl¢4 O
We study 7- as a functional on the set
Bu(0) = {¢ € H(R?): [l < M},

where M is large enough that Bj;(0) contains nontrivial critical points of 72
(see Section 4 below); the constant A defining U; is chosen proportionally
to M.

Lemma 3.10. Let ¢ — u = uy + ua be the inverse of the mapping
u— ug = u = o C

constructed above.

(i) Each critical point (o € Bpr(0) of Tz defines a critical point

Uoo = U1 (Coo) + u2(1((x0)) (3.10)

of I. in Uy, and any critical point uy; of I with uy € Uy defines
a unique critical point (s € Bp(0) of T.

(ii) Each sequence {(,} C Bp(0) with |dT:[Cn]| g1 — O generates a
sequence {un} C Uy with |dZ.[¢y]|x—r — 0, where

U = u1(Gn) + u2(uy (Cn>) (3~11)

(We refer to these sequences as Palais—Smale sequences.)

(iii) Suppose that {(,} C Bar(0) converges weakly in HX(R?) to (s €
Bp(0). The corresponding sequence {u((y)} given by (3.11) con-
verges weakly in X to us = u((so) given by (3.10).

Proof. It remains only to establish (iii). To this end note that {u;,} con-
verges weakly in X1 to u1 oo = 11({s) € Uy and {uq(u1,,)} converges weakly
in Xo to uq(u1,00). Furthermore, uc, = uc(u1y) is the unique solution in
X of equation (3.4) with u; = u1y, so that

Uen = G(Ul,na uc,n)-

Observe that {uc,} is bounded in X5, and suppose that (a subsequence of)
{tte,n } converges weakly in X t0 ¢ oo; it follows that

Uc,c0 = G(Ul,om uc,oo)

(because G : X7 x Xy — Xy is weakly continuous), so that ¢ oo = tc(t1,00)
(the fixed-point equation u, = G(u1,00,uc) has a unique solution in Xs).
This argument shows that any weakly convergent subsequence of {ucy} has
weak limit uc(u1,00), S0 that {ucn} itself converges weakly to uc(ui o) in
Xy. Altogether we conclude that {u1, + ugn} with ug,, = uq(u1,n) + ten
converges weakly in X t0 tos = U1 0o +U2 00 With ug oo = Uq(U1,00)+Uc 0. O
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4. EXISTENCE THEORY

According to (3.8) and (3.9) the functional Tz: By (0) C HX(R?) — R is
a perturbation of the ‘limiting’ functional 7o : H!(R?) — R defined in (1.7).
More precisely & o x(D) (which coincides with & on By (0) ¢ H1(R?))
converges uniformly to zero over Bys(0) C H'(R?), and corresponding state-
ments for its derivatives also hold. In this section we study 7 for ¢ << 1
by perturbative arguments in this spirit. We write

To(¢) = Q(¢) = S(0), (4.1)

where
0(0) = [ (@lG + aulgy P+ asleP) dody (42)

is a local quadratic term equivalent to [¢|3,,, and

S(¢) = [VLD)CP[,

1
2D32) 2

is a nonlocal quartic term equivalent to [|¢[?*]7,. (Note that L(D) is a nonlo-

cal, zeroth-order operator because n(2wp,0) > 0 and ¢y € (0, 1), so that the

continuous bilinear form (L(D)-,-) defines an equivalent norm for L?(R?).)
We seek critical points of 7z by considering its natural constraint set

Ne = {¢ € By(0): ¢ #0,d7:[C](¢) = 0}
(see e.g Willem [27, Chapter 4]), whose geometrical interpretation and varia-
tional property are recorded in the following result (see e.g. Buffoni, Groves
& Wahlén [3, p. 806]).

with

B 1 N 1
~ 16n(2wp,0) 8

Proposition 4.1.

(i) Suppose ¢ € Bp(0)\ {0} € HX(R?). The ray {\(: 0 < X <
M/ (|1} through ¢ intersects Ne in at most one point. The
value of T- along such a ray attains a strict mazimum at this
point. (When ¢ =0 one may take M = oo and in that case every
ray intersects Ny in precisely one point.)

