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Abstract

This thesis focuses on threat analysis and management in distributed learning scen-
arios intending to develop algorithms to mitigate the impact of adversaries in the
network. The thesis begins with a threat analysis that includes investigating pos-
sible adversaries and their attack strategies. It examines the worst-case scenario of
an adversarial attack to identify critical agents/links or potential loopholes. Fur-
ther, the thesis investigates threat management and security algorithms to provide
resilience against malicious behaviors in the network, as well as strategies to pro-
tect the privacy of network agents.

In the scope of the threat analysis, we mainly focus on distributed learning al-
gorithms that are essentially vulnerable to adversarial attacks. By investigating
the network dynamics from an adversarial perspective, we design the optimal co-
ordinated data falsification attack that maximizes the network steady-state mean
squared error (MSE). The adversary simultaneously optimizes the subset of Byz-
antine agents and their attack sequences to maximize the network MSE. The Byz-
antine agent is a legitimate network agent that injects false data into the system
to disrupt the overall performance of the network. Moreover, we propose a dis-
tributed filtering algorithm that provides robustness to Byzantine attacks. The pro-
posed Byzantine-resilient consensus-based distributed filter (BR-CDF) also offers
communication efficiency by allowing agents to exchange only a fraction of their
information at each instant. In addition, we redesign the optimal attack strategy by
solving an optimization problem where Byzantine agents cooperate on designing
their attack covariances or the sequence of the information fractions they share.

Agents in distributed learning scenarios improve local estimates by exchanging
information with neighbors. These local interactions, however, expose private in-
formation to adversaries. As an approach to threat management, we propose a
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privacy-preserving distributed Kalman filter (PP-DKF) that protects local inform-
ation from being inferred by adversaries. The proposed PP-DKF protects local
information by randomly decomposing the state estimates into public and private
substates and only sharing a perturbed version of the public substate with neigh-
bors. Moreover, we derive privacy bounds for all agents in the presence of an
external eavesdropper (EE) and an honest-but-curious (HBC) adversary. Addi-
tionally, we propose partial sharing and privacy-preserving distributed learning
(PPDL) algorithms that offer communication efficiency while preserving privacy.
The proposed PPDL algorithms utilize noise injection and state decomposition
techniques to induce privacy and provide communication efficiency by only shar-
ing a fraction of information at any given instant.

The final part of the thesis aims to further enhance the robustness of the distributed
filtering algorithm to coordinated data falsification attacks. To this end, we model
a distributed Kalman filtering process as a distributed optimization problem with
consensus constraints. We derive a suboptimal solution to the filtering algorithm
that provides robustness to Byzantine attacks using a total variation (TV) penalty
term for the objective function. The proposed Byzantine-resilient distributed Kal-
man filter (BR-DKF) restricts the impact of Byzantine perturbations completely,
and only the number of Byzantine agents influences the filtering error bound.
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Chapter 1

Introduction

The pervasiveness of the Internet of Things (IoT), which connects numerous build-
ings, sensors, appliances, and vehicles, is driving the evolution of more intelligent
and greener cities, environmental monitoring, and physical health care systems.
However, the high connectivity of smart objects and their severe energy and pro-
cessing limitations cause many security challenges. In a distributed setting, an
adversary may hijack and gain complete control over a subset of devices and ma-
liciously alter the reported measurements or inject wrong information into the
system. Thus, a vital requirement in a secure IoT network is an intelligent and
autonomous infrastructure resilient to such malicious disruptions. Preserving the
integrity and trustworthiness of data and their associated analytics calls for new ap-
proaches that can securely gather and process the collected data to ensure a reliable
inference even in the presence of adversaries.

Sensor devices with networking capabilities have sparked considerable interest in
distributed learning, filtering, and estimation algorithms in multi-agent systems. In
this study, we focus mainly on distributed learning algorithms with high accuracy,
computational efficiency, and ability to model various real-world physical systems.
This broad applicability has made distributed learning and estimation techniques
a prominent fixture in many signal processing applications [1–6]. Furthermore,
with the emergence of consensus- and diffusion-based algorithms, distributed fil-
tering became widely used and significantly impacted the development of dynamic
state estimation methods [6–10]. In general, distributed learning algorithms rely
on local collaboration among agents. As a result of these algorithms, learning
performance is improved by aggregating local data with observation and state in-
formation from neighbors [3, 7].

1



2 Introduction

The information exchange among network agents facilitates collaboration but raises
privacy concerns because of the exposure of private information to potential ad-
versaries. In distributed algorithms, even a single intruder or malicious agent can
jeopardize the trustworthiness of the system, further accentuating concerns about
privacy and security [11, 12]. In particular, an adversary may manipulate the data
stream of an agent or hijack and control a subset of agents to compromise the over-
all system performance. Thus, providing a robust procedure to maintain the desired
goal of the system even in the presence of adversaries remains a challenge. Devel-
oping an algorithm that preserves privacy or performs robustly in the presence of
adversaries requires a thorough understanding of the adversarial model and capab-
ilities of the attacker. We can divide network adversaries into three types based on
their capabilities and the information they can access. The first is the external
eavesdropper (EE), who gets access to all the information exchanged between
agents to glean private information. The second type is the honest-but-curious
(HBC) adversary, which is a legitimate node of the network that contributes to the
overall distributed operations but, at the same time, passively seeks to infer private
information from messages shared by its immediate neighbors. Last but not least
is the Byzantine adversary, a legitimate network agent that injects false data into
systems to impair the overall performance of the network.

Aside from the attackers and their accessible information, the attack strategies also
significantly impact the privacy-preserving and secure approaches developed. At-
tacks on multi-agent networks can be classified as active or passive, with passive
attacks occurring when an eavesdropper intercepts a link between agents to obtain
information [13]. On the other hand, active attacks include denial-of-service at-
tacks (DoS) and integrity attacks. During DoS attacks, agents cannot exchange in-
formation due to link blockages [14], while integrity attacks are caused by external
adversaries or malicious agents injecting false information into the network [15].
In this thesis, we also examine distributed algorithms from the perspective of an
attacker to investigate security threats and identify their potential loopholes under
critical circumstances. Thus, the optimal attack strategy, from the perspective of
an attacker, is designed to improve attack protection methods by experiencing the
worst-case scenario of a cyber-attack [16–18].

After analyzing potential adversaries and their attacking strategies, the threat man-
agement process begins to act by developing mitigation approaches to reduce the
negative impact of adversaries on the network performance. One method is to de-
tect the potential adversaries and counteract their actions by implementing correc-
tion measures [19–21]. However, studies in [22–24] have shown that relying on at-
tack detection to limit the impact of adversaries has restricted utility in the presence
of undetected attacks. Hence, there is a need for a robust algorithm that can oper-
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ate effectively even when unidentified attacks occur. To that end, numerous studies
have been conducted on enhancing resilience to malicious activities in the network
using statistical strategies [25–30], homomorphic encryption approaches [31–33],
randomization-based methods [34], and redundancy-based schemes [35–38].

Another critical element of the threat management process involves ensuring that
agents within the network meet their privacy requirements. A privacy-preserving
operation protects the private information of the network agents from being in-
ferred by malicious adversaries. The literature contains various methods that ad-
dress the privacy issues in distributed processing problems, such as consensus [39–
41], optimization [42], and state estimation [43–46]. Differential privacy (DP) is
the most widely adopted privacy-preserving approach in the literature on distrib-
uted state estimation [39, 47]. The DP technique uses perturbation to protect indi-
vidual information from being inferred by other agents or eavesdroppers [39, 47].
However, since differentially private approaches come with a performance pen-
alty, more recent consensus methods, such as noise-injection-based methods [48,
49], have gained wide acceptance. These methods improve the privacy-accuracy
tradeoffs compared to DP approaches by injecting correlated random sequences
into the local information. In the meantime, decomposition-based techniques were
proposed to provide privacy by reducing the amount of information exchanged
among neighbors. For instance, in [50], the initial state at each agent is randomly
decomposed into two substates, one for inter-node interactions and another that
remains invisible to other agents.

Overall, this dissertation examines distributed multi-agent scenarios where agents
share private information with neighbors to complete a common task. The threat
analysis is conducted here by designing the worst-case scenario of a linear data
falsification attack from the perspective of a Byzantine adversary, as well as ana-
lyzing the impact of EE and HBC adversaries on the network performance. In
the scope of threat management, this study proposes different methods to mitig-
ate the impacts of data falsification attacks launched by Byzantine adversaries. In
addition, this thesis develops privacy-preserving distributed learning algorithms to
ensure the privacy of network agents in the presence of various adversaries. To
evaluate the proposed algorithms, this thesis focuses, in particular, on distributed
Kalman filtering (DKF) and distributed least mean square (D-LMS) scenarios. We
focus on these algorithms since DKF and D-LMS are fundamental distributed es-
timation approaches that rely on consensus-based operations, exposing private in-
formation to potential adversaries in the network. As a result, the integrity of the
entire network may be compromised and immediate privacy measures are required.

The developed algorithms in this thesis aim to guarantee privacy for network
agents and provide robustness against adversaries. Thus, as a proof of concept,
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we analyzed the performance of our proposed algorithms on consensus-based dis-
tributed algorithms such as DKF and D-LMS scenarios. The DKF is employed
as a base model, however, we also evaluate the performance of the proposed al-
gorithms in the D-LMS scenario in order to show that the proposed algorithms are
adaptable to other distributed learning strategies. As the literature has shown, the
Kalman filter and LMS estimation algorithms are intrinsically related [51]; thus,
this adaptation can also be theoretically justified.

1.1 Objectives
The main focus of this research is to address the need for privacy and robust-
ness against potential adversaries in distributed settings. In particular, this thesis
concentrates on distributed learning algorithms wherein agents share information
with their neighbors and thereby expose private information to potential adversar-
ies, resulting in heightened privacy concerns. This thesis addresses the following
questions by analyzing potential threats in networks and proposing algorithms to
mitigate their impacts. (i) How can we provide robustness against adversaries
without compromising performance? (ii) What are the best ways to reliably com-
plete a distributed inference task with a privacy guarantee for all agents without
demanding a high computation load? Is it possible to improve communication
efficiency at the same time? (iii) What is the performance of the proposed resili-
ent methods under the worst-case scenario of an attack? In summary, this thesis
focuses on the following research objectives:

T1: Analyze a distributed estimation scenario from an adversarial perspective
and assess the performance of the network under the worst-case attack scen-
ario (optimal attack strategy designed by an adversary).

T2: Improve the overall privacy-accuracy tradeoffs in the network by developing
a privacy-preserving strategy that ensures agent privacy in the presence of
various adversaries.

T3: Develop a distributed strategy with low computational complexity that provi-
des robustness to adversaries without compromising performance signific-
antly.

1.2 Methodology
In this thesis, theoretical algorithms are examined to address concerns about pri-
vacy and attack resilience in distributed scenarios with agents that are limited in
power and computational resources. The methods proposed here are investigated
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in distributed Kalman filtering and D-LMS scenarios due to their simplicity in im-
plementation and high accuracy. Finally, the thesis includes motivations, technical
development of the algorithms proposed, and performance comparisons with con-
temporary approaches. In particular, each section includes a theoretical analysis to
support the concepts proposed, followed by numerical experiments using practical
case studies to validate the proposed methodology.

1.3 Thesis Contributions
The contributions of this thesis are devoted to answering the research concerns
raised in T1-T3 in Section 1.1.

To answer T1, the literature includes several attack designs such as the optimal
jamming policy to maximize the estimation error [52] and linear deception attack
designs to successfully bypass χ2 and Kullback-Leibler (KL) false data detect-
ors [53, 54]. Moreover, in a remote state estimation scenario, [55] investigates the
impact of Byzantine agents on maximizing MSE by injecting zero-mean Gaussian
attack sequences. However, to determine T1, the thesis focuses on coordinated
data falsification attacks by a group of Byzantine agents in a consensus-based dis-
tributed Kalman filtering scenario. In particular, we design a coordinated data
falsification attack that maximizes steady-state mean squared error (MSE). The
adversary simultaneously optimizes the subset of Byzantine agents and their at-
tack sequences to maximize the MSE of the network. Particularly, our proposed
strategy, compared to the literature, considers a fully distributed scenario and op-
timizes both the attack sequence and the set of Byzantine agents simultaneously.

Furthermore, we propose a Byzantine-resilient consensus-based distributed filter
(BR-CDF) that reduces the impact of the coordinated data falsification attack on
the network performance. In addition to robustness against Byzantine attacks, the
proposed BR-CDF algorithm reduces the communication load among agents by
allowing agents to exchange only a fraction of their information at each given in-
stant. Although the idea of sharing only fractions of information to reduce the
communication load in distributed settings was originally proposed in [56, 57],
to the best of our knowledge, it was not investigated in an adversarial environ-
ment. As a result of partial information sharing, Byzantine agents can control the
sequence of information fractions they share, to further degrade the MSE of the
network. Accordingly, we model the optimal attack strategy as a solution of an
optimization problem where Byzantine agents cooperate on designing their attack
covariances or the sequence of the information fractions they share.

In response to T2, the literature mainly focuses on filtering settings utilizing dif-
ferential privacy techniques to protect private information where the resulting al-
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gorithm respects individual data [11, 58–60]. In contrast to indistinguishability
approaches such as the DP technique, we use privacy constraints to protect the
value of private information from being estimated by adversaries. Moreover, al-
though the privacy of Kalman filtering algorithms has been investigated in the lit-
erature, the privacy framework for distributed solutions is not adequately covered.
Thus, to address T2, this thesis proposes a privacy-preserving distributed Kalman
filter (PP-DKF) that protects local agent information from being inferred by ad-
versaries. The proposed PP-DKF protects local information by decomposing the
local estimates into public and private substates and only sharing the public sub-
state with neighboring agents. For further protection, it uses correlated perturba-
tion sequences to obfuscate public substates before sharing. Moreover, the thesis
analyzes the first- and second-order convergence properties of the PP-DKF and
derives privacy bounds for agents in the presence of an EE and an HBC adversary.
A set of numerical simulations is also provided to examine the robustness of the
proposed PP-DKF compared to distributed Kalman filtering solutions employing
contemporary privacy-preserving techniques. In addition, we propose partial shar-
ing and privacy-preserving distributed learning (PPDL) algorithms that offer com-
munication efficiency while preserving privacy. The proposed PPDL algorithms
reduce communication load among agents through partial sharing of information
and obtain privacy by noise injection and state decomposition average consensus
techniques. We examine the first- and second-order convergence properties of the
proposed PPDL algorithms and provide their privacy analysis in the presence of
an HBC adversary.

Regarding the research concern in T3, the literature has proposed several meth-
ods for reducing the impact of Byzantine agents in distributed settings by assign-
ing dynamic weights to measurements that are most likely to originate from a
Byzantine agent [25–28]. Moreover, homomorphic encryption-, randomization-,
and redundancy-based approaches were proposed to further suppress the impact
of Byzantine agents [31, 34–36, 61]. Unlike these methods, which perform by
increasing local computations, we address the concerns in T3 by strengthening
the robustness of the distributed Kalman filtering algorithm against coordinated
Byzantine attacks without significantly increasing local computations. We formu-
late the DKF algorithm as a distributed optimization problem with consensus con-
straints. Using a total variation (TV) penalty term for the objective function and a
distributed subgradient algorithm for solving the resulting optimization problem,
we derive a suboptimal solution to the DKF that performs robustly in the presence
of Byzantine agents. The proposed Byzantine-resilient distributed Kalman filter
(BR-DKF) restricts the impact of Byzantine perturbations entirely, and the error
bound is influenced only by the number of Byzantine agents.
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1.3.1 List of Publications

The author of the dissertation conducted the following research studies in accord-
ance with the research objectives described in Section 1.1. This dissertation is
documented in papers P1 to P8 that cover the entire detailed contributions listed
in Section 1.3. The list includes eight papers, six of which have been published or
accepted for publication, and two were submitted during the Ph.D. program.

P1: A. Moradi, N. K. D. Venkategowda and S. Werner, “Coordinated Data-
Falsification Attacks in Consensus-based Distributed Kalman Filtering,” in
Proceedings 8th IEEE International Workshop on Computational Advances
in Multi-Sensor Adaptive Processing, 2019, pp. 495-499.

P2: A. Moradi, V. C. Gogineni, N. K. D. Venkategowda and S. Werner, “Dis-
tributed Filtering Design with Enhanced Resilience to Coordinated Byz-
antine Attacks,” submitted to IEEE Transactions on Signal Processing, pp.
1-10, 2022.

P3: A. Moradi, N. K. D. Venkategowda, S. P. Talebi and S. Werner, “Privacy-
Preserving Distributed Kalman Filtering,” in IEEE Transactions on Signal
Processing, vol. 70, pp. 3074-3089, June 2022.

P4: A. Moradi, N. K. D. Venkategowda, S. Pouria Talebi and S. Werner, “Dis-
tributed Kalman Filtering with Privacy against Honest-but-Curious Adversar-
ies,” in Proceedings 55th Asilomar Conference on Signals, Systems, and
Computers, 2021, pp. 790-794.

P5: A. Moradi, N. K. D. Venkategowda, S. Pouria Talebi and S. Werner, “Secur-
ing the Distributed Kalman Filter Against Curious Agents,” in Proceedings
24th IEEE International Conference on Information Fusion, 2021, pp. 1-7.

P6: A. Moradi, N. K. D. Venkategowda and S. Werner, “Total Variation based
Distributed Kalman Filtering for Resiliency Against Byzantines,” in IEEE
Sensors Journal, pp. 1-11, Jan. 2023.

P7: V. C. Gogineni, A. Moradi, N. K. D. Venkategowda and S. Werner,
“Communication-Efficient and Privacy-Aware Distributed LMS Algorithm,”
in Proceedings 25th IEEE International Conference on Information Fusion,
2022, pp. 1-6.

P8: V. C. Gogineni, A. Moradi, N. K. D. Venkategowda and S. Werner,
“Communication-Efficient and Privacy-Aware Distributed Learning,” sub-
mitted to IEEE Transactions on Signal and Information Processing over
Networks, pp. 1-13, 2023.
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Figure 1.1: Thesis contributions and organization diagram.

A diagram illustrating the thesis organization and contributions can be found in
Figure 1.1.

1.4 Thesis Organization
The next chapter mainly focuses on background information and mathematical
tools necessary for a deeper understanding of the remainder of the thesis. In par-
ticular, we revisit the basics of distributed Kalman filtering algorithms, analysis of
their optimal solutions, and potential privacy challenges in Chapter 2. Chapter 3
examines the performance of DKFs in the presence of coordinated data falsific-
ation attacks. Furthermore, it provides the design of an optimal attack strategy
from the perspective of an attacker to maximize the network MSE. A privacy-
preserving DKF is proposed in Chapter 4 that guarantees the privacy of network
agents when an EE and an HBC adversary are present. Chapter 5 proposes com-
munication efficient and private distributed learning algorithms that protect local
information while reducing inter-agent communication load. Using an alternative
methodology to solve the distributed Kalman filtering problem, Chapter 6 provides
robustness against Byzantine attacks. Finally, Chapter 7 concludes the thesis with
final remarks and future research directions.



Chapter 2

Distributed Estimation and
Privacy Challenges

This chapter provides the background information required to follow the rest of the
thesis. Section 2.1 investigates the distributed estimation scenarios with a focus
on distributed Kalman filtering settings. Afterward, potential privacy breaches
in distributed consensus-based algorithms are discussed along with solutions to
mitigate their impact in Section 2.2. Further, the concept of privacy and metrics
for characterizing it are investigated in Section 2.3. Section 2.4 discusses possible
adversaries and their attack strategies, as well as the importance of researching
the worst-case scenario from the perspective of an adversary. Lastly, this chapter
revisits methods proposed in the literature to mitigate adversarial effects on the
network in Section 2.5.

2.1 Distributed State Estimation: Kalman Filtering
The decentralized Kalman filtering problem was first introduced in [62, 63], both
of which required a fully connected network. Because of the O(N2) commu-
nication complexity, N is the number of agents in the network, the solution was
not scalable for larger networks, and distributed Kalman filtering solutions were
introduced where agents only interact with their neighbors. Using distributed Kal-
man filtering is one of the most popular methods for solving distributed estimation
problems in scalable information fusion scenarios. A centralized Kalman filter
provides an optimal estimation of the dynamic system state xn ∈ Rm, at each time
n, by observing the global observation yn = [yT

i,n, · · · ,yT
i,n]

T ∈ RNq. However,
the purpose of distributed Kalman filtering is to convert a centralized Kalman filter
into a network of local Kalman filters, where each agent i has a local observation

9
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yi,n ∈ Rq and can only interact with its neighbors to provide the state estimate.
One class of distributed Kalman filters (DKF) relies on average consensus opera-
tions and can be implemented by decomposing the centralized Kalman filter into
local Kalman filters that estimate the state of the system and reach a consensus with
neighboring agents on the state estimate [2–4]. Diffusion-based DKFs, however,
provide state estimates without requiring neighboring agents to obtain the same
estimate in steady-state [6]. The estimates of each agent are updated using con-
vex combinations of the estimates of its neighbors. In consensus-based distributed
Kalman filters (CDF), it generally takes multiple iterations to reach the average
consensus across the network [64–66]. Although CDFs in [2–4] only require one
consensus iteration, their limitations in selecting consensus weights distinguish
them from diffusion-based solutions.

A variety of consensus-based distributed Kalman filtering techniques have also
been proposed to improve performance in distributed estimation scenarios [8–10].
In [67], authors developed a DKF technique that mimics the operations of a cent-
ralized Kalman filter in a distributed fashion and improves the performance of the
DKF using embedded average consensus fusion of local state estimates and their
associated covariance information. In the following, we revisit the distributed Kal-
man filtering analysis, where agents employ their local observations to estimate
the dynamic state of the system. Following is a summary of the commonly used
mathematical operators throughout the thesis.

Mathematical Notations: Scalars, vectors, and matrices are denoted by lowercase,
bold lowercase, and bold uppercase letters. A white Gaussian sequence x(k) with
covariance Σ is represented as x(k) ∼ N (0,Σ). The greater than and less than
symbols in the scalar inequalities are represented by > and <, respectively. A
positive semidefinite matrix A is denoted by A ≽ 0 and A ≽ B indicates that
A − B is a positive semidefinite matrix. The ijth element of the matrix A, is
denoted by [A]ij , while A ⊆ B denotes that set A is a subset of a set B. The
inequality A ≤ B denotes an element-wise inequality for corresponding elements
in matrices A and B. The maximum and minimum eigenvalues of the square
matrix A are denoted by λmax(A) and λmin(A), respectively.

2.1.1 Consensus-based Distributed Kalman Filtering

A distributed Kalman filter consists of a network of agents modeled as an undirec-
ted graph G(N , E), where N is the set of all agents with |N | = N , and E is the
edge set that represents the communication links between agents. The neighbor
set Ni with the cardinality of |Ni| comprises all the immediate neighbors of agent
i and excludes the agent itself. A network adjacency matrix is denoted by E, with
eij = 1 representing a connection between i and j and eij = 0 indicating that
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(i, j) /∈ E . The diagonal matrix D containing the degrees of the corresponding
nodes on the main diagonal is defined as D≜diag({|Ni|}Ni=1).

We consider a dynamic process with a linear time-varying state model as

xn+1 = Axn +wn, ∀n = 1, 2 . . . , (2.1)

where xn ∈ Rm denotes the state of the system at time instant n, A ∈ Rm×m is the
state-transition matrix, and wn is the state noise. In designing a distributed Kalman
filtering algorithm, the ultimate goal is to collaboratively estimate the system state
using a network of agents. The local observation yi,n ∈ Rq for each agent i is
available at every instant n as

yi,n = Hixn + vi,n, (2.2)

where Hi ∈ Rq×m is the observation matrix and vi,n denotes the observation
noise. The state and observation noise wn and vi,n are mutually independent zero-
mean Gaussian processes with covariance matrices Q ∈ Rm×m and Ri ∈ Rq×q,
respectively. Employing the consensus-based distributed Kalman filter to estimate
xn in a collaborative manner [7], results in the estimate of the system state at each
agent i and time instant n as

x̂i,n+1 = Ax̂i,n +Ki,n (yi,n −Hix̂i,n)− εA
∑

j∈Ni

(x̂i,n − x̂j,n) , (2.3)

where Ki,n ∈ Rm×q is the Kalman gain, ε is the consensus gain chosen as 0<ε≤
1/∆ with ∆≜maxi|Ni|, and x̂j,n is the estimate shared by neighboring agent j.

To improve the Kalman filtering state update in (2.3), the Kalman gain Ki,n has
to be optimized for each agent i ∈ N . The optimal Kalman gain Ki,n is designed
by minimizing the trace of the estimation error covariance Pi,n ≜ E{ei,neT

i,n},
where, the estimation error ei,n ≜ x̂i,n − xn evolves as

ei,n+1 = Fi,nei,n +Ki,nvi,n −wn − εA
∑

j∈Ni

(ei,n − ej,n) , (2.4)

with Fi,n = A − Ki,nHi. After some algebraic manipulations, the estimation
error covariance matrix can be expressed as

Pi,n+1 = Fi,nPi,nF
T
i,n +Ki,nRiK

T
i,n +Q+∆Pi,n (2.5)

with

∆Pi,n =− εFi,n

∑

s∈Ni

(
Pi,n −Pis,n

)
AT − εA

∑

r∈Ni

(Pi,n −Pri,n)F
T
i,n

+ ε2
∑

r∈Ni

∑

s∈Ni

A (Pi,n −Pis,n −Pri,n +Prs,n)A
T,
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where Pij,n ≜ E{ei,neT
j,n} is the cross-covariance term and is given by

Pij,n+1 = Fi,nPij,nF
T
j,n +Q+∆Pij,n (2.6)

with

∆Pij,n =− εFi,n

∑

s∈Nj

(Pij,n −Pis,n)A
T − εA

∑

r∈Ni

(
Pij,n −Prj,n

)
FT
j,n

+ ε2
∑

r∈Ni

∑

s∈Nj

A (Pij,n −Pis,n −Prj,n +Prs,n)A
T.

Subsequently, the optimal Kalman gain that minimizes trace of (2.5) can be com-
puted by differentiating tr(Pi,n+1) with respect to Ki,n and is given by

K∗
i,n = A

(
Pi,n − ε

∑

j∈Ni

(
Pi,n −Pji,n

))
HT

i M
−1
i,n , (2.7)

where Mi,n = HiPi,nH
T
i +Ri. As a result, the algorithm requires global informa-

tion about the state covariances to compute the estimates. In the following section,
we examine a distributed Kalman filtering solution that requires only the exchange
of local state estimates and their covariance information among neighbors.

2.1.2 Distributed Kalman Filter with Embedded Average Consensus

The distributed Kalman filtering algorithm in [67] improves the filtering perform-
ance through embedded average consensus filters (ACF). The authors developed a
DKF algorithm based on decomposing the centralized Kalman filtering steps and
combining state estimates and covariance information with ACFs.

In a system with the same state dynamics and local observations as (2.1) and (2.2),
respectively, the DKF algorithm in [67] estimates the system state by local predic-
tion updates as

x̂i,n|n−1 = Ax̂i,n−1|n−1

Pi,n|n−1 = APi,n−1|n−1A
T +Q

(2.8)

where, for agent i, x̂i,n|n−1 and x̂i,n|n are the respective a priori and a posteriori
state vector estimates and Pi,n|n−1 and Pi,n−1|n−1 denote the respective a priori
and a posteriori error covariance matrices. The intermediate information of agent
i, at time instant n, denoted by Γi,n, is locally updated as

Γi,n = P−1
i,n|n−1 +NHT

i R
−1
i Hi, (2.9)

and shared with neighbors to reach the average consensus. We assume that the con-
dition for convergence of the covariance matrices {Pi,n|n : ∀i ∈ N , n = 1, 2, . . .}
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Algorithm 1 DKF algorithm
For each agent i ∈ N
Initialize: x̂i,0|0 and Pi,0|0

1: x̂i,n|n−1 = Ax̂i,n−1|n−1

2: Pi,n|n−1 = APi,n−1|n−1A
T +Q

3: Γi,n = P−1
i,n|n−1 +NHT

i R
−1
i Hi

4: P−1
i,n|n ←− ACF ←− {∀j ∈ Ni : Γj,n}

5: ri,n = x̂i,n|n−1 +NPi,n|nHT
i R

−1
i

(
yi,n −Hix̂i,n|n−1

)

6: x̂i,n|n ←− ACF ←− {∀j ∈ Ni : rj,n}

to unique stabilizing solutions, as given in [67], are satisfied. Therefore, we have
limn→∞Pi,n|n = Pi for each i ∈ N . As shown in [67], the a posteriori central-
ized covariance information is the network average of the updates in (2.9). Hence,
the distributed update of P−1

i,n|n is obtained via an ACF, wherein the agents re-
fine their updates through local averaging within their neighborhoods. Finally, the
a posteriori covariance information P−1

i,n|n is used to determine the local interme-
diate state estimate

ri,n = x̂i,n|n−1 +NPi,n|nH
T
i R

−1
i

(
yi,n −Hix̂i,n|n−1

)
(2.10)

that minimizes the trace of the error covariance matrix. Subsequently, similar to
Γi,n, the local intermediate state estimate is passed through an ACF to get the
a posteriori state estimate x̂i,n|n. The steps of the distributed Kalman filtering
solution are summarized in Algorithm 1. In Algorithm 1, the general ACF al-
gorithm is represented with the following schematic:

Θi,n(k)←− ACF ←− {∀j ∈ Ni ∪ i : Θj,n(0)} (2.11)

where Θj,n(0), j ∈ Ni ∪ i are the initial inputs to the ACF at node i, and Θi,n(k)
is the output at agent i after k consensus iterations.1 In theory, the ACF output is
the average of inputs across the entire network, i.e., 1

N

∑N
j=1Θj,n(0). However,

in practice, the accuracy of the ACF is compromised due to the limited number of
iterations. In the following section, we will investigate the dynamic of the average
consensus filters in more detail.

