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Learning to use a diverse set of representations to support teaching and understanding is an 
important and integrated part of Norwegian mathematics teacher education. This study uses a 
thematic analysis and Duval’s theory of semiotic representations to characterise representation 
transformations of 53 preservice teachers’ answers to three additive fraction problems. From the 
analysis, three themes characterising the transformations between representation registers emerged: 
connected, assimilated and inconsistent. The three themes are exemplified with student work, and 
their didactical implications are discussed. 
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Introduction and theoretical background 
Unique to mathematics as a field of science is the ontological position that mathematical objects in 
and of themselves do not exist in the real world; the only way to access a mathematical object is 
through representations of that object. For example, a fraction can be represented symbolically as &

'
 

or as a point on a number line. The different representations of an object are not a form of decorative 
illustration but offer their own unique perspectives of what the object is and how it can be 
manipulated. Together, the representations form an amalgamation of the mathematical object. Hence, 
the role of representations in both doing and learning mathematics is significant (NCTM, 2000; 
Kilpatrick et al., 2001; Duval, 2006). Representations, in particular the idea of linking different 
representations and recognising what is involved in using a particular representation, are also 
emphasised as an important part of teachers’ professional knowledge, for example, within 
mathematical knowledge for teaching (Ball et al., 2008). As teacher education is a primary arena for 
acquiring such specialised professional knowledge, it is important to investigate preservice teachers’ 
(PSTs’) knowledge about connections within and between mathematical representations.  

Representations, their use and how they are connected are especially important for the learning of 
fractions, a subject that can be challenging for both students and preservice teachers (Ni & Zhou, 
2005; Newton, 2008). There is empirical evidence that fraction knowledge predicts later 
mathematical academic success (Siegler et al., 2012), making fractions an essential object of study in 
mathematics education and teacher education. Therefore, it has been suggested that teachers should 
have an understanding of the range of representations, how they are used and how they relate to the 
concept of fractions so that they can better teach the subject (Siegler et al., 2010). These aspects of 
representations are encompassed in the theory of semiotic representations (Duval, 2006). Within this 
theory, mathematical activities consist of the transformations between representation registers (e.g., 
symbolic, diagrammatic, natural language and mathematical language). These transformations are 
divided into treatments, which are transformations within the same representation register, such as 
computing a fraction addition problem using symbolic notation, and conversions, a transformation 
from a source register to a (different) target register without changing the denoted object, such as 
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drawing a number-line representation of a fraction addition problem that has been given in symbolic 
notation (Duval, 2006). In this theory, comprehension is the ability to coordinate or mobilise (at least) 
two representation registers simultaneously. Here, coordination is understood as the ability to use 
both transformations effortlessly and transform them into a suitable register for the task at hand.  

Regarding research on preservice teachers’ comprehension of fractions, it has focused predominantly 
on multiplication and division (Olanoff et al., 2014). This is also true for studies looking at 
transformations between representations (Son & Lee, 2016; Jansen & Hohensee, 2016), even though 
there are exceptions that focus on all arithmetical operations at the same time (Rosli et al., 2013). 
Generally, this body of research shows that PSTs often have difficulties with representing fractions 
(Olanoff et al., 2014). However, because the multiplication and division of fractions is more difficult 
than addition and subtraction (Newton, 2008), it is not fully known if their difficulties are related to 
performing a more complex operation or to the coordination of representation registers. Addressing 
this question, we investigate the conversions that a group of PSTs make between different 
representation registers for addition and subtraction of fractions. We state the following research 
question: What characterises the conversions between representation registers in Norwegian 
preservice teachers’ written answers to additive fraction problems at the end of their first course in 
mathematics education?  

Methods and analysis 
A set of problems regarding the different representations of fractions was devised for 151 PSTs as 
part of the final mandatory assignment of their introductory course in mathematics education at the 
end of their first year of study. This topic had previously been covered in course lectures. The course 
description states that ”…we will thoroughly analyse the foundational understanding of concepts in 
fractions,” and one of the described learning outcomes of the course is that the student ”..has 
knowledge of different representations, and the effects the use of representations can have on pupils' 
learning.”  

In the present paper, we analyse solutions to three additive fraction problems (Figure 1). The problems 

were presented symbolically using three fraction models (i.e., representation registers): the area 
model (A), the number line model (NL) and the set model (S). These registers are denominated as 
diagrammatic registers as opposed to the discursive registers of mathematical symbols and text in 
natural language. 