(ii) Any nontrivial critical point of Tz lies on N., and conversely any
critical point of Tz|n. is a (necessarily nontrivial) critical point of

Te.

In view of Proposition 4.1(ii) we proceed by seeking a ground state, that
is, a minimiser ¢* of 7. over N.. We make frequent use of the identities

T(Q) = 5Q(¢) + 1dT[C](€) + E(¢) — 1d&[¢](©), (4.3)
Te(Q) = S(Q) + 3dTe[CN(¢) + E-(¢) — 5dE:[CN(Q), (4.4)

which are obtained using the calculation

d7:[C](¢) = 2Q(C) — 48(C) + dE:[C] (<), (4.5)
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to eliminate respectively S(¢) and Q(() from (4.1). We begin with some a
priori bounds for T|n. .

Proposition 4.2. The estimates

T-(¢) = §l¢lin, Sl 21,
where a = min(ay,az,as), hold for all ( € N;; and T-(¢) < 4(M — 1)?,
¢ € N. implies that |C|gn < M — 1.
Proof. Let ¢ € N.. Using (4.2) and (4.3), we find that

7o) = 5(0) = §1¢ln,
so that in particular 72(¢) < %(M — 1)? implies that |(|z1 < M — 1. The
lower bound on |{|y1 follows from the estimate
Sl < Q(O) £ S(Q) + [dELCNQ < ¢l + 21l
in which we have used (4.5). O

Remark 4.3. Let 7. := infy_T.. It follows from Proposition 4.2 that
liminf, ,o 7.2 1 and from (4.4) that S() > 7. — (’)(E%K]?{l) for all ¢ € N..

The next result shows how to choose M and how points on Ny may be
approximated by points on V..

Proposition 4.4. Choose ¢y € H'(R?)\ {0} and M large enough that

Q(¢o)?
S(Co)

There exists a unique point A\oCo € Bar—1(0) on the ray through (o which lies
on Ng. Furthermore, there exists & € N such that limg_o |€c — Ao = 0.

<a(M—-1)>2

Proof. The calculation

d7o[AoC0](Aodo) = 2A5Q(Co) — 4265 (¢o)
shows that A\g(y € Ny with

ho= <2%(<2)> > -

It follows that Ay(p is the unique point on its ray which lies on Ny, so that

ST =0 dQT(Ag)} <0 (4.6)
dx OBV T dxz VYo T '
(see Proposition 4.1(i)) and
2
To(Modo) = 5Q(NaCo) = 495('?22) < %(M —1)% (4.7)

so that
|XoColpr < M —1

according to Proposition 4.2.
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Let ¢ = xe(D){p, so that (. € H}(R?) ¢ H'(R?) with lim._,0 |¢c—Co| g1 =
0, and in particular
’)‘0<€|H1 <M -1

According to (4.6) we can find 4 > 1 such that ¥|\o(:|y1 < M (so that
YAo¢e € Bu(0)) and

c&%(ACO)’Aalxg >0, ;A%(MO)‘A%\O <0
and therefore

4o o, Yool <o

A\ VT sy T AN VT s

by the continuity of 7; and its derivatives. It follows that there exists A €
(5" A0, 3A0) with

d

DO =0,
that is, £ := A:(c € Ng, and we conclude that this value of A is unique (see
Proposition 4.1(i)) and that lim._,o Ac = Ap. O

Corollary 4.5. Any minimising sequence {(,} of Tz|n. satisfies
limsup |G|y < M — 1.
n—oo
Proof. Proposition 4.4 asserts the existence of £, € N, with lim._o |& —
A0Co|g1 = 0. The continuity of T o x-(D) with respect to ¢ yields
lim 7 (&) = To(XoCo);
e—0
and with (4.7) we find that
7;((56) < %(M - 1)2'

In view of Proposition 4.2 this estimate shows that {(,} C Bu—1(0) for
sufficiently large values of n. (|

The next step is to show that there is a minimising sequence for 7:|n.
which is also a Palais—Smale sequence.