2.2 Average Consensus and Breach of Privacy
An average consensus problem involves a group of agents who share their initial
information with neighbors and attempt to obtain the average of the initial values

1In order to incorporate both the covariance information and the intermediate state estimate con-
sensus updates, the ACF inputs are matrices.
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across the network. The ACF benefits from local collaborations, where agents
receive local information from neighbors and use that information to update their
local states. In particular, in a generic iterative ACF, each agent i begins the process
with initial information Θi,n(0) and updates its state at kth consensus as

Θi,n(k) = biiΘi,n(k − 1) +
∑

j∈Ni

bijΘj,n(k − 1) (2.12)

where consensus weights {bij : ∀i, j ∈ N} are positive real-valued weights so
that the consensus weight matrix B where bij = [B]ij is a doubly stochastic mat-
rix [65]. 2 Since B is a doubly stochastic matrix, the state of each agent converges
to the average consensus value as k →∞, given as

lim
k→∞

Θi,n(k) =
1

N

N∑

j=1

Θj,n(0) (2.13)

which is the desired average consensus throughout the entire network. As seen
in (2.12), agents need to share their current state information with their neighbors.
The information exchange makes the consensus update vulnerable to malicious at-
tacks, and adversaries can exploit node-sensitive information. Thus, the ultimate
goal of agents in a private average consensus procedure is to reach the exact aver-
age consensus value without exposing their initial information. In ACF, the initial
information of agents needs to be protected as the initial consensus iterations com-
prise messages with more node-specific information than those towards the end
that are all close to the final network average. For example, consider a group of
individuals that wants to calculate the average salary of everyone without revealing
their personal salaries. Using distributed average consensus as a model for obtain-
ing the average salary, the salary of each individual is the initial value of the ACF,
the private information that has to be protected.

2.2.1 Privacy-Preserving Average Consensus Techniques

In the literature, there are many works devoted to the topic of protecting average
consensus operations. Regarding privacy concerns in distributed estimation, dif-
ferential privacy (DP) dominates the literature [39, 47]. In DP, local messages are
perturbed with uncorrelated random sequences to protect individual information
from being inferred by other agents or an external eavesdropper [39, 47]. In par-
ticular, DP randomizes the private information of agents, initial states in the ACF
problem, in a manner that an adversary cannot infer the data of any individual
agent based on the observation of aggregated output. For further clarifying the DP

2Throughout the entire manuscript, the filtering time instant is shown by n as an index and the
internal loop that represents the consensus iterations is shown by k in parenthesis.
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procedure, we consider two initial states x(0) = [xT
1(0), · · · ,xT

N (0)]T ∈ RNm and
y(0) = [yT

1 (0), · · · ,yT
N (0)]T ∈ RNm as σ-adjacent when there is an i ∈ N such

that ∥xi(0)− yi(0)∥ ≤ σ and xj(0) = yj(0) for each i ̸= j. Thus, a randomized
mechanism A : RNm → R(A) with range R(A) is (ϵ, δ)-differentially private, if
for each subset of range A, i.e., O ⊆ R(A), the following inequality holds:

P{A(x(0)) ∈ O} ≤ eϵ P{A(y(0)) ∈ O}+ δ, (2.14)

where P{·} denotes the probability of the argument event and the symbol ∈ indic-
ates set membership. This essentially means the output of a differentially private
algorithm is not significantly affected by changing the data of a single agent. If
δ = 0, the randomized mechanism A is called ϵ-differentially private that guaran-
tees stronger privacy than the (ϵ, δ)-differentially-private mechanism [47, 68–70].
A differentially private procedure provides privacy guarantees, but at the cost of
performance. Hence, more recent privacy-preserving consensus approaches such
as noise-injection-based methods [48, 49] have gained wide acceptance due to their
improved privacy-accuracy tradeoffs.

The noise-injection-based approach designs a correlated noise process to perturb
the average consensus states at every iteration without impacting the consensus
result. At each agent i and consensus iteration k, the state of the agent is perturbed
with the additive perturbation noise sequence ωi(k) ∈ Rm given as

ωi(k) =

{
νi(0) k = 0

ϕkνi(k)− ϕk−1νi(k − 1) o.w.
(2.15)

with ϕ ∈ (0, 1) as a common constant for all agents and νi(k) ∼ N (0, σ2Im)
as an independent and identically distributed white Gaussian sequence for each
iteration k and i ∈ N . In particular, we employ a decaying variance perturbation
sequence to protect the initial exchanges more than the output of the ACF. In other
words, the decaying variance perturbation sequence injects higher variance noise
to the initial values of the ACF, and as the agents converge toward the average
consensus, less noise is injected since there is less node-specific information. As
a result of (2.15), the initial state of the agents is protected, and the exact value
of the average consensus in the ACF problem can also be obtained asymptotic-
ally [48]. Decomposition-based techniques, on the other hand, focus primarily on
the amount of information that is exchanged with neighbors [50]. In these meth-
ods, the initial state of each agent is randomly decomposed into public and private
substates, where only the public state is shared with neighbors. The private sub-
state, however, updates internally and remains invisible to other agents.

The majority of distributed algorithms, including DKF and LMS algorithms, must
be protected against adversaries because they also involve average consensus steps.
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These algorithms must modify their average consensus steps to ensure privacy, but
these modifications impact the overall performance of the algorithm. Hence, as an
alternative objective, this dissertation also investigates the impact of these modi-
fications on the overall performance of distributed algorithms, in addition to the
privacy guarantee provided for network agents. Defining privacy and introducing
a metric to measure it are prerequisites for assessing privacy guarantees. To this
end, in the next section, we explore the definition and measures of privacy.

2.3 Privacy Measures
The concept of privacy does not have a universally accepted definition [71]. In the
information domain, Westin [72] defined privacy as the right to control and handle
the amount of information communicated to others. The collection and exchange
of data is an essential component of distributed algorithms, although it can cause
unwanted privacy violations. In these scenarios, information leakage can be pre-
vented by modifying the original data and preventing the disclosure of individual
information. However, the transformation of the data reduces the performance of
the algorithm and the quality of the data, thereby causing inaccurate knowledge
extraction.

It is crucial to choose a privacy-preserving technique and then a privacy metric
based on system properties. Privacy metrics use system properties as inputs, such
as information available to the adversary and the type and capabilities of the ad-
versary to quantify the privacy level of agents. In distributed learning and es-
timation algorithms, DP-based privacy metrics [73] are commonly used when the
attack model and the information set available to the adversary are not specified.
In DP-based approaches, privacy is not quantified, but rather, the indistinguishab-
ility of agent data is guaranteed. The indistinguishability-based privacy metrics,
e.g., DP-based metric, determine whether the adversary can distinguish between
the information of different agents [74]. In general, DP is a pessimistic metric that
gives a worst-case privacy measure, requiring algorithms to employ a larger vari-
ance of the perturbations. In other words, DP algorithms inject more perturbation
noise than necessary to guarantee privacy, resulting in a significant performance
loss and an upper bound instead of a tight bound for privacy leakage. For example,
the DP is used as a privacy measure in [60] where a centralized aggregator collects
local private data streams from agents to compute minimum MSE estimates of the
system state. DP is an appropriate privacy measure in [60] because there is no
quantitative definition of privacy and no explicit model of adversary capabilities.

Alternatively, in distributed Kalman filtering, for example, the adversary can ex-
ploit the prior information, such as the distribution of states, statistics of perturba-
tion noise, observation dynamics, and network information, to infer the state estim-
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ate values. In these scenarios, probabilistic indistinguishability metrics such as dif-
ferential privacy or mutual information-based methods ignore the impact of prior
information [60, 75]. Therefore, these measures are not appropriate for capturing
the behavior of adversaries or how accurate their knowledge of private information
is. In this work, the main concern is to protect information from being inferred by
adversaries, and due to the availability of a specified attack model and information
set of the adversary, the MSE metric is better suited. The MSE metric quantifies
the uncertainty of the adversary to estimate the private information of agents based
on the data it has access to [74]. Overall, the DP technique captures an abstract
notion of privacy, whereas the estimation error quantifies the exact knowledge of
the adversary about private information. Thus estimation error or MSE is more
pragmatic and better suited for practical application in multi-agent networks since
it can characterize a tighter privacy bound [48, 76].

2.4 Adversaries and Attack Strategies
According to the previous section, measurement of privacy using the MSE metric
requires an understanding of the capabilities of the adversary and the specified
attack model. Hence, this section investigates possible adversaries and their attack
strategies in distributed learning and estimation scenarios.

2.4.1 Adversaries

In the scope of threat management and analysis, it is imperative to understand
possible adversaries and their capabilities clearly. We consider three types of ad-
versaries that can exploit the exchanged data to infer private information:

• An external eavesdropper, who is external to the network, is trying to learn
private information by accessing all the information exchanged among agents.

• An honest-but-curious agent is a legitimate network agent that contributes
to the overall estimation task while passively attempting to infer private in-
formation from messages shared by its immediate neighbors.

• A Byzantine agent is a legitimate network agent that injects falsified inform-
ation into the estimation process to impair the overall network performance.

Essentially, a Byzantine adversary is an HBC agent that actively injects false in-
formation into the network. Based on the definitions, the EE can only access the
exchanged information among agents and does not have access to node-specific
data, while HBC and Byzantine adversaries are network agents and can access in-
formation of neighboring agents and their node-specific data. Adversaries above



18 Distributed Estimation and Privacy Challenges
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Figure 2.1: Illustration of information accessible to various adversaries.

can access different types, and amounts of information; Fig 2.1 illustrates the dif-
ferent information types accessible to adversaries.

2.4.2 Attack Strategies

Attacks in multi-agent networks can be classified as either active or passive. In
passive attacks, the adversary intercepts a communication link and attempts to in-
fer private information about the network without actively falsifying the exchanged
information. The EE and HBC adversaries both perform passive attacks because
they neither inject false information into the network nor interfere with information
exchange by interrupting communication links. In contrast, active attacks can de-
teriorate the overall performance of a network by manipulating information or in-
jecting false data. Generally, active attacks are divided into two categories: denial-
of-service (DoS) attacks and integrity attacks. During DoS attacks, communica-
tion link between agents is blocked, and information cannot be exchanged [14],
while integrity attacks occur when adversaries inject false information [15]. In
particular, an integrity attack that injects false information into a network without
being detected is referred to as a stealthy attack.

In this thesis, we consider both passive and active attack strategies. In the scope of
passive attacks, we consider both EE and HBC adversaries that attempt to infer the
private information of network agents by accessing different information sets. For
example, in the distributed Kalman filtering scenario in Section 2.1.2, agents must
share intermediate state estimates and error covariance matrices to perform the fil-
tering operations. Hence, for each filtering time instant n, the accessible informa-
tion set for the EE is IEE = {Γi,n, ri,n, ∀i ∈ N}, whereas for the HBC adversary,
assuming agent j as an HBC agent, IHBC = {Γj,n, rj,n}

⋃ {Γi,n, ri,n, ∀i ∈ Nj}
is the available information set which is restricted to its neighborhood.
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Figure 2.2: Illustration of information exchange in the presence of Byzantine agents.

When it comes to active attacks, we consider the presence of Byzantine agents. We
assume that a group of agents are Byzantines, B ⊂ N , and in contrast to regular
agents, share a falsified version of their information with their neighbors to deteri-
orate the network performance [15]. To simplify the analysis, we consider a linear
data falsification attack, in which Byzantine agents manipulate their information
by injecting additive random sequences before sharing it with neighbors. For ex-
ample, in a DKF algorithm, Byzantine agents participate in the filtering algorithm
by sharing the perturbed version of their state estimates. As a result and as shown
in Fig. 2.2, the received state estimate at each agent j can be expressed as

x̄j,n =

{
x̂j,n + δj,n j ∈ B
x̂j,n j /∈ B,

(2.16)

where at each time instant n, δj,n ∈ Rm is the perturbation sequence of the Byz-
antine agent. To maximize the attack stealthiness, the ability to evade detection,
we consider the perturbation sequence to be zero-mean Gaussian with covariance
matrix Σi ∈ Rm×m [54, 77]. In addition, instead of the independent Byzantine
attack, i.e., E{δi,nδT

j,n} = 0 for all i ̸= j, Byzantine agents can further deteriorate
the network performance by cooperatively designing their attack covariances. The
coordinated attack is modeled with a correlated covariance matrix Σ = E{δnδT

n}
where δn = [δT

1,n, · · · , δT
N,n]

T is the network-wide perturbation sequence and
δj,n = 0 if j /∈ B.

2.4.3 Attack Design: Perspective of an Adversary

The evaluation of distributed learning algorithms can be conducted by investig-
ating their effectiveness under the worst-case scenario of a cyber-attack. As a
result, potential loopholes and critical agents/links are identified. Hence, analyz-
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ing optimal attack strategies from the perspective of an adversary is crucial for
developing attack protection methods.

The literature includes many studies on optimal attack designs from the perspective
of an adversary; for example, in [16], authors propose a false data injection attack
strategy in a remote state estimation scenario that maximizes the trace of the es-
timation error covariance. Regarding the security concerns of power grid devices,
by using a game theory framework, a stealthy attack strategy and its optimal de-
fense mechanism are proposed in [78]. Moreover, authors in [18] propose a linear
stealthy attack strategy and its required feasibility constraints to evade detection,
while [17] proposes an optimal attack strategy and sufficient conditions to destabil-
ize the system, where estimation error grows unlimited. In addition, considering
a distributed cyber-physical system (CPS), [79] designs a data falsification attack
that enforces the state estimate of agents to remain within a pre-specified range.

In this thesis, we design the optimal attack strategy by investigating a DKF from
the perspective of an adversary and maximizing the network MSE. The adversary
determines the optimal attack strategy by jointly optimizing the attack covariances
and the subset of agents that it compromises. In the same system, we mitigate the
impact of the Byzantine attack by allowing agents to share only a fraction of in-
formation at any given instant. In this case, we also find the optimal attack solution
by solving an optimization problem where Byzantine agents cooperate on design-
ing their attack covariances or the order of the information fractions they share.

2.5 Attack Mitigation Approaches
After exploring attack strategies and attack design techniques, we investigate pro-
tection schemes from the perspective of a network agent. To reduce the impact
of adversaries, one approach is to detect the potential adversaries and implement
correction measures [19–21]. As an example, [80] proposes a defense strategy that
detects adversarial agents based on changes in their innovation signals and tailors
their gains accordingly. Studies in [18, 22, 23] have shown that relying on attack
detection to mitigate the impact of adversaries has limited utility when attacks are
stealthy. Therefore, it is essential to develop robust algorithms for unidentified
attacks.

To that end, in distributed filtering scenarios, works in [25, 26] minimize the im-
pact of malicious agents using innovation signal statistics to re-design the con-
sensus weights. Moreover, a Byzantine-resilient distributed state estimation al-
gorithm is proposed in [81], which allows agents to update state estimates loc-
ally by selecting the best subset of neighbors for updating the state estimate. In
a distributed state estimation scenario, [27, 28] provide resilience to measure-
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ment attacks by assigning adaptive weights to received measurements from neigh-
bors. By assigning smaller weights to measurements whose norm exceeds a cer-
tain threshold, they would have a smaller impact on the state estimates. Further-
more, [29] proposes a secure state estimation method that employs the median
of neighboring estimates rather than the mean, which provides robustness against
adversaries.

To further ensure the confidentiality of signals sent over the network, homomorphic
encryption schemes have also been used in CPSs [31]. In [32], the authors propose
an algorithm employing additively homomorphic encryption, which enables the
cloud server and security module to integrate the information of multiple parties
while maintaining data privacy. However, authors in [33] propose a modified en-
coding and decoding scheme that, unlike the previous work in [61], does not neg-
atively affect estimation performance in the absence of attacks and further pro-
tects data integrity in multi-sensor networks. Moreover, utilizing randomization-
based methods to disrupt and mislead attackers in their malicious activities is a
less resource-intensive method to mitigate their impacts on the network [34]. To
further improve the resistance against adversarial attacks, redundancy-based ap-
proaches were introduced to a CPS at different levels of communication, chan-
nels, software, and hardware [35, 36]. Redundant subsystems serve as backups
or parallel integrity verification units to reduce the effect of malfunctioning be-
haviors in the network [37]. An approach based on redundancy demands strict
network requirements and can only tolerate a limited number of Byzantine ad-
versaries. Thus, authors in [38] provide resilience to attack by limiting these
stringent requirements to only a group of agents. Generally, these approaches
reduce the impact of adversarial attacks on the network, but they require more
local computations and information transfer in the network, which is undesirable
in resource-constrained situations. This manuscript investigates approaches that
improve robustness against adversaries and mitigate their impacts without adding
extra computational burden to agents.

2.6 Summary
In this chapter, we presented the background information on distributed estima-
tion in multi-agent systems, focusing on distributed Kalman filtering scenarios.
Afterward, a discussion of possible privacy breaches in the system and modific-
ations that can be made to safeguard privacy in average consensus scenarios was
presented. A rationale for using the MSE as the privacy measure throughout the
thesis was established through the introduction of privacy definitions in the lit-
erature. Furthermore, possible adversaries and attack strategies were discussed,
and the importance of researching an optimal attack strategy from the perspect-



22 Distributed Estimation and Privacy Challenges

ive of an attacker was clarified. Finally, the literature on mitigation approaches
to reduce the impact of adversaries on the network has been investigated. In the
next chapter, in order to conduct threat analysis, we present the results of publica-
tions P1 and P2 in which we examine the impact of coordinated data falsification
attacks on consensus-based distributed Kalman filtering settings.



Chapter 3

Threat Analysis and Optimal
Attack Design

The chapter begins by presenting the results of publication P1, which examines
how perturbations injected by the Byzantine agents can disrupt the distributed fil-
tering algorithm and degrade the MSE performance. We examine the CDF prob-
lem from an adversarial perspective and identify the worst-case attack strategy by
optimizing attack sequences and the set of compromised agents. As mentioned in
Section 2.5, agents also implement different mitigation approaches to reduce the
impact of adversaries in the network. In this regard, in publication P2, we propose
a CDF algorithm that allows agents to share a fraction of state estimates at each
time instant. We show that by sharing only a fraction of information, agents re-
duce the impact of coordinated data falsification attacks on network performance.
Accordingly, the optimal attack is designed by Byzantine agents cooperating to op-
timize their attack sequences and the order of the information fractions they share
to maximize the network MSE.

The remainder of this chapter is organized as follows. Section 3.1 investigates the
optimal coordinated data falsification attack by jointly optimizing attack sequences
and the set of the compromised agents. A partial-sharing-based CDF algorithm
is presented and analyzed for achieving robustness against Byzantine attacks in
Section 3.2. Furthermore, Section 3.2.4 analyzes the optimal attack strategy by
optimizing the sequence of the information fractions at Byzantine agents. Lastly,
Section 3.3 summarizes the chapter.

23
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3.1 Coordinated Data Falsification Attack Design
Optimal attack designs are examined from the perspective of adversaries to identify
critical links and agents in a system. The optimal jamming policy that maximizes
the estimation error in a remote state estimation scenario was proposed in [52]. An
optimal linear deception attack that successfully bypasses a χ2 false data detector
was also proposed in [53]. Further, [54] examines the impact of a stealthy data
falsification attack on a single sensor Kalman filter with a Kullback-Leibler (KL)
divergence-based detector. In a similar setting, [55] showed that Byzantine agents
can maximize MSE, the worst-case stealthy attack strategy, by employing zero-
mean Gaussian attack sequences. In contrast to studies in [52–55, 77], we consider
a fully distributed scenario and jointly optimize the attack sequence and set of
Byzantine agents. Our model considers the attack design in a fully distributed
scenario, so comparing it with existing methods in the literature cannot be done
fairly. Although our proposed method is benchmarked with different strategies,
we may be able to extend the proposed approaches in [53] and [54] to distributed
settings and incorporate χ2 and KL divergence-based false data detectors in our
algorithm to provide a fair comparison.

We consider a connected multi-agent network of N agents that collectively aim
to estimate the state vector sequence {xn, n = 1, 2 . . .} from local observations
{yi,n, n = 1, 2 . . . , i ∈ N}. Employing the CDF algorithm in Section 2.1.1,
each agent i tracks the state of the system according to its local estimation as (2.3)
that minimizes the trace of the estimation error covariance. We assume that the
CDF algorithm suffers from a coordinated Byzantine attack as described in Sec-
tion 2.4.2, the attacker can only collude with a limited number of agents. Addi-
tionally, we consider the case where Byzantine agents have limited computation
and energy resources. Therefore, to satisfy resource limitations and keep the Byz-
antine attack stealthy, i.e., the ability to evade detection, we restrict the variance
of the injected sequences into the network, i.e., tr(Σ) ≤ η. Thus, the stealthiness
constraint states that information from neighbors cannot be trusted as an honest
agent is indistinguishable from a Byzantine agent.

3.1.1 Problem Statement

In this section, the distributed filtering algorithm is examined from the perspective
of an adversary to determine the optimal attack strategy for causing maximum
network performance degradation. The main objective of the Byzantine attack is
to maximize the network-wide mean squared error (NMSE), defined as

NMSE ≜ lim sup
N ′→∞

1

N ′

N ′∑

n=1

N∑

i=1

tr
(
Pi,n

)
, (3.1)
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while still maintaining a desired level of stealthiness. Due to limited resources
at the adversary, only a subset of agents can be Byzantines. We need to decide
the subset of agents that participate in the attack and determine the covariance
matrices Σj , j ∈ B, of the corresponding falsification sequences. To that end, we
introduce the Boolean variable zj = 1 if j ∈ B and zero otherwise. Accordingly,
we define the selection vector z ≜ [z1, z2, . . . , zN ]T by stacking all the Boolean
variables [82]. As a result, the optimal attack strategy can be expressed as an
optimization problem given by

max.
Σ, z

NMSE

s. t. tr(Σ) ≤ η,

Σ ≽ 0,

z ∈ {0, 1}N , 1Tz = B,

(3.2)

where the first constraint is related to stealthiness and the last constraint limits the
number of Byzantine agents to |B| = B. The parameter η is employed to limit the
total power of the falsification sequences and satisfy detection-avoidance targets,
and Σ represents the network-wide attack covariance that must be designed as a
positive semidefinite matrix. In the next section, we compute the network-wide
mean squared error as a function of attack covariance matrices. The ultimate goal
is to propose a strategy for the joint design of the attack sequence and subset of
Byzantines to maximize the trace of the steady-state error covariance.

3.1.2 Joint Selection of Byzantine Agents and Attack Sequences

To solve problem (3.2), we must first derive the expression for the objective func-
tion to capture the NMSE. Given the state estimate (2.3), we assume that the Byz-
antine attack begins at n = n0 when the Kalman filter has reached the steady-state.
The local state estimate of each agent i is updated as

x̃i,n+1 = Ax̃i,n + K̃i,n (yi,n −Hix̃i,n)− εA
∑

j∈Ni

(x̃i,n − x̄j,n) , (3.3)

where at each time instant n, x̃i,n denotes the state estimate of agent i in the
presence of Byzantine attack and x̄j,n represents the received information from
the neighboring agent j as in (2.16). Given the local estimation error as ẽi,n ≜
x̃i,n − xn, the network-wide estimation error in presence of Byzantine attack is
defined as ẽn ≜ [ẽT

1,n, . . . , ẽ
T
N,n]

T where the local estimation error evolves as

ẽi,n+1 = (A− K̃i,nHi)ẽi,n −wn + K̃i,nvi,n − εA
∑

j∈Ni

(
ẽi,n − ẽj,n − δj,n

)
.

(3.4)
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Accordingly, the evolution of the network-wide estimation error is expressed as

ẽn+1 = Ānẽn + b̄n + εΓδn, (3.5)

where Γ = E diag(z)⊗A,

Ān = (IN − εL)⊗A− Blockdiag({K̃i,nHi}Ni=1),

b̄n = diag({K̃i,nvi,n}Ni=1)− 1N ⊗wn, (3.6)

with K̃i,n as the Kalman gain and L = D − E is the network Laplacian. From
(3.5), the error covariance P̃n+1 ≜ E{ẽn+1ẽ

T
n+1} is obtained as

P̃n+1 = ĀnP̃nĀ
T
n + Q̄n + ε2ΓΣΓT, (3.7)

where Q̄n = Blockdiag({K̃i,nRiK̃
T
i,n}Ni=1 + 1N1T

N ⊗ Q. The optimal Kalman
gain is found by differentiating the trace of (3.7) with respect to K̃i,n, given by

K̃i,n = A
(
P̃i,n − ε

∑

j∈Ni

(
P̃i,n − P̃ji,n

))
HT

i M̃
−1
i,n , (3.8)

where M̃i,n = HiP̃i,nH
T
i +Ri. Therefore, when Byzantine attacks are present,

dynamics of the error covariance and Kalman gain are captured as in (3.7) and
(3.8). Assuming that the network is connected, controllability and observability
requirements of the system are met, it can be shown that limn→∞ P̃n = P̃ i.e.,
P̃n converges to a bounded matrix. In other words, there exists a matrix K̃i,n

such that P̃n is bounded and converges to a unique positive definite matrix for all
n and any initial non-negative symmetric matrix. Since obtaining a closed form
expression for the covariance matrix of the error in (3.4) is intractable, we employ
tr(P̃) as a proxy to the objective function. Since the actual NMSE represents a
time-average of error covariances, tr(P̃) can be considered as a lower bound of the
NMSE in (3.1).

The solution to the Riccati equation in (3.7) can be obtained by solving a semi-
definite programming (SDP) problem [83]. Motivated by this fact and substituting
NMSE = tr(P̃) in (3.2), we express the joint Byzantine agent selection and attack
design optimization problem as

P : max.
X,Σ,z

tr(X)

s. t. X ⪰ ĀXĀT + Q̄+ ε2ΓΣΓT,

Γ = E diag(z)⊗A,

X ⪰ 0,

tr(Σ) ≤ η,

Σ ⪰ 0,

1Tz ≤ B, zi ∈ {0, 1}, i = 1, . . . N.

(3.9)
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The problem above is NP-hard [84] and difficult to solve due to the non-convex
quadratic terms in the first constraint and Boolean variables in the last constraint.
Several methods are presented in subsequent sections to find a suboptimal solution
to the problem in (3.9).

Block-Coordinate Descent (BCD) Approach

The problem in (3.9) is non-convex due to the Boolean variables. To circumvent
this, we relax the Boolean constraint zi ∈ {0, 1} to a linear inequality constraint
0 ≤ zi ≤ 1. We see that for a given z or Σ, the problem (3.9) is an SDP, as its first
constraint is convex. Therefore, we employ the block-coordinate descent (BCD)
method where (X,Σ) and (X, z) are alternately optimized with the other variable
fixed. Also, applying the trace operator on both sides of the convergence constraint
leads to a linear approximation with respect to z and Σ. The BCD approach starts
with an arbitrary z0 as the initial condition, and the first step is given by

P1 : max.
X,Σ

tr(X)

s. t. tr(X) ⪰ tr(ĀXĀT + Q̄) + ε2tr(ΓΣΓT),

X ⪰ 0,

tr(Σ) ≤ η,

Σ ⪰ 0.

(3.10)

The second step of the BCD approach determines the Byzantine agents by solving

P2 : max.
X,z

tr(X)

s. t. tr(X) ⪰ tr(ĀXĀT + Q̄) + ε2tr(ΓΣΓT),

Γ = E diag(z)⊗A,

X ⪰ 0,

1Tz ≤ B, 0 ≤ zi ≤ 1, i = 1, . . . N.

(3.11)

The subproblems (3.10) and (3.11) are convex, and (3.10) has a unique solution for
a given z. In light of [85, Theorem 1], we conclude that iterating (3.10) and (3.11)
for T iterations results in convergence to a stationary point. The steps in (3.10) and
(3.11) reduce the problem in (3.9) to that of solving a sequence of SDPs, which can
be efficiently solved by interior-point methods. The optimal solution z∗ ∈ [0, 1]N

is not Boolean due to the relaxation employed in (3.11). Hence, we recover a
feasible solution z′ of (3.9) by sorting the elements of z∗ in descending order and
set z′i = 1 for the agents corresponding to the B largest elements.
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Backward Stepwise Selection based Attack Strategy

We also propose an improved exhaustive search-based method for finding the
optimal subset of Byzantine agents to assess the performance of our proposed
strategy. For a given Byzantine selection vector z, the problem in (3.9) is an SDP.
Hence, instead of relaxing the Boolean constraints, we employ an improved ex-
haustive search-based method to determine the set of Byzantine agents and then
find the corresponding optimal covariance matrices from (3.10). To select Byz-
antine agents, we adopt the backward stepwise selection algorithm [86].1 In this
method, the algorithm begins by considering all agents as Byzantine, i.e., B = N ,
and then iteratively removes the agent that contributes least to the overall object-
ive. The algorithm stops when only B most effective agents remain. You can find
more details regarding the backward stepwise operation in P1 and [86].

3.1.3 Numerical Results

We consider a randomly generated undirected connected network with N = 25
sensor agents, maximum degree of ∆ = 11, and consensus gain ε = 0.08, see
Figure 3.1. The system and agent parameters are considered to be

A =

[
0.6 0.005
0.25 0.6

]
,

and for all agents i ∈ N , we have Q = 0.1I2, Ri = I2, and Hi = µiI2 with
µi ∼ U(0, 1). We set T = 10 iterations for the BCD method and assume that the
attack starts at n0 = 20 with the stealthiness parameter η = N . The simulations
are conducted using MATLAB, and the results are averaged over 200 independent
experiments.

The proposed attack strategies are compared with two naive strategies, namely,
random selection attack and uniform perturbation attack. The former strategy ran-
domly selects the Byzantine agents, while the associate covariance matrices are
obtained from (3.10). The latter strategy, choose the attack sequence covariance
matrices as Σj =

η
B Im for all j ∈ B and the set of Byzantines are determined from

(3.11). Essentially, the random selection attack strategy demonstrates how the at-
tack covariance design in (3.10) affects network performance, while the uniform
perturbation attack strategy depicts the impact of optimal Byzantine set selection
in (3.11) on network performance.