A subset (N = 53) of the PST answers were selected purposively (the 53 first when sorting 
alphabetically) and analysed in the current study. In order to find new categories or themes within the 
PSTs’ conversions, the analysis of the data was guided by a thematic analysis (Braun & Clarke, 2006). 
During the first phase, the PSTs’ answers were imported to the software package NVivo for 
processing. Because Duval’s theory of semiotic representations functions as an analytic framework 
in the current study, some preliminary ideas for codes were already noted. While familiarising 

Figure 1. The three tasks (translated from Norwegian) 
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ourselves further with the data corpus, more codes were generated. These codes were mostly 
semantic. The second phase of the coding process was inductive, deductive and nonsequential. The 
coding was done by one researcher. Eventually, saturation of the codes was achieved. Three themes 
of conversions between representations were identified. These themes were checked against the 
coding data, and subthemes were identified (often corresponding to some of the codes used). 

Because the 53 PSTs were given three tasks, there was a total of 159 tasks to analyse. Each of the 
tasks asked for three representations; however, some PSTs only provided a single representation to 
each task, resulting in a total of 431 coded representations. These representations were distributed in 
the following registers: 145 area models, 144 number line models and 142 set models. The discursive 
registers were not counted because they often permeated throughout the answers.  

There is not a one-to-one correspondence between the written product of the PSTs and the cognitive 
processes leading to that product. Therefore, a central premise for the analysis is that to some extent, 
the PSTs’ work reflects their thinking or the communication of their mathematical knowledge. 

Results 
Three main themes characterised the PSTs’ conversions between representation registers: 
assimilation of the different representation registers, inconsistency between the different 
representation registers and connected use of representation registers (see Table 1).  

These themes encapsulated the answers from most of the PSTs (51 out of 53) and their representations 
(344 of 431), providing a functional way to analyse the relationships between representation registers 
in these types of fraction problems. Answers from the two PSTs not encapsulated by these themes 
included only a single representation for each task so that the relationship between models could not 
be evaluated and showed no sign of assimilation or inconsistency.  

Table 1. Characteristics of the PSTs’ conversions from symbolic to diagrammatic representations 

Themes and subthemes Representations PSTs 
Assimilation of different registers 219 44 (83%) 
 Symbolic treatment of diagrammatic register 190 42 (79%)  
 Number line model treated as area model 17 11 (21%) 
 Set model treated as area model 6 3 ( 6%)  
 Isomorphic representations 6 2 ( 4%) 
Inconsistency between registers   
 Discursive vs. diagrammatic 19 11 (21%) 
 Diagrammatic vs. diagrammatic 4 3 ( 6%) 
Connected use of different diagrammatic registers 22 12 (23%) 
 All three registers 9 5 ( 9%) 
 Two registers 13 9 (17%) 

 

Assimilation of different registers 

In a large proportion of the representations, we found evidence of assimilation of two or more 
representation registers: either (i) discursive and diagrammatic or (ii) diagrammatic and 
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diagrammatic. By assimilation, we mean that some elements of one representation register are 
brought into the other register during the conversion between them. Assimilation occurred most 
frequently in the conversion from the symbolic source register and then into either of the 
diagrammatic target registers (see Table 1). 

Assimilation from symbolic registers to diagrammatic registers. Figure 2 shows two examples of how 
elements from the symbolic register, such as the equal or plus sign, have been brought into the 
diagrammatic register, where they have no denoted meaning by themselves and where there is no 
supporting text explaining what the symbols mean in the current context.  

This type of assimilation may seem innocuous because the correct numerical answer is obtained and 
the PST may have taken the symbols as implicitly defined or understood. However, unless the unit 
and meaning of the signs are explicitly defined, such drawings can be confusing to pupils and 
contribute to misconceptions such as adding denominators. Indeed, assimilation also led to 
idiosyncratic representations in some of the PSTs’ answers as exemplified in Figure 3.  

Assimilation between diagrammatic representations. In addition to the assimilation of a discursive 
and diagrammatic register, assimilation of two diagrammatic registers was also observed. In Figure 

Figure 2. Typical examples of symbolic elements in the set model and area model 

Figure 3. Addition is implicitly defined as ”gluing together” two number lines, leading to a 
representation where one-fifth is greater than two-thirds. The numerical answer is disconnected  

from the diagrammatic representation 
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4 (left), we see an example where the elements from the area model were brought into the number 
line model. The unit has been implicitly defined as a filled area rather than, for example, a point on 
the number line. 

Figure 4. Left: A representation presented as a number line but treated as an area model.  
Right: Three representations that are isomorphic 

Isomorphic representations. In the most extreme cases of assimilation, all diagrammatic registers 
were more or less collapsed into one register. An example is shown in Figure 4 (right), where none 
of the representations offers distinct or additional insights into the concept, and the conversion 
between representations can be described as a one-to-one mapping between different shapes. A hybrid 
of the set model and area model seems to dominate the expression of what a fraction is. Notably, the 
representations also have elements of the symbolic source register.  

