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A DIRECT CONSTRUCTION OF A FULL FAMILY OF WHITHAM

SOLITARY WAVES

MATS EHRNSTRÖM, KATERINA NIK, AND CHRISTOPH WALKER

Abstract. Starting with the periodic waves earlier constructed for the gravity Whitham
equation, we parameterise the solution curves through relative wave height, and use a
limiting argument to obtain a full family of solitary waves. The resulting branch starts
from the zero solution, traverses unique points in the wave speed–wave height space,
and reaches a singular highest wave at ϕ(0) = µ

2
. The construction is based on uniform

estimates improved from earlier work on periodic waves for the same equation, together
with limiting arguments and a Galilean transform to exclude vanishing waves and waves
levelling off at negative surface depth. In fact, the periodic waves can be proved to
converge locally uniformly to a wave with negative tails, which is then transformed to the
desired branch of solutions. The paper also contains some proof concerning uniqueness
and continuity for signed solutions (improved touching lemma).

1. Introduction

In this remark we construct solitary waves to the nonlinear and nonlocal Whitham equation

ut + (Lu+ u2)x = 0.

The real-valued function u = u(t, x) describes the deflection of a water fluid surface from
the rest position at time t ≥ 0 and position x ∈ R, and L : f 7→ K ∗ f denotes convolution
with the kernel K given by

K(x) =
1

2π

∫

R

m(ξ) exp(ixξ) dξ, with m(ξ) =

√

tanh(ξ)

ξ
.

Starting with [9] this equation has been extensively studied recently, not the least be-
cause of its solutions’ interesting qualitative properties, and the features of wave breaking,
solitary waves, and highest waves in a single scalar model equation (see below). The
Whitham equation is one of the simplest examples of an inherently nonlocal and nonlin-
ear dispersive equation [21], which gains its modelling strength from the linear dispersion
relation of the finite-depth gravity Euler equations [20], where m(ξ) describes the speed
of a right-propagating steady wave train of frequency ξ.

The Whitham equation has features of small waves (KdV-type bifurcation of periodic [9]
and solitary waves [8, 14], modulational instabilities [16], prolonged existence time [12],
improved modelling [13,19]) and of ’large’ waves (symmetry and nodal properties [6], wave
breaking [15], and highest waves [11, 23]). A number of additional qualities are known,
including exponential decay [5] and experimental modelling properties [4]. The difficulties
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in this equation arise because of the mixing of local and nonlocal inhomogeneous terms,
which make precise estimates very demanding, and the coupling between parameters such
as wave speed and wave height to the solution itself remains implicit.

For travelling waves u(t, x) = ϕ(x − µt), with µ > 0 the sought wave speed, more is
known than for the initial-value problem. By integrating once and making use of a Galilean
invariance (see (4.9) below), the Whitham equation reduces to the integral equation

− µϕ+ Lϕ+ ϕ2 = 0, (1.1)

where one seeks functions ϕ : R → R satisfying (1.1) pointwise in R. We shall refer to these
as solutions of (1.1) with wave speed µ. In this case, it is known that each period allows a
global curve of smooth solutions of bell-shaped form, bifurcating off from the line of zero
solutions and stretching continuously (or better) to a so-called highest wave of wave height

ϕ(0) = µ
2 above an undisturbed surface, and of optimal regularity C1/2(R) [11]. For the

solitary case, when ϕ(x) → 0 as x → ±∞, the first result was in [8] and features a quite
advanced construction of small solitary solutions for that and many other equations of
negative-order dispersion with the aid of minimisation. This has been generalised in [14].
Later, proofs based on the implicit function theorem [22] and centre manifolds [23] have
been suggested, and recently Truong, Wahlén and Wheeler used the latter to prove and
extend the branch of small solutions through global bifurcation in weighted Sobolev spaces,
all the way up to the highest wave. The estimates for the highest waves are the same in
the periodic and solitary case, see [10, 11]. We would like to mention also [17] and [18],
which although they are for the positively dispersive capillary-gravity Whitham equation,
make use of similar techniques as the aforementioned papers. Global estimates of the kind
used in our investigation are so far not known in the case of surface tension (in this or
other equations with non-explicit solutions).

In the current paper we give an alternative, less sophisticated but straightforward ap-
proach to the same problem, by making use of the theory for periodic waves. While it
is a common procedure in dynamical systems to obtain homo- and heteroclinic orbits as
limits of periodic orbits, this procedure in water waves is most commonly associated with
small-amplitude solutions (see, e.g., [7, 24]), whereas we carry it out for the full range of
solutions. Our method is constructive, picking periodic waves which can be found ana-
lytically as well as numerically, and then obtaining point-wise convergence as the period
tends to infinity. While the limiting process eliminates some of the regularity properties
of the bifurcation curves, this is compensated for by the method’s simplicity and that we
may choose the relative heights λ = maxϕ/(µ/2) of the initial waves, yielding a family
of unique solitary solutions (ϕ, µ) reaching the highest wave at maxϕ = µ

2 . Although
periodic limiting sequences appear in both [8] and [14], the method in the current paper
is arguably less pricey and yields a direct convergence with known crest and tails in terms
of the wave speed. As has to be, see [5], our solutions are symmetric and monotonically
exponentially decaying. In Sections 2 and 3 we give the necessary background and prop-
erties of periodic and solitary solutions, whereas in Section 4 the actual construction takes
place. The main result can be summarised as follows (see Theorem 4.3, Corollary 4.5,
Propositions 4.7 and 4.8).