Proposition 4.6. There exists a minimising sequence {(,} C Bar—1(0) of
Tz|n. such that

tim [d7:[Cul 1o = 0.

n—oo
Proof. Ekeland’s variational principle for optimisation problems with regular

constraints [9, Thm 3.1] implies the existence of a minimising sequence {(,}
for T:|n. and a sequence {u,} of real numbers such that

nlg& dT:[Cn] = pn AGe[Call 1 5 = 0,

where G. = d7.[¢,](¢n). Applying this sequence of operators to (,, we find
that p1, — 0 as n — oo, since d72[(,](¢,) = 0 and
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dg. Kn](Cn) = d27;[<n] (Cn» Cn)
= —4Q(Cn) — 4dE[C) (Gn) + A*Ec[Gal (Gns Gn)
S -L
whence |d7:[(n]|g1r — 0 as n — oo. O
We proceed by using the local spaces L?(Q;) and H'(Q;),where
Qj={(z,y) €R”: |z —ja| < 3, |y — Jo| < 3}

is the unit cube centered at the point j = (ji,j2) € Z?, to examine the
convergence properties of general Palais—Smale sequences.

Lemma 4.7.
(i) Suppose that {¢,} C Bar—1(0) satisfies

Jim [Tz (Gall 1 yp =0, sup [Cnlz2 (@) 2 1

There exists {w,} C Z? with the property that a subsequence of

{¢n(- + wp)} converges weakly in HX(R?) to a nontrivial critical
point (s of Tz.

(ii) Suppose that € > 0. The corresponding sequence
un = u1(Gn) +u2(ur(Gn)),  Gu = Gal +wn),
converges weakly in X to a nontrivial critical point
Uoo = 11 (Goo) + u2(u1(Coo))
of Z.
Proof. We can select {w,} C Z? so that
liminf |G (- +wn)|22(Qe) < 1-

The sequence {(,(-+wy)} C Bar—1(0) admits a subsequence which converges
weakly in H!(R?), strongly in L?(Qp) and pointwise almost everywhere to
(oo € Bun(0); it follows that [(oolr2(g,) > 0. We henceforth abbreviate
{Gu(- + wy)} to {(,} and extract further subsequences as necessary.

Observe that {|¢,|?} converges weakly in L?(R?) and pointwise almost
everywhere to |(s|? (it is bounded in L?(R?) since {¢,} is bounded in H*(R?)
and hence in L*(R?)). The weak convergence of ¢, and |¢,|? in L?(R?) thus
yields

lim sup ‘<L(D)‘€n‘2’ ¢aw) — (L(D)|¢oo|%, gw@‘
= timsup (|Gl  [Gool”, LD)CoT) + (LDl (G — Coc)T)|
< lim sup (LD)[Gal, (G = Coo))|

S hgl_fogp HCn‘Q‘Lz nh—%lo ‘(Cn - COO)E‘L2

=0
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for each w € H'(R?), where in the final calculation we have written
|G —Cool? = |Cn]? =2 Re (oo +|Cool?. Tt follows that dS[¢,](w) — dS[Cso](w)
(because dS[¢](w) = 4Re(L(D)|¢|?, ¢w)) and furthermore dQ[(,](w) —
dQ[(so](w). In the case € = 0 we conclude that d75[(,](w) — d7o[(s0)(w) as
n — oo for all w € H'(R?), so that d7p[¢s0] = 0 by uniqueness of limits.