All of the subthemes contain naïve transformations between representation registers. By naïve, we 
mean that the relationship between the source and target representation is treated as congruent; the 
transformation between two registers is essentially reduced to an encoding process of symbols 
(Duval, 2006). Assimilation rarely led to an incorrect answer, potentially because the answer was 
found symbolically and directly translated to the diagrammatic representation. However, assimilation 
misses an opportunity to communicate the unique properties and uses of the different representations 
that can aid pupils’ mathematical reasoning and problem solving in other contexts.  

Inconsistency between registers 

In some answers, we observed a lack of consistency between treatments in the different 
representations. An inconsistency between registers emerged as two subthemes: (i) an inconsistency 
between two diagrammatic registers, which was relatively uncommon, and (ii) an inconsistency 
between a diagrammatic register and a discursive register, which was relatively common.  

In the inconsistency between different diagrammatic registers, the different diagrammatic 
representations used to represent the solution to the problem represented different answers. The most 
dramatic interpretation of this is that there is no connection (and therefore no conversion) between 
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the different registers; the registers are independent of each other regarding the concept they are 
representing. Of course, it could also be the result of a simple mistake, but one would expect that the 
PSTs would notice or comment on the contradicting results. 

The most common type of inconsistency of the latter subtheme was observed in the subtraction 
problem, in which the minuend is greater than one. The inconsistency observed in this problem has 
diagrammatic representations showing the correct subtrahend (Figure 5), whereas in the (self-
provided) text, the subtrahend incorrectly described the problem as removing three-fourths of one 
and a half: ”We have a rope that is one and a half metres long. We are going to cut off three-fourths 
of the rope, how much rope will there be left?” In some sense, this appears to be a variant of the 
referent unit error (Lee, 2017) but only in an additive context. Although seemingly a subtle point, it 
is a fundamental one because in any practical context, the teacher will have to supplement the 
diagrammatic register with a natural language register. An inconsistency in what is verbally described 
and diagrammatically depicted is likely to confuse the learner in a classroom setting.  

Connected use of different diagrammatic registers  

The final theme can be understood as the ideal scenario. Here, the registers are treated as different 
entities but conceptually bound through the conversion between the representation registers. In this 
theme, there is evidence of transformational fluency, and each of the representations offers a distinct 
perspective of the fraction task. An example is shown in Figure 6, where the unit is explicitly stated 
or explained using supplementing text. Often, the representations are also framed in a real-life context 
(e.g., thermometer or cases of strawberries). Furthermore, there is a distinct difference between each 

Figure 6. Connected use of the different registers. Note that these representations were also supplied 
with a text giving more context (e.g., viewing the area model as a lawn) 

Figure 5. Correct representation of subtracting three-fourths from one and a half on the number line 
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of the diagrammatic representations, yielding a more diverse view of the concept of fractions. Only 
nine answers across five PSTs were coded as fully connected uses of different registers. In addition 
to these, 13 answers across nine PSTs were coded as successfully connecting two of the three 
diagrammatic registers. Note that some of these PSTs were also included in the other themes because 
for instance, there was assimilation in the area model but not in the other models. 

Concluding remarks 
Through a thematic analysis of 53 PSTs’ answers to three additive fraction problems, three themes 
regarding the transformations between representation registers were identified. Going deeper into the 
transformations described in Duval’s theory of semiotic representations, these themes were found to 
correspond to three different types of conversions between representation registers: naïve conversion 
(assimilation), inconsistent or lacking conversion between some registers (inconsistency) and fluent 
conversion (connected).  

Each representation register has its own unique qualities. The PSTs that show a connected use of the 
representation registers are able to leverage the strengths and limitations of each register to 
communicate their thinking about a fraction problem. That teachers clearly distinguish between 
different representation registers themselves is essential if they are to guide their pupils towards 
making meaningful connections between mathematical subdomains and between mathematics and 
the real world. Therefore, these results are consistent with the idea that developing PSTs’ appreciation 
of the unique strengths and limitations of different representations and representation registers should 
be a prioritized aspect of teacher education (e.g., Lamon, 2012). To better understand how to mitigate 
the assimilation of and inconsistencies between representation registers, investigating how PSTs think 
when they assimilate registers will be an important future endeavour. 

Finally, because these are first-year PSTs at the end of their first course in mathematics education, 
their answers might reflect their previous education to a larger extent than their teacher training. 
Therefore, an analysis of later year PSTs would be of high interest to assess whether a larger 
proportion of PSTs acquire fluency with conversions in additive fraction problems during the course 
of teacher training.  
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