Main result. Pick λ ∈ (0, 1]. The steady Whitham equation (1.1) allows for a sequence
of P -periodic solutions (ϕP , µP ) of height ϕP (0) = λµ

2 converging pointwise and locally
uniformly as P → ∞ to a symmetric solution of the same relative wave height ϕP (0) = λµ

2 ,
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that decays monotonically on either side of the origin. After a Galilean transformation,
this family describes an injective branch λ 7→ (ϕλ, µλ) ∈ C(R) × R of solitary solutions
to (1.1), which have supercritical wave speed µ ∈ (1, 2), are exponentially decaying and

reach the highest wave of optimal C1/2-regularity at λ = 1. The speed µ may be bounded
in terms of the relative height of solutions, converges to 1 from above as λ → 0, and all
solutions are smooth except for the highest at λ = 1.

Further properties of the solutions, including a slightly improved touching lemma in Propo-
sition 4.6, are presented in Section 4.

2. Preliminaries

We give in this short section the basic background on the convolution kernel K and its
properties. These properties were established in [11]. The kernel K is given by

K(x) = (F−1m)(x) =
1

2π

∫

R

m(ξ) exp(ixξ) dξ

with Whitham symbol

m(ξ) =

√

tanh(ξ)

ξ
= 1− 1

6
ξ2 +O(ξ4), as |ξ| → 0.

Let N = {0, 1, 2, . . .}.
Lemma 2.1. The kernel K is even and completely monotone on (0,∞), that is,

(

− d
dx

)j
K(x) > 0, x > 0, j ∈ N.

In particular, K is positive, and strictly decreasing and convex for x > 0. It integrates to
unity,

‖K‖L1(R) = 1,

and furthermore satisfies the asymptotic estimates that:

(i) For any given s0 ∈ (0, π/2) and n ∈ N,

|Dn
xK(x)| . exp(−s0|x|), |x| ≥ 1

2 .

(ii) With Kreg infinitely differentiable on R,

K(x) =
1

√

2π|x|
+Kreg(x), x 6= 0.

For the proof of Lemma 2.1, see [11, Section 2]. We introduce now the periodised kernel

KP (x) =
∑

n∈Z

K(x+ nP ) (2.1)

for P ∈ (0,∞), with the convention K∞ = K if P = ∞. By property (i) in Lemma 2.1
this sum is absolutely convergent. KP can equivalently be written as a Fourier series,

KP (x) =
1

P

∑

n∈Z

m
(2πn

P

)

exp
(2πinx

P

)

.
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Lemma 2.2. The kernel KP is completely monotone on (0, P/2). Moreover,

(i) KP is P -periodic, even, positive, strictly decreasing on (0, P/2) and convex on
(0, P ).

(ii) KP ∈ C∞(R\PZ).
(iii) KP satisfies

KP (x) =
1

√

2π|x|
+KP,reg(x),

where KP,reg is infinitely differentiable on (−P,P ).

For a proof, see [11, Section 3]. As in the introduction, we have the linear operator

L : f 7→ K ∗ f,
which we define on the space of tempered distributions S ′(R) via duality from Schwartz
space S(R). One sees from (2.1) that for a continuous periodic function f , the operator
L is given by

∫ P/2

−P/2
KP (x− y)f(y) dy,

and more generally by
∫

R

K(x− y)f(y) dy

for f bounded and continuous. Since the Whitham symbol m is a classical symbol of
order −1/2, that is,

|Dn
ξm(ξ)| ≤ Cn(1 + |ξ|)−1/2−n, n ∈ N,

for some positive constant Cn depending on n, the linear operator

L : Bs
p,q(R) → Bs+1/2

p,q (R) (2.2)

is bounded [2], where Bs
p,q(R) denote the Besov spaces with s ∈ R p, q ∈ [1,∞]; and

therefore in particular on the Zygmund spaces Cs = Bs
∞,∞, coinciding with the Hölder

spaces Cs for s 6∈ N. It is bounded in a similar way on the Sobolev spaces, but we shall
not use that here.

3. Properties of solutions

In this section we give some a priori properties of solutions to (1.1). These are especially
needed when taking P → ∞ in the next section. Note that the assumptions in Proposi-
tion 3.2 differ from those in for example [5, 11]; and they do not require a solitary wave.
Corollary 3.4 is needed in the next section to exclude degeneration of the waves, and is
based on [3]. It appeared also in [23].