We cannot use the above argument for £ > 0 since we have not established
that d&.[¢,](w) — d&€:[(o](w) as n — 00, and we proceed by considering the
FKDP functional Z. (which has no remainder term). According to Lemma
3.10(iii) the sequence {u,, } converges weakly in X to u, and Lemma 3.10(ii)
shows that

lim |dZ.[uy]|x—r = 0.
n—oo

Since u + eu + n(D)u + u? is in particular weakly continuous X — L?(R?)
(see Corollary 2.3), one finds that

dZ. [use)(w) = /R2 (e%uoo + n(D) oo + uZ,) wdz dy

= lim (e%un +n(D)uy, +uZ) wdz dy

n—o0 R2

= nlgrolo dZ, [uy,)(w)
=0
for any w € X, whence ux is a critical point of Z.. [l

Although we know from Proposition 4.2 that the natural constraint set is
bounded from below in H'(R?), it remains to show that this bound implies
that the minimising sequence for 7; over N, identified in Proposition 4.6 sat-
isfies the ‘non-vanishing’ criterion in Lemma 4.7. This task is accomplished
in Proposition 4.8 and Corollary 4.9 (with Remark 4.3).

Proposition 4.8. The inequality
1 3
(o1l = lo2f, LD)IER) S suplpr = pal 2 g, (lorlim + o2l 21¢ln
je

holds for all py, p2, &€ € HY(R?).
Proof. First note that
|LD)IEP] 12 = |IE7] 2 = [€]74 S 1EL7 - (4.8)
Using the standard embedding H'(Q;) < L°(Q;), we furthermore find that
P12 = [pal?] 2

— Z )Re ((Pl - P2)m>

JEZ?

<> {lor = palslpr = pallon + pol?)
JEZ?

2

L2(Qy)

L2(Qy)
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3
< Z [p1 = P2l 12, [loa] + |p2HL6(Q]’)

jez?
3
< sup p1 = p2liaiq;) D lorl + o2l g
jGZQ jEZQ ’
2
< sup |p1 = pal e, lonl + o2l gagay D lorl + o2l g,
J€Z2 ]EZ2
3
= sup |p1 — P22, [ln] + o2l 11 gy (4.9)
JEZ?
Combining the Cauchy—Schwarz inequality with (4.8) and (4.9) yields the
proposition. U

Corollary 4.9. Any sequence {(,} C Bar(0) such that S((,) 2 1 satisfies
sup [Cnlr2(g,) 2 1-
JEZ?

Proof. Using Proposition 4.8 with £ = p; = (,, and g3 = 0, one finds that
9 1 7 1
S(Cn) = |\/ L(D)Knmp N SUZP2 |<n|z2(Qj)’Cn’12.11 S SUZI; ‘Cn‘zz(Qj)o U
J€ je

Altogether we have established the following existence result for the DS
and FDKP functionals.

Theorem 4.10. There exists a minimising sequence {(,} C HZX(R?) for
Te|n. with the properties that

(i) {¢u} converges weakly in HX(R?) to a critical point (s of the DS
functional T for e > 0,

(ii) the corresponding sequence {u((,)} converges weakly in X to a
critical point use = u((xo) of the FDKP functional I, for e > 0.

Proof. From Proposition 4.6 we obtain a minimising sequence
{¢.} € Ba—1(0) of T|n. which is also a Palais—Smale sequence. Using
Remark 4.3 and Corollary 4.9, we deduce that this minimising sequence
also satisfies sup,cz2 |Cnl 12(Q;) = 1. Applying Lemma 4.7 thus yields (i) and
(ii). O

5. GROUND STATES

In this section we strengthen Theorem 4.10 by showing that we can choose
the translational sequence {wy,} appearing in Lemma 4.7(i) to ensure strong
convergence of (a subsequence of) the Palais-Smale sequence {(, (- +wy)} in
H!(R?) to a ground state. This observation will also provide us with some
additional convergence results in the limit ¢ — 0. For these purposes we use
an abstract concentration-compactness result by Ehrnstrom & Groves [7,
Thm 5.1], noting that any minimising sequence {(,} of Tz|n. satisfies

sup [Cnlr2(g;) 2 1
JjEZ?
(because of Remark 4.3, Corollary 4.5, Corollary 4.9 and Lemma 5.3).
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Theorem 5.1. Let Hi — Hy be Hilbert spaces, and consider a sequence
{x,} C 12(Z%,Hy), where s € N. Writing x,, = (%n,j)jezs, where x, ; € Hy,
suppose that

(i) {xn} is bounded in 1>(Z°, Hy),
(ii) S =A{xn; :neN,jeZ} is relatively compact in Hy,
(iii) limsup,, |$n|loo(Zs’H0)Z 1.