Figure 3.2 illustrates the steady-state NMSE versus the time instant n for the dif-
ferent strategies. It shows that the proposed methods significantly outperform the

1This method is called improved exhaustive search-based strategy, as it does not check all the
possible subsets of Byzantine agents and follows a backward stepwise selection algorithm that is
less complex, O(N(N+1)−B(B+1)

2
) instead of O(2N ), than the exhaustive search mechanism.
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Figure 3.1: Randomly generated network topology.
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Figure 3.2: The NMSE for different attack strategies in a network of N = 25 and B = 5.

naive random and uniform attack strategies. The BCD-based approach is compu-
tationally less intensive and performs close to the exhaustive search-based method.
Figure 3.2 also demonstrates that the covariance design influences the overall per-
formance more than Byzantine agent selection. Figure 3.3 shows the NMSE versus
the percentage of Byzantine agents for fixed stealthiness parameter. We observe
that the joint attack strategy performs close to the backward stepwise selection-
based method. When compared with random and uniform attack strategies, the
BCD- and backward stepwise selection-based methods cause larger degradation in
the NMSE for a fixed percentage of Byzantine agents.

3.2 Enhanced Resilience to Byzantine Attacks
This section develops a consensus-based distributed filtering algorithm that simul-
taneously reduces inter-agent communication load and the impact of coordinated
Byzantine attacks on network performance. The partial-sharing-based approaches
were originally proposed in [56, 57] as alternative solutions to reduce local com-
munication among agents. The partial-sharing strategy allows agents to particip-
ate in distributed learning by sharing only a fraction of their information during
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Figure 3.3: The NMSE versus percentage of Byzantines for a network with N = 25.

each inter-agent interaction. The simplicity of implementation and efficiency of
computation make partial-sharing strategies very popular in distributed processing
scenarios. To the best of our knowledge, partial-sharing-based approaches have
not been investigated in an adversarial environment. As a result, there are no other
approaches in the literature that can be compared with the results presented in this
section. However, we benchmark our proposed method against the ideal scenario
in the literature, where there are no adversaries.

3.2.1 Byzantine-Resilient Distributed Kalman Filter

By applying the partial-sharing technique to the state estimates in the CDF al-
gorithm [7], we reduce the amount of information flowing between agents at any
given instant while maintaining the advantages of cooperation. In particular, each
agent only shares a fraction of its state estimate with neighbors rather than the en-
tire state estimate vector, i.e., l entries of x̂j,n ∈ Rm is received at each agent i,
with l ≤ m. Although partial-sharing was originally introduced to reduce commu-
nication overhead, we show that adopting this idea in the CDF setting can improve
robustness to Byzantine attacks.

The entry selection process at each agent j is performed using a diagonal matrix of
size m×m, i.e., the selection matrix Sj,n, whose main diagonal contains l ones and
m− l zeros. The ones on the main diagonal specify the entries of the state estimate
x̂j,n that should be shared with neighbors. Selecting l entries from m can either
be done stochastically, or sequentially, as in [56] and [57], respectively. Here,
we use uncoordinated partial-sharing, which is a special case of stochastic partial-
sharing [56]. In uncoordinated partial-sharing, each agent j is initialized with
random selection matrices. The selection matrix at the current time instant, i.e.,
Sj,n, can be obtained by performing τ right-circular shift operations on the main
diagonal of the selection matrix used in the previous time instant. In other words,
if sj,n ∈ Rm contains the main diagonal entries of Sj,n at the current instant, then
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sj,n = right-circular-shift{sj,n−1, τ}. Then the selection matrix at current instant
can be constructed as Sj,n = diag{sj,n}. This allows each agent j to share only the
initial selection matrix Sj,0 with its neighbors, and maintain a record of the indices
of parameters shared without needing any additional mechanisms. As a result, the
frequency of each entry of the state estimate being shared is equal to pe =

l
m .

Due to partial sharing, every agent only receives a fraction of the entire state estim-
ate vector from its neighbors, i.e., Sj,nx̂j,n. Thus, the received information here
must be compensated to fill in the missing entries. At each agent i, the unavail-
able entries from neighbors, i.e., (I − Sj,n)x̂j,n, is replaced with local entries as
(I− Sj,n)x̂i,n. Subsequently, the state update at agent i is modified as

x̂i,n+1 = Ax̂i,n +Ki,n

(
yi,n −Hix̂i,n

)
+Ci

∑

j∈Ni

Sj,n

(
x̂j,n − x̂i,n

)
, (3.12)

where Ci ∈ Rm×m denotes the consensus gain. However, in the presence of
Byzantine attack, as described in Section 2.4.2, every agent only receives a fraction
of the perturbed state estimate vectors from its neighbors, i.e., Sj,nx̄j,n where
x̄j,n represents the received information from the neighboring agent j as in (2.16).
We assume that the Byzantine attack starts once system reaches steady-state, i.e.,
n = n0. Accordingly, for n ≥ n0 and at each agent i, the received information
from neighboring agent j is compensated by replacing the missing entries (I −
Sj,n)x̃j,n with corresponding local entries (I − Sj,n)x̃i,n where x̃i,n denotes the
state estimate in the presence of the attack. Subsequently, the state estimate (3.12)
is alternatively expressed as

x̃i,n+1 =Ax̃i,n +Ki,n

(
yi,n −Hix̃i,n

)
(3.13)

+Ci

∑

j∈Ni

Sj,n

(
x̃j,n − x̃i,n

)
+Ci

∑

j∈Ni

Sj,nδj,n·

The Kalman gain can be obtained by minimizing the trace of the estimation error
covariance P̃i,n ≜ E{ẽi,nẽT

i,n} with the estimation error evolving as

ẽi,n+1 = x̃i,n+1 − xn+1 (3.14)

= Fi,nẽi,n +Ci

∑

j∈Ni

Sj,nẽj,n +Ki,nvi,n −wn +Ci

∑

j∈Ni

Sj,nδj,n

where

Fi,n = A−Ki,nHi −Ci

∑

j∈Ni

Sj,n· (3.15)
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As a result, the error covariance matrix at each agent i is derived as

P̃i,n+1 =Fi,nP̃i,nF
T
i,n +Ki,nRiK

T
i,n +Q+∆P̃i,n

+Ci

∑

s∈Ni

∑

p∈Ni

Ss,nΣspS
T
p,nC

T
i (3.16)

where Σsp = E{δs,nδT
p,n} and

∆P̃i,n =Fi,n

∑

j∈Ni

P̃ij,nS
T
j,nC

T
i +Ci

∑

j∈Ni

Sj,nP̃ji,nF
T
i,n

+Ci

∑

s∈Ni

∑

p∈Ni

Ss,nP̃sp,nS
T
p,nC

T
i ·

Similarly, cross-terms of the error covariance, i.e., P̃ij,n ≜ E{ei,neT
j,n}, evolve as

P̃ij,n+1 = Fi,nP̃ij,nF
T
j,n +Q+∆P̃ij,n +Ci

∑

s∈Ni

∑

p∈Nj

Ss,nΣspS
T
p,nC

T
j

with

∆P̃ij,n =Fi,n

∑

p∈Nj

P̃ip,nS
T
p,nC

T
j +Ci

∑

s∈Ni

Ss,nP̃sj,nF
T
j,n

+Ci

∑

s∈Ni

∑

p∈Nj

Ss,nP̃sp,nS
T
p,nC

T
j ·

Differentiating the trace of (3.16) with respect to Ki,n gives

K∗
i,n =

(
(A−Ci

∑

j∈Ni

Sj,n)P̃i,n +Ci

∑

j∈Ni

Sj,nP̃ji,n

)
HT

i M
−1
i,n

with Mi,n = Ri +HiP̃i,nH
T
i .

We see that the local covariance update in (3.16) requires access to cross-terms
of the error covariance, resulting in considerable communication overhead. To
reduce the communication overhead, for sufficiently small gain values, i.e., Ci,
we can ignore the term ∆P̃i,n in (3.16) and the last term of Fi,n in (3.15) [7], i.e.,
we have

P̃i,n+1 =F̂i,nP̃i,nF̂
T
i,n +Ki,nRiK

T
i,n +Q+Ci

∑

s∈Ni

∑

p∈Ni

Ss,nΣspS
T
p,nC

T
i

(3.17)
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Algorithm 2 BR-CDF algorithm
For each agent i ∈ N

Initialize: x̂i,0 = x0, Pi,0 = P0, and share Si,0 = diag(si,0) with all j ∈ Ni

1: for all k > 0 do
2: For all j ∈ Ni receive {Sj,nx̄j,n}
3: Ki,n = APi,nH

T
i

(
Ri +HiPi,nH

T
i

)−1

4: Update the state estimate

x̂i,n+1=Ax̂i,n+Ki,n

(
yi,n−Hix̂i,n

)
+Ci

∑
j∈Ni

(
Sj,nx̄j,n − Sj,nx̂i,n

)

5: F̂i,n = A−Ki,nHi

6: Update the error covariance:Pi,n+1= F̂i,nPi,nF̂
T
i,n+Ki,nRiK

T
i,n+Q

7: si,n+1 = right-circular-shift{si,n, τ}
8: Si,n+1 = diag (si,n+1)
9: Share Si,n+1x̄i,n+1 with all j ∈ Ni

10: end for

with F̂i,n = A−Ki,nHi. Accordingly, the optimal Kalman gain reduces to

Ki,n = APi,nH
T
i

(
Ri +HiPi,nH

T
i

)−1 · (3.18)

With the above approximations, we obtain a distributed consensus-based Kalman
filter, albeit suboptimal [2, 7], that only requires local variables in the error cov-
ariance update at each agent. It is worth noting that the last term in (3.17) is only
used to characterize the impact of the perturbation covariances, and since the at-
tack is stealthy from the perspective of an agent, it is excluded from the filtering
algorithm. As a result, in addition to the initial selection matrix Sj,0, at each time
n, agent j shares a fraction of the perturbed state estimate, i.e., Sj,nx̄j,n, with its
neighbors. The proposed BR-CDF algorithm is summarized in Algorithm 2.

3.2.2 Stability and Performance Analysis

This section provides the stability analysis of the BR-CDF in Algorithm 2. In order
to develop the ensuing analysis, we make the following assumption:

Assumption: For all i ∈ N , the selection matrix Si,n is independent of any other
data and the selection matrices Sj,s for all i ̸= j and n ̸= s.

Our main result on the stability of the BR-CDF algorithm is summarized by the
following theorem.

Theorem 3.1. Consider the BR-CDF in Algorithm 2 with consensus gain Ci =



34 Threat Analysis and Optimal Attack Design

γA
(
P−1

i,n +HT
i R

−1
i Hi

)−1
and a sufficiently small γ satisfying

γ ≤ γ∗ =
1√
pe

(
λmin(ΛI)

λmax((L⊗ I)ΛII(L⊗ I))

) 1
2

where pe =
l
m , λmax(·) and λmin(·) return the maximum and minimum eigenval-

ues of the argument matrix, respectively, and

ΛI = diag({
(
Pi + (HT

i R
−1
i Hi)

−1
)−1}Ni=1),

ΛII = diag({
(
P−1

i +HT
i R

−1
i Hi

)−1}Ni=1),

with Pi = limn→∞Pi,n. Then, the error dynamics of the BR-CDF algorithm
is globally asymptotically stable and all local estimators asymptotically reach a
consensus on state estimates, i.e., x̂1,n = x̂2,n = · · · = x̂N,n = xn.

Proof. The detailed proof is given in P2.

3.2.3 Resilience to the Byzantine Attack

This section investigates the robustness of the solution for the BR-CDF in Al-
gorithm 2 in the presence of a data falsification attack. We assume that Byzantine
agents start perturbing the information once the network reaches steady-state, i.e.,
n = n0 > 0. We further assume that the attack remains stealthy from the perspect-
ive of agents; thus, the consensus gain Ci remains fixed for n ≥ n0.

In steady-state, and after applying statistical expectation E{·} with respect to se-
lection matrices, the error covariance matrix in (3.17) satisfies

P̃i =F̂iP̃iF̂
T
i +KiRiK

T
i +Q+Ci

∑

s∈Ni

∑

p∈Ni

E
{
Ss,nΣspS

T
p,n

}
CT

i (3.19)

where P̃i = limn→∞ P̃i,n. Defining

P̃ ≜ Blockdiag({P̃i}Ni=1)

F̂ ≜ Blockdiag({F̂i}Ni=1)

K ≜ Blockdiag({Ki}Ni=1)

C ≜ Blockdiag({Ci}Ni=1)

R ≜ Blockdiag({Ri}Ni=1)
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the network-wide version of (3.19) can be stated as

P̃ =F̂P̃F̂T +KRKT + IN ⊗Q (3.20)

+CE
{
(IN ⊗ I)⊙

(
(E⊗ I)SnΣST

n(E⊗ I)
)}

CT

where Sn ≜ Blockdiag({Si,n}Ni=1). Under Assumption 1, we have

P̃ =F̂P̃F̂T +KRKT + IN ⊗Q (3.21)

+C
(
(IN ⊗ I)⊙

(
(E⊗ I)E

{
SnΣST

n

}
(E⊗ I)

) )
CT

where the expectation term can be simplified as

E{SnΣST
n} = E{vec−1

(
vec
(
SnΣST

n

))
}

= E{vec−1 ((Sn ⊗ Sn) vec (Σ))}
= vec−1 (E{(Sn ⊗ Sn)}vec (Σ))

Following the approach in [56, Appendix B], we can show that E{Sn ⊗ Sn} ≤
pe(I⊗ I) with 0 < pe ≤ 1, 2 and we have

E{SnΣST
n} ≤ pevec−1 (vec (Σ)) = peΣ· (3.22)

Using the result of (3.22) and knowing that P is a positive definite matrix, we
finally have

P̃ ≤ F̂P̃F̂T+KRKT+IN⊗Q+peC
(
(IN⊗I)⊙

(
(E⊗I)Σ(E⊗I)

))
CT (3.23)

The last term in (3.23) describes the impact of the coordinated Byzantine attack
on the error covariance matrix that is scaled by the selection parameter pe. Thus,
similar to Section 3.1.2, we use

NMSE ∼ lim
n→∞

tr(E{P̃n}) (3.24)

as a proxy to capture the NMSE. We see that partial sharing of information, i.e.,
pe < 1, results in lower steady-state NMSE compared to full information sharing,
i.e., pe = 1, that indicates robustness to coordinated Byzantine attacks.

3.2.4 Coordinated Byzantine Attack Design

To analyze the worst-case performance of the BR-CDF algorithm, we consider
a scenario where Byzantine agents design a coordinated attack to maximize the
NMSE. Based on the attack model in (2.16) and the error covariance in (3.16),
Byzantine agents have the following two levers to design their coordinated attack:

2A ≤ B denotes an element-wise inequality for corresponding elements in A and B.
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• The design of perturbation covariance matrices, modeled as the covariance
of zero-mean Gaussian sequences.

• The choice of selection matrices that impacts the sequence of information
fractions that Byzantine agents share at the beginning of the attack.

We ensure that the attack remains stealthy from the perspective of regular agents by
setting an upper bound on the energy of the perturbation sequences, i.e., tr(Σ) ≤ η.
Assuming Byzantines start perturbing information once agents reach steady-state,
i.e., n = n0, we derive an expression for the network-wide steady-state MSE of
the estimator in (3.13). The network-wide evolution of the estimation error of the
BR-CDF algorithm, given in (3.14), is stated as

ẽn+1 = Ãnẽn + b̃n + Γnδn (3.25)

where Γn = C
(
E⊗ I

)
Sn,

Ãn = Blockdiag({Fi,n}Ni=1) +C
(
E⊗ I

)
Sn,

b̃n = diag({Ki,nvi,n}Ni=1)− 1N ⊗wn·
As a result, the network-wide error covariance matrix, unlike (3.20) including
cross-terms of the error covariance, is given by

P̃n+1 = ÃnP̃nÃ
T
n + Q̃n + ΓnΣΓT

n (3.26)

where Q̃n = Blockdiag({Ki,nRiK
T
i,n}Ni=1 + 1N1T

N ⊗Q. In (3.26), the last term
is due to the injected noise and is given by

ΓnΣΓT
n = C

(
E⊗ I

)
SnΣST

n

(
E⊗ I

)
CT (3.27)

which, compared to the Byzantine-free case, increases the NMSE. Considering
the NMSE in (3.24), we define two optimization problems to find the optimal
coordinated Byzantine attacks by designing the partial-sharing selection matrices
at n = n0 and attack covariance matrices of Byzantine agents.

Optimizing the attack begins by stating that maximizing the trace of the estimation
error covariance in (3.26) is equivalent to maximizing the trace of its last term
[87], since it is the only term that depends on the attack. The last term of the error
covariance Pn in (3.26) depends on the selection matrix Sn and given the attack
covariance Σ, we can show that

tr(ΓnΣΓT
n) = tr

(
C(E⊗ I)SnΣST

n(E⊗ I)CT)

= tr
(
(E⊗ I)CTC(E⊗ I)SnΣST

n

)

=
∑

i∈B

∑

j∈B
tr (UijSj,nΣjiSi,n) (3.28)
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where Uij =
∑

i∈Ni

∑
j∈Ni

CT
i Cj . Thus, the optimization problem that maxim-

izes the steady-state NMSE can be stated as

max
{S′

i, i∈B}

∑

i∈B

∑

j∈B
tr
(
UijS

′
jΣjiS

′
i

)

s. t. 0 ≤ S′
i ≤ I ∀i ∈ B

[S′
i]rs ∈ {0, 1}

tr(S′
i) ≤ l ∀i ∈ B

(3.29)

where the resulting solution for S′
i determines the Si(n0) and the first two con-

straints restrict the selection matrix to be diagonal with 0 or 1 elements on the
main diagonal. The last constraint enforces that only l elements of the state vector
are shared with neighbors at each given instant. We relax the non-convex Boolean
constraint on the elements of S′

i and rewrite the optimization problem as

max
{S′

i, i∈B}

∑

i∈B

∑

j∈B
tr
(
UijS

′
jΣjiS

′
i

)

s. t. 0 ≤ S′
i ≤ I ∀i ∈ B

tr(S′
i) ≤ l ∀i ∈ B

(3.30)

The objective function in (3.30) can be further simplified as

∑

i∈B

∑

j∈B
tr
(
UijS

′
jΣjiS

′
i

)
=
∑

i∈B

(
tr
(
UiiS

′
iΣiS

′
i

)
(3.31)

+
∑

j∈B/{i}

1

2
tr
(
UijS

′
jΣjiS

′
i +UjiS

′
iΣijS

′
j

))

which still contains non-convex quadratic terms. To overcome this problem, we
employ the BCD algorithm where each Byzantine agent i, given the selection mat-
rix of other Byzantines, optimizes its own selection matrix. The BCD algorithm is
iterated for T iterations and at each iteration, t + 1, agent i employs the selection
matrix of other Byzantine agents from the previous iteration, i.e. {S′

j,t}j∈B\{i}.

Hence, the optimization problem in (3.30) can be solved by employing the BCD
method, where at each agent i ∈ B and BCD iteration t + 1, the optimization
problem is modeled as

P : max
S′
i

f
(
S′
i, {S′

j,t}j∈B\{i}
)

s. t. 0 ≤ S′
i ≤ I

tr(S′
i) ≤ l

(3.32)
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Algorithm 3 BCD-based attack design
For each agent i ∈ B
Receive S′

j,0 = Sj,n0 from j ∈ B\{i}
Share S′

i,0 = Si,n0 with j ∈ B\{i}
1: for t = 1 to T do
2: Find S′

i by solving P in (3.32)
3: Set Si,t = S′

i and share with j ∈ B\{i}
4: Receive {S′

j,t}j∈B\{i}
5: end for
6: For the main diagonal of S′

i,T , set the l largest element to 1 and others to 0.
7: Set Si,n0 = S′

i,T

with S′
j,t as the selection matrix of Byzantine agent j at the former BCD iteration

and the objective function

f
(
S′
i, {S′

j,t}j∈B\{i}
)
=tr
(
UiiS

′
iΣiS

′
i

)
(3.33)

+
∑

j∈B/{i}

1

2
tr
(
UijS

′
j,tΣjiS

′
i +UjiS

′
iΣijS

′
j,t

)
·

Algorithm 3 summarizes the BCD algorithm used to solve the optimization prob-
lem in (3.32). Next, we investigate how optimizing the perturbation covariance
matrix impacts the NMSE.

Given the selection matrices at the beginning of the attack, i.e., Si,n0 for i ∈ N ,
Byzantine agents can maximize the steady-state NMSE by cooperatively designing
their attack covariances in the following optimization problem

max
Σ

tr(Γn0ΣΓT
n0
)

s. t. Σ ≽ 0

tr(Σ) ≤ η

(3.34)

where Γn0
= C

(
E⊗ I

)
Sn0

(diag(z)⊗ I). The first constraint in (3.34) guarantees
that the designed attack covariance is positive semidefinite and the last constraint
is related to stealthiness. The energy of the Byzantine noise sequences is assumed
to be limited as tr(Σ) ≤ η to maintain the attack stealthiness.

Remark 3.1. The optimization problem in (3.34) is a semidefinite programming
(SDP) problem that can be efficiently solved by interior-point methods.
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3.2.5 Numerical Results

To illustrate the robustness of the BR-CDF algorithm to Byzantine attack, we ex-
amined a target tracking system with the state vector length of m = 8 and de-
scribed by a linear model

xn+1 =

([
0.6 0.005
0.25 0.6

]
⊗ I4

)
xn +wn·

We considered the same network as in Figure 3.1 where at each agent i, the state
noise covariance is Q = 0.1I and the local observation is given by

yi,n =







1 1 0 0
1 0 0 0
0 0 1 0
0 0 1 1


⊗ I2


 xn + vi,n·

In addition, at each agent i, we considered the observation noise covariance as
Ri = µiI, where µi ∼ U(0, 1). The average NMSE is considered as a performance
metric that is defined as

MSE ≜ 1

N

∑N
i=1 tr(P̃i) (3.35)

with P̃i as the steady-state error covariance matrix of agent i in (3.19). The sim-
ulations are conducted using MATLAB, and the results are averaged over 200
independent experiments.

We simulated the BR-CDF algorithm for different values of l, e.g., 2, 4, 6, and
8 (i.e., 25%, 50%, 75% and full information sharing). The 25%-sharing, for ex-
ample, means that, at each time, we only share l = 2 elements from the state
estimate. Figure 3.4 shows MSE versus time n, when no attacks occur in the net-
work. It shows that the performance degradation is inversely proportional to the
amount of shared information. Although sharing a smaller fraction of information
results in higher MSE, the difference is negligible in this experiment.

Next, we examined the robustness of the BR-CDF algorithm in the presence of
Byzantine attack. After the network has reached convergence, Byzantine agents
launch an attack at n0 = 30. The Byzantine agents are chosen as the B = 5
nodes with the highest degree in the network graph and the energy of the attack
sequences is restricted with parameter η = N . We then compared the accuracy of
the proposed suboptimal BR-CDF in Algorithm 2 to the solution of the BR-CDF
that shares all necessary variables. Fig. 3.5 illustrates MSE versus time index n
for different values of l. We observe that the suboptimal solution performs closely
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Figure 3.4: MSE of the BR-CDF algorithm versus time index n without attack.
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Figure 3.5: MSE of the BR-CDF algorithm and its suboptimal solution versus time in-
dex n.

to the solution that shares all necessary variables. Furthermore, the proposed al-
gorithms provide robustness to Byzantine attacks since sharing less information
results in lower MSE.

In Fig. 3.6, in order to observe the fluctuation caused by the selection matrices,
we plot the MSE in (3.35) and MSE′ = 1

N limn→∞
∑N

i=1 tr(P̃i,n) with P̃i,n in
(3.17). 3 Thus, we can examine the accuracy of our theoretical finding to compute
the expected value of the error covariance with respect to the selection matrices in
(3.19). The close performance of the MSE and MSE′ in Fig. 3.6 demonstrates that
simulation results match theoretical findings.

To solve the optimization problem P in (3.32), we performed the simulation by
the BCD algorithm with T = 10 iterations and designed the selection matrices
{Sj,n0}j∈B at n0 = 30. We can see from Fig. 3.7 that the designed selection
matrices deteriorate the network MSE. Also, it can be seen that designing the se-

3The difference between MSE′ and MSE is that the MSE′ does not include the statistical expect-
ation with respect to the selection matrices.
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Figure 3.6: MSE and MSE′ versus time index n.
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Figure 3.7: MSE versus time index n for optimized selection matrix S∗
n and random

selection matrix Sn.
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Figure 3.8: MSE versus time index n for optimized attack covariance Σ∗ and random
attack covariance Σ.

lection matrices has a higher impact on degrading the network performance when
smaller fraction of the information is shared.

By solving the optimization problem in (3.34), we examine the impact of optimiz-
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Figure 3.9: MSE′ versus time index n for optimized attack covariance Σ∗ and random
attack covariance Σ.

ing the attack covariance on the MSE in comparison to random attack covariance
selection. To this end, we fixed the constraint on the energy of the perturbation
sequences, i.e., η. Fig. 3.8 shows that optimizing the perturbation covariance Σ∗

increases the MSE while using partial sharing of information enhances robustness
to Byzantine attacks by restricting the growth in MSE. In other words, as we share
more information with neighbors, the impact of optimizing the perturbation co-
variance matrix increases. As an example, full information sharing results in a
higher performance decrease, i.e., increasing MSE, when optimizing perturbation
covariance compared to 25%-sharing case.

For different values of l, Fig. 3.9 plots the MSE′ versus time index n for optim-
ized and random selection of the attack covariance. It can be seen that when less
information is shared, the sensitivity to perturbation sequences with optimized co-
variance increases, resulting in high levels of fluctuation in the MSE′. In addition,
Fig. 3.7 and Fig. 3.8 show that the optimized selection matrices have a greater im-
pact when less information is shared, e.g., 25% and 50%-sharing, while optimal
attack covariance has a higher impact when larger fractions of information are
shared, e.g., 75% and full-sharing.

In order to analyze the robustness of the proposed BR-CDF algorithm to the num-
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Figure 3.10: MSE versus percentage of the Byzantine agents in the network.
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Figure 3.11: MSE versus trace of the attack covariance, i.e., tr(Σ)/N .

ber of Byzantine agents, Fig. 3.10 plots the MSE versus the percentage of Byz-
antine agents in the network. As expected, we see that as the percentage of Byz-
antine agents increases, the MSE grows; however, partial sharing of information
can significantly improve the resilience to Byzantine attacks, as illustrated by ob-
taining the lower MSE. In addition, Fig. 3.11 illustrates the MSE versus the trace of
the attack covariance in order to assess the robustness of the BR-CDF algorithm to
perturbation sequences. It can be seen that partial sharing of information improves
robustness to injected noise by obtaining lower MSE.

3.3 Summary
This chapter investigated consensus-based distributed Kalman filtering algorithms
in the presence of coordinated data falsification attacks. It was shown that the
optimal set of Byzantine agents and their attack covariances that maximize the
network-wide estimation error could be obtained by solving a sequence of semi-
definite programs. It was also shown that partial sharing of information provides
robustness to Byzantine attacks and reduces the communication load among agents
by sharing a smaller portion of data at each time instant. Furthermore, this chapter
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characterized the performance and convergence of the BR-CDF algorithm and in-
vestigated the impact of coordinated data falsification attacks. In addition, the
worst-case scenario of data falsification attacks was analyzed where Byzantine
agents cooperate on designing the covariance of their falsification data or order of
the information fractions they share. In the next chapter, in an attempt to conduct
threat management, we will focus primarily on developing strategies for protect-
ing agent information that is exposed to adversaries during DKF iterations. To this
end, random decomposition and noise injection techniques are employed to limit
the ability of the adversary to estimate private information.



Chapter 4

Privacy-Preserving Distributed
Kalman Filtering

This chapter consists of the results of publications P3, P4, and P5, which focus on
threat management and strategies for protecting private information from adversar-
ies. The main focus of the chapter is on P3 which covers the contributions in P4
and P5. The work in P3 considers the DKF setting in Section 2.1.2 and provides
privacy by allowing agents to randomly decompose their private information into
public and private substates, where the private substates will not be shared with
neighbors. The public substates, however, would be perturbed by correlated noise
sequences before sharing. Moreover, we investigate the performance and con-
vergence of the privacy-preserving DKF (PP-DKF) and derive the guarantee of
privacy bounds for network agents.

The rest of the chapter is organized as follows. Section 4.1 presents the PP-DKF
and analyzes its stability and convergence. Section 4.2 characterizes agent pri-
vacy and provides privacy bounds for agents in the presence of an EE and an HBC
adversary. Furthermore, Section 4.3 corroborates the theoretical findings with nu-
merical simulations, and lastly, Section 4.4 summarizes the chapter.

4.1 Privacy-Preserving Distribute Kalman Filtering
Throughout this section, we discuss the distributed Kalman filtering algorithm
in [67] and how to protect private data from being inferred by various adversar-
ies. The literature contains various methods that address the privacy issues in
distributed processing problems, such as distributed consensus [39–41, 88–90],
distributed optimization [42, 91], and distributed filtering [92].