Proposition 3.1. If ϕ ∈ L∞(R) is a solution of (1.1) with wave speed µ ≥ 0 and

lim
x→∞

ϕ(x) = Φ,

then Φ solves (1.1) with the same wave speed. In particular, Φ is either µ− 1 or 0.
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Proof. By assumption and since ‖K‖L1(R) = 1 with K ≥ 0, we have

lim
x→∞

Lϕ(x) = lim
x→∞

∫

R

K(y)ϕ(x− y) dy = Φ,

so that Φ is a constant solution to (1.1) with wave speed µ, that is, Φ solves (µ−1)Φ = Φ2.
Therefore either Φ = µ− 1 or Φ = 0. �

Proposition 3.2. Let ϕ ∈ L∞(R) be a solution of (1.1) with wave speed µ ≥ 0. If ϕ is
even, nonnegative, nonconstant, and nondecreasing on (−∞, 0), then µ ≥ 1.

Proof. Assume that µ < 1. Due to assumption limx→−∞ ϕ(x) exists, and according to
Proposition 3.1, the limit takes the value 0. Because ϕ solves (µ−ϕ)ϕ = Lϕ, we have for
x < 0,

(µ− ϕ(x))ϕ(x) =

∫

|y|<|x|
K(x− y)ϕ(y) dy +

∫

|y|≥|x|
K(x− y)ϕ(y) dy.

Using that ϕ is nondecreasing on (−∞, 0), even, and nonnegative, as well as that K is
positive on R\{0}, we further get for x < 0,

(µ− ϕ(x))ϕ(x) ≥ ϕ(x)

∫ −2x

0
K(y) dy +

∫

x+s<y<x
K(x− y)ϕ(y) dy,

where s < 0 is chosen in such a way that (since ‖K‖L1(R) = 1)

1

2
>

∫ 0

s
K(z) dz > µ− 1

2
+ ε, (3.1)

where ε > 0. Hence by defining

Ψ(x) :=

∫ −2x

0
K(y) dy

and by the monotonicity of ϕ we obtain for x < 0,

(µ− ϕ(x))ϕ(x) ≥ ϕ(x)Ψ(x) + ϕ(x+ s)

∫ 0

s
K(z) dz. (3.2)

To obtain a contradiction to µ < 1, we pick a constant δ ∈ (0, 1) so that

µ− 1/2

µ− 1/2 + ε
< δ < 1, (3.3)

and consider two cases, depending on the uniformity of decay of ϕ.

Case 1. There exists a sequence of negative real numbers {xn}n∈N with limn→∞ xn = −∞
such that ϕ(xn + s) ≥ δϕ(xn) for each n. In this case, (3.1), (3.2), and the positivity of
K entail that

(µ − ϕ(xn))ϕ(xn) ≥ ϕ(xn)Ψ(xn) + δϕ(xn)

∫ 0

s
K(z) dz

≥ ϕ(xn)
(

Ψ(xn) + δ
(

µ− 1
2 + ε

)

)

,

and therefore

µ− ϕ(xn) ≥ Ψ(xn) + δ
(

µ− 1
2 + ε

)

.
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From ϕ(xn) → 0 and Ψ(xn) → 1/2 as n→ ∞, it follows that

µ ≥ 1
2 + δ

(

µ− 1
2 + ε

)

,

contradicting (3.3).

Case 2. There exists x∗ < 0 such that for all x ≤ x∗ the inequality ϕ(x + s) < δϕ(x)
holds. In this case, by the monotonicity of ϕ, we see that

∫ x∗

−∞
ϕ(x) dx =

∑

n∈N

∫ x∗+ns

x∗+(n+1)s
ϕ(x) dx

≤
∑

n∈N

|s|ϕ(x∗ + ns)

≤ |s|ϕ(x∗)
∑

n∈N

δn = |s|ϕ(x∗)
1

1− δ
.

Combined with the nonnegativity of ϕ, this shows that ϕ ∈ L1(R). Therefore, integration
of the equation (1.1) (see Proposition 4.6 in [11]) implies that

(µ− 1)

∫

R

ϕ(x) dx = ‖ϕ‖2L2(R) (3.4)

and since ϕ 6≡ 0 this again is a contradiction to the assumption that µ < 1. In both cases,
we conclude that µ ≥ 1. �

For Corollay 3.4 below we need the following regularisation lemma, for the proof of which
we refer to [3, pp. 113-114].

Lemma 3.3. [3] Let f be a continuously differentiable function such that limx→±∞ f(x)
exist, and let J be a nonnegative even function with unit integral satisfying

∫

R
J(y)|y|dy <

∞. Then

lim
R→∞

∫ R

−R
(J ∗ f − f) dx = 0.

The following result, which is the last in this section, overcomes a problem when one
considers solutions that are not necessarily in L1(R), cf. (3.4). A similar version was
presented recently in [23], but as the proof is of interest to the limiting procedure we give
it here as well. When ϕ is a continuously differentiable solution to (1.1) with wave speed
µ ≥ 0 and finite limx→±∞ ϕ(x), one can show from Lemma 3.3 that

lim
R→∞

∫ R

−R
ϕ
(

(µ − 1)− ϕ
)

dx = 0,

but we shall use the following somewhat stronger result.