For each A > 0 the sequence {x,} admits a subsequence with the following

properties. There exist a finite number m of non-zero vectors z',... ™ €
12(Z°, Hy) and sequences {wl}, ..., {w™} C Z* satisfying
. " /
lim |w" —w| — oo, 1<m’" <m'<m
n—oo
such that
/
T vy —x™
—w", n )
m’'—1
m’ 1 _ Z l
[ 100 20 Hp) = 1m0 |2 Ty :
=1 lOO(ZS,Ho)
m/ m/ 2
lim [n e gy = O 12 oz I N A
e ’xn’P(Z JH1) |2 112(2 JH1) "‘n_m Tn wh,
=1 =1 12(Zs,Hy)
form/ =1,...,m,
m
limsup |2, — E T, 2! <A,
n—00 "
=1 1°°(Z#,Ho)
and
. 1 -
Jm |zn = Tup @ o e 11y = 0

if m = 1. Here the weak convergence is understood in 1*(Z° Hy) and T,
denotes the translation operator Toy,(xy ;) = (Tn,j—w)-

We proceed by using Theorem 5.1 to study Palais—Smale sequences for 7z,
extracting subsequences where necessary for the validity of our arguments.

Lemma 5.2. Suppose that {(,} C Ba—1(0) satisfies

nh_glo [dTz[Cnll grir = 0, ]SSZI; |<n|L2(Qj) 2L
There exists {w,} C Z* and a nontrivial critical point (s of Tz such that

G-+ wn) = (oo in HY(R?), S(¢) = S(Cs) as n — oo and

lim sup |G (- + wn) — Coolr2(q;) = 0.

n—0o0 jEZ2
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Proof. Set Hy = H'(Qo), Hy = L*(Qo), define z,, € 1?(Z2, H,) for n € N by

Tng =Gl +5)lqo € H'(Qo),  jE€Z?,
and apply Theorem 5.1 to the sequence {x,} C I2(Z2, H), noting that

|xn|12(Zz,Hl) = [Cnl 1 |xn|l°°(ZQ7H0) = sup \Cn\L?(Qj)
jEZ?

for n € N. Assumption (ii) is satisfied because H'(Qy) is compactly embed-
ded in L?(Qy), while assumptions (i) and (iii) follow from the hypotheses in
the lemma.
The theorem asserts the existence of a natural number m, sequences
{wl, ... {w™} C Z* with
lim W —w" |=00, 1<m” <m' <m, (5.1)
n—oo
and functions ¢',...,¢™ € By(0) \ {0} such that (,(- + w?') — ¢™ in
H'(R?) as n — oo,

lim sup sup |, — Z ¢t =) <eg, (5.2)
DI < limsup |Gl
=1 n—oo
and
. 1 1
lim sup |Cn ¢ (- wn)‘Lz(Qj) =0 (5.3)

n—o0 jEZQ

if m = 1. It follows from Lemma 4.7(i) that d7z[¢'] = 0, so that ¢! € N.
and 7:(¢") > 7. 2 1 in view of Remark 4.3. Define

m
gn:ZCl(—’LUiL), nEN7
=1
and note that

lim_ | (- = wh)Ch (- —wit)[Fe = lim (| — w16 (- — wid)?)

n—oo oo
R . — L —
= Tim (e AR, e KB ) = 0
n—oo
for ¢; # £; by the Riemann-Lebesgue lemma ({w’} diverges by (5.1)). Since
introducing the Fourier multiplier L(D) in the inner product does not change
this calculation, we find that

lim S(Cn)

= lim Y (LD)(¢(—wy)¢t(: w£2>),<f3<-—wf;3><f4<-—wn4>>
l1,02,03,04

= 1im 3" (L)~ w1 - wif)?)
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m
. 2212
= lim Y " [v/I(D)|¢"]?[.
n—oo 8—1