45
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Regarding privacy concerns in Kalman filtering settings, the work in [60] designs
a differentially private Kalman filter in both input and output perturbation cases.
Furthermore, differentially private Kalman filtering solutions that minimize the
achieved MSE under the DP constraints are proposed in [11, 58, 59]. From the pri-
vacy point of view, these works respect the privacy of individual data by employing
DP constraints over private information. In contrast, we apply privacy constraints
to protect the value of private information from being estimated by adversaries.
The proposed privacy-aware Kalman filter in [93] linearly transforms the sensor
measurements before releasing them to the fusion center to maximize the estim-
ation error for the private state and minimize that for the public state. Although
privacy-preserving Kalman filtering algorithms have been thoroughly investigated
in the literature, the privacy-preserving framework for distributed Kalman filter-
ing solutions is not adequately covered. The results in the literature studies and
our proposed method cannot be compared due to differences in privacy measures.
The literature also focuses primarily on centralized privacy-preserving KFs, which
must be extended to distributed settings in order to be comparable to our proposed
approach. Even then, only filtering performances can be fairly compared under the
same perturbation sequence, and privacy still cannot be compared.

4.1.1 PP-DKF Algorithm

According to the privacy challenges in Section 2.2, in a DKF setting, information
leakage occurs when agents share private information with each other. Considering
the DKF in Section 2.1.2 and without loss of generality, we will consider the local
states, ri,n for each agent i, private. We aim to protect private information from
being estimated by an adversary. For this purpose, we decompose the local states
into public and private substates, where only noisy versions of the public substates
are shared with neighbors.

The PP-DKF algorithm begins the system state estimation with local updates to
the a priori state estimate and error covariance as in (2.8). The intermediate in-
formation of agent i, at time instant n, denoted by Γi,n, is updated as in (2.9), and
shared with neighbors to reach the average consensus. We assume that the con-
dition for convergence of the covariance matrices to unique stabilizing solutions,
as given in [67], are satisfied. Therefore, we have limn→∞Pi,n|n = Pi for each
i ∈ N . Then, the updated error covariance is employed to compute the intermedi-
ate state estimate of agent i as in (2.10). Sharing the local state estimate ri,n with
neighbors improves the estimation accuracy while exposing private information to
adversaries. Thus, we protect the private data by modifying the ACF steps for local
state estimates. To this end, the local state estimate is decomposed into a public
substate αi,n ∈ Rm and a private substate βi,n ∈ Rm before being shared among
neighbors.
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Imaginary agents containing private substates
Original agents containing public substates

Agent 

Figure 4.1: State decomposition representation of ri,n to public substate αi,n and private
substate βi,n.

In particular, PP-DKF chooses the initial values αi,n(0) and βi,n(0) randomly
from the set of all real numbers in a manner that they satisfy αi,n(0) + βi,n(0) =
2ri,n, [50], with ri,n as the initial information of agent i to start the privacy-
preserving average consensus mechanism. The substate αi,n is the only value
that is shared with neighbors, while substate βi,n evolves internally and will not
be observed by neighbors, as represented in Figure 4.1. Although βi,n remains
invisible to neighbors, it directly affects the evolution of αi,n. To improve privacy
preservation, we also inject noise into the messages shared with neighbors; see,
e.g., [48]. To that end, at each consensus iteration k, agent i shares a perturbed
version of its public substate as α̃i,n(k) = αi,n(k)+ωi(k) where the perturbation
noise sequence ωi(k) is given as in (2.15).

Accordingly, at each consensus iteration k, agent i updates its local substates using
the received information from neighbors as follows:





αi,n(k + 1) =αi,n(k) + εUi(k)
(
βi,n(k)−αi,n(k)

)

+ ε
∑

j∈Ni

wij(k) (α̃j,n(k)−αi,n(k))

βi,n(k + 1) =βi,n(k) + εUi(k)
(
αi,n(k)− βi,n(k)

)
(4.1)

where ε is the consensus step size, residing in (0, 1
∆+1 ] with ∆ ≜ maxiNi. At

consensus iteration k, wij(k) = wji(k) denotes the interaction weight of agents
i and j, while Ui(k) ≜ diag(ui(k)) is a diagonal matrix defined by the coupling
weight vector ui(k) ∈ Rm of agent i. In particular, for k = 0, wij(0) = wji(0) can
be arbitrarily chosen from the set of all real numbers, while, for k > 0, we require
that there exists a scalar 0 < η < 1 such that all wij(k) = wji(k), j ∈ Ni must
reside in the range [η, 1). This assumption ensures that each agent gives sufficient
weight to the information received from its neighbors. As a result, the information
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Algorithm 4 PP-DKF algorithm
For each agent i ∈ N
Initialize: x̂i,0|0 and Pi,0|0

1: x̂i,n|n−1 = Ax̂i,n−1|n−1

2: Pi,n|n−1 = APi,n−1|n−1A
T +Q

3: Γi,n = P−1
i,n|n−1 +NHT

i R
−1
i Hi

4: P−1
i,n|n ←− ACF ←− {∀j ∈ Ni : Γj,n}

5: ri,n = x̂i,n|n−1 +NPi,n|nHT
i R

−1
i

(
yi,n −Hix̂i,n|n−1

)

Privacy-Preserving Mechanism:
6: Select αi,n(0), and set βi,n(0) = 2ri,n −αi,n(0)
7: Select the interaction and coupling weights wij(k),ui(k)
8: Share the interaction weights wij(k) with neighbors
9: Generate {ωi(k), k = 0, 1, · · · ,K} based on (2.15)

10: Share α̃i,n(0) = αi,n(0) + ωi(0)
11: for k = 1 to K do
12: Receive α̃j,n(k − 1), ∀j ∈ Ni

13: Update αi,n(k) andβi,n(k), as given in (4.1)
14: Share α̃i,n(k) = αi,n(k) + ωi(k)
15: end for
16: x̂i,n|n = αi,n(K)

from each agent continuously affects the information of other agents over time.
Similarly, for ui(k), the elements of ui(0) are independently chosen from the set
of all real numbers, while, for k > 0, they are limited to [η, 1) to ensures that
each agent gives sufficient weight to the private substates of the extended graph in
Figure 4.1. Based on (4.1), the public substate is the only parameter that requires
information from neighbors to update, whereas the private substate is updated only
with information from the agent itself.

In the subsequent analysis, we assume that the interaction and coupling weights
are arbitrarily chosen at k = 0 and remain fixed for k > 0 while satisfying the
weighting mechanism in [50]. For notational convenience, the interaction weights
of the entire network are collected into matrix W ≜ [wij ] for k ≥ 1. In P3, we
have shown that both private and public substates in (4.1) converge to the exact
value of the average consensus, asymptotically, i.e.,

lim
k→∞

αi,n(k) = lim
k→∞

βi,n(k) =
1

N

N∑

i−1

ri,n.

Thus, in practice, after iterating the steps in (4.1) for sufficient number of itera-
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tions, say K, the local state estimate, x̂i,n|n, is updated as

x̂i,n|n = αi,n(K) ∀i ∈ N .

The steps of the proposed PP-DKF at each agent are summarized in Algorithm 4.
In practice, the number of consensus iterations is always finite; hence, questions
arise concerning its consequences on filtering performance, convergence behavior,
and resulting privacy. Therefore, it is imperative to examine the effect of injected
noise and state decomposition on the PP-DKF accuracy and privacy with a finite
number of consensus iterations.

The detailed analysis of the mean and mean-square performance of Algorithm 4
can be found in P3, and here, only its results are discussed. In P3, we have shown
that the proposed PP-DKF converges to the performance of the traditional DKF
asymptotically. We also presented how a limited number of average consensus
iterations affects the MSE performance. The MSE performance of Algorithm 4
with k consensus iterations is degraded compared to the non-private DKF. This
indicates a performance-privacy tradeoff, which will be explored in greater detail
in the following sections. In addition, in Section 4.3, numerical simulations will
be provided to investigate the validity of the theoretical findings in this section.

4.2 Privacy Analysis
This section provides a comprehensive privacy analysis of the PP-DKF for two
different adversaries: an EE and an HBC agent. The local estimate rj,n is con-
sidered private since it corresponds to the local a posteriori estimate and includes
more node-specific information than the global a posteriori state estimate x̂j,n|n.
As an output of the ACF, the a posteriori state estimate x̂j,n|n has the same value
among agents; therefore, it contains less local information about agents. Similar
to [48, 74], we assume that the adversary employs an estimator to infer the local
estimate of agents at time n, i.e., rj,n for j ∈ N . We consider the MSE of the
estimator at the adversary as the privacy metric. The MSE metric is used here to
measure how accurately the adversary can estimate the exact value of the local
a posteriori state estimates. Assume that r̂j,n(k) is the estimate of the private
information at agent j at time n and after k consensus iterations, then, the corres-
ponding privacy loss Ej,n(k) is the MSE given by

Ej,n(k) ≜ tr
(
E{(rj,n − r̂j,n(k)) (rj,n − r̂j,n(k))T}

)
. (4.2)

4.2.1 Privacy in the Presence of an EE

The EE knows the network topology and can access all information exchanged
among agents. Based on Algorithm 4, the information available at the EE after
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k consensus iterations is IEE(k) = {α̃j,n(l), wij(l),∀i, j ∈ N}kl=0 where α̃j,n(l)
is the perturbed substate and wij(l) is the interaction weights exchanged with the
neighbors. Employing the information set IEE(k), the EE estimates the local state
of agents, i.e., rj,n(k) for j ∈ N , by constructing an observer at each consensus
iteration. This results in the following theorem, which states the characterized
privacy leakage for agent j.

Theorem 4.1. If the EE can only access messages shared by the agents, Algorithm 4
is privacy-preserving, and the privacy leakage for agent j is given by

Ej = lim
n→∞

lim
k→∞

Ej,n(k) = tr
(
(eT

j ⊗ Im) L̃Σ̃L̃T
(ej ⊗ Im)

)
(4.3)

where ej ∈ RN is a vector with 1 in the jth entry and zeros elsewhere, Σ̃ is the
network-wide stabilizing error covariance of the filtering operation,

L̃ =
1

2
L− εULΘ diag(

1

1− λ1
, · · · , 1

1− λ2Nm−m
, 1, · · · , 1)ΘT (4.4)

with L = [−I, I], λ1 < · · · < λ2Nm−m < 1 are eigenvalues and Θ is the matrix of
eigenvectors of doubly stochastic matrix G given by

G =

[
M εU
εU I− εU

]
(4.5)

with M ≜ (I− ε(D−W)) ⊗ Im − εU, U = Blockdiag({Ui}Ni=1), and D ≜
diag({∑j∈Ni

wij}Ni=1).

Proof. The proof is given in [P3, Appendix B].

Here, agents communicate interaction weights with their neighbors so that the in-
teraction weights remain symmetric, and thus the adversary can acquire wij(l).
However, if the EE does not know the initial interaction weights wij(0), then the
state of agents remains private with no information leakage, [50], and we can guar-
antee stronger privacy.

4.2.2 Privacy in the Presence of an HBC Agent

Without loss of generality, we assume that agent N is the HBC agent that uses
its local information and the information received from its neighbors to estimate
the private information of other agents. From Algorithm 4, we can see that the
information available at the HBC agent N after k consensus iteration is given by

IHBC(k)={αN,n(l),βN,n(l),ωN (l),uN (l), wNj(l), α̃j,n(l) :∀j ∈ NN}kl=0



4.2. Privacy Analysis 51

We can observe that agent privacy depends on the availability of the interaction
and coupling weights at the adversary. Therefore, in order to analyze the worst-
case scenario of an attack, we consider the case where the HBC agent has ac-
cess to the entire weight matrix W and an estimate of the coupling weight mat-
rix U. This information set at the adversary can be represented as ĨHBC(k) =
IHBC(k) ∪ {W(l), Û(l)}kl=0 where Û denotes the estimate of the coupling weight
matrix U at the adversary. Under these assumptions, the HBC agent can estimate
the initial substate of agents, i.e., αj,n(0),βj,n(0) for all j ∈ N . To this end, we
define an observation vector that includes the shared information of neighbors and
the information of the HBC agent itself at each time instant k given by

yn(k) = Czn(k) +Cαω(k), (4.6)

where zn(k) = [αT
n(k),β

T
n(k)]

T with αn(k) = [αT
1,n(k), · · · ,αT

N,n(k)]
T and

βn(k) = [βT
1,n(k), · · · ,βT

N,n(k)]
T. In order to capture the relevant set of inform-

ation, we define C ≜ [Cα,Cβ] with Cβ = [0, eN ]T⊗ Im that captures the private

substates of the HBC agent itself and Cα =
[
ej1 , · · · , ejNN

, eN

]T
⊗ Im that cap-

tures the public substate of neighbors and the HBC agent itself. The vector ej ∈
RN is a vector with 1 in the jth entry and zeros elsewhere, NN = {j1, · · · , jNN

}
is the adjacency set of the HBC agent and NN denotes the cardinality of the ad-
jacency set. As a result, the HBC agent infers the local state information of all
agents by estimating rn = 0.5(αn(0) + βn(0)).

Substituting the network-wide substate update equations in (4.1) into (4.6) gives

yn(k) = CGkzn(0) +Cα

(
k−1∑

t=0

Ck−1−tBω(t) + ω(k)
)

(4.7)

where Ck =
[
I 0

]
Gk
[
I 0

]T, ω(k) = [ωT
1(k), · · · ,ωT

N (k)]T, and B =
ε(W ⊗ Im). Since ν(k) = [νT

1(k), · · · ,νT
N (k)]T is a zero-mean i.i.d. sequence,

stacking all the available accumulated observations at each consensus iteration k
in a vector gives




∑0
t=0 yn(t)

ϕ0∑1
t=0 yn(t)

ϕ1

...∑k
t=0 yn(t)

ϕk



=




C
ϕ0

C(I+G)
ϕ1

...
C(I+

∑k
t=1 G

t)

ϕk




︸ ︷︷ ︸
H(k)

zn(0)+




F̂0 0 · · · 0

F̂1 F̂0 · · · 0
...

...
. . .

...
F̂k−1 F̂k−2 · · · F̂0




︸ ︷︷ ︸
F(k)




ν(0)
ν(1)

...
ν(k)


 (4.8)
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where F̂0 = Cα and F̂k = ε
ϕk+1CαCk(W ⊗ Im) for k ≥ 1. Assuming the

estimate of the coupling weight matrix U at the adversary as Û = U + ∆U,
where ∆U denotes the uncertainty in the estimate of the adversary, we quantify
the privacy guarantee in the following results.

Theorem 4.2. If an HBC agent has access to the information {W(l)}kl=0, the mes-
sages shared by its neighbors, and an estimate of the coupling weight matrix as Û,
then the error covariance at the HBC agent corresponding to estimate the initial
substates [αT

n(0),β
T
n(0)]

T is given by

P̃n(k) = P̄n(k) + EU

{
ε2H†(k)∆H(k)Π̃n∆

T
H(k)(H†(k))T} (4.9)

where Π̃n = 12N1T
2N ⊗ E{xnx

T
n} with xn as the state vector,

P̄n(k) = EU

{
ε2H†(k)∆H(k)Σ̃n∆

T
H(k)(H†(k))T (4.10)

+ σ2(I− εH†(k)∆H(k))H†(k)F(k)FT(k)(H†(k))T

(I− εH†(k)∆H(k))T}

with Σ̃n as the error covariance of the filtering algorithm, H(k) and F(k) are
defined in (4.8), and

∆H(k) =




0
ϕ−1C∆G1

...
ϕ−kC

∑k
t=1∆Gt




with ∆Gk
=
∑k

t=1
k!εt−1

(k−t)!t!G
k−t∆t

G1
, ∆G1 = −LT∆UL, and L = [−I, I].

Proof. The proof is given in [P3, Appendix C].

From Theorem 4.2, we can show that the first term in (4.9) converges to the fixed
matrix P̄LB(k) = limn→∞ P̄n(k) as limn→∞ Σ̃n = Σ̃ and the second term di-
verges as limn→∞ tr

(
E{xnx

T
n}
)
= ∞. Therefore, a lower bound of the privacy

leakage at agent j after k consensus iterations is given by

Ēj(k) = tr
(
(eT

j ⊗ Im)P(k)(ej ⊗ Im)
)

(4.11)

where P(k) = 1
4

[
I I

]
P̄LB(k)

[
I I

]T. Additionally, for the worst-case scen-
ario, when the HBC agent knows the exact coupling weights U, i.e., ∆U = 0,
then the error covariance P̃n(k) in (4.9) is independent of n and is reduced as

P̃(k) = σ2
(
HT(k)

(
F(k)FT(k)

)−1
H(k)

)−1
. (4.12)
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Figure 4.2: Network topology with N = 25 agents.

Figure 4.3: The DKF tracking performance for all agents (shaded color) and their average
as a solid line with noise variance σ2 = 4.

4.3 Numerical Results
To illustrate the performance of the PP-DKF algorithm, we consider the undirec-
ted connected network with N = 25 agents shown in Figure 4.2. The PP-DKF
is used to collaboratively track the speed and position of a target moving in two
dimensions where the state vector xn = [Xn, Yn, Ẋn, Ẏn]

T consists of the posi-
tions {Xn, Yn} and velocities {Ẋn, Ẏn} in the horizontal and vertical directions,
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respectively. The state evolution of such a dynamic system is given by

xn =




1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1


xn−1 +




1
2(∆T )2 0

0 1
2(∆T )2

∆T 0
0 ∆T


wn

where wn = [Ẍn, Ÿn]
T denotes the unknown acceleration in horizontal and ver-

tical directions and ∆T = 0.04 is the sampling interval. The acceleration is
modeled as zero-mean Gaussian process with covariance matrix of E{wnw

T
n} =

1.44 I2 while the observation parameters are considered as

Hi =

[
1 0 0 0
0 1 0 0

]
and Ri =

[
0.0416 0.008
0.008 0.04

]

for each agents i ∈ N . For comparison purposes, we introduce a DKF that
employs the conventional noise-injection-based average consensus technique pro-
posed in [48], with the injected noise following (2.15). This algorithm is hereafter
referred to as the noise-injection-based privacy-preserving DKF (NIP-DKF). The
consensus and noise parameters are selected as ε = 1/4 and ϕ = 0.9, respect-
ively. We considered the interaction weights given in [50], which is W = 0.75E
where E denotes the adjacency matrix. The elements of the coupling weight ui

are chosen independently with distribution U(η, 1) with η = 0.4 and the average
consensus steps are iterated K = 30 times throughout the experiment.

4.3.1 Filtering Performance

Figure 4.3 shows the tracking performance of the proposed PP-DKF compared to
the conventional DKF [67] and the NIP-DKF. We see that the PP-DKF performs as
well as the conventional DKF which demonstrates the robustness of the PP-DKF
to noise injection and state decomposition. Figure 4.4 shows how the perturba-
tion noise variance σ2 affects the average MSE of Kalman filtering algorithms.
We see that the perturbation noise deteriorates the MSE performance compared to
the conventional DKF [67], meaning that increasing the perturbation noise vari-
ance increases the MSE. Moreover, the slower growth rate of the MSE in PP-DKF
compared to the NIP-DKF implies its improved robustness to the injected noise.
Figure 4.4 additionally shows that the theoretical predictions for NIP-DKF and
PP-DKF match the simulation results perfectly. 1

Figure 4.5 shows the MSE of the PP-DKF and the NIP-DKF versus the number
of consensus iterations. We see that increasing the number of consensus iterations

1To compute the filtering state vector estimation error for the NIP-DKF, we follow a similar
approach to the PP-DKF in P3; the detailed derivation is provided in [P3, Appendix E].
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Figure 4.4: Average MSE of the DKF versus noise variance σ2 for theory and simulation.
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Figure 4.5: Average MSE of the DKF versus the number of consensus iterations with
noise variance σ2 = 4.
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Figure 4.6: Network topology with N = 5 agents.

improves performance by reducing MSE. For a sufficiently large number of itera-
tions, the filtering performance of the PP-DKF and the NIP-DKF converges to the
conventional DKF [67]. Also, it can be seen that the theoretical predictions for a
finite number of consensus iterations match the simulation results.

4.3.2 Privacy Analysis

To investigate the privacy performance of the PP-DKF algorithm, we need to focus
more on the network and the effect of adversaries on each individual agent. We,
therefore, consider a smaller undirected connected network with N = 5 agents
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Figure 4.7: The observer of the EE to estimate components of the initial state r4,n(0),
i.e., r̂4,n(k), given the noise variance σ2 = 4.

shown in Figure 4.6. We assume the EE follows the same approach for con-
structing observers to estimate the state of agents under NIP-DKF and PP-DKF.
Figure 4.7 shows the state estimate of the EE versus the number of consensus
iterations. It shows that whenever the NIP-DKF is employed, the eavesdropper
can estimate the initial state with great accuracy. However, the PP-DKF prevents
the initial state of the agents from being correctly estimated, as predicted by The-
orem 4.1. Figure 4.7 also represents that the predicted estimation bias at the EE
under the PP-DKF matches the simulation.

Figure 4.8 shows the average MSE obtained by the EE, i.e., 1
N

∑N
j=1 Ej(k) with

Ej(k) in (4.2), versus consensus iterations. Regarding the definition of privacy
in (4.2), the larger the MSE at the EE, the better the privacy for network agents.
Under the NIP-DKF, the average MSE at the EE decreases with increasing con-
sensus iterations, which means the EE can determine the initial a posteriori state
of the agents asymptotically. In contrast, under the PP-DKF, the achievable MSE
at the EE is bounded as in (4.3), and, therefore, the estimation cannot be improved
by extending the number of consensus iterations. Figure 4.8 also shows that the
predicted bound of the privacy leakage in Theorem 4.1 matches the simulation.
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Figure 4.8: Average privacy 1
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Figure 4.9: Agent privacy versus noise variance (σ2). Due to the symmetric topology,
agents 1 and 3 obtain same privacy and only the result of agent 1 is shown in the figure.

Here, we investigate the case when an HBC agent attempts to estimate the initial
state of the network agents, considering the 5th agent in Figure 4.6 to be an HBC
agent. The HBC agent has no access to the coupling weights of other agents, while
a legitimate agent of the network knows the parameter η. Based on the assumption
of the coupling weights distribution, the HBC agent uses an average value Ū,
with uncertainty ∆U = U− Ū, to estimate the initial states of the other agents.
Figure 4.9 shows the lower bound of the agent privacy in (4.11) versus the injected
noise variance σ2. We see that by employing the NIP-DKF, the privacy of agent 4
is breached due to the lack of neighbors other than the HBC agent. Consequently,
the HBC agent can estimate the initial state of the 4th agent with negligible error.
In contrast, the PP-DKF significantly improves the privacy of all agents even with
a low amount of injected noise.

The tradeoff between filtering accuracy and the average privacy
∑4

j=1 Ēj(k)/4 is
shown in Figure 4.10. It illustrates the privacy-MSE tradeoff for different values
of the injected noise variance σ2. For both PP-DKF and NIP-DKF, we see that
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Figure 4.10: The tradeoff between Kalman filtering accuracy and average privacy∑4
j=1 Ēj(k)/4 for different values of the injected noise variance σ2.

obtaining larger privacy guarantee reduces the filtering accuracy, which is reflected
in a higher MSE. In addition, we see that a fixed privacy guarantee is ensured with
lower MSE under the PP-DKF compared to the NIP-DKF. This is because the
NIP-DKF perturbs the entire state estimate, whereas the PP-DKF perturbs only
the public substate and keeps the private substate noise-free.

4.4 Summary
This chapter investigated possible privacy leaks in distributed Kalman filtering set-
tings and developed an algorithm that protects private information from adversar-
ies. It proposed the PP-DKF algorithm that protects sensitive data using state de-
composition and noise injection techniques. Moreover, it analyzed the mean and
mean-square convergence of the PP-DKF algorithm and provided a closed-form
expression that captures agent privacy. In particular, it provided lower bounds
on achieved privacy for various practical scenarios in the presence of an EE and
an HBC adversary. Lastly, it demonstrated several simulations that corroborated
the theoretical findings. Following the achievement of agent privacy, in the next
chapter, we focus on improving the practical issue of communication efficiency.
As a proof of concept and to demonstrate the adaptability of our proposed privacy-
preserving algorithm, we focus on a simpler distributed learning system model,
i.e., D-LMS. As a result, we propose a DL strategy that provides communication
efficiency and privacy by limiting agents to only sharing a perturbed fraction of
their private data.



Chapter 5

Privacy-Preserving and
Communication-Efficient
Distributed Learning

In this chapter, we present the results of publications P7 and P8 in which we exam-
ine how to reduce the load of local communications in distributed learning (DL)
scenarios while protecting private information. The main focus of this chapter is
on P8 which also covers the contributions of P7. Focusing on communication
efficiency is necessary, since local collaborations are realized through radio com-
munications that consume considerable power and bandwidth. Consequently, a
DL procedure that reduces communication load as much as possible without com-
promising agent privacy and network performance is always desirable.

Considering distributed least mean square (D-LMS) settings, the work in P8 pro-
poses two strategies that are both communication-efficient and privacy-preserving.
The proposed partial sharing and privacy-preserving distributed learning (PPDL)
algorithms achieve communication efficiency by allowing agents to share a frac-
tion of information at each time instant and obtain privacy by noise injection
and state decomposition average consensus techniques. The noise injection-based
PPDL (NI-PPDL) algorithm enables agents to collaborate locally by sharing only
a fraction of their perturbed information, thereby reducing resource consumption
while maintaining privacy. On the other hand, decomposition and noise injection-
based PPDL (DNI-PPDL) decomposes private information into public and private
substates and allows agents to communicate only by sharing a perturbed fraction
of their public substate. The chapter also includes the characterization of agent
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privacy in the presence of an HBC adversary and analyzes the impact of the pri-
vacy and the partial sharing of information on the overall performance of the LMS
algorithm.

The remainder of this chapter is organized as follows. Section 5.1 examines the
background information and system model of the D-LMS setting in a parameter
estimation scenario. Section 5.2 proposes the NI-PPDL and DNI-PPDL algorithms
and investigates their convergence and stability conditions. The privacy of agents
in the presence of an HBC adversary is characterized in Section 5.3, while Sec-
tion 5.4 provides numerical simulations to validate the theoretical findings. Lastly,
Section 5.5 summarizes the chapter.

5.1 Background and Problem Formulation
Numerous studies have developed algorithms for improving communication effi-
ciency in DL settings, but these studies have not been investigated in adversarial
environments [94, 95]. In [96], a federated learning (FL) framework is employed
to address privacy concerns, while [97] combines encryption and differential pri-
vacy, techniques to improve privacy in an FL scenario. Additionally, several stud-
ies have been conducted on simultaneously enhancing privacy and communication
efficiency in DL settings [98–102] In these works, differential privacy [98–100]
and homomorphic encryption [101, 102] methods are used for providing privacy,
while partial participation and less frequent information exchange are employed
to enhance communication efficiency [98–100]. According to the literature, an
efficient method that improves privacy and communication efficiency in a distrib-
uted framework without imposing additional burdens on agents is still lacking.
Additionally, previous studies mostly assumed a centralized processing unit ag-
gregating information from multiple sources, while in this chapter, we consider
a fully distributed architecture. Therefore, due to differences in the assumptions
underlying network topology and the privacy-preserving measures used, our pro-
posed method cannot be fairly compared with the existing literature. However,
the proposed strategies are benchmarked against their noise-free scenarios, which
demonstrate the impact of privacy constraints on their performances.

5.1.1 Problem Formulation

We consider a sensor network modeled as a connected graph G = {N , E}, where
the node set N represents agents and the set of communication links between
agents is denoted by E . At each time instant n, agent i has access to an input
signal xi,n ∈ Rm and the desired signal yi,n ∈ R that is given by

yi,n = xT
i,nw

⋆ + ϵi,n, (5.1)
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where w⋆ ∈ Rm is the optimal parameter vector that has to be estimated, xi,n ≜
[xi,n, xi,n−1, . . . , xi,n−m+1]

T is the input signal vector, and the observation noise
ϵi,n is a zero-mean Gaussian random sequence with variance σ2

ϵi . The system
parameter vector w⋆ is estimated at each time instant n, i.e., wn , minimizing

Jn ≜ 1

N

∑

i∈N
E{e2i,n}, (5.2)

where ei,n ≜ yi,n − ŷi,n with ŷi,n as the estimated filter output at agent i. At each
time instant n, wn can be recursively updated in a steepest descent manner as

wn+1 = wn −
η

2
∇Jn, (5.3)

where ∇ denotes the gradient operator, and η is the positive real-valued gain. Us-
ing an instantaneous approximation of the gradient, the learning update for wn

becomes

wn+1 = wn + η
∑

i∈N
xi,nei,n =

1

N

∑

i∈N
ψi,n+1, (5.4)

where ψi,n+1 defined as

ψi,n+1 = wn + µxi,nei,n, (5.5)

is an intermediate estimate of w⋆ at agent i and time instant n with µ = ηN as
the step size. The average of the intermediate estimates ψi,n+1 across the entire
network can be evaluated in a distributed manner using an ACF [65, 103, 104], as
stated in (2.12) and (2.13). To complete the estimation task, we assign the initial
state of the ACF operations as hi(0) = ψi,n+1 and run the ACF for k iteration to
obtain the average of theψi,n+1 among agents. Then, at each agents i, the estimate
of parameter vector is updated as wi,n+1 = hi(k).

Agents exchange local information ψi,n+1 with their neighbors to obtain the aver-
age consensus. Potential adversaries attempt to access the node-sensitive inform-
ation by exploiting the shared information. Thus, to safeguard node-sensitive data
from being inferred by adversaries, agents must protect shared information when
performing distributed consensus operations.

5.2 Distributed Learning Algorithms
As seen from Section 5.1, the collaboration between agents is vital for distributed
learning. Although collaboration among agents improves learning accuracy, it is
resource-intensive and exposes private information to adversaries. As stated in the
previous section, agents only share their intermediate local estimates, as in (5.5),
during the average consensus steps. Therefore, we propose the following PPDL
algorithms that protect information exchange during consensus operations.
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5.2.1 Noise Injection-based PPDL

In this section, we propose a PPDL algorithm that provides communication effi-
ciency and privacy for distributed learning operations in (5.1) to (5.5). Without
loss of generality, the intermediate estimate in (5.5) is considered private data that
needs to be protected during interactions with neighbors. To provide privacy dur-
ing the ACF process, each agent i perturbs its local information before sharing with
neighbors, i.e., hi(k) + ωi(k) where ωi(k) is the perturbation sequence given in
(2.15). Moreover, each agent only shares a fraction of the private information with
neighbors (i.e., l entries of hi(k), with l ≤ m) to reduce the inter-node communic-
ation overhead. At each agent i and time instant n, the entry selection procedure at
consensus iteration k is characterized by a diagonal selection matrix Si,n(k) that
consists of l numbers of ones and m − l numbers of zeros on its main diagonal,
same as in Section 3.2.1.