Corollary 3.4. Let ϕ ∈ L∞(R) be a solution of (1.1) with wave speed µ ≥ 0 such that ϕ
is nonnegative and limx→±∞ ϕ(x) exist. Then

∫

R

ψ ∗ (ϕ((µ − 1)− ϕ)) dx = 0

for every nonzero smooth and compactly supported test function ψ with ψ ≥ 0. In partic-
ular, only vanishing solutions have unit speed.
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Proof. Let 0 ≤ ϕ ∈ L∞(R) solve (1.1). Then convolution with a nonzero smooth and
compactly supported test function ψ ≥ 0 yields

ψ ∗ (K ∗ ϕ− ϕ) = ψ ∗ (ϕ((µ − 1)− ϕ)) . (3.5)

By the properties of convolution we obtain that

ψ ∗ (K ∗ ϕ− ϕ) = K ∗ (ψ ∗ ϕ)− ψ ∗ ϕ. (3.6)

The term ψ ∗ ϕ is bounded, continuously differentiable, and by Lebesgue’s dominated
convergence theorem the limits limx→±∞ ψ ∗ ϕ(x) exist. Since the Whitham kernel K is
positive and even with

∫

R
K(y)|y|dy finite, due to ‖K‖L1(R) = 1 and Lemma 2.1 (i), we

can apply Lemma 3.3, which allows us to conclude from (3.5) and (3.6) that

lim
R→∞

∫ R

−R
ψ ∗ (ϕ((µ − 1)− ϕ)) dx = lim

R→∞

∫ R

−R

(

K ∗ (ψ ∗ ϕ)− ψ ∗ ϕ
)

dx = 0.

In the special case when µ = 1, one has

lim
R→∞

∫ R

−R
ψ ∗ ϕ2 dx = 0,

which since ψ is nonnegative and nonzero enforces ϕ ≡ 0. As ψ is compactly supported,
the limit reduces to a fixed integral. �

4. The construction of a family of solitary waves

We have now come to the point where we shall construct our solutions. To parameterise
the family, let λ be the relative height of a solution, given by

ϕλ(0) =
λµ

2
, λ ∈ (0, 1].

Note that solutions ϕλ depend on µ as well, as we are always considering solution pairs
(ϕ, µ). With the help of the relative height we can describe a family of crests continuously
placed between the zero solution and a highest wave at ϕ(0) = µ

2 . While, for a given
period, the periodic theory does not guarantee uniqueness of solutions with respect to λ,
it does guarantee existence. The following is a summary of several results in [11] (see
Sections 4–6).

Theorem 4.1. [11] For each finite P > 0 and each λ ∈ (0, 1] there exists a P -periodic

solution ϕP,λ ∈ C1/2(R) with wave speed µP,λ and relative height λ of the steady Whitham
equation (1.1). The solutions all have subcritical wave speed 0 < µP,λ ≤ 1, obey the
uniform bounds

µP,λ − 1 ≤ ϕP,λ ≤ ϕP,λ(0) =
λµP,λ
2

, (4.1)

and are even, strictly increasing on (−P/2, 0) and smooth on R \ PZ. If λ ∈ (0, 1), then
ϕP,λ ∈ C∞(R).

The following proposition is a uniform refinement of a result in [11], which will be used
to get bounds for the limiting solution as P → ∞. It follows the structure of Lemma 5.2
in [11], but uses the knowledge of KP to deduce uniformity in P .
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Proposition 4.2. Let (ϕP,λ, µP,λ) be as in Theorem 4.1. There exists a positive constant
δ > 0 such that

µP,λ
2

− ϕP,λ(x) ≥ δ|x|1/2,

holds uniformly for all P ≥ 1, λ ∈ (0, 1] and |x| ≤ δ.

Proof. Since ϕP,λ is even it suffices to consider the case x < 0. Using the evenness and
periodicity of KP and ϕP,λ we obtain by the definition of L that

(LϕP,λ)(x+ h)− (LϕP,λ)(x− h)

=

∫ 0

−P/2
(KP (y − x)−KP (y + x))(ϕP,λ(y + h)− ϕP,λ(y − h)) dy.