= 8. (5.4)
(=1
From Proposition 4.8 and equation (5.2), one finds that
limsup |S(Ca) — S(Gn)|
n—o0

= limsup <L(D)(Kn’2 — ’5n’2)7 Gal® + lgn’2>

n—oo
. ~ 1 ~ T
5 lim sup SuPKn - <n|22(Q‘)(|Cn|H1 + |C”|H1)2 (5'5)
n—oo  jez2 !
1 = z
< ez limsup(|Cnlgr + [Cnl g1 )2
n—oo
< . (5.6)

uniformly in m. Because ¢! € N., we may combine (5.4) and (5.6) with
S(Hh>m-0E2), 1=1,...,m,
(see Remark 4.3) to obtain
liminf S(¢y) > mr. — O(e?)

n—oo
and hence )
7. > m7. — O(e2)
uniformly in m, because of (4.4). Since liminf. ,p7.2> 1 we deduce that
m = 1. The desired result follows from (5.3) with (oo = ¢! and w, = w}
and (5.5) since S((,) — S(¢1) as n — oo; according to Lemma 4.7 the
sequence {(y (- + wy)} converges weakly to a nontrivial critical point of 7z,
and by uniqueness of limits we conclude that d7:[(s] vanishes. U

We can now strengthen Theorem 4.10, dealing with the cases ¢ = 0 and
€ > 0 separately.

Lemma 5.3. Suppose that {(,} C Ba—1(0) satisfies

lim [dTo[Cull 15w = 0, sup [Cnlr2(g,) 2 1-
oo jez?

There exists {wy,} C Z2 such that {C,(- +wy)} converges strongly in H'(R?)
to a nontrivial critical point of Ty.

Proof. Lemma 5.2 asserts the existence of {w, } C Z? and a nontrivial critical
point (s of Tg such that ¢, (- +wp) — (o in HY(R?) and S(¢,) — S((so) as
n — oo. Abbreviating {(,(- + wy)} to {(,}, we find from (4.5) that

as n — 0o. Since Q(¢) ~ |¢|3;, it follows that ¢, — (s in H'(R?). O
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Theorem 5.4. Let {(,} be a minimising sequence for To|n, with
lim [d70[Cp|r1sr = 0.
n—oo

There ezists {wn} C Z? such that {C,(-+wy)} converges strongly in H'(R?)
to a ground state of Tg.

Let us now turn to the case ¢ > 0, for which we need the following
technical result (see Ehrnstrom & Groves [7, Proposition 5.5]).

Proposition 5.5. Suppose that u, — us in H*(R?) as n — oco. The limit

lm |uy, — teo|pee =0
n—oo

holds if and only if un(- — jn) — 0 in H*(R?) as n — oo for all unbounded
sequences {jn} C Z2.

Theorem 5.6. Let ¢ > 0 and {(,} be a minimising sequence for Tc|n. with
lim |d7e[Cn]| g = 0.
n—oo

There exists {wy,} C Z? such that {(,(- +wy,)} converges weakly in H!(R?)
and strongly in L>®(R?) to a ground state (s of T.. The corresponding
FDKP sequence

Up = ul(cn) + u2(u1(<n))v Cn = Cn( -+ wn),

converges weakly in X and strongly in L>(R?) to a nontrivial critical point

Uoo = U1 (Coo) + u2(1((x0))
of Z..