To keep the selection procedure simple, we adopt the coordinated partial-sharing,
which is a special case of sequential partial-sharing-based communication method
[57]. In coordinated partial-sharing, all agents are initialized with the same selec-
tion matrices, i.e., S1,0(0) = · · · = SN,0(0) = S0(0). This implies every agent in
the network shares the same elements of the perturbed private information at the
beginning of the process. The selection matrix at the next consensus iteration can
be obtained by performing τ right-circular shift operations on the main diagonal
elements of the entry selection matrix used in the current consensus iteration, as in
Section 3.2.1. Since every agent in the network uses the same selection matrix at
each time instance n and consensus iteration k, we drop node index in Si,n(k) and
continue with Sn(k). Using k consensus iterations at the ACF, the selection matrix
at the next time instant is also updated as Si,n(0) = Si,n−1(k). In the coordinated
partial sharing, the frequency of each entry being shared is equal to pe =

l
m .

As a result, at each agent i, the ACF steps to obtain the average consensus of the
intermediate local estimate in (5.5) can be expressed alternatively as

hi(k + 1) = biih̃i(k) +
∑

j∈Ni

bji

(
Sn(k)h̃j(k) + (I− Sn(k))h̃j(k)

)
,

where h̃j(k) = hj(k) + ωj(k). Due to the partial-sharing of information, agents
substitute the missing entries of the received information, i.e., (I − Sn(k))h̃j(k)
with their local entries (I− Sn(k))h̃i(k), resulting in

hi(k + 1) = biih̃i(k) +
∑

j∈Ni

bji

(
Sn(k)h̃j(k) + (I− Sn(k))h̃i(k)

)
· (5.6)

Finally, after K consensus iterations, we update the local estimation as wi,n+1 =
hi(K). The workflow of the NI-PPDL procedure is summarized in Algorithm 5.
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Algorithm 5 NI-PPDL algorithm
At each time instant n and agent i

Initialize: Sn(0) = diag(sn(0)) and τ
1: ŷi,n = xT

i,nwi,n

2: ei,n = yi,n − ŷi,n
3: ψi,n+1 = wi,n + µxi,nei,n
4: Set hi(0) = ψi,n+1

5: for k = 0 to K − 1 do
6: Share Sn(k)h̃i(k)

7: Receive
{
Sn(k)h̃j(k) : ∀j ∈ Ni

}

8: Update hi(k + 1) as given in (5.6)
9: sn(k + 1) = right-circularshift{sn(k), τ}

10: Sn(k + 1) = diag(sn(k))
11: end for
12: wi,n+1 = hi(K)

5.2.2 Decomposition and Noise Injection-based PPDL

In this section, we propose a PPDL algorithm that offers privacy by employing
noise injection and state decomposition and provides communication efficiency
using the partial-sharing technique. Similar to the proposed NI-PPDL approach,
the DNI-PPDL algorithm also modifies the ACF steps. The average consensus pro-
cedure begins by each agent i decomposing its local information hi(0) into public
and private substates. The public substate is exchanged with neighbors while the
private substate is updated internally and will not be observed by neighbors [50].
Although the private substate is invisible to neighbors, it contributes directly to the
evolution of the public substate. To provide the initial decomposition, each agent
i chooses the initial public and private substates αi(0) and βi(0) randomly from
the set of all real numbers such that

αi(0) + βi(0) = 2hi(0). (5.7)

To simplify the mathematical derivations, we set the private substate as βi(0) =
γhi(0), where γ is randomly chosen from the uniform distribution U(0, 1). This
simplification subsequently results αi(0) = (2 − γ)hi(0). Agents further pro-
tect node-sensitive information by perturbing their public substates with random
sequences, as in (2.15), at each consensus iteration k. Without considering com-
munication efficiency, agents update their local substates as in (4.1) and obtain
the average consensus while protecting private information. However, in the DNI-
PPDL, during each consensus iteration k, every agent only shares a fraction of the
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perturbed public substate with neighbors (i.e., l entries of α̃i(k), with l ≤ m) to
reduce the inter-node communication overhead.

With the help of selection matrices in Section 5.2.1 and updating equations in (4.1),
at each agent i, the public and private substates are alternatively updated as





αi(k + 1) =αi(k) + εUi (βi(k)−αi(k))

+ ε
∑

l∈Ni

wji

(
Sn(k)α̃j(k) + (I− Sn(k))α̃j(k)−αi(k)

)
,

βi(k + 1) =βi(k) + εUi (αi(k)− βi(k)) .

(5.8)

Agent i substitutes its local information (I−Sn(k))α̃i(k) with the missing entries
of the perturbed public substate from neighbors (I−Sn(k))α̃j(k), which results in





αi(k + 1) =αi(k) + εUi (βi(k)−αi(k))

+ ε
∑

j∈Ni

wji

(
Sn(k)α̃j(k) + (I− Sn(k))α̃i(k)−αi(k)

)
,

βi(k + 1) =βi(k) + εUi (αi(k)− βi(k)) .

(5.9)

Iterating operations in (5.9) forces the public and private substates to reach con-
sensus on the exact value of 1

N

∑N
i=1 hi(0), asymptotically. Thus, after K con-

sensus iterations, we update the local estimate as wi,n+1 = αi(K). The workflow
of the proposed DNI-PPDL is summarized in Algorithm 6.

5.2.3 Learning Performance Analysis

Throughout this section, we examine the convergence behavior of the proposed
NI-PPDL and DNI-PPDL strategies. In particular, we study the impact of partial-
sharing-based communication and privacy constraints on the convergence of dis-
tributed learning algorithms. For establishing the convergence conditions and ob-
taining the closed-form expressions for network-level mean and mean squared er-
ror of the proposed PPDL strategies, we make the following assumptions:

• A1: For all i ∈ N , the input signal vector xi,n is drawn from a WSS mul-
tivariate random sequence with correlation matrix Ri ≜ E{xi,nx

T
i,n}. Fur-

thermore, the input signal vectors xi,n and xj,s are independent for all i ̸= j
and n ̸= s.

• A2: The observation noise process ϵi,n is assumed to be zero-mean i.i.d. and
independent of other quantities.
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Algorithm 6 DNI-PPDL algorithm
At each time instant n and agent i

Initialize: Sn(0) = diag(sn(0)) and τ
1: ŷi,n = xT

i,nwi,n

2: ei,n = yi,n − ŷi,n
3: ψi,n+1 = wi,n + µxi,nei,n
4: Set hi(0) = ψi,n+1

5: Private substate: βi(0) = γhi(0)
6: Public substate: αi(0) = (2− γ)hi(0)
7: for k = 0 to K − 1 do
8: Share Sn(k)α̃i(k)
9: Receive {Sn(k)α̃j(k) : ∀j ∈ Ni}

10: Update substates αi(k + 1) and βi(k + 1) as given in (5.9)
11: sn(k + 1) = right-circularshift{sn(k), τ}
12: Sn(k + 1) = diag(sn(k))
13: end for
14: wi,n+1 = hi(K)

• A3: For all i ∈ N , the selection matrix Sn(k) is independent of any other
data. Additionally, the selection matrices Sn(k) and Ss(q) are independent
for all n ̸= s and k ̸= q.

• A4: For a sufficiently small learning rate µ, the terms involving higher-order
powers of µ can be neglected.

Accordingly, the following theorem establishes the necessary conditions for the
mean convergence of the proposed PPDL strategies.

Theorem 5.1. Let A1-A3 hold true; then, the NI-PPDL and DNI-PPDL algorithms
converge in the mean if and only if

0 < µ <
2

max
∀p,i
{λp(Ri)}

(5.10)

where Ri = E{xi,nx
T
i,n} and λp(·) is the pth eigenvalue of the argument matrix.

Proof. The approach for proof in algorithms NI-PPDL and DNI-PPDL are differ-
ent, and the detailed proofs are given in P8.

The following theorem characterizes the stability conditions for the mean-square
convergence of the NI-PPDL and DNI-PPDL algorithms.
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Theorem 5.2. Let A1-A4 hold true; then the mean-square dynamics of the NI-
PPDL and DNI-PPDL algorithms are stable if

0 < µ <
1

max
∀p,i
{λp(Ri)}

· (5.11)

where Ri = E{xi,nx
T
i,n} and λp(·) is the pth eigenvalue of the argument matrix.

Proof. The approach for proof in algorithms NI-PPDL and DNI-PPDL are differ-
ent, and the detailed proofs are given in P8.

Furthermore, P8 demonstrates that the steady-state MSE of NI-PPDL and DNI-
PPDL algorithms depends on the number of consensus iterations and is degraded
by noise injection.

5.3 Privacy Analysis
This section examines the impact of partial sharing of information and noise injec-
tion on the privacy of agents. To this end, we analyze the privacy of agents in the
presence of both HBC agents and external eavesdroppers. Similar to Section 4.2,
the privacy of each agent j is defined as the mean squared estimation error at the
adversary attempting to infer the private information hj(0), i.e.,

Ej(k) ≜ trace
(
E
{
(ĥj(k)− hj(0))(ĥj(k)− hj(0))

T
})

, (5.12)

where ĥj(k) denotes the estimate of the private information hj(0) after k con-
sensus iterations. The MSE metric used here measures how accurately the ad-
versary can estimate private information.

5.3.1 Honest-but-Curious (HBC) Agent

Without loss of generality, we assume agent N is the HBC adversary, similar to
Section 4.2.2. The HBC agent constructs a maximum likelihood (ML) estimator to
estimate hj(0) for j ∈ N\{N}, and characterizes the agent privacy at each agent
j for the NI-PPDL strategy as

ENI
j (k) = trace

(
(eT

j ⊗ Im)PNI(k)(ej ⊗ Im)
)
, (5.13)

where PNI(k) is the ML estimator associated error covariance after k consensus
iterations. The canonical vector corresponding to agent j is denoted by ej with
1 at jth element and zeros elsewhere. Following a similar approach results in the
privacy of the DNI-PPDL strategy at agents j and after k consensus iterations as

EDNI
j (k) = trace

(
(eT

j ⊗ Im)PDNI(k)(ej ⊗ Im)
)
, (5.14)



5.4. Numerical Simulations 67

Figure 5.1: Distributed network with 20 agents.

where PDNI(k) is the ML estimator associated error covariance after k consensus
iterations. The detailed derivation of the privacy measure for both NI-PPDL and
DNI-PPDL algorithms is given in P8.

5.3.2 External Eavesdropper

Regarding the definition of the EE in Section 2.4, in the proposed PPDL strategies,
the selection matrices and circular shift variables are invisible to the EE since they
are initialized during network establishment and are never shared during collabor-
ations. Further, due to partial information sharing, an external eavesdropper can
only access a fraction of perturbed entries during each consensus iteration k while
being unable to determine their position and the size of the private information.
Thus, the proposed PPDL strategies are resilient against external eavesdroppers
with no information leakage.

5.4 Numerical Simulations
To demonstrate the effectiveness of NI-PPDL and DNI-PPDL algorithms, we con-
ducted a series of simulations in the context of system identification in a random
network of N = 20 agents with topology shown in Figure 5.1. Agents aim to
estimate parameters of an unknown system of length m = 32. The input signal
xi,n and observation noise sequence ϵi,n, were drawn from zero-mean Gaussian
distribution with variance σ2

xi
= 1 and σ2

ϵi ∈ U(0.008, 0.03), respectively. The
non-negative coefficients bij in the ACF steps of the NI-PPDL were obtained from
the Metropolis rule in [65]. The interaction weights of the decomposition-based
method were set as W = 0.8E where E denotes the adjacency matrix of the net-
work. The elements of the coupling weight Ui were chosen independently from
a uniform distribution U(η, 1) where η = 0.8 and we set ϕ = 0.9. The ACFs
are iterated K = 40 times, and the perturbation noise sequence at each agent fol-
lows (2.15). The PPDL strategies were simulated under a coordinated partial shar-
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Figure 5.2: Learning curves of the proposed communication-efficient and privacy-
preserving distributed learning strategies: (a). NI-PPDL. (b). DNI-PPDL.

0 2 4 6 8 10

-18

-14

-10

-6

-2

0 2 4 6 8 10

-18

-14

-10

-6

-2

Figure 5.3: Steady-state network-level MSE vs perturbation noise variance: (a). NI-
PPDL. (b). DNI-PPDL.

ing scheme for different values of l (say 32, 24, 16, 8, implying no saving, 25%,
50% and 75% communication-saving). The network-level MSE, which is given by
1
NE{eT

nen} with en = [eT
1,n, · · · , eT

N,n]
T, is considered as the performance metric.

Figure 5.2 demonstrates the learning curves, i.e., network MSE in dB versus it-
eration index n, for σ2 = 5. From Figure 5.2, we see that the proposed dis-
tributed learning strategies provide communication efficiency and privacy at the
cost of slightly degrading performance. Increasing the communication-saving
results in performance degradation, while even by saving 50% communications,
the PPDL algorithms can achieve comparable performance with the case of no
communication-saving. It is also evident from Figure 5.2 that the DNI-PPDL ex-
hibits better estimation performance than the NI-PPDL because it injects perturb-
ation noise only into a fraction of the public state, thus minimizing the overall
contamination of the private information.

Figure 5.3 plots the steady-state network MSE of PPDL algorithms versus the per-
turbation noise variance σ2, to examine the robustness of the proposed strategies
to noise injection. As the variance of the perturbation noise increases, the per-
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Figure 5.4: Average privacy versus perturbation noise variance: (a). NI-PPDL. (b). DNI-
PPDL.

formance of the PPDL strategies reduces, but the reduction for DNI-PPDL is lim-
ited when compared to NI-PPDL. This behavior is due to the contribution of the
noise-free private substate in its update equations. The injected noise with a higher
variance impairs the learning performance regardless of the level of communica-
tion efficiency. However, the performance reduction is more pronounced when the
communication savings are high. In other words, PPDL strategies become more
sensitive to the perturbation noise variance when a smaller fraction of the inform-
ation is shared at each instant.

Furthermore, we conducted experiments to investigate the impact of communic-
ation savings on agent privacy. Figure 5.4 demonstrates the average privacy of
network agents, defined as Ē ≜ 1

N

∑N−1
j=1 Ej(k) with Ej(k) in (5.12), versus the

perturbation noise variance σ2. From Figure 5.4, we see that, in both NI-PPDL and
DNI-PPDL methods, increasing the variance of the perturbation noise increases
the average privacy regardless of the level of communication savings. It can be
seen that sharing a smaller fraction of information at each time results in a lower
level of average privacy in the network. In other words, by sharing a larger fraction
of information at each iteration, cumulative noise in the elements of the private in-
formation increases, resulting in a higher estimation error at the HBC agent and a
higher privacy guarantee. From Figure 5.4 (b), it is also evident that the DNI-PPDL
offers better privacy than the NI-PPDL for a given value of σ2. Although privacy
decreases with an increase in communication efficiency, the privacy achieved by
the DNI-PPDL with 75% communication savings is higher than the privacy ob-
tained by the NI-PPDL approach without communication savings.

5.5 Summary
This chapter proposed two PPDL algorithms that offer communication efficiency
while preserving privacy. We proposed the NI-PPDL algorithm that allows agents
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to share only a fraction of their perturbed private information with their neigh-
bors. The DNI-PPDL algorithm, on the other hand, randomly decomposes the
private information into public and private substates and only shares a perturbed
version of the public substates. Mean and mean-square convergence analyses were
conducted to determine the impact of partial information sharing and privacy con-
straints on the performance of the PPDL algorithms. The privacy was also char-
acterized in the presence of an HBC adversary. The proposed algorithms achieved
communication efficiency with the cost of performance and privacy. However, nu-
merical simulations showed that the DNI-PPDL with 50% communication savings
achieved nearly the same learning performance and significantly improved privacy
compared to the NI-PPDL without communication savings. We mainly focused on
protecting distributed algorithms against HBCs and EEs in the last two chapters.
However, the development of an algorithm that can perform robustly in the pres-
ence of Byzantine adversaries remains a concern. To this end, in the next chapter,
we investigate a DKF strategy that limits the impact of Byzantine adversaries on
the network without a significant increase in agent local computation.



Chapter 6

Distributed Kalman Filter with
Enhanced Resilience to Byzantine
Attacks

In this chapter, we present the results of publication P6 where we propose a DKF
based on an optimization framework to provide resilience to Byzantine attacks.
First, we design the filtering algorithm by adapting the framework proposed in [105]
to model the Kalman filtering algorithm as a solution to an optimization problem.
Then, we use the total variation (TV)-norm penalty in the objective function to
enforce resilience to data falsification attacks [106–108]. We solve the TV-norm-
penalized optimization problem using a distributed subgradient algorithm that up-
dates the state estimate for all agents through local collaborations. We show that
the proposed TV-norm penalized optimization problem corresponding to the state
estimate update results in the same solution as the centralized Kalman filter (CKF),
and it converges to a bounded neighborhood of the optimal solution when Byz-
antine agents are present.

The rest of this chapter is organized as follows. Section 6.1 proposes the Byzantine-
resilient distributed Kalman filter (BR-DKF) as a solution to a TV-norm-penalized
optimization problem. The BR-DKF is studied for convergence and stability under
Byzantine attacks in Section 6.2, and Section 6.3 provides numerical simulations
to corroborate the theoretical findings. Finally, Section 6.4 summarizes the chapter.
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6.1 Byzantine Robust Distributed Kalman Filter
Many studies in the literature were proposed to provide robustness against Byz-
antine agents using statistical approaches [25–28]. The methods mainly involve
assigning adaptive weights to received measurements from neighbors. They assign
smaller weights to measurements that are most likely to originate from a Byzantine
agent, which results in a smaller impact on state estimates. To provide robust-
ness against adversaries, homomorphic encryption-based schemes [31–33, 61],
randomization-based methods [34], and redundancy-based approaches [35–38]
have also been proposed in the literature. However, these approaches require more
local computations and information transfer in the network, which is undesirable
in resource-constrained situations. Thus, this chapter focuses on developing a dis-
tributed filtering algorithm that can achieve robustness against Byzantine attacks
without requiring extra computations on agents. Although the Kalman filtering
algorithm has been modeled as an optimization problem in the literature [105],
it has not been analyzed in adversarial situations or adapted for robustness in
the presence of Byzantine agents. Consequently, the literature does not cover
optimization-based DKF algorithms with different attack-resilient methods that
can be compared to our proposed algorithm in this chapter. However, in the fu-
ture, it may be possible to compare our strategy with a similar DKF strategy that
employs a different penalty term in the objective function.

6.1.1 System Model

We consider a network of N agents that exchange information with their neighbors
to develop their optimal estimates. The state-space model characterizes the state
vector evolution, and observation vectors are given in (2.1) and (2.2). Each agent
i ∈ N updates its local estimate by using information from its neighbors.

We revisit the DKF algorithm modeled as an ML estimation problem that essen-
tially represents the relationship between a KF algorithm [7] and an optimization
problem [105]. Similar to the centralized case in [105], the modeling of the DKF
also requires two steps of prediction and correction, where for each agent i and
time instant n, the prediction updates are stated as

x̂i,n|n−1 = Ax̂i,n−1

Pi,n|n−1 = APi,n−1A
T +Q

(6.1)

with x̂i,n−1 and Pi,n−1 = E{ei,n−1e
T
i,n−1} being the estimate and error cov-

ariance matrix at time instant n − 1, and ei,n−1 = xn−1 − x̂i,n−1. The inter-
mediate a priori state estimate and error covariance are denoted by x̂i,n|n−1 and
Pi,n|n−1 = E{ei,n|n−1e

T
i,n|n−1}, respectively, with ei,n|n−1 = xn− x̂i,n|n−1. Ac-

cordingly, the correction steps of the DKF can be modeled as the solution of a
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constrained optimization problem [105]; in particular, the a posteriori state estim-
ates can be obtained by solving the optimization problem

min
{xi,n}Ni=1

N∑

i=1

fi(xi,n)

s. t. xi,n = xj,n, ∀j ∈ Ni, i ∈ N
(6.2)

where the local objective function fi(xi,n) is given by

fi(xi,n) =
1

2

(
(yi,n −Hixi,n)

TR−1
i (yi,n −Hixi,n) (6.3)

+
1

N
(xi,n − x̂i,n|n−1)

TP−1
i,n|n−1(xi,n − x̂i,n|n−1)

)

and the constraints enforce consensus across all the agents in the network. The
distributed Kalman filtering problem can be solved by any distributed algorithm
that finds the optimal solutions in (6.2), i.e., x∗

i,n for each i ∈ N . Subsequently,
the a posteriori state estimates of agents are updated as x̂n = [x̂T

1,n, · · · , x̂T
N,n]

T

where x̂i,n = x∗
i,n.

Motivated by [106, 107], the constraints in (6.2) can be approximated by a TV-
norm penalty which also endows robustness to data falsification attacks. Thus, the
optimization problem in (6.2) can be can be formulated as TV-norm-penalized
problem given by

x̄∗
n = min

{xi,n}Ni=1

N∑

i=1


f(xi,n) +

λtv

2

∑

j∈Ni

∥xi,n − xj,n∥1


 (6.4)

where x̄∗
n = [(x∗

1,n)
T, · · · , (x∗

N,n)
T]T and λtv is a penalty parameter. Due to the

penalty parameter λtv, estimates xi,n and xj,n are forced to be close. The larger
the λtv, the closer xi,n and xj,n become. However, the TV-norm penalty allows for
some pairs of xi,n and xj,n to be different, which is crucial when Byzantine agents
are present in the network.

We solve the optimization problem in (6.4) with a subgradient method [107], and
derive the state estimate update at each agent i ∈ N as

xl+1
i,n = xl

i,n − αn


∇xi,nf(x

l
i,n) + λtv

∑

j∈Ni

sign(xl
i,n − xl

j,n)


 (6.5)

where αn > 0 denotes the step size and xl
i,n is the state estimate of the subgradient

method at agent i and iteration l. The element-wise sign function is represented
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by sign(·) where given x > 0, sign(x) = 1 and sign(x) = −1 when x < 0.
In case of x = 0, the value of sign(x) can be any arbitrary value within [−1, 1].
Assuming that a group of agents, i.e., B ⊂ N , is conducting Byzantine attacks, as
in Section 2.4.2, and by substituting the gradient∇xi,nf(x

l
i,n), we obtain

xl+1
i,n = xl

i,n − αn

(
Ωi,nx

l
i,n − θi,n + λtv

∑

j∈Ri

sign(xl
i,n − xl

j,n)

+ λtv
∑

j∈Bi

sign(xl
i,n − x̃l

j,n)

)
(6.6)

where x̃l
j,n = xl

j,n + δlj is the state estimate received from the jth Byzantine
neighbor,Ri and Bi include honest and Byzantine members of Ni, and

Ωi,n = HT
i R

−1
i Hi +

1

N
P−1

i,n|n−1

θi,n = HT
i R

−1
i yi,n +

1

N
Ωi,n|n−1x̂i,n|n−1

(6.7)

with Ωi,n|n−1 = P−1
i,n|n−1. Regardless of the state estimate received from neigh-

bors, the value of sign(xl
i,n − x̃l

j,n) is restricted to [−1, 1]. Thus, the last term in
(6.6) limits the effect of perturbed data received from a Byzantine agent so that the
state estimate update is more robust to Byzantine attacks.

Similarly, the error covariance update also requires designing an optimization
problem to obtain the average consensus of the information matrices NΩi,n through-
out the network. To this end, we propose the following optimization problem that
updates the error covariance as

min
{ζi}Ni=1

N∑

i=1

∥ζi − vech(NΩi,n)∥22

s. t. ζi = ζj , ∀j ∈ Ni, i ∈ N·
(6.8)

The optimal solution of (6.8) is denoted by ζ∗ = [(ζ∗1)
T, · · · , (ζ∗N )T]T which re-

turns the average of vech(NΩi,n) throughout the entire network. 1 Subsequently,
the error covariance matrix can be updated as Pi,n = (vec−1

h (ζ∗i ))
−1. 2 Motivated

1The half vectorization of a symmetric matrix M ∈ Rm×mis denoted by vech(M) ∈
Rm(m+1)/2, where vech(M) = [M1,1, · · · ,M1,m,M2,2, · · · ,M2,m, · · · ,Mm,m]T with Mij as
the ijth element of M.

2The operator of vec−1
h (·) denotes the inverse function of vech(·), i.e., vec−1

h (vech(M)) = M.
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by the TV-norm-penalized optimization problem in (6.4), we modify the optimiz-
ation problem in (6.8) as

ζ∗ = min
{ζi}Ni=1

N∑

i=1


∥ζi − vech(NΩi,n)∥22 +

λtv

2

∑

j∈Ni

∥ζi − ζj∥1


 · (6.9)

Employing a similar subgradient approach as in (6.5), results in

ζl+1
i =ζli − γn


ζli − vech(NΩi,n) + λtv

∑

j∈Ni

sign(ζli − ζlj)


 , (6.10)

where γn > 0 denotes the step size. After a large enough number of iterations,
say l∗, the suboptimal solutions in (6.6) and (6.10) converge to (xl∗

i,n, ζ
l∗
i ) and the

filtering a posteriori state estimate and error covariance matrix can be updated as

x̂i,n = xl∗
i,n

Pi,n = (vec−1
h (ζl

∗
i ))

−1·

Assuming that Byzantine agents manipulate only state estimates, i.e., falsify the
state estimate xl

i,n at each iteration l as xl
i,n + δli with δli ∼ N (0,Σi) and Σi

denoting the covariance of perturbation sequences of agent i ∈ B, Algorithm 7
summarizes detailed steps of the BR-DKF.

6.2 Performance Analysis
In this section, we demonstrate that the TV-norm-penalized problem in (6.4) yields
a feasible solution when the penalty parameter λtv is sufficiently large. We also
show that the suboptimal solution in (6.6) converges to a neighborhood of the
optimal solution of the problem in (6.4) with a bounded radius when Byzantine
agents are in the network. To assist the future calculations, we define A = [aij ] ∈
RN×|E| as the node-edge incidence matrix where for each edge e = (i, j) ∈ E with
i < j, we set aei = 1 and aje = −1, otherwise, the elements of A remain zero. In
the following theorem, we establish the optimality of the proposed solution in (6.4)
to yield the same solution as the centralized Kalman filter solution x̂∗

n in [105].
We provide a lower bound threshold for the penalty parameter λtv that guarantees
convergence of the solution in (6.4) to the centralized solution in [105].

Theorem 6.1. Given that the network topology is connected, if λtv ≥ λ0 where

λ0 =

√
N

σmin(A)
max
∀n

max
i∈N
∥Ωi,nx

∗
i,n − θi,n∥∞ (6.11)
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Algorithm 7 BR-DKF algorithm
For each agent i ∈ N
Initialize: x̂i,0 and Pi,0

1: for all n > 0 do
2: x̂i,n|n−1 = Ax̂i,n−1

3: Pi,n|n−1 = APi,n−1A
T +Q

4: Ωi,n|n−1 = P−1
i,n|n−1

5: Ωi,n = HT
i R

−1
i Hi +

1
NΩi,n|n−1

6: θi,n = HT
i R

−1
i yi,n + 1

NΩi,n|n−1x̂i,n|n−1

7: Set x1
i,n = 0 and ζ1i = 0

8: for l = 1 to l∗ do
9: Share xl

i,n + δli with neighbors if i ∈ B
10: xl+1

i,n = xl
i,n − αn

(
Ωi,nx

l
i,n − θi,n + λtv

∑
j∈Ni

sign(xl
i,n − x̃l

j,n)
)

11: ζl+1
i = ζli − γn

(
ζli − vech(NΩi,n) + λtv

∑
j∈Ni

sign(ζli − ζlj)
)

12: end for
13: x̂i,n = xl∗

i,n

14: Pi,n = (vec−1
h (ζl

∗
i ))

−1

15: end for

with σmin(A) being the minimum non-zero singular value of A, Ωi,n and θi,n
defined in (6.7); then, for the optimal solution x̄∗

n in (6.4) and the optimal solution
of the CKF problem x̂∗

n in [105], we have x̄∗
n = [x̂∗

n]
N
i=1.3

Proof. The detailed proof is given in P6.

The next step is to theoretically analyze the performance of the proposed solution
in the presence of Byzantine agents. To this end, the following theorem character-
izes the performance of the solution in (6.6) when Byzantine agents are present.

Theorem 6.2. Given the assumptions in Theorem 6.1 and λtv ≥ λ0, at each agent
i ∈ N and the presence of Byzantine agents, the solution proposed in (6.6) stays
in the neighborhood of the optimal solution x̄∗

n = [x∗
i,n]

N
i=1 in (6.4) with radius

lim
l→∞

El{∥xl+1
i,n − x∗

i,n∥2} ≤
∆0

1− ∥∆∥ (6.12)

3The stacked vector x = [a]Ni=1 ∈ RNm corresponds to N times stacking the smaller vector
a ∈ Rm together.
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where

∆ =
(
1 + 2α2

n∥Ωi,n∥2 + 2εαn

)
I− 2αnΩi,n

∆0 = λ2
tvαn(4αn +

1

ε
)(4|Ri|2 + |Bi|2)m

with 0 ≤ ε ≤ λmin(Ωi,n), Ri and Bi denote the set of honest and Byzantine
members of Ni, and the step size αn satisfies

αn ≤ min
i∈N

{
λmin(Ωi,n)− ε

∥Ωi,n∥2
}
· (6.13)

Proof. The detailed proof is given in P6.