The integrand is nonnegative since KP (y − x) − KP (y + x) > 0 for x, y ∈ (−P/2, 0) by
Lemma 2.2 and ϕP,λ(y + h) − ϕP,λ(y − h) ≥ 0 for y ∈ (−P/2, 0) and h ∈ (0, P/2) by
Theorem 4.1. For x ∈ (−P/2, 0), an application of Fatou’s lemma to

(
µP,λ

2 − ϕP,λ(x))ϕ
′
P,λ(x) = lim

h→0

(LϕP,λ)(x+ h)− (LϕP,λ)(x− h)

4h
(4.2)

combined with the previous identity gives

(
µP,λ

2 − ϕP,λ(x))ϕ
′
P,λ(x) ≥

1

2

∫ 0

−P/2
(KP (y − x)−KP (y + x))ϕ′

P,λ(y) dy. (4.3)

For λ < 1 and µP,λ > 0, (4.3) is an equality due to (1.1) and ϕP,λ ∈ C∞(R). Now fix x1,
x2 with −P/4 < x2 < x1 < 0, let x ∈ (x2, x1), and consider ξ ∈ (−P/2, x2]. Then we infer
from the monotonicity of ϕP,λ on (−P/2, 0) and (4.3) that

(
µP,λ

2 − ϕP,λ(ξ))ϕ
′
P,λ(x) ≥ (

µP,λ

2 − ϕP,λ(x))ϕ
′
P,λ(x)

≥ 1

2

∫ 0

−P/2
(KP (y − x)−KP (y + x))ϕ′

P,λ(y) dy

≥ 1

2

∫ x1

x2

(KP (y − x)−KP (y + x))ϕ′
P,λ(y) dy

=
1

2

∫ x1

x2

(−2x)K ′
P (y + ζ)ϕ′

P,λ(y) dy

≥ −x1K ′
P (2x2)(ϕP,λ(x1)− ϕP,λ(x2)),

where |ζ| < |x| follows from the mean value theorem and where we have also used the
convexity of KP on (−P/2, 0). Integration over (x2, x1) in x and division by ϕP,λ(x1) −
ϕP,λ(x2) > 0 gives

µP,λ
2

− ϕP,λ(ξ) ≥ −x1K ′
P (2x2)(x1 − x2).

By taking ξ = x2 = x and x1 = x/2 with x ∈ (−P/4, 0) we get that

µP,λ
2

− ϕP,λ(x) ≥
1

4
x2K ′

P (2x). (4.4)
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Next, in view of the definition of KP and Lemma 2.1 (ii), we have

KP = K +
∑

n∈Z\{0}

K(·+ nP )

=
1

√

2π| · |
+Kreg +

∑

n∈Z\{0}

K(·+ nP ).

Choose 0 < −x ≤ 1/2 so that P ≥ 1 ≥ 2|x| always holds. We then infer again from
Lemma 2.1 (ii) that

K ′
P (x) =

1√
8π |x|3/2

+K ′
reg(x) +

∑

n∈Z\{0}

K ′(x+ nP )

≥ 1√
8π |x|3/2

− c+
∑

n∈Z\{0}

K ′(x+ nP )

with c > 0 being a universal constant independent of P and λ, modified whenever needed.
With Lemma 2.1 (i) we further obtain for a fixed s0 ∈ (0, π/2) that

K ′
P (x) ≥

1√
8π |x|3/2

− c

(

1 +
∑

n∈Z\{0}

exp(−s0|x+ nP |)
)

≥ 1√
8π |x|3/2

− c

(

1 +
∑

n∈Z\{0}

exp
(−s0P |n|

2

)

)

≥ 1√
8π |x|3/2

− c,

again for 0 < −x ≤ 1/2 and P ≥ 1. By combining this with (4.4) and picking δ ∈ (0, c)
small enough, one obtains the desired bound

µP,λ
2

− ϕP,λ(x) ≥ δ|x|1/2,

uniformly for P ≥ 1, λ ∈ (0, 1] and |x| ∈ [0, δ] by continuity. �

The following theorem contains the main convergence result, but as we shall see, does not
yield solitary waves directly, as we do not the control the asymptotic behaviour of these
waves. In fact, since all periodic solutions are sign-changing, one could imagine different
situations appearing, and only Corollary 4.5 below resolves this.

Theorem 4.3. Fix λ ∈ (0, 1]. Given a sequence {(ϕPn,λ, µPn,λ)}n of solution pairs from
Theorem 4.1 with Pn → ∞ as n → ∞, there exists a subsequence converging locally
uniformly as Pn → ∞ to a solution pair

(φλ, νλ) ∈ C(R)× [0, 1]

with relative height λ and satisfying

νλ − 1 ≤ φλ ≤ λνλ
2
.

The locally uniform limit φλ is even, nonconstant, nonperiodic, strictly increasing with
φ′λ > 0 on (−∞, 0), and smooth on R in the case of λ ∈ (0, 1) and νλ > 0.
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Remark 4.4. We shall see later that in fact νλ > 0 for all λ ∈ (0, 1]. One could build an
argument as in Corollary 6.11 in [11], by establishing uniform lower bounds on the wave
speed for all bifurcation curves for large P (they are not uniform for small P , and even
for large P the local slope of the curves is not uniform), but we choose to handle this after
the limiting procedure instead, with the use of results from Section 3.