Proof. Lemma 5.2 asserts the existence of {w, } C Z? and a nontrivial critical
point (s of Tz such that ¢, (- +wy,) — (s in HY(R?) and S(¢,) — S((xo) as
n — oo and

lim sup |G (- +wn) — Coolr2(q;) — 0

n—o0 j€Z2
Note however that we cannot proceed as in the case ¢ = 0 by deducing
that Q(¢,) — Q(Cs) and hence ¢, — (s in H'(R?) as n — oo from
equation (4.5) since we have not established that £ ((,) — &:((x) as n — oo.
Instead we transfer this argument to the FDKP functional Z. (which has no
corresponding remainder term).
Because
HI(R?) = v (D) I2(R?)
for all r > 0 and H*(Q;) < L*(Q;) (uniformly over j € Z?), we find that
. 2 2
A, n = ol = lity, SUP 6o = Coclix(q)

< li - ;
_nILIngSélZIgKn COO|HS(Q]')

< nllnéofgzli |G = CoolL2(0)|Cn — Cool r25(;)
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< JLH;OJ.S;Z% |G — Cool2(@;)1Gn — Cool mr2s
=0,
where have again abbreviated {(,(- + wy)} to {(,}, and Proposition 5.5
shows that (,(- — j,) — 0 in H2(R?) and hence in H!(R?) as n — oo for
all unbounded sequences {j,} C Z2. Using Proposition 3.10(iii), one finds
that u,(- — j,) — 0 in X and hence in H*(R?) for all unbounded sequences
{jn} C Z2, so that u, — us in L>®(R?) as n — oo by Proposition 5.5. It
follows that u, — us in L3(R?) and in particular that

/u%dxdy%/ ud dxdy
R2 R2

as n — 0o. Since Proposition 3.10(i) and (ii) guarantee that dZ.[us] = 0
and dZ.[u,|(u,) — 0 as n — oo, one finds from

L.(w) = AL ()~ [ u*dedy
that Z.((n) — Z: () as n — oco. Consequently, lim,, oo 7z((n) = Te(Coo) =
Te. U

Finally, we show that critical points of T; converge to critical points of Ty
as € — 0. The first step is to establish the corresponding convergence result
for the infima of these functionals over their natural constraint sets.

Lemma 5.7. Let {,} be a sequence with lim, o £, = 0 and let (°* be a
ground state of T, .

(i) One has that limg,, 0 7, = 70.
(ii) There exists {w,} C Z* and a ground state ¢* of Ty such that
{¢5(- +wy)} converges to ¢* in HY(R?) as n — oo.

Proof. Because & o x¢(D) and d&; o x(D) converge uniformly to zero over
Bar—1(0) € HY(R?) as e — 0, we find that

T, (¢) = To(¢™) = 0(1). AT, [¢) = dTa[C™"] = (1)
as n — oo and hence that

Jim [d7o[C™"]|g1or = 0.

1
Combining Corollary 4.9 with S((*") > 7., — O(ea) and liminf, ,p 7.2 1
yields

sup [C*"|L2(g;) 2 1-
jer?

According to Lemma 5.3 there exists {w,} C Z? and (* € Ny such that
d7o[¢*] = 0 and ¢ (- + wy,) — ¢* in HY(R?) as n — oo. It follows that
o < To(¢7)
= lim 7o(¢*")

n—oo
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= 7}1_520 (To(C™) — T2, (C°)) + nh—>nolo (Te (C°r) = 7)) + linni)gf%n
= liminfr,. (5.7)

n—oo

Proposition 4.4 (with \g = 1 and (g = ¢°) asserts the existence of &, € N,
with &, — (% in H'(R?) and hence To(&,) — To(¢%) = 19 as n — co. Because
£ o x<(D) converges uniformly to zero over By;_1(0) C H'(R?) as ¢ — 0,
one finds that

,En (gn) - 76(571) = 0(1)

as n — 0o, whence

limsup 7., < limsup 7z, (&)

n— oo n—oo
= lim (7z,(¢n) — To(&n)) + lim (To(&n) — 70) + 70
= T0. (5.8)
The stated results follow from inequalities (5.7) and (5.8). O

Finally, we record the corresponding result for FDKP solutions.

Theorem 5.8. Let {e,} be a sequence with lim,,_,~ £, = 0 and let u® be a
critical point of I, with L., (u") = €21, , so that u"(¢°") defines a ground
state (° of Tz. There exists {w,} C Z? and a ground state (* of Ty such
that a subsequence of {C" (- + wy)} converges to ¢* in H*(R?) as n — oo.
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