Remark 6.1. The error gap in (6.12) illustrates that the BR-DKF restricts the im-
pact of attack amplitude entirely due to the sign(·) terms; however, the number of
Byzantine agents still affects the error bound in (6.12) by altering ∆0.

6.3 Numerical Simulations
The performance of the BR-DKF algorithm is illustrated by considering two net-
work topologies, including a network of N = 5 agents as shown in Figure 6.1, and
a randomly generated undirected connected network with N = 25 agents with the
topology shown in Figure 6.6. The discrete-time system and agent parameters are
considered similar to the work in [105], given by

xn+1 =




0.4 0.9 0 0
−0.9 0.4 0 0
0 0 0.5 0.8
0 0 −0.8 0.5


xn +wn,

yi,n =




1 0 0 0
1 1 0 0
0 0 1 1
0 0 1 0


xn + vi,n,

where the state noise covariance Q = 0.1I, and the observation noise covariance
Ri = diag(0.1, 0.2, 0.3, 0.1). To benchmark our proposed algorithm, we evaluate
the following scenarios: the centralized Kalman filter as CKF, distributed Kalman
filter as DKF [105], DKF subject to Byzantine attack as B-DKF, and the BR-
DKF subject to Byzantine attack. The subgradient solution for the state and error
covariance are iterated for l∗ = 25 iterations, and the results are averaged over 500
Monte Carlo experiments.
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Figure 6.1: Network topology with N = 5 agents.
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Figure 6.2: MSE versus filtering time index n in the network with N = 5 agents.

In the first scenario, we consider the network in Figure 6.1 comprising N = 5
agents, of which B = 2 are Byzantine agents, taken as the agents with the highest
node degree. We plot the average MSE across agents, i.e.,

MSE =
1

N

N∑

i=1

(xn − x̂i,n)
T(xn − x̂i,n), (6.14)

as a performance measure. In the absence of Byzantines, the parameters of αn, γn,
and λtv of the BR-DKF are tuned to obtain the nearest possible MSE to the DKF
algorithm. Even without a Byzantine attack, the BR-DKF does not reach the same
performance as the DKF method; this is because the sign(·) terms in the updating
process restrict the actual values of the state estimate. Here, Byzantine agents
conduct a coordinated data falsification attack where Σi denotes the covariance
matrix of perturbation sequences of agent i ∈ B.

Figure 6.2 shows the MSE in (6.14) versus the filtering time index n in a network
of N = 5 agents. The BR-DKF achieves lower MSE than the B-DKF under the
same Byzantine attack, demonstrating its robustness. There is a performance gap
between centralized and distributed Kalman filters, even without Byzantine agents,
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Figure 6.3: Estimation accuracy for different elements of the state in network of N = 5.
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Figure 6.4: Steady-state MSE versus percentage of the Byzantine agents in the network
with N = 5 agents.

due to the number of iterations of the subgradient solution. By increasing the
number of l∗, the performance of the DKF will approach the CKF asymptotically.
Figure 6.3 shows how the actual state of the network, with vector length m =
4, is closely estimated by various filtering methods. Tracking performance for
different filtering settings is illustrated in shaded colors for all agents, and the
average estimate among agents is shown as a solid line. We see that the BR-DKF
outperforms the B-DKF by obtaining a lower estimation variance.

Figure 6.4 shows the MSE versus the percentage of Byzantine agents. We see
that the BR-DKF is significantly less sensitive to the number of Byzantines than
the B-DKF. Moreover, Figure 6.5 shows the MSE versus the trace of perturbation
covariance of Byzantine agents. As shown, even without injecting any noise by
the Byzantine agents, the MSE in the BR-DKF does not reach the DKF method
because the sign(·) terms in the update equations limit the actual value of the state
estimates. Upon starting the Byzantine attack, the obtained MSE under the B-
DKF increases dramatically as more noise is injected, but the obtained MSE under
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Figure 6.5: Steady-state MSE versus trace of the Byzantine agent attack covariance in the
network with N = 5 agents.

Figure 6.6: Network topology with N = 25 agents.
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Figure 6.7: MSE versus filtering time index n in a network N = 25 agents.

the BR-DKF does not change. This is due to the restriction that the sign(·) term
provides, and as stated in Remark 6.1, the number of Byzantine agents is the only
factor impacting the steady-state MSE in the BR-DKF.

In the second scenario, we consider a network of N = 25 agents as in Figure 6.6,
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Figure 6.8: Estimation accuracy for different elements of the state in network of N = 25.
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Figure 6.9: Steady-state MSE versus percentage of the Byzantine agents in the network
with N = 25 agents.

including B = 5 Byzantine agents, which are chosen as network agents with
the highest node degree. A similar tuning is made to the step size parameters to
ensure the smallest difference in the MSE for DKF and BR-DKF algorithms in
the absence of attack. In Figure 6.7, the MSE in (6.14) is plotted against the time
index n. We see that the BR-DKF performs better than the B-DKF due to its lower
MSE, which indicates its increased robustness to Byzantine attacks.

Similar to the previous scenario, the estimation accuracy for different state ele-
ments, with vector length m = 4, is shown in Figure 6.8. The estimated values of
agents are plotted in shaded colors, and the average of the estimated values in solid
colors. It can be seen that the BR-DKF reduces the variance of the state estimates
and can robustly track the actual state of the network with higher accuracy than the
B-DKF algorithm.

Figure 6.9 illustrates the MSE versus the percentage of Byzantine agents for differ-
ent algorithms. A similar trend is observed, showing that the greater the percent-
age of Byzantine agents, the higher the MSE, while the BR-DKF sensitivity to the
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Figure 6.10: Steady-state MSE versus trace of the Byzantine agent attack covariance in
the network with N = 25 agents.

Byzantine percentage is significantly less than the B-DKF. Moreover, Figure 6.10
illustrates the MSE versus the trace of the perturbation covariance of Byzantine
agents. It shows that under the BR-DKF, as the trace of attack covariance is low,
sign(·) terms in the state estimate update constrain the actual values and degrade
the MSE compared to the DKF. However, when Byzantines inject more noise,
the performance of the BR-DKF is not degraded, while the MSE of the B-DKF
increases significantly.

6.4 Summary
This chapter modeled a DKF algorithm as a solution to a TV-norm penalized dis-
tributed optimization problem. It proposed a suboptimal solution for the resulting
optimization problem and demonstrated that the optimization-based DKF solution
is more robust to Byzantine attacks. Furthermore, it showed that the proposed
suboptimal solution converges to a neighborhood of the optimal centralized solu-
tion within a bounded radius despite the presence of Byzantine agents. Lastly, it
provided numerical simulations to corroborate the theoretical findings. Next, we
will conclude the thesis and discuss its potential future extensions.



Chapter 7

Conclusions and Future Work

Local interaction between agents in distributed learning and estimation settings
exposes private information to potential adversaries. In this thesis, we investigated
privacy loopholes in such algorithms and proposed strategies to ensure agent pri-
vacy and provide resilience to adversaries. The main contribution of this thesis is
organized into two subdivisions, namely threat analysis, and threat management.
Threat analysis involves analyzing how different adversaries and attack strategies
impact a network. It also involves identifying critical agents or links in the network
through the evaluation of the optimal attack design from the perspective of an ad-
versary. On the other hand, threat management focuses on developing strategies
to limit the impact of potential adversaries on the network. The main goal of
these strategies is to provide agent privacy and enhance attack robustness without
significantly affecting performance. The desired strategy improves the privacy-
performance tradeoffs without imposing additional burdens on agents.

As a prelude to discussing the proposed algorithms in this thesis and their potential
future directions, it is essential to investigate the impact of improved threat analysis
and management algorithms in the field. The primary objective of threat analysis
is to identify potential adversaries and their capability to infer or falsify private
data within a network. As described in Chapter 3, investigating the dynamics of
the network from an adversarial perspective also enables us to gain a better under-
standing of the preferences and logic of the adversary when attacking a network.
Thus, we can devise more effective strategies to reduce the impact of the adversary
on the performance of the network. A more specific approach can also be used to
identify and prevent information leaks in the network by investigating the avail-
able information of the adversary. In the DKF scenario, for instance, by knowing
which parameters are in the interest of the adversaries and how specifically they
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falsify information traffic in the network, we can modify the local dynamics of the
agents to minimize the impact of the adversaries, e.g., sharing only a fraction of
information at a time.

On the other hand, threat management consists of all the measures taken to min-
imize the impact of adversaries in the network. In this thesis, we focus mainly
on algorithms that work under the assumption that unidentified adversaries are
present. This assumption makes the developed strategies effective in a variety of
scenarios, both with and without information about adversaries. Even though the
algorithms in Chapters 4, 5, and 6 are only evaluated against particular adversaries,
they are capable of performing effectively regardless of the adversary type. The
proposed attack-resilient algorithm in Chapter 6, for instance, can also deal with
non-Gaussian falsification perturbations efficiently, while non-linear attacks might
cause problems and require further investigation.

7.1 Summary and Future Directions
In the scope of threat analysis, Chapter 3 examined a distributed estimation scen-
ario from the perspective of an adversary. By jointly optimizing attack sequences
and the set of Byzantine agents, it characterized the optimal attack strategy to
maximize the steady-state MSE. Later in the chapter, we examined the case where
agents gained robustness to Byzantine attacks by sharing a fraction of their local in-
formation at each given time. Additionally, we designed an optimal attack strategy
in which Byzantines cooperated on designing their attack covariances and the se-
quence of the information fractions they share. The next step in this research will
involve specifying the protection mechanisms that agents use to reduce the impact
of optimal attacks. For example, by assuming agents use a KL-based detector, the
stealthiness constraints of attack design optimization problems are changed, and
the problem becomes more similar to practical scenarios. A further extension to
this research is to model the dynamic between Byzantine and regular agents as a
game in which the regular and Byzantine agents constantly adjust their actions to
minimize the impact of the other group on the network.

In the rest of the thesis, we mainly focused on threat management strategies.
Chapter 4 investigated privacy breaches in the DKF settings and provided pri-
vacy by restricting and perturbing messages. Agent privacy was determined by
the accuracy of the adversary in estimating the private data, where the higher the
estimation error, the greater the privacy. We characterized the impact of privacy
constraints on filtering performance and provided privacy bounds when EE and
HBC adversaries were present. In Chapter 5, in addition to enhancing privacy,
we attempted to improve the communication efficiency of agents. We proposed
distributed learning algorithms that reduce inter-agent communication by partially
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sharing the information and provide privacy by using perturbation and state de-
composition. Furthermore, later in Chapter 5, these algorithms were examined for
privacy and performance in the presence of the HBC adversary.

In Chapters 4 and 5, perturbation and state decomposition were used to alter the
average consensus steps while still achieving the exact average consensus among
agents asymptotically. In practice, the number of consensus iterations is limited,
and this results in performance degradation to the ACF. Thus, the future of this
research will focus on a perturbation noise structure and state decomposition tech-
nique that does not compromise the performance of the system, even with limited
consensus iterations. So far in this thesis, we have considered only the state es-
timates as private information, and the error covariances have been shared unpro-
tected. Thus, analyzing the filtering performance and agent privacy bounds of the
PP-DKF algorithm with perturbations to the error covariances is also an interest-
ing future research direction. Additionally, this research can be further developed
by answering the question of whether it is possible to design a perturbation noise
structure that can be used in diffusion-based DKFs without sacrificing accuracy.
Diffusion-based DKFs operate without an internal consensus loop; therefore, the
same perturbation noise structure cannot be applied.

As another approach to threat management, in Chapter 6, we proposed a distributed
Kalman filtering algorithm that provides robustness to Byzantine attacks without
requiring agents to perform additional computations. In this method, the DKF
algorithm was modeled as an optimization problem, and Byzantine attacks were
restricted in variance by penalizing the objective function with a TV-norm term.
We examined the impact of coordinated Byzantine attacks on the filtering perform-
ance and showed that the performance of the proposed algorithm is degraded by
only the number of Byzantine agents. According to Figure 6.5 and 6.10, the BR-
DKF performs poorly when the trace of the perturbation covariance is low. Thus,
in the future, this research will focus on finding an adaptive solution for state es-
timation updates that reduces the impact of the sign(·) terms under low injected
noise conditions. Furthermore, comparing different penalty terms for solving the
optimization problem related to the state estimate and their response to Byzantine
attacks is also an interesting direction to pursue. Additionally, the subgradient-
based solution here is suboptimal; therefore, examining various methods to solve
the optimization problem, such as the alternating direction method of multipliers
(ADMM), can potentially improve the accuracy of the proposed algorithm.
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Abstract—This paper considers consensus-based distributed
Kalman filtering subject to data-falsification attack, where Byzan-
tine agents share manipulated data with their neighboring agents.
The attack is assumed to be coordinated among the Byzantine
agents and follows a linear model. The goal of the Byzantine
agents is to maximize the network-wide estimation error while
evading false-data detectors at honest agents. To that end, we
propose a joint selection of Byzantine agents and covariance
matrices of attack sequences to maximize the network-wide
estimation error subject to constraints on stealthiness and the
number of Byzantine agents. The attack strategy is then obtained
by employing block-coordinate descent method via Boolean
relaxation and backward stepwise based subset selection method.
Numerical results show the efficiency of the proposed attack
strategy in comparison with other naive and uncoordinated
attacks.

I. INTRODUCTION

The adoption of internet of things (IoT) is rapidly growing
with applications in security, environmental monitoring, and
smart infrastructure [1]. IoT employs distributed signal pro-
cessing algorithms in which an individual agent exchanges in-
formation with its neighboring agents for inference tasks such
as event detection, tracking, and parameter estimation. Limited
computational and energy resources at the IoT devices and
the distributed nature of IoT render them vulnerable to cyber-
security threats and malicious attacks from adversaries [2].
Thus, attack and defense mechanisms for secure distributed
inference in IoT has garnered significant attention recently.

In data-falsification attacks, Byzantine agents inject ma-
licious data or share manipulated information to decrease the
system performance [3]. In such scenarios, the main challenges
for distributed algorithms are trustworthiness of local informa-
tion and resilient inference during attacks. To mitigate data-
falsification attacks in distributed detection, adaptive design
of local fusion rules to detect Byzantine agents was proposed
in [4] and audit-bit based architecture where sensors transmit
their decision via local groups in addition to direct commu-
nication with fusion center was presented in [5]. The authors
in [6] proposed an attack detection procedure by employing
reliable innovation data from the neighboring sensors in the
distributed estimation process. In [7] weighted combination
of local innovations and the information shared by neighbors
is proposed for robust parameter estimation in presence of
attacks. Joint attack detection and secure estimation methods
have been proposed in [8] and [9]. The authors in [10] consider
secure estimation for a networked cyber-physical system (CPS)
under simultaneous false data injection and jamming attacks

This work was supported, in part, by the Research Council of Norway.

and propose a two-step attack detection mechanism and a
measurement output model refinement to overcome the attacks.

On the other hand, knowledge of the optimal attack strategy
and its impacts on the performance of IoT plays an important
role in secure inference. It helps to understand the system
behavior in presence of attacks, to identify critical links and
agents, and to determine the regime in which the IoT no
longer satisfies the operational goals. In this context, the
trade-off between the detection performance with no attackers
and the worst-case detection performance with an attacker
was studied in [11] for hypothesis testing. For remote state
estimation setting, optimal jamming policies for attacking the
communication channels between sensors and fusion center
to maximize the estimation error was proposed in [12] and
optimal linear deception attack, which can successfully bypass
a χ2 false data detector, was presented in [13]. In [14] the
mean square error (MSE) performance of single sensor Kalman
filter with data-falsification attacks was analyzed considering
the Kullback-Leibler (KL) divergence as a measure of attack
stealthiness. Similarly, in [15] it was shown that with KL
divergence as the stealth metric, the worst-case linear attack
strategy that maximizes the estimation error covariance is
a zero-mean Gaussian distributed attack sequence. In [16],
the authors propose algorithms to design attack sequence to
move the state of a CPS to a target state while satisfying
the probability of detection constraints. These works [12]–
[16] are limited to single sensor scenarios or centralized state
estimation problems. Further, the performance and behavior
of distributed state estimation with Byzantine agents are not
addressed in the existing literature.

In this paper, we investigate the performance of consensus-
based distributed Kalman filtering in presence of Byzantine
agents. Assuming a linear attack model, we propose joint selec-
tion of Byzantine agents and their attack sequences that max-
imize the network-wide estimation error subject to constraints
on stealthiness and the number of Byzantine agents. This
results in an NP-hard optimization problem. Hence, we obtain
suboptimal solutions by solving a sequence of semidefinite
program (SDP) through the block-coordinate descent method
and Boolean relaxation of the NP-hard optimization problem.
To benchmark the proposed method, we present a backward
stepwise subset selection based algorithm to determine the best
set of Byzantine agents that maximizes the error.

Notations: Transpose and trace are denoted by (·)T and
tr(·), the identity matrix of size n is represented by In, the
ones vector of length L is denoted by 1L, whereas ⊗ denotes
Kronecker product. Positive semidefinite matrix is represented
by A � 0 and sup denotes the supremum. Matrices diag(a)



and diag({Ai}Li=1) denote diagonal and block-diagonal ma-
trices whose respective diagonals are the elements of vector a
and matrices A1,A2, . . . ,AL.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a connected multi-agent network of L ∈ N agents
that collectively aim to estimate the state vector sequence
{x(k), k = 1, 2 . . .} from local observations {yi(k), k =
1, 2 . . . , i = 1, 2 . . . , L} at the agents. The network is
modeled as an undirected graph G(V, E), where V is the set
of all agents of the network with |V| = L, and E is the edge
set that represents the communication links between the agents.
The neighbor setNi comprises all the agents that are connected
to i within one hop and excludes the agent itself. The network
adjacency matrix is denoted by E and the graph Laplacian is
defined as L = diag({|Ni|}Li=1)−E.

A. Distributed Filtering

The state vector and observation sequences at the ith agent
are characterized by the state-space model

x(k + 1) = Ax(k) + w(k)

yi(k) = Hix(k) + vi(k),
(1)

where A ∈ Rm×m is the state-transition matrix, Hi ∈ Rn×m

is the observation matrix at agent i, whereas w(k) and vi(k)
are mutually independent zero-mean Gaussian processes with
covariance matrices Q ∈ Rm×m and Ri ∈ Rn×n, respectively.

The agents employ the consensus-based distributed Kalman
filter to estimate x(k) in a collaborative manner [17]. The state
estimate at agent i is given by

x̂i(k + 1) = Ax̂i(k) + Ki(k)
(
yi(k)−Hix̂i(k)

)

− εA∑j∈Ni

(
x̂i(k)− x̄j(k)

)
,

(2)

where Ki(k) ∈ Rm×n is the Kalman gain at agent i, ε
is the consensus gain chosen as 0 ≤ ε ≤ 1/maxi |Ni|,
and {x̄j(k)}j∈Ni

are estimates shared by the agents in the
neighborhood set Ni.

The optimal Kalman gain Ki(k) in (2) is found by min-
imizing the trace of the estimation error covariance Pi(k) ,
E{ei(k)eT

i (k)}, where the estimation error ei(k) at agent i
evolves as

ei(k + 1) , x̂i(k)− x(k) = (A−Ki(k)Hi)ei(k)−w(k)

+ Ki(k)vi(k)− εA∑j∈Ni

(
ei(k)− ej(k)

)
. (3)

After some calculations, the estimation error covariance can
be expressed as

Pi(k + 1) = Fi(k)Pi(k)FT
i (k) + Q + Ki(k)RiK

T
i (k)

− εFi(k)
∑

s∈Ni

(
Pi(k)−Pis(k)

)
AT

− εA∑r∈Ni

(
Pi(k)−Pri(k)

)
FT

i (k)

+ ε2
∑

r∈Ni

∑

s∈Ni

A
(
Pi(k)−Pis(k)−Pri(k) + Prs(k)

)
AT ,

(4)

where Pij(k) , E{ei(k)eT
j (k)} and Fi(k) = A−Ki(k)Hi.

Thus, the optimal Kalman gain, which is found by differenti-
ating the trace of (4) with respect to Ki(k), is given by

K∗i (k) = A
(
Pi(k)− ε

∑

j∈Ni

(
Pi(k)−Pji(k)

))
HT

i M−1
i (k),

(5)
where Mi(k) = HiPi(k)HT

i + Ri.

B. Attack Model

In the following it is assumed that a subset B ⊆ V with
|B| ≤ L are Byzantine agents. In contrast to the “honest
agents”, Byzantines share a falsified version of their state
estimate with their neighbors to deteriorate the network-wide
estimation performance [3]. Byzantine agent j ∈ B shares
a modified state estimate x̂j(k) + δj(k) instead of x̂j(k)
for k ≥ k0, where k0 is the time instant when attack is
initiated. Consequently, for k ≥ k0, the local estimates used
for consensus building in (2) can be expressed as

x̄j(k) =

{
x̂j(k) + δj(k) j ∈ B
x̂j(k) j /∈ B, (6)

where δj(k) ∼ N (0,Σj) denotes the data-falsification se-
quence. Assuming a coordinated attack by the Byzantine
agents, the augmented attack sequence across the network is
given by

δ(k) , [δT1 (k), δT2 (k), . . . δTL(k)]T (7)

and its covariance matrix is denoted by Σ = E{δ(k)δT (k)}.
It assumed that the Byzantine agents have knowledge of
the network and observation matrices. To maximize the at-
tack stealthiness, δ(k) is chosen as a zero-mean Gaussian
sequence with covariance Σ [14]–[16]. The probability of
attack-detection is proportional to the covariance of the attack
sequence [14]–[16]. Therefore, Σ is limited to tr(Σ) ≤ η,
where η captures the stealthiness of the attack.

C. Problem Statement

The main objective of the Byzantine attack is to maximize
the network-wide mean squared error (NMSE) defined as

NMSE = lim sup
K→∞

1

K

∑K
k=1

∑L
i=1 tr

(
Pi(k)

)
(8)

while still maintaining a desired level of stealthiness. Due to
limited resources only a subset of agents can be Byzantines,
which is denoted by B. We need to decide the subset of agents
that participate in the attack and determine the covariance ma-
trices Σj , j ∈ B, of the corresponding falsification sequences.
To that end, we introduce the Boolean variable zj = 1 if
j ∈ B and zero otherwise, and define the selection vector
z = [z1, z2, . . . , zL]T [18]. The optimal attack strategy can be
expressed as an optimization problem given by

max.
Σ, z

NMSE

s. t.
∑

j∈B tr(Σj) ≤ η,
Σ � 0,

z ∈ {0, 1}L, 1T z = B,

(9)

where the first constraint is related to the stealthiness, i.e.,
the ability to evade detection and the last constraint limits



the number of Byzantine agents to |B| = B. The parameter
η is employed to restrict the total power of the falsification
sequences and satisfy the detection-avoidance target.

In the next section, we compute the network-wide mean
squared error as a function of the attack sequence covariance
matrices and propose different methods for joint design of
the attack sequence and subset of Byzantines with the aim
of maximizing the error.

III. JOINT SELECTION OF BYZANTINE AGENTS AND
DESIGN OF ATTACK SEQUENCES

To solve the problem in (9), we first derive the expression
for the objective function to capture the NMSE. To that
end, define the network-wide estimation error in presence of
Byzantine attack after k ≥ k0 as

ē(k) , [ēT
1 (k), ēT

2 (k), . . . , ēT
L(k)]T , (10)

where the error at the ith agent is given by

ēi(k + 1) = (A−Ki(k)Hi)ēi(k)−w(k) + Ki(k)vi(k)

− εA∑j∈Ni

(
ēi(k)− ēj(k)− δj(k)

)
.

(11)
Defining Γ = E diag(z) ⊗ A, the evolution of the network
estimation error can be expressed as

ē(k + 1) = Ā(k)ē(k) + b̄(k) + εΓδ(k), (12)

where Ā(k) = (IL−εL)⊗A−diag({K̂i(k)Hi}Li=1), K̂i(k) is
the Kalman gain assuming the statistics of the attack sequence
is known, and

b̄(k) = diag({K̂i(k)vi(k)}Li=1)− 1L ⊗w(k).

From (12), the covariance matrix of the error P̂(k + 1) ,
E{e(k + 1)eT (k + 1)} is given by

P̂(k + 1) = Ā(k)P̂(k)ĀT (k) + Q̄(k) + ε2ΓΣΓT , (13)

where Q̄(k) = diag({K̂i(k)RiK̂
T
i (k)}Li=1 + 1L1T

L ⊗Q. The
optimal Kalman gain that minimizes tr(P̂(k)) in (13) can
obtained as

K̂i(k) = A
(
P̂i(k)− ε

∑

j∈Ni

(
P̂i(k)− P̂ji(k)

))
HT

i M̂−1
i (k),

(14)
where M̂i(k) = HiP̂i(k)HT

i + Ri. In contrast to (4) and
(5), (13) and (14) capture the error dynamics in presence of a
Byzantine attack.

Assuming that the network is connected, (A, Q̄1/2) is
controllable, and (A,Hi) is observable, it can be shown that
limk→∞ P̂(k) = P̂ i.e., P̂(k) converges to a bounded value.
In other words, there exists a matrix K̂i(k) such that P̂(k)
is bounded and converges to a unique positive definite matrix
for all k and any initial non-negative symmetric matrix. Since
obtaining a closed form expression for the covariance matrix
of the actual error in (11) induced by the attack is intractable,
we employ tr(P̂) as a proxy to the objective function. Here
tr(P̂) is a lower bound for the actual NMSE.

The solution to the Riccati equation in (13) can be obtained
from an SDP [19]. Motivated by this fact and substituting

NMSE = tr(P̂) in (9), we express the joint Byzantine agent
selection and attack design optimization problem as

P : max.
X,Σ,z

tr(X)

s. t. X � ĀXĀT + Q̄ + ε2ΓΣΓT ,

Γ = E diag(z)⊗A,

X � 0∑
j∈B tr(Σj) ≤ η, Σ � 0,

1T z ≤ B, zi ∈ {0, 1}, i = 1, . . . L.

(15)

The above problem is NP-hard [20], and difficult to solve due
to the non-convex quadratic terms in the first constraint. In
the subsequent sections we propose different methods to find
a suboptimal solution to the above problem.

A. Block-Coordinate Descent (BCD) based Approach

The problem in (15) is non-convex due to the Boolean
variables. To circumvent this, we relax the Boolean constraint
zi ∈ {0, 1} to a linear inequality constraint 0 ≤ zi ≤ 1. We
see that for a given z or Σ the problem (15) is an SDP,
as its first constraint is convex. Therefore, we employ the
block-coordinate descent (BCD) method where (X,Σ) and
(X, z) are alternately optimized with the other variable fixed.
Applying the trace operator on both sides of the convergence
constraint leads to a linear approximation with respect to z
and Σ. The proposed approach starts with an arbitrary z0 as
initial condition and its first step is given by

P1 : max.
X,Σ

tr(X)

s. t. tr(X) � tr(ĀXĀT + Q̄) + ε2tr(ΓΣΓT ),

X � 0,∑
j∈B tr(Σj) ≤ η, Σ � 0.

(16)

The second step of the BCD approach is to determine the
Byzantine agents by solving

P2 : max.
X,z

tr(X)

s. t. tr(X) � tr(ĀXĀT + Q̄) + ε2tr(ΓΣΓT ),

Γ = E diag(z)⊗A,

X � 0,

1T z ≤ B, 0 ≤ zi ≤ 1, i = 1, . . . L.

(17)

The subproblems (16) and (17) are convex and (16) has an
unique solution for a given z. Hence from [21, Theorem 1], we
conclude that the proposed algorithm converges to a stationary
point. The steps in (16) and (17) reduce the problem in (15) to
that of solving a sequence of SDPs, which can be efficiently
solved by interior-point methods.

The optimal z∗ ∈ [0, 1]L is not Boolean due to the
relaxation in (17). Hence, we recover a feasible solution z′

of (15) by sorting the elements of z∗ in descending order and
set z′i = 1 for the agents corresponding to the |B| = B largest
elements.



Algorithm 1 Backward Stepwise Selection based Attack
Initialize: BL = V ,

1: for j = L downto B + 1 do
2: Determine l∗j = arg maxl∈Bj

U(Bj\{l}).
3: Update Bj−1 = Bj\{l∗j}.
4: end for
5: Set attack strategy zi = 1 if i ∈ BB else zi = 0.
6: Find optimal attack sequence covariance matrix from (16).

B. Backward Stepwise Selection based Attack Strategy

For a given attack selection vector z, the problem in (15) is
an SDP. Hence, instead of relaxing the Boolean constraints, we
employ an improved greedy search based method to determine
the set of Byzantine agents and then find the corresponding
optimal covariance matrices from (16). To select the Byzantine
agents, we adopt the backward stepwise selection algorithm
[22]. In this method, the algorithm begins by considering all
agents as Byzantine i.e., B = V , and then iteratively removes
the agent that contributes least to the overall objective. The
algorithm stops when only B most effective agents are remain-
ing. At iteration index j, let Bj denote the set of Byzantine
agents with |Bj | = j and the corresponding performance of
the network is defined as

U(Bj) =
∑

i∈V\Bj

tr(P̂i) +
∑

i∈Bj

tr(P̂i), (18)

which is computed from (16). The agent l∗j that contributes
lowest to the overall objective U(Bj) is removed from Bj at
iteration j by determining l∗j from

l∗j = arg max
l∈Bj

U(Bj\{l}).

The algorithm is terminated when Bj consists of B agents and
the attack sequence covariance matrix is determined from (16)
with zi = 1 if i ∈ BB else zi = 0. The proposed backward
stepwise selection based attack strategy is summarized in
Algorithm 1.