Proof. Let λ ∈ (0, 1] be fixed. By assumption, there exists a (not relabeled) subsequence
{Pn}n such that limPn→∞ µPn,λ converges to a value νλ ∈ [0, 1]. For each general P ∈
(0,∞), we have by (1.1)

(µP,λ − ϕP,λ(x)− ϕP,λ(y))(ϕP,λ(x)− ϕP,λ(y)) = LϕP,λ(x)− LϕP,λ(y) (4.5)

for all x, y ∈ R. Since ϕP,λ ≤ λµP,λ

2 ≤ µP,λ

2 , it follows that

µP,λ − ϕP,λ(x)− ϕP,λ(y) ≥ ϕP,λ(x)− ϕP,λ(y),

and hence from (4.5) that

(ϕP,λ(x)− ϕP,λ(y))
2 ≤ |LϕP,λ(x)− LϕP,λ(y)|,

again for all x, y ∈ R. Then, since L is a bounded map from L∞(R) →֒ B0
∞,∞(R) to

B
1/2
∞,∞(R) = C1/2(R) according to (2.2), we obtain that

(ϕPn,λ(x)− ϕPn,λ(y))
2 ≤ ‖L‖L(L∞(R),C1/2(R)) ‖ϕPn,λ‖∞ |x− y|1/2

≤ ‖L‖L(L∞(R),C1/2(R))|x− y|1/2,
in view of (4.1) in Theorem 4.1. As this holds for all x, y ∈ R, it guarantees that {ϕPn,λ}n
is uniformly bounded in C1/4(R). In particular, {ϕPn,λ}n is an equicontinuous family
of solutions, and thus, by the Arzelà–Ascoli theorem and a diagonal argument, has a
subsequence converging locally uniformly to a function φλ ∈ C(R). Also, φλ is bounded
below by νλ − 1 and above by λνλ/2 due to (4.1). In addition,

φλ(0) =
λνλ
2
.

Because |ϕPn,λ| ≤ 1 and ‖K‖L1(R) = 1, Lebesgue’s dominated convergence theorem yields

LϕPn,λ(x) = K ∗ ϕPn,λ(x) → K ∗ φλ(x) = Lφλ(x)

as Pn → ∞ for all x ∈ R, and it thus follows that φλ solves (1.1) with wave speed νλ.
Since ϕPn,λ is even and strictly increasing on (−Pn/2, 0), its locally uniform limit φλ

inherits evenness and is at least nondecreasing on (−∞, 0). In order to establish that φλ
is strictly increasing on (−∞, 0), we first prove that φλ is nonconstant. For this we note
that in view of Proposition 4.2, we obtain in the limit Pn → ∞ the inequality

φλ(x) ≤
νλ
2

− δ|x|1/2 (4.6)

near the origin. In the case when λ = 1 and φλ(0) =
νλ
2 this excludes constant solutions.

When λ ∈ (0, 1), we instead use that ϕ = 0 and ϕ = νλ−1 are the only constant solutions
to (1.1). The first case would force νλ = 0 which again would be a contradiction to (4.6).
The second case would instead yield

λ
νλ
2

= νλ − 1,
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which is impossible for λ ∈ (0, 1], νλ ∈ [0, 1]. Then clearly φλ is nonconstant, which
combined with monotonicity gives that it is also nonperiodic.

To show that φλ is strictly increasing on (−∞, 0) is direct. Due to evenness of both K
and φλ, one has

(Lφλ)(x+ h)− (Lφλ)(x− h)

=

∫ 0

−∞
(K(y − x)−K(y + x))(φλ(y + h)− φλ(y − h)) dy. (4.7)

For x < 0 and h > 0, the first factor of the integrand is positive while the second one is
nonnegative, and since φλ is nonconstant, we conclude that (Lφλ)(x+ h) > (Lφλ)(x− h)
whenever x, h are chosen as above. From (1.1) we have

Lφλ(x)− Lφλ(y) = (νλ − φλ(x)− φλ(y))(φλ(x)− φλ(y)) (4.8)

and using φλ ≤ λνλ
2 ≤ νλ

2 , we see that the first expression on the right-hand side is
nonnegative with equality only when φλ(x) = φλ(y) = νλ

2 . Since we already verified
that Lφλ is strictly increasing on (−∞, 0), the fact that φλ is nondecreasing together
with (4.8) imply that φλ is indeed strictly increasing on (−∞, 0) with strict maximum at
φλ(0) = λνλ/2.

A proof for that φλ is smooth on R when λ ∈ (0, 1) and νλ > 0, can be found in
[11, Theorem 5.1]. To see that φλ has an everywhere positive derivative on (−∞, 0),
differentiate or apply Fatou’s lemma (for the case λ = 1) to

(νλ − 2φλ(x))φ
′
λ(x) = lim

h→0

(Lφλ)(x+ h)− (Lφλ)(x− h)

2h

and use (4.7) to get

(νλ − 2φλ(x))φ
′
λ(x) ≥

∫ 0

−∞
(K(y − x)−K(y + x))φ′λ(y) dy.

Since K(y − x)−K(y + x) > 0 here, and φλ is nonconstant, this enforces

(νλ − 2φλ(x))φ
′
λ(x) > 0

on the negative half-line and therefore φ′λ > 0 on the same interval. �

As it turns out, the obtained solutions are not solitary waves, but decay to the non-
zero line of trivial solutions in the Whitham equation, namely φ ≡ ν − 1. The following
corollary establishes that and excludes the case νλ = 1, to obtain the final waves through
a transformation.

Corollary 4.5. Given λ ∈ (0, 1], let (φλ, νλ) be a limiting solution as in Theorem 4.3.
Then the Galilean transformation

ϕλ = φλ + 1− νλ, µλ = 2− νλ (4.9)

defines a positive, bounded, even and nonconstant solution of (1.1), which is strictly de-
creasing on (0,∞). The resulting solitary wave has supercritical wave speed µλ ∈ (1, 2),
and satisfies

0 < ϕλ ≤ µλ − 1 + λ
(

1− µλ
2

)

,
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with equality at x = 0. Moreover,

lim
x→±∞

ϕλ(x) = 0,

eη|·| ϕλ ∈ L1(R) ∩ L∞(R),

for some η = η(λ) > 0. The solution is everywhere smooth for λ ∈ (0, 1) while for λ = 1

the wave of maximal wave height ϕ1 is C1/2 and smooth on R \ {0}.
Proof. Since, according to Theorem 4.3, φλ is even, monotone on (−∞, 0) and bounded,
the limits limx→±∞ φλ(x) exist and, due to Proposition 3.1, are equal to 0 or νλ − 1. We
rule out the first case.

If limx→±∞ φλ(x) = 0, then by strict monotonicity, 0 < φλ ≤ λνλ/2. By the bounds for
the wave speed given in Proposition 3.2 and Theorem 4.3, we must have νλ = 1. But, as
φλ is bounded, Corollary 3.4 forces φλ = 0, which is a contradiction.

Therefore,
lim

x→±∞
φλ(x) = νλ − 1 < 0,

and we can apply the Galilean transformation (4.9) to obtain a positive solution with wave
speed µλ ∈ [1, 2]. Again, by Corollary 3.4, the case µλ = 1 is excluded, and we have a
solution with µλ > 1 and limx→±∞ ϕλ(x) = 0. Hence we can invoke the a priori results
from [5, Proposition 3.13], to conclude exponential decay

eη|·| ϕλ ∈ L1(R) ∩ L∞(R)

of the solutions. Here, η > 0 is a decay factor depending on the wave speed in a non-trivial
way, see [5]. The case µλ = 2 is excluded as well, as Corollary 3.4 then would enforce

∫

R

ψ ∗ (ϕλ(1− ϕλ)) dx = 0,

for an abritrary positive test function ψ. But ϕλ ≡ 0 and ϕλ ≡ 1 are both contradictions
to ϕλ being nonconstant, so µλ < 2. The smoothness on R\{0} follows from [11, Theorem

5.1] and by [11, Theorem 5.4] we get C1/2-regularity exactly for λ = 1. When λ ∈ (0, 1),
the Galilean transformation yields νλ > 0, and by Theorem 4.3 we then obtain that φλ
and ϕλ are smooth on R. �

We present finally three results that give additional information about the solutions,
the first of which is similar to the periodic result in [6], although the proof is different.
Proposition 4.6 is for general solutions, and adds the point (ii). Unfortunately, we have
not been able to rule out the case of two general solutions of the same wave height or
speed, but see Proposition 4.7 for injectivity of the solutions constructed in this paper.

Proposition 4.6 (improved touching lemma). Let (ϕ, µ) and (ϕ̃, µ̃) be two solution pairs
of the steady Whitham equation (1.1) with µ, µ̃ ∈ (1, 2) and ϕ, ϕ̃ positive solutions with
images in (0, µ2 ]. By symmetry, assume µ ≥ µ̃.

(i) If ϕ̃(x) ≥ ϕ(x) for all x ∈ R with equality at some point, then ϕ̃ ≡ ϕ are identical.
(ii) If ϕ̃− ϕ is sign-shifting, its minimum is obtained where µ− ϕ̃− ϕ < 1.

Note that for the solutions constructed in this paper, Corollary 4.5 implies that the quan-
tity c(x) = µ− ϕ(x)− ϕ̃(x) used in the proof of Proposition 4.6 (ii) will satsify

c(0) = µ− 2
(

µ− 1 + λ
(

1− µ

2

))

= (1− λ)(2− µ),
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when µ = µ̃. Because λ ∈ (0, 1) and µ = µλ ∈ (1, 2), the case of (ii) is not excluded. As
the waves are solitary, one however has c(x) > 1 for all |x| ≥ xλ for some xλ.

Proof. As −µϕ+ ϕ2 + Lϕ = 0 and −µ̃ϕ̃+ ϕ̃2 + Lϕ̃ = 0, we have similar to (4.5) that

(µ − ϕ− ϕ̃)(ϕ̃− ϕ) + (µ̃− µ)ϕ̃ = L(ϕ̃− ϕ). (4.10)

Let ψ = ϕ̃ − ϕ and c(x) = µ − ϕ(x) − ϕ̃(x) ≥ 0. When ϕ and ϕ̃ are bell-shaped solitary
waves, x 7→ c(x) is monotone on a half-line with minimum at x = 0. From the equation
(4.10) and µ ≥ µ̃ we obtain

c(x)ψ(x) ≥ c(x)ψ(x) + (µ̃ − µ)ϕ̃(x) = Lψ(x).