IV. SIMULATION RESULTS

We consider a randomly generated undirected connected
network with L = 25 sensor agents, maximum degree of
∆ = 11 and consensus gain ε = 0.08. The discrete time
system and agent parameters are considered to be A =
[0.6, 0.005; 0.25, 0.6], Q = I2, Ri = I2 and Hi =
µiI2, i = 1, 2, · · · , L with µi ∼ U(0, 1). We set N = 10
iterations for the BCD method. The Byzantine agents start
falsifying data at time index k0 = 20 and the stealthiness
parameter is set to η′ = η/|B| = 15 per Byzantine agent.

The proposed attack strategies are compared with two
naive strategies, namely, random selection attack and uniform
perturbation attack. The former strategy randomly selects the
Byzantine agents, while the associate covariance matrices are
obtained from (16). The latter strategy, choose the attack
sequence covariance matrices as Σj = P

mIm for all j ∈ B
and the set of Byzantines are determined from (17). Fig. 1,
illustrates the steady-state NMSE for the considered strategies,
with |B| = 5. It shows that the proposed methods significantly
outperform the naive random and uniform attack strategies.The
BCD based approach is computationally less intensive and
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Fig. 1. NMSE for different attack strategies in a network with L = 25 agents,
B = |B| = 5 Byzantine agents, and stealthiness parameter η′ = η/B = 15.
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Fig. 2. NMSE versus number of Byzantine agents for a network with L = 25
agents and stealthiness parameter η′ = η/B = 15.

performs close to the greedy search based method. It can be
inferred that the covariance design influences the overall per-
formance more in comparison with Byzantine agent selection.

Fig. 2 shows the NMSE versus the number of Byzantine
agents for fixed stealthiness parameter η′ = η/|B| = 15 per
Byzantine agent. We observe that the joint attack strategy per-
forms close to the backward stepwise selection based method.
When compared with random and uniform attack strategies,
the proposed methods cause larger degradation in the NMSE
for a fixed number of Byzantine agents.

V. CONCLUSION

This paper considered a distributed Kalman filter in pres-
ence of a coordinated data-falsification attack with Byzantine
agents. It has been shown that the optimal set of Byzantine
agents and covariance matrices of the falsification data that
maximize the network-wide estimation error can be obtained
by solving a sequence of semidefinite programs. Further, a
greedy strategy for the Byzantine agent selection problem has
been presented as an alternative to the Boolean relaxation
based block-coordinate descent method. Simulation results
demonstrate the efficacy of the proposed attack strategies in
comparison with the naive approaches.
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Abstract—Distributed Kalman filtering techniques enable
agents of a multiagent network to enhance their ability to track a
system and learn from local cooperation with neighbors. Enabling
this cooperation, however, requires agents to share information,
which raises the question of privacy. This paper proposes
a privacy-preserving distributed Kalman filter (PP-DKF) that
protects local agent information by restricting and obfuscating
the information exchanged. The derived PP-DKF embeds two
state-of-the-art average consensus techniques that guarantee
agent privacy. The resulting PP-DKF utilizes noise injection-
based and decomposition-based privacy-preserving techniques to
implement a robust distributed Kalman filtering solution against
perturbation. We characterize the performance and convergence
of the proposed PP-DKF and demonstrate its robustness against
the injected noise variance. We also assess the privacy-preserving
properties of the proposed algorithm for two types of adversaries,
namely, an external eavesdropper and an honest-but-curious
(HBC) agent, by providing bounds on the privacy leakage for
both adversaries. Finally, several simulation examples illustrate
that the proposed PP-DKF achieves better performance and
higher privacy levels than the distributed Kalman filtering so-
lutions employing contemporary privacy-preserving techniques.

Index Terms—Sensor networks, privacy, information fusion,
average consensus, distributed Kalman filtering, multiagent sys-
tems.

I. INTRODUCTION

THE proliferation of affordable sensor equipment with
built-in networking capabilities has kindled a great deal

of interest in distributed learning and estimation techniques
in multiagent systems [1]–[6]. Furthermore, these systems
incorporate honest communication with neighbors to enable
cooperation and achieve a common target. In this work, we
mainly focus on the distributed Kalman filtering techniques
due to their computational efficiency, high accuracy, and the
ability to model an extensive array of real-world physical
systems. This broad applicability has made distributed Kalman
filtering techniques a prominent fixture of multiagent learning
and estimation applications in the signal processing commu-
nity [7]–[11].

The distributed Kalman filtering techniques became more
applicable to large-scale systems [10] and became widely
used with the emergence of consensus filtering [12] and [13].
Kalman consensus filtering has a significant impact on the dy-
namic state estimation and was originally proposed in [8] and
has been analyzed for stability and performance in [14]. The
literature also includes a variety of consensus-based distributed
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Kalman filtering techniques to improve the performance in
distributed estimation scenarios [6], [15], [16]. In the mean-
time, a diffusion-based strategy is proposed for distributed
filtering and smoothing to estimate the state of linear dynamic
systems in [11]. Generally, distributed Kalman filtering tech-
niques rely on agents running local Kalman filtering operations
using consensus filters to fuse observation and state vector
information [9], [14]. On the one hand, sharing information
among agents of the network facilitates cooperation between
the agents. On the other hand, sharing of observation and state
vector estimates gives rise to concerns about privacy [17], [18];
hence, there is a demand for secure filtering solutions [19],
[20] and data aggregation [21]. Moreover, distributed filtering
techniques are vulnerable to eavesdroppers that can potentially
obtain private information by tapping communication links.
This vulnerability turns privacy-preservation into an urgent
requirement in many applications [22]–[32]. Also, privacy and
security concerns become more pronounced when considering
that even a single-agent infiltration can threaten the entire
network integrity [25], [33].

The literature contains various methods that address the
privacy issues in distributed processing problems, such as con-
sensus [25]–[32], [34], optimization [22], [23], filtering [24],
and state estimation [35]–[44]. A secure estimator is pre-
sented as a minimax optimization problem in the presence
of a resource-limited attacker in [35], while the study in
[36] detects the attacker by using χ2 detectors to investigate
the impact of intermittent data integrity attacks on Kalman
filter-based estimators. By locating the misbehaving agents,
[37] proposed a secure distributed state estimator based on
a Gaussian mixture model detection mechanism, while [38]
proposed a secure estimator that differentiates the malicious
from the faulty agents. As opposed to detection-based secure
state estimation, the work in [39] and [40] is designed to
perform robustly in the presence of Byzantine agents without
specifically detecting malicious agents. Additionally, to gen-
erate secure estimates, we can convert the problem of secure
estimation into a distributed optimization problem [41]. A se-
cure estimation scheme based on Kalman filters is proposed in
[42], which fuses the local estimates securely using a quadratic
programming approach. In [43], the authors propose a secure
multi-party dynamic state estimation method based on Paillier
encryption, while [44] investigates how to maximize privacy
of stochastic dynamical systems with an information-theoretic
privacy approach based on mutual information. Although
these frameworks provide privacy, they are computationally
demanding, and finding a secure and computationally efficient
distributed state estimation remains a challenge.

When it comes to privacy concerns in distributed consensus
areas, differential privacy is one of the main approaches [26]–
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[28]. The differential privacy technique perturbs local mes-
sage exchanges to protect individual information from being
inferred by other agents or an external eavesdropper [26]–
[28]. However, this privacy comes at a performance penalty.
Among more recent consensus approaches, noise-injection-
based methods [45], [46] have gained wide acceptance due to
their improved privacy-accuracy trade-off. At the same time,
decomposition-based techniques mainly focus on the amount
of information exchanged between neighbors. For instance, in
[47], [48], the initial state at each agent is decomposed into
two substates, one for inter-node interactions and another that
remains invisible to other agents.

Regarding privacy concerns in Kalman filtering settings, the
work in [49] designs a differentially private Kalman filter
in both input and output perturbation cases. Furthermore,
differentially private Kalman filtering solutions that minimize
the achieved mean squared error (MSE) under the differential
privacy constraints are proposed in [19], [20], [50]. These
works address the problem of releasing filtered signals that
respect the privacy of individual data by employing differential
privacy constraints over the filtering operations. In contrast,
we apply privacy constraints to protect the value of agent-
sensitive information from being estimated by adversaries.
The proposed privacy-aware Kalman filter in [51] linearly
transforms the sensor measurements before releasing them to
the fusion center to maximize the estimation error for the
private state and minimize that for the public state. Although
considerable research has been devoted to privacy-preserving
Kalman filtering solutions, no attention has been paid to a
privacy-preserving framework for distributed Kalman filtering
strategies.

In this paper, we assume that the local state estimates of
individual agents are sensitive and must be kept private from
adversaries. To that end, we propose a privacy-preserving
distributed Kalman filter (PP-DKF) based on embedded av-
erage consensus that guarantees privacy via decomposition of
local states and perturbation of the messages exchanged with
neighboring agents. In the proposed approach, the local state
at the agent is decomposed into private and public substates,
where only public substates are shared with neighbors to re-
duce the amount of information exchanged. Furthermore, these
shared messages are perturbed with a zero-mean Gaussian
noise to further limit the information leakage. We show that the
proposed DKF converges to unbiased steady-state estimates
regardless of the initializing values or privacy-preserving
perturbations. In addition, we provide rigorous mathematical
analysis for the convergence behavior and the achievable MSE
performance.

Next, we characterize the privacy performance of the
proposed PP-DKF under two different adversaries, namely
external eavesdroppers and honest-but-curious (HBC) agents.
Defining the MSE of the estimate of the private information at
the adversary as the privacy measure, we provide bounds on
the privacy leakage for both adversaries. More importantly,
we also derive the conditions under which perfect privacy
can be achieved, i.e., conditions where there is no privacy
leakage. Further, we show that the proposed PP-DKF achieves
a better privacy-accuracy trade-off than state-of-the-art solu-

tions, implying that PP-DKF achieves a higher state estimation
accuracy for a given privacy level.

The rest of the paper is organized as follows. Section II
provides preliminaries on distributed Kalman filtering and its
vulnerability to internal and external adversaries. Section III
presents the derivation of the proposed PP-DKF that protects
private information through state decomposition and noise
perturbation. In Section IV, the performance of the proposed
PP-DKF is investigated in detail. In particular, we study the
convergence of the PP-DKF, in the mean and mean-squared
senses, for a finite number of consensus iterations and provide
closed-form solutions incorporating state decomposition and
noise perturbation effects. In Section V, we study the privacy
guarantees provided by the PP-DKF when the network is sub-
jected to external eavesdroppers and HBC agents. Section VI
presents simulation results that corroborate our theoretical
findings. Finally, conclusions are given in Section VII.
Mathematical Notations: Scalars, vectors, and matrices are
denoted by lowercase, bold lowercase, and bold uppercase
letters, while Il, 0l, and 1l represent an l×l identity matrix, an
l× l zero matrix, and a column vector with l elements where
all entries are one, respectively. The transpose and statistical
expectation operators are denoted by (·)T and E{·}, while ⊗
denotes the matrix Kronecker product. The trace operator is
denoted as tr(·), whereas the Blockdiag({Ai}Ni=1) represents a
block diagonal matrix containing Ais on the main diagonal.
In order to distinguish between Kalman filtering operations
and consensus filter iterations, consensus iterations are denoted
in parenthesis and Kalman filtering time instants are denoted
using subscripts, e.g., xi,n(k) denotes the state at agent i
and time instant n, after k consensus iterations. A white
Gaussian sequence x(k) with covariance Σ is represented as
x(k) ∼ N (0,Σ), † denotes the Moore–Penrose pseudoin-
verse operator.

II. BACKGROUND AND PROBLEM FORMULATION

This section revisits the classical distributed Kalman fil-
tering problem of tracking a dynamic system state through
observations from a network of sensors/agents. The network
is modeled as a graph G = {N , E} with node set N ,
representing agents, and edge set E , representing bidirectional
communication links. The neighborhood of node i, denoted
by Ni, is the set of nodes that agent i receives information
from, which does not include agent i itself. The cardinality of
the set Ni is denoted by Ni, while N is the number of agents
in the network.

The state-space model, characterizing the state vector evo-
lution and observation, is given by

xn = Axn−1 + vn (1)

yi,n = Hixn + wi,n (2)

where for time instant n and agent i, A ∈ Rm×m denotes the
state transition matrix, Hi ∈ Rq×m denotes the observation
matrix, yi,n ∈ Rq is the local observation, and wi,n ∈ Rq
and vn ∈ Rm, are observation and process noises, respec-
tively. The process noise and observation noise are zero-mean
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Algorithm 1 Distributed Kalman Filter
Initialization: For each agent i ∈ N

1: x̂i,0|0 = E{x0}
2: Mi,0|0 = E

{
(x0 − E{x0})(x0 − E{x0})T

}

Model update:
3: x̂i,n|n−1 = Ax̂i,n−1|n−1

4: Mi,n|n−1 = AMi,n−1|n−1A
T + Cvn

Measurement update:
5: Γi,n = M−1

i,n|n−1 +NHT
iC
−1
wi,n

Hi

6: M−1
i,n|n ←− ACF ←− {∀j ∈ Ni : Γj,n}

7: Gi,n = NMi,n|nHT
iC
−1
wi,n

8: ri,n = x̂i,n|n−1 + Gi,n

(
yi,n −Hix̂i,n|n−1

)

9: x̂i,n|n ←− ACF ←− {∀j ∈ Ni : rj,n}

Gaussian noise processes with a joint covariance matrix given
by

E
{[

vn
wi,n

] [
vT
l wT

j,l

]}
=

[
Cvn

0m×q
0q×m Cwi,nδi,j

]
δn,l

with δn,l denoting the Kronecker delta function. The opera-
tions of the distributed Kalman filtering solution is summa-
rized in Algorithm 1.

As can be seen from Algorithm 1, each agent first updates
its local state estimate, where x̂i,n|n−1 and x̂i,n|n are the
respective a priori and a posteriori estimates of the state
vector. Thereafter, the a priori covariance information at agent
i and time instant n, denoted by Mi,n|n−1 ∈ Rm×m, is
updated as

Γi,n = M−1
i,n|n−1 +NHT

iC
−1
wi,n

Hi· (3)

As shown in [3], the a posteriori centralized covariance infor-
mation is the network average of the updates in (3). Hence,
a distributed update of M−1

i,n|n is obtained via an average
consensus filter (ACF), wherein the agents refine their updates
through local averaging within their neighborhoods. Finally,
the a posteriori covariance M−1

i,n|n is used to determine the
local intermediate state estimate

ri,n = x̂i,n|n−1 + Gi,n

(
yi,n −Hix̂i,n|n−1

)
(4)

which is, similar to Γi,n, passed through an ACF to get the a
posteriori state estimate x̂i,n|n.

In particular, a generic iterative average consensus filter
(ACF) is given by

Si,n(k) = qiiSi,n(k − 1) +
∑

j∈Ni

qijSj,n(k − 1) (5)

where consensus weights {qij : ∀i, j ∈ N} are positive real-
valued weights so that the consensus weight matrix Q where
qij = [Q]ij is a doubly stochastic matrix. In Algorithm 1, we
represent the general ACF with the following schematic [3]:

Si,n(k)←− ACF ←− {∀j ∈ Ni ∪ i : Sj,n(0)} (6)

where Sj,n(0), j ∈ Ni ∪ i are the initial inputs to the ACF at
node i, and Si,n(k) is the output at node i after k iterations.

The shared intermediate state vector estimates ri,n ∈ Rm
contain node-sensitive information that can be exploited by

Data observed by Honest-but-curious agent

Data observed by external eavesdropper

Network
External Eavesdropper

Honest-but-curious Agent

Fig. 1. Illustration of information accessible to external eavesdroppers and
HBC agents.

adversaries [49], [50]. We, therefore, need to modify the
distributed Kalman filter (DKF) to protect node-sensitive in-
formation from possible privacy breaches. In what follows, we
consider two types of adversaries, namely:
• An external eavesdropper, who is external to the network,

is trying to learn private information by accessing all the
information exchanged between agents.

• An HBC agent, a legitimate node of the network, is
contributing to the overall estimation task but, at the same
time, passively attempts to infer private information from
the messages shared by its immediate neighbors.

The two types of adversaries above can access different types
and amounts of information; Fig 1 illustrates the different
information types accessible to the adversaries and more
details on their observation models is provided in Section V. In
addition to the adversaries, the network includes regular agents
that contribute to the overall estimation task without colluding
with adversaries. Next, we propose a DKF that modifies the
state messages exchanged by neighbors to induce privacy.

III. PRIVACY-PRESERVING DISTRIBUTED KALMAN FILTER

In this section, we propose a PP-DKF based on the
framework in [3]. In the distributed Kalman filtering set-
ting, information leakage happens when agents share private
information amongst each other. Without loss of generality,
we will consider the local states, ri,n, private. We aim to
protect the private information from being estimated by an
adversary inside the network or an external eavesdropper. For
this purpose, we decompose the agent states into public and
private substates, where only noisy versions of the public
substates are shared between neighbors.

The proposed PP-DKF tracks the dynamic system state by

x̂i,n|n−1 = Ax̂i,n−1|n−1

Mi,n|n−1 = AMi,n−1|n−1A
T + Cvn

(7)

where, for agent i, x̂i,n|n−1 and x̂i,n|n are the respective a pri-
ori and a posteriori state vector estimates. The intermediate



4

Imaginary agents containing private substates
Original agents containing public substates

Agent 

Fig. 2. State decomposition representation of ri,n to public substate αi,n
and private substate βi,n.

information of agent i, at time instant n, denoted by Γi,n, is
updated as in (3), and shared with neighbors to reach average
consensus. We assume that the condition for convergence of
the covariance matrices {Mi,n|n : ∀i ∈ N , n = 1, 2, . . .}
to unique stabilizing solutions, as given in [3], are satisfied.
Therefore, we have limn→∞Mi,n|n = Mi for each i ∈ N .
Then, the average-consensus covariance matrix is employed to
compute the intermediate state vector estimate of agent i as
in (4), with the local gain matrix

Gi,n = NMi,n|nHT
iC
−1
wi,n

.

The local state estimate is improved through local collabora-
tion. As mentioned above, the local state, ri,n, is decomposed
into a public substate αi,n ∈ Rm and a private substate
βi,n ∈ Rm. Only a perturbed version of the public substate is
shared among neighbors in the ensuing consensus process.

In particular, the proposed PP-DKF chooses the initial
values αi,n(0) and βi,n(0) randomly from the set of all real
numbers in a manner that they satisfy the following relation
[47]:

1

2
(αi,n(0) + βi,n(0)) = ri,n (8)

where ri,n is the ith agent initial information to start the
privacy-preserving average consensus mechanism. The sub-
state αi,n is the only value that is shared with neighbors, while
substate βi,n evolves internally and will not be observed by
neighbors, as represented in Fig. 2. Although βi,n remains
invisible to neighbors, it directly affects the evolution of αi,n.

In order to improve privacy preservation, we also inject
noise into the messages shared by neighbors; see, e.g., [45]. To
that end, each agent i shares a perturbed version of its public
substate α̃i,n(k) = αi,n(k) + ωi(k), with noise sequence
ωi(k) ∈ Rm, at each consensus iteration k. In particular, at
consensus iteration k, each agent, i, perturbs its public substate
with the following random noise vector

ωi(k) =

{
νi(0) k = 0

φkνi(k)− φk−1νi(k − 1) o.w.
(9)

where φ ∈ (0, 1) is a common constant for all agents and
νi(k) ∈ Rm ∼ N (0, σ2Im) is an independent and identically
distributed white Gaussian sequence for each k and i ∈ N . At

each consensus iteration k, agent i updates its local substates
using the received neighbor messages as follows:




αi,n(k + 1) =αi,n(k) + εUi(k)
(
βi,n(k)−αi,n(k)

)

+ ε
∑

j∈Ni

wij(k) (α̃j,n(k)−αi,n(k))

βi,n(k + 1) =βi,n(k) + εUi(k)
(
αi,n(k)− βi,n(k)

)
(10)

where ε is the consensus step size, residing in (0, 1
∆+1 ]

with ∆ , maxi∈N Ni. In (10), wij(k) = wji(k) denotes
the interaction weight of agents i and j, while Ui(k) ,
diag(ui(k)) ∈ Rm×m is a diagonal matrix defined by the
coupling weight vector ui(k) ∈ Rm of agent i. In particular,
for k = 0, wij(0) = wji(0) can be arbitrarily chosen from
the set of all real numbers, while, for k > 0, we require that
there exists a scalar 0 < η < 1 such that all wij(k) = wji(k),
j ∈ Ni must reside in the range [η, 1). This assumption ensures
that each agent gives sufficient weight to the information
received from its neighbors, including the private substates of
the extended graph in Fig. 2. As a result, the information from
each agent continuously affects the information of other agents
over time. Similarly, for ui(k), the elements of ui(0) are
independently chosen from the set of all real numbers, while,
for k > 0, they are limited to [η, 1). In the subsequent conver-
gence analysis, we assume that the interaction and coupling
weights are arbitrarily chosen at k = 0 and remain fixed for
k > 0, while satisfying the weighting mechanism in [47]. For
notational convenience, the interaction weights of the entire
network is collected into matrix W(k) , [wij(k)] ∈ RN×N .

Finally, after repeating the steps in (10) for sufficient
number of iterations, say K iterations, the local state estimate,
x̂i,n|n, is taken as

x̂i,n|n = αi,n(K) ∀i ∈ N .

The operations of the proposed PP-DKF at each agent are
summarized in Algorithm 2.

The privacy-preserving average consensus mechanism in
(10), asymptotically converges to the exact average state
estimate among agents. In particular, considering the con-
vergence of the decomposition-based consensus operations in
Appendix A, it can be shown that under the symmetric weight
assumption for the interaction weight, the sum of all substates,
defined as

ζ(k) =
N∑

i=1

(αi,n(k) + βi,n(k)),

is preserved across the consensus iterations k, i.e., the sum of
all substates are always time-invariant. This can be verified by
simplifying ζ(k) as

ζ(k) = ζ(0) + ε
N∑

i=1

di

( k−1∑

l=1

ωi(l)

)
(11)

with di =
∑
j∈Ni

wij and showing that ζ(k) converges to
ζ(0) in the mean square sense, i.e.,

ζ(k)
m.s.−−→ ζ(0)⇔ lim

k→∞
E{‖ζ(k)− ζ(0)‖2} = 0·



5

This is due to the connected network properties and assump-
tions of symmetric weights for k ≥ 0, [47], [52], and decaying
covariance of the noise sequences. Consequently, the substates
will converge to the average of 1

2N

∑N
i=1(αi,n(k) +βi,n(k)),

which equals 1
2N

∑N
i=1(αi,n(0) + βi,n(0)), and due to the

initial condition αi,n(0) + βi,n(0) = 2ri,n, we have

lim
k→∞

αi,n(k) = lim
k→∞

βi,n(k) =
1

N

N∑

i=1

ri,n

that completes the convergence of substates to the desired
average consensus value for each agent i ∈ N .

Despite the above asymptotic performance guarantees, in
practice, the number of consensus iterations is always finite;
hence, questions arise concerning its consequences in filtering
performance, convergence behavior, and resulting privacy.
Therefore, it is imperative to examine the effect of injected
noise and state decomposition on the proposed distributed
Kalman filtering accuracy with a finite number of consensus
iterations and the resulting privacy protection capabilities
against internal and external adversaries. These topics are
treated in detail in the following two sections.

Remark 1. Public and private substates αi,n(k) and βi,n(k)
are chosen randomly at k = 0 such that αi,n(0) + βi,n(0) =
ri,n and updated according to (10) for k ≥ 1. Therefore, the
intermediate state estimate ri,n cannot be obtained by con-
catenating the public and private substates at each consensus
iteration k.

IV. KALMAN FILTERING PERFORMANCE EVALUATION

In order to provide an intuitive analysis and a proper insight
into the effects of incorporating the privacy-preserving mecha-
nism, we commence our analysis with simplifying assumptions
and subsequently generalize the results. Without loss of gener-
ality, it is assumed that agents initialize the privacy-preserving
steps with equal substates, so that αi,n(0) = βi,n(0) for all
i ∈ N , and the noise added to the shared substate leaks
into the private substate as well. This presents a worst-case
scenario and upper-bounds the achievable MSE performance.
Proceeding on the basis of Fig. 2, a network of 2N agents
is considered so that each private substate corresponds to an
agent only attached to its peer in the original network. In this
case, to analyze the mean and mean-square performances of
Algorithm 2, we consider the intermediate estimation error of
agents in the decomposed network (see Fig. 2) as

εi,n =xn −αi,n(0) i = 1, · · · , N
εi,n =xn − βi−N,n(0) i = N + 1, · · · , 2N (12)

From the made assumption on the substates, we have
αi,n(0) = βi,n(0) = ri,n. Now, by substituting the inter-
mediate state ri,n, from line 8 in Algorithm 2, and the local

Algorithm 2 Privacy-Preserving Distributed Kalman Filter
Initialization: For each agent i ∈ N

1: x̂i,0|0 = E{x0}
2: Mi,0|0 = E

{
(x0 − E{x0})(x0 − E{x0})T

}

Model update:
3: x̂i,n|n−1 = Ax̂i,n−1|n−1

4: Mi,n|n−1 = AMi,n−1|n−1A
T + Cvn

Measurement update:
5: Γi,n = M−1

i,n|n−1 +NHT
iC
−1
wi,n

Hi

6: M−1
i,n|n ←− ACF ←− {∀j ∈ Ni : Γj,n}

7: Gi,n = NMi,n|nHT
iC
−1
wi,n

8: ri,n = x̂i,n|n−1 + Gi,n

(
yi,n −Hix̂i,n|n−1

)

Privacy-Preserving Mechanism:
9: Select αi,n(0), and set βi,n(0) = 2ri,n −αi,n(0)

10: Select weights wij(k),ui(k), j ∈ Ni and k = 0, 1, · · · ,K
11: Share weights wij(k), j ∈ Ni and k = 0, 1, · · · ,K
12: Generate {ωi(k), k = 0, 1, · · · ,K} based on (9)
13: Share α̃i,n(0) = αi,n(0) + ωi(0)
14: for k = 1 to K do
15: Receive α̃j,n(k − 1), ∀j ∈ Ni
16: Update αi,n(k) andβi,n(k), as given in (10)
17: Share α̃i,n(k) = αi,n(k) + ωi(k),
18: end for
19: x̂i,n|n = αi,n(K)

observation (2) into (12), the intermediate estimation error of
each agent i ∈ {1, 2, · · · , 2N} is formulated as

εi,n =xn − ri,n
=xn − x̂i,n|n−1 −NMiH

T
iC
−1
wi

(
yi,n −Hix̂i,n|n−1

)

=xn − x̂i,n|n−1 −NMiH
T
iC
−1
wi

Hi

(
xn − x̂i,n|n−1

)

−NMiH
T
iC
−1
wi

wi,n.
(13)

Here, we assume that the imaginary agents {N + 1, · · · , 2N}
employ the same observation parameters, yi,n, Hi, and Cwi ,
as their original peers. Substituting (1) into (13) and using the
relation x̂i,n|n−1 = Ax̂i,n−1|n−1 from (7), we have:

εi,n =
(
Im −NMiH

T
iC
−1
wi

Hi

)
Aεi,n−1|n−1 (14)

+
(
Im −NMiH

T
iC
−1
wi

Hi

)
vn −N MiH

T
iC
−1
wi

wi,n.

where εi,n−1|n−1 = xn−1 − x̂i,n−1|n−1. Considering the
stacked vectors organizing all error terms as

En ,[εT
1,n, · · · , εT

2N,n]T ∈ R2Nm (15)

En−1|n−1 ,[εT
1,n−1|n−1, · · · , εT

2N,n−1|n−1]T ∈ R2Nm (16)

and the state estimation error of the state-decomposed network
after k consensus iterations, at each agent i, as εi,n|n,k, the
stacked vector organizing all error terms of εi,n|n,k after the
privacy-preserving average consensus operations in (10), is
denoted as

En|n,k =[εT
1,n|n,k, · · · , εT

2N,n|n,k]T ∈ R2Nm·
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Due to notational convenience, we are no longer including the
index k in error parameters, and the stacked vector estimation
error can be computed as

En|n = GkEn + φk−1Bν(k − 1) (17)

+
k∑

s=2

φk−s
(
Gs−1 −Gs−2

)Bν(k − s)

where ν(k) = [νT
1(k), · · · ,νT

N (k)]T, B = ε[W,W]T ⊗ Im ∈
R2Nm×Nm, and G ∈ R2Nm×2Nm is a doubly stochastic
matrix given by

G =

[
M εU
εU INm − εU

]
(18)

with M , (IN − ε(D−W)) ⊗ Im − εU, U =
Blockdiag({Ui}Ni=1), and D , diag({∑j∈Ni

wij}Ni=1). To
simplify the state vector estimation error analysis, we assume
that the interaction and coupling weight matrices are time-
invariant. Substituting the network-wide intermediate state
vector estimation error En from (14) into (17) results

En|n =PkEn−1|n−1 + QkΥn −Ωn,k + φk−1Bν(k − 1)

+

k∑

s=2

φk−s
(
Gs−1 −Gs−2

)Bν(k − s)

(19)
where Υn = [vT

n, · · · ,vT
n]T ∈ R2Nm and

Pk = GkBlockdiag({PiA}2Ni=1)

Qk = GkBlockdiag({Pi}2Ni=1)

Ωn,k = GkBlockdiag({Qi}2Ni=1)[wT
1,n, · · · ,wT

2N,n]T

with Pi = Im − NMiH
T
iC
−1
wi

Hi and Qi = MiH
T
iC
−1
wi

.
Assuming the mutual independence of the noise sequences
wi,n, vn, and νi(k) for all n = 1, 2, · · · , i ∈ N , and k ∈
[1,K], the recursive expression of the state vector estimation
error in (19), is used to formulate the second-order statistics
of all agents, denoted by Σn,k = E{En|nET

n|n} ∈ R2Nm×2Nm,
as

Σn,k = PkΣn−1,kPT
k + QkCΥQT

k + CΩk
+ T k (20)

where CΥ = E{ΥnΥT
n},CΩk = E{Ωn,kΩ

T
n,k} ∈ R2Nm×2Nm,

and given k consensus iterations

T k =
k∑

s=2

φ2(k−s)T̄ s + φ2(k−1)BCνBT (21)

with Cν = E{ν(s)νT(s)} ∈ RNm×Nm at each consensus itera-
tion s and T̄ s =

(
Gs−1 −Gs−2

)BCνBT (Gs−1 −Gs−2
)T.