Assume now further that ψ(x) = ϕ̃(x)− ϕ(x) ≥ 0 for all x ∈ R as in the case (i). Then

c(x)ψ(x) ≥
∫

R

K(x− y)ψ(y) dy

≥
∫ x2

x1

K(x− y)ψ(y) dy

≥ min
[x1,x2]

ψ

∫ x2

x1

K(x− y) dy,

for any x, x1, x2 ∈ R with x1 ≤ x2. If now ψ(x) = 0 at some point, fix that point. As K
is strictly positive, we may choose the interval [x1, x2] arbitrarily, yielding min[x1,x2] ψ = 0
for all intervals, and thus by continuity that ψ ≡ 0.

In the more general case (ii), let ψmin = minR ψ. By using again that µ ≥ µ̃ and adding
and subtracting c(x)ψmin, one then obtains

c(x)(ψ(x) − ψmin) + c(x)ψmin ≥
∫

R

K(x− y)(ψ(y)− ψmin) dy +

∫

R

K(x− y)ψmin dy

=

∫

R

K(x− y)(ψ(y)− ψmin) dy + ψmin,

and consequently

c(x)(ψ(x) − ψmin) + (c(x) − 1)ψmin ≥
∫

R

K(x− y)(ψ(y)− ψmin) dy

≥
∫ x2

x1

K(x− y)(ψ(y) − ψmin) dy

≥ min
[x1,x2]

(ψ − ψmin)

∫ x2

x1

K(x− y) dy.

If c(x) ≥ 1 is realised where ψ(x) = ψmin, the same argument as above yields ψ ≡ ψmin

and then by lim|x|→∞ψ(x) = 0, that ψ ≡ 0. So the only other possibility is that c(x) < 1
at the point of the minR ψ (which has to be reasonable close to x = 0, see the remark after
Proposition 4.6). �

Proposition 4.7. The branch of solitary solutions from Corollary 4.5 is injective as a
mapping λ 7→ (ϕλ, µλ) ∈ C(R)× R.

Proof. Let α = ϕλ(0)
µλ/2

denote the relative height of solutions from Corollary 4.5. The

parameter λ determines the relative height of the originally constructed solutions φλ with
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wavespeed νλ ∈ (0, 1). As the height of the new solutions ϕλ is ϕλ(0) = µλ−1+λ
(

1− µλ
2

)

,
we need only solve

α =
µ− 1 + λ

(

1− µ
2

)

µ/2

for λ to obtain that

λ =
2− (2− α)µ

2− µ
.

This means that two identical solutions on the curve enforce the same λ, hence the mapping
λ 7→ (αλ, µλ) injective, and thus also λ 7→ (ϕλ, µλ) ∈ C(R)× R. �

Proposition 4.8. With α = ϕλ(0)
µλ/2

the relative height of solutions from Corollary 4.5, the

wave speed always satisfies

µλ <
2

2− α
.

For α close enough to 1 (highest wave), the wave speed is uniformly bounded away from
µ = 2 by a positive constant depending only on the regularity estimate from Proposition 4.2.

The bounds in Proposition 4.2 hold for all continuous, non-trivial, bell-shaped solutions
of (1.1) satisfying ϕ ≤ αµ

2 (there are no other solutions known of the Whitham equation).
It is possible that one can could improve the upper bound for µ using precise estimates
for the kernel K and the optimal decay rate from [1,5] in combination with new optimal
constants found in ongoing work [10], but it is probably hard bordering on the impossible
to determine an exact upper bound.

Proof. The trivial estimate

(µ− ϕ(0))ϕ(0) = Lϕ(0) =

∫

R

K(y)ϕ(y) dy <
αµ

2
,

shows that µ(1− α
2 )

αµ
2 < αµ

2 , which directly yields µ < 2
2−α . We now use this estimate as

well as the a priori estimate from Proposition 4.2, writing

(µ− ϕ(0))ϕ(0) = Lϕ(0) =

∫

R

K(y)ϕ(y) dy

=

∫

|y|≤δ
K(y)ϕ(y) dy +

∫

|y|>δ
K(y)ϕ(y) dy

≤
∫

|y|≤δ
K(y)

(µ

2
− δ|y|1/2

)

dy +

∫

|y|>δ
K(y)

αµ

2
dy

≤ αµ

2
+

(

1− α

2− α
− δ

)
∫

|y|≤δ
K(y)|y|1/2 dy.

Because δ is uniform for all solutions, considering α close enough to 1 yields a negative
last term, so that

µ
(

1− α

2

) αµ

2
− αµ

2
≤ −C2

δ .

This shows that µ is absolutely bounded away from 2
2−α with a distance depending only

on δ for all such solutions. �
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