Due to the doubly stochastic matrix G and similar to [3],
Pi and A are stable, Pk is stable; therefore, Σn,k → Σk as
n→∞, where Σk is the solution of the discrete time Lya-
punov equation in (20) that represents the MSE convergence
of the filtering performance. The effect of injected noise,
considering a privacy-preserving average consensus with k
consensus iterations, is manifested in T k. It degrades the
steady-state MSE of Algorithm 2 compared to the non-private
approach and introduces a performance-privacy trade-off. On
the other hand, taking the statistical expectation of (19) yields

E{En|n} = PkE{En−1|n−1} = Pn
kE{E0|0}.

Once again, since Pk is stable, we have limn→∞ E{En|n} = 0

that indicates the steady-state estimates are unbiased regardless
of their initializing values or privacy-preserving perturba-
tions. The effect of injected noise, considering a privacy-
preserving average consensus with k consensus iterations, is
manifested in T k, which degrades the steady-state MSE of Al-
gorithm 2 compared to the non-private approach, introducing
a performance-privacy trade-off.

For the case where agents start the privacy-preserving
steps with different initial substates, one can claim that the
imaginary agents that hold the private substates, demonstrated
in Fig. 2, are perturbed by noise sequence with vanishing
covariance. In the privacy-preserving mechanism, the pri-
vate substates affect the updating equations without being
perturbed; this will reduce the effect of term T k in the
corresponding Lyapunov equation, resulting in improved MSE
performance without affecting the convergence. This trade-off
is shown using numerical simulation examples in Section VI.
Next, we evaluate the privacy guarantees of the PP-DKF for
the cases of internal and external adversaries.

V. PRIVACY ANALYSIS

This section provides a comprehensive privacy analysis
of the PP-DKF for two different adversaries: an external
eavesdropper and an honest-but-curious (HBC) agent. The
state estimate rj,n is considered private since it corresponds
to the local a posteriori estimate and includes more node-
specific information than the global a posteriori state estimate
x̂j,n|n. As an output of the ACF, the a posteriori state estimate
x̂j,n|n has the same value among agents, therefore it contains
less local information about the agents. Similar to [45], [53],
we assume that the adversary employs an estimator to infer
the states of the agents rj,n, j = 1, 2, . . . , N at time n and
consider the MSE of the estimator as the privacy metric.
The MSE metric is used here to measure how accurately
the adversary can estimate the exact value of the initial local
a posteriori state estimates given a specific attack model and
information available to the adversary. Let r̂j,n(k) denote the
estimate of the state of agent j at the adversary at time n
after k consensus iterations and the corresponding privacy loss
Ej,n(k) is the MSE given by

Ej,n(k) , tr
(
E{(rj,n − r̂j,n(k)) (rj,n − r̂j,n(k))

T}
)
. (22)

A. External eavesdropper

We assume that the external eavesdropper knows the net-
work topology and can access all information exchanged by
the agents with their neighbors. As can be seen from Algo-
rithm 2, the messages exchanged after k consensus iterations
form the following information set at the eavesdropper

IE(k) = {α̃j,n(l), wij(l), ∀i, j ∈ N , l = 0, 1, . . . , k} (23)

where α̃j,n(l) is the perturbed state and wij(l) is the in-
teraction weights exchanged with the neighbors. The eaves-
dropper estimates the states of the agents r̂j,n(k) ∀j ∈ N
by constructing an observer at each consensus iteration using
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the information set (23). Under this adversarial model, the
proposed filtering Algorithm 2 is privacy-preserving.

Theorem 1. If the external eavesdropper can only access mes-
sages shared by the agents, Algorithm 2 is privacy-preserving
and the privacy leakage for agent j is given by

Ej = lim
n→∞

lim
k→∞

Ej,n(k) = tr
(

(eT
j ⊗ Im) L̃Σ̃L̃T

(ej ⊗ Im)
)

(24)
where ej ∈ RN is a vector with 1 in the jth en-
try and zeros elsewhere, Σ̃ is the stabilizing solution for
(20), L̃ = 1

2
L− εULΛ, Λ = Θ diag( 1

1−λ1
, 1
1−λ2

, 1, · · · , 1)ΘT,
λ1 < · · · < λ2Nm−m < 1 are eigenvalues of G and Θ is
the matrix of eigenvectors corresponding {λi}2Nmi=1 , and
L = [−INm, INm],.

Proof: The proof is given in Appendix B.
In Algorithm 2, we see that agents communicate with their

neighbors to choose the weights wij(l) so that wij(l) =
wji(l), ∀i, j ∈ N ,∀l and hence the adversary can acquire
wij(l). However, if the external eavesdropper does not know
the interaction weights wij(0), ∀i, j ∈ N , then the state of the
network agents remains private with no information leakage
and we can guarantee a stronger privacy. We can see that in
Algorithm 2, the nodes perturb the substates transmitted to
their neighbors in addition to independently selecting coupling
weights for different elements of the substates αi,j(l) and
βi,j(l). From [47, Theorem 3], we can show that any variation
in the initial state of the jth agent remains hidden from the
external eavesdropper, and hence, no privacy leakage.

B. Honest-but-curious agent

Without loss of generality, let us assume that agent N is
the HBC agent as defined in Section II. Agent N uses its own
local information {αN,n(l),βN,n(l),ωN (l),uN (l)}kl=0 and
the information received from its neighbors NN to estimate
the sensitive information of other agents. From Algorithm 2,
we can see that the information available at the HBC agent N
at the kth consensus iteration is given by

IN (k) = {αN,n(l),βN,n(l),ωN (l),uN (l), (25)

wNj(l), α̃j,n(l) : ∀j ∈ NN , l = 0, 1, . . . , k}.

The proposed filtering algorithm offers privacy even against
HBC agent.

Theorem 2. If an HBC agent has access only to messages
shared by its neighbors and every agent has at least one
regular agent in its neighborhood, then an HBC agent cannot
infer private information of any other agent in the network.

Proof: We show that an arbitrary change in the in-
formation of agent j, change from rj,n to r̄j,n, remains
indistinguishable from the HBC agent if agent j has at least
one neighboring regular agent l. Compared to Theorem 2
in [47], the shared substates are multivariate and perturbed
by noise. However, due to the diminishing perturbation noise
and independent coupling weights of the different elements
the procedure in the proof of Theorem 2 in [47] is applicable.

Consequently, the change from rj,n to r̄j,n remains indistin-
guishable for the HBC agent, which completes the proof.

In Theorem 2, we assumed that the HBC agent has access
only to information related to its neighboring agents. We can
observe that agent privacy depends on the availability of the
interaction and coupling weights at the adversary. Therefore,
next, we consider the scenario where the HBC agent has
access to the entire weight matrix W and an estimate of the
coupling weight matrix Û in addition to information in (25).
This information set at the adversary can be represented as

ĨN (k) = IN (k) ∪ {W(l), Û(l), l = 0, 1, . . . , k} (26)

where Û denotes the estimate of the coupling weight matrix
U at the adversary.

Under these assumptions, the HBC agent estimates
the initial substate of the network agents, i.e.,
zn(0) , [αT

n(0),βT
n(0)]T. To this end, we require

defining an observation vector that includes the shared
information of the neighbors and the information of the
HBC agent itself at each time instant k, denoted as
{α̃j,n(t), ∀j ∈ NN , αN,n(t), βN,n(t)}, that can be expressed
as

yn(k) = Czn(k) + Cαω(k), (27)

at each consensus iteration k with zn(k) = [αT
n(k),βT

n(k)]T.
In order to capture the relevant set of information, we define
C = [Cα,Cβ ] with Cβ = [0, eN ]

T ⊗ Im ∈ R(NN+1)m×Nm

that captures the private substates of the HBC agent itself and

Cα =
[
ej1 , ej2 , · · · , ejNN

, eN

]T
⊗ Im ∈ R(NN+1)m×Nm,

that captures the public substate of neighbors and the HBC
agent itself. The vector ej ∈ RN is a vector with 1 in the
jth entry and zeros elsewhere, NN = {j1, j2, · · · , jNN

} is the
adjacency set of the HBC agent and NN denotes the number of
its neighbors. As a result, the HBC agent infers the information
of all agents as rn = 1

2 (αn(0) + βn(0)). Substituting the
network-wide substate update equations in (10), i.e.,

αn(k + 1) =Mαn(k) + εUβn(k) + ε(W ⊗ Im)ω(k)

βn(k + 1) =εUαn(k) + (INm − εU)βn(k)

into (27) gives

yn(k) = CGkzn(0) + Cα

(
k−1∑

t=0

Ck−1−tBω(t) + ω(k)

)

(28)
where Ck =

[
INm 0Nm

]
Gk
[
INm 0Nm

]T
and

B = ε(W ⊗ Im). Further, G can be written as
G = ΘΛ̃ΘT, where Θ = [θ1,θ2, · · · ,θ2Nm] ∈ R2Nm×2Nm and
Λ̃ = diag(λ1, λ2, · · · , λ2Nm) consists of eigenvalues of matrix
G, with λ1 < λ2 < · · · < λ2Nm−m+1 = · · · = λ2Nm = 1.
Subsequently, we have Gl = ΘΛ̄

l
ΘT + 1

2N (12N1T
2N ⊗ Im)

and

Ck = Θ1:NmΛ̄
k
ΘT

1:Nm +
1

2N
(1N1T

N ⊗ Im) (29)

where Λ̄ = diag(λ1, λ2, · · · , λ(2Nm−m), 0, · · · , 0) and
Θ1:Nm denotes a matrix that contains the first Nm rows of
matrix Θ.
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Since ν(k) is a zero-mean i.i.d. sequence, the accumulated
observation of the HBC agent set-up at consensus iteration k
is simplified as

k∑

t=0

yn(t) =C(I2Nm −G)k+1(I2Nm −G)−1zn(0)

+ Cα

(
k−1∑

t=0

φtCk−1−tBν(t) + φkν(k)

)
.

Stacking all the available accumulated observations at each
consensus iteration k in a vector gives




∑0
t=0 yn(t)/φ0

∑1
t=0 yn(t)/φ1

...∑k
t=0 yn(t)/φk


 = H(k)zn(0) + F(k)




ν(0)
ν(1)

...
ν(k)


 (30)

where

H(k) =




C
φ−1C(I2Nm + G)

...
φ−kC(I2Nm +

∑k
t=1 Gt)


 , (31)

and

F(k) =




F̂0 0 · · · 0

F̂1 F̂0 · · · 0
...

...
. . .

...
F̂k−1 F̂k−2 · · · F̂0


 (32)

with F̂0 = Cα and F̂k = ε
φk+1 CαCk(W ⊗ Im) for k ≥ 1

which, by substituting Ck in (29), simplifies as

F̂k =
ε

φk+1
Cα

(
Θ1:NmΛ̄

k
ΘT

1:Nm

)
(W ⊗ Im) (33)

+
ε

2Nφk+1

(
1(NN+1)[d1, d2, . . . , dN ]

)
⊗ Im

where di =
∑
j∈Ni

wij . Assuming the estimate of the cou-
pling weight matrix U at the adversary as Û = U + ∆U,
where ∆U denotes the uncertainty in adversary’s estimate,
we quantify the privacy guarantee in the following results.

Theorem 3. If an HBC agent has access to the information
{W(l)}kl=0, the messages shared by its neighbors, and an
estimate of the coupling weight matrix Û, then the error
covariance at the HBC agent corresponding to estimate the
initial substates [αT

n(0),βT
n(0)]T is given by

P̃n(k) = P̄n(k) + EU

{
ε2H†(k)∆H(k)Π̃n∆T

H(k)(H†(k))T}

(34)
where Π̃n = 12N1T

2N ⊗ E{xnxT
n} with xn as the state vector,

P̄n(k) = EU

{
ε2H†(k)∆H(k)Σ̃n∆T

H(k)(H†(k))T (35)

+ σ2(I− εH†(k)∆H(k))H†(k)F(k)FT(k)(H†(k))T

(I− εH†(k)∆H(k))T}

where Σ̃n is the covariance matrix for (20), H(k) and F(k)
are defined in (31) and (32), respectively, and

∆H(k) =




0
φ−1C∆G1

...
φ−kC

∑k
t=1 ∆Gt




with ∆Gk =
∑k
t=1

k!εt−1

(k−t)!t!G
k−t∆t

G1
, ∆G1 = −LT∆UL, and

L = [−INm, INm].

Proof: The proof is given in Appendix C.
From Theorem 3, we can show that the first term in (34)

converges to the fixed matrix P̄LB(k) = limn→∞ P̄n(k)
as limn→∞ Σ̃n = Σ̃ and the second term diverges as
limn→∞ tr

(
E{xnxT

n}
)

=∞. Therefore, a lower bound of the
privacy leakage at agent j after k consensus iterations is given
by

Ēj(k) = tr
(
(eT
j ⊗ Im)P(k)(ej ⊗ Im)

)
(36)

where ej ∈ RN is a vector with 1 in the jth entry and zeros
elsewhere and

P(k) =
1

4

[
ImN ImN

]
P̄LB(k)

[
ImN ImN

]T
. (37)

For the worst-case scenario, when the HBC agent knows the
exact coupling weights of the entire network, we can establish
the privacy leakage as follows.

Theorem 4. If an HBC agent knows the exact coupling
weights U, i.e., ∆U = 0, then the error covariance P̃n(k) in
(34) is

P̃(k) = σ2
(
HT(k)

(
F(k)FT(k)

)−1
H(k)

)−1

, ∀n. (38)

Proof: The proof is given in Appendix D.

Remark 2. The privacy guarantee of agents under the special
case of αi,n(0) = βi,n(0) = ri,n can only be provided by
the noise injection technique, and the decomposition technique
does not provide privacy. Fortunately, this special case is not
of great interest, and the algorithm can be configured to avoid
this specific scenario of initial decomposition.

VI. SIMULATION RESULTS

To illustrate the performance of the proposed PP-DKF
algorithm, we consider the undirected connected network with
N = 25 agents shown in Fig. 3. The proposed PP-DKF
is used to collaboratively track the speed and position of
a target moving in two dimensions where the state vector
xn = [Xn, Yn, Ẋn, Ẏn]T consists of the positions {Xn, Yn}
and velocities {Ẋn, Ẏn} in the horizontal and vertical di-
rections, respectively. The state evolution of such a dynamic
system is given by

xn =




1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1


xn−1 +




1
2 (∆T )2 0

0 1
2 (∆T )2

∆T 0
0 ∆T


 v̂n
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Fig. 3. Network topology with N = 25 agents.

Fig. 4. Tracking performance of distributed Kalman filtering settings for each
N = 25 agents (shaded color) and their average as a solid line with K = 30
consensus iterations and noise variance σ2 = 4.

where v̂n = [Ẍn, Ÿn]T denotes the unknown acceleration
in horizontal and vertical directions and ∆T = 0.04 is the
sampling interval. The acceleration is modeled as zero-mean
Gaussian process with covariance matrix of E{v̂nv̂T

n} =
1.44 I2 while the observation parameters as considered as

Hi =

[
1 0 0 0
0 1 0 0

]
and Cwi,n

=

[
0.0416 0.008
0.008 0.04

]

for each agents i ∈ N . For comparison purposes, we introduce
a DKF that employs the conventional noise-injection based av-
erage consensus technique proposed in [45], with the injected
noise following (9). This algorithm is hereafter referred to as
the noise-injection based privacy-preserving DKF (NIP-DKF).
The consensus and noise parameters are selected as ε = 1/4
and φ = 0.9, respectively. We considered the interaction
weights given in [47], which is W = 0.75E where E denotes
the adjacency matrix of the network shown in Fig. 3. The
elements of the coupling weight ui are chosen independently
with distribution U(η, 1) where η = 0.4.

0 2 4 6 8 10

-20

-15

-10

-5

Fig. 5. Average MSE of the filtering process versus noise variance σ2 for
both theory and simulation with K = 30 consensus iterations.
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Fig. 6. The overall filtering average MSE versus the number of consensus
iteration with noise variance σ2 = 4.

A. Kalman filtering performance

Fig. 4 shows the tracking capabilities of the conventional
DKF [3], the NIP-DKF, and the proposed PP-DKF, respec-
tively. We see that the PP-DKF performs as well as the
conventional DKF, which demonstrates the robustness of the
PP-DKF to noise injection and state decomposition. Fig. 5
shows the average MSE of the Kalman filtering process versus
the perturbation noise variance σ2. We see that the perturbation
noise degrades the performance of both approaches, PP-DKF
and NIP-DKF, compared to the conventional DKF [3]. In
other words, increasing the variance of the perturbation noise
increases the MSE. The slower growth rate of the PP-DKF
compared to the NIP-DKF implies its improved robustness to
the injected noise. To compute the filtering state vector esti-
mation error for the NIP-DKF, we follow a similar approach
to the PP-DKF (cf. (17)); the detailed derivation is provided in
Appendix E. Fig. 5 also shows that the theoretical predictions
for NIP-DKF (75) and PP-DKF (20) match the simulation
results perfectly.

Fig. 6 shows the average MSE of the PP-DKF and the
NIP-DKF versus the number of consensus iteration. We see
that increasing the number of consensus iterations reduces the
resulting average MSE. For a sufficiently large number of
iterations, the filtering performance of the PP-DKF and the
NIP-DKF converges to the conventional DKF [3]. Also, it can
be seen that the theoretical predictions for a finite number of
consensus iterations match the simulation results.
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Fig. 7. The observer of the external eavesdropper to estimate all components
of the initial state r4,n(0), i.e., r̂4,n(k), given the noise variance σ2 = 4.
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35

Fig. 8. Network topology with N = 5 agents.

B. External eavesdropper: privacy analysis

To investigate the privacy performance of the proposed PP-
DKF algorithm, we need to focus more on the network and the
effect of adversaries on each individual agents. We therefore
consider a smaller undirected connected network with N = 5
agents shown in Fig. 8. When the NIP-DKF is employed, the
external eavesdropper can construct the following observer (cf.
(46))

r̂n(k + 1) = r̂n(k) + r̃n(k + 1)− (Q⊗ Im) r̃n(k) (39)

where r̂n(k) is the estimate rn at the eavesdropper at time n
after k consensus iterations, Q ∈ RN×N is a doubly stochastic
consensus weight matrix, and r̃n(k) = rn(k) + ω(k). After
some algebraic manipulation the observer in (39) is simplified
as

r̂n(k + 1) = rn(0) + φk+1ν(k + 1) (40)

Since φ < 1, the observer converges to the exact values of
the initial states, i.e., limk→∞ r̂n(k) = rn(0). Fig. 7 shows
the state estimate of the eavesdropper versus the number of
consensus iterations. As mentioned above, whenever the NIP-
DKF is employed, the eavesdropper can estimate the initial
state with great accuracy. In contrast, the PP-DKF prevents
the initial state of the agents from being correctly estimated,
as predicted by Theorem 1. Fig. 7 shows that the estimate
at the eavesdropper in (60) is biased and does not converge
to the exact initial state of the agents. It also represents that

0 10 20 30 40 50 60 70 80

10
-5

10
0

Fig. 9. Average privacy 1
N

∑N
j=1 Ej(k) versus the number of consensus

iterations in the presence of the external eavesdropper.

the predicted estimation bias at the eavesdropper under the
PP-DKF matches the simulation perfectly.

Fig 9 shows the average MSE at the external eavesdropper,
i.e., 1

N

∑N
j=1 Ej(k) with Ej(k) in (22), versus the number of

consensus iterations. In general, the larger this MSE becomes,
the better the privacy of agent j. Under the NIP-DKF, the
average MSE of the external eavesdropper decreases monoton-
ically with the number of consensus iterations. In other words,
the MSE at the eavesdropper tends to zero, meaning that the
external eavesdropper can determine the initial a posteriori
state of the agents exactly. In contrast, when considering the
proposed PP-DKF, the achievable MSE at the adversary is
bounded as in (24) and, therefore, cannot be improved by
extending the number of consensus iterations. Fig 9 also shows
that the predicted bound of the privacy leakage in Theorem 1
matches the simulation.

C. HBC agent: privacy analysis

Here, we investigate the case when an HBC agent attempts
to estimate the initial state of the network agents. We consider
the 5th agent to be an HBC agent (see Fig. 8). The HBC agent
has no access to the coupling weights of other agents, while
as a legitimate agent of the network knows the parameter η.
Based on the assumption about the coupling weights distribu-
tion, the HBC agent uses an average value Ū, with uncertainty
∆U = U− Ū, to estimate the initial states of the other agents.

Fig 10 shows the lower bound of the agent privacy in (36)
after K = 30 consensus iterations versus the injected noise
variance σ2. We see that employing the NIP-DKF, the privacy
of agent 4 is breached due to the lack of neighbors other than
the HBC agent. Consequently, the HBC agent can estimate the
initial state of the 4th agent with negligible error. In contrast,
the proposed PP-DKF significantly improves the privacy for
all agents (agents obtain a substantial level of privacy even
with a low amount of injected noise).

The trade-off between Kalman filtering accuracy and the
average privacy

∑4
j=1 Ēj(k)/4, after K = 30 consensus

iterations, is shown in Fig. 11. It illustrates the privacy-MSE
trade-off for different values of the injected noise variance
σ2. For both PP-DKF and NIP-DKF, we see that a larger
privacy guarantee brings a reduction in filtering accuracy,
which is reflected in a higher MSE. We see that the Kalman
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Fig. 10. Agent privacy versus noise variance (σ2), given K = 30 consensus
iterations. Due to the symmetric topology, agents 1 and 3 achieve same privacy
level and only the result of the 1st agent is shown in the figure.
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Fig. 11. The trade-off between Kalman filtering accuracy and average privacy∑4
j=1 Ēj(k)/4 for different values of the injected noise variance σ2.
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Fig. 12. The mean squared estimation error at the HBC agent after K = 30
consensus iterations versus filtering time instant n.

filter accuracy and the average privacy can be controlled with
injected noise variance. A fixed privacy guarantee is ensured
with the PP-DKF, which has a lower filtering MSE than the
NIP-DKF. This is because the NIP-DKF perturbs the entire
intermediate state vector estimate before sharing it, whereas
the PP-DKF perturbs only its public substate and keeps the
private substate noise-free.

Fig. 12 shows the average of the diagonal elements of
P̃n(k) in (34) after K = 30 consensus iterations versus
filtering time instant n. It illustrates the impact of the diverging
term 12N1T

2N ⊗ E{xnxT
n} in P̃n(k), as stated in Theorem 3,

and also demonstrates the accuracy of the proposed lower
bound of the error covariance matrix, i.e., P̄LB(k), at the
HBC.

VII. CONCLUSIONS

This paper introduced a privacy-preserving distributed
Kalman filter (PP-DKF) using state-decomposition and noise
injection to protect sensitive data of the network agents. The
convergence of the PP-DKF was analyzed in the mean and
mean-square senses, and we provided closed-form expressions
that capture the privacy-related state-decomposition and noise
perturbation effects. Further, the agent-privacy provided by the
PP-DKF was studied in two adversarial settings, namely, when
the network is subjected to external eavesdroppers and honest-
but-curious agents. In particular, we established conditions for
zero privacy leakage and provided lower bounds on achieved
privacy for various practical scenarios. Furthermore, it was
shown that the proposed PP-DKF enhances the privacy level
of all agents and reduces the sensitivity of the Kalman filtering
operations to the injected noise. In addition, the PP-DKF
achieved lower MSE than distributed Kalman filters employing
other recently proposed privacy-preserving techniques. Lastly,
several simulations were presented to corroborate the theoret-
ical results.

APPENDIX A
CONVERGENCE OF THE DECOMPOSITION METHOD

To prove that the noise-free version of the update equa-
tions (10) converge to the exact average of the initial infor-
mation, let us assume

αn(k) =[αT
1,n(k), · · · ,αT

N,n(k)]T ∈ RNm

βn(k) =[βT
1,n(k), · · · ,βT

N,n(k)]T ∈ RNm.
(41)

then network-wide update equations of agents in (10), without
perturbation, can be expressed as

αn(k + 1) =Mαn(k) + εUβn(k)

βn(k + 1) =εUαn(k) + (INm − εU)βn(k)
(42)

where M = (IN − ε(D−W)) ⊗ Im − εU with U =
Blockdiag({Ui}Ni=1) and D = diag({∑j∈Ni

wij}Ni=1). Alter-
natively, (42) can be represented as[

αn(k + 1)
βn(k + 1)

]

︸ ︷︷ ︸
z(k+1)

=

[
M εU
εU INm − εU

]

︸ ︷︷ ︸
G

[
αn(k)
βn(k)

]

︸ ︷︷ ︸
z(k)

(43)

where G ∈ R2Nm×2Nm is a doubly stochastic matrix. We can
derive z(k)’s recursive equation based on its initial value as

z(k + 1) = Gk+1z(0)· (44)

Since G is doubly stochastic, all elements of both αn(k+ 1)
and βn(k + 1) converge to the average of the initial value
z(0) = [αT

n(0),βT
n(0)]T, i.e.,

∑N
i=1

1
2N (αi,n(0) + βi,n(0)),

asymptotically. Further, since we have the initial condition
αi,n(0) + βi,n(0) = 2ri,n, we conclude that

lim
k→∞

αi,n(k) = lim
k→∞

βi,n(k) =
N∑

i=1

1

2N
(αi,n(0) + βi,n(0))

=

N∑

i=1

1

2N
(2ri,n) =

1

N

N∑

i=1

ri,n

that is the desired average consensus value and completes the
proof.
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APPENDIX B
PROOF OF THEOREM 1

With the information set IE(k) in (23) and the update
model in (10), the eavesdropper can construct the following
observation model pertaining to agent j

r̂j,n(k + 1) = r̂j,n(k) + α̃j,n(k + 1) (45)

−
(
α̃j,n(k) + ε

∑

l∈Nj

wjl (α̃l,n(k)− α̃j,n(k))
)

with initial value r̂j,n(0) = α̃j,n(0). After collecting the states
and corresponding eavesdropper estimates in the network-wide
vectors

rn(0) , [rT
1,n(0), · · · , rT

N,n(0)]T ∈ RNm

r̂n(k) , [r̂T
1,n(k), · · · , r̂T

N,n(k)]T ∈ RNm,

we can, using (45), express the network-wide eavesdropper-
estimate as

r̂n(k + 1) =r̂n(k) + α̃n(k + 1)

− ((IN − ε(D−W))⊗ Im) α̃n(k)
(46)

where α̃n(k) = αn(k) + ω(k) and

ω(k) ,[ωT
1(k), · · · ,ωT

N (k)]T ∈ RNm

αn(k) ,[αT
1,n(k), · · · ,αT

N,n(k)]T ∈ RNm.

Employing α̃n(k+ 1) = αn(k+ 1) +ω(k+ 1) and α̃n(k) =
αn(k)+ω(k), the network-wide eavesdropper-estimate in (46)
can be further simplified as

r̂n(k + 1) = r̂n(k) +αn(k + 1) + ω(k + 1) (47)
− ((IN − ε(D−W))⊗ Im) (αn(k) + ω(k))·

Considering the network-wide substate update equations
in (10), i.e.,

αn(k + 1) =Mαn(k) + εUβn(k) + ε(W ⊗ Im)ω(k) (48)
βn(k + 1) =εUαn(k) + (INm − εU)βn(k) (49)

where M = (IN − ε(D−W)) ⊗ Im − εU, we obtain
from (48) that

αn(k + 1)− ((IN − ε(D−W))⊗ Im)αn(k) (50)
= εU (βn(k)−αn(k)) + ε(W ⊗ Im)ω(k).

By substituting (50) into (47), we obtain

r̂n(k + 1) =r̂n(k) + εU (βn(k)−αn(k))

− ((IN − εD)⊗ Im)ω(k) + ω(k + 1)
(51)

where βn(k) = [βT
1,n(k), · · · ,βT

N,n(k)]T.
Using (51) and r̂n(0) = αn(0) +ω(0) , we can derive the

recursive equation of r̂n(k) as

r̂n(k + 1) =αn(0) + εU

k∑

l=0

(βn(l)−αn(l))

+ ε (D⊗ Im)
k∑

l=0

ω(l) + ω(k + 1). (52)

Employing the network-wide update equations in (48) and
(49), we obtain

zn(l) =

[
αn(l)
βn(l)

]
= Glzn(0) +

l−1∑

s=0

Gl−1−sB̄ω(s) (53)

with B̄ = ε[W,0N ]T ⊗ Im, and as a result, we can compute
βn(l)−αn(l) as

Lz(l) = βn(l)−αn(l) = LGlzn(0) + L
l−1∑

s=0

Gl−1−sB̄ω(s)

(54)
with L = [−INm, INm]. Substituting (54) into (52) results in

r̂n(k + 1) = αn(0) + εUL
(

k∑

l=0

Gl

)
zn(0) + n(k + 1)

(55)

where noise n(k + 1) is given by

n(k + 1) =εUL
k∑

l=1

l−1∑

s=0

Gl−1−sB̄ω(s) (56)

+ ε (D⊗ Im)
k∑

l=0

ω(l) + ω(k + 1).

Employing the network-wide definition of the perturbation
sequences in (9) results

n(k + 1) =εUL
k−1∑

s=0

φsGk−1−sB̄ν(s) (57)

+ φk ((εD− IN )⊗ Im)ν(k) + φk+1ν(k + 1).

Since G is a symmetric and doubly stochastic matrix, by
construction, we have

Gk =

[Ck X k

X k Sk

]
.

Substituting Gk in (57), we obtain

n(k + 1) =ε2U
k−1∑

s=0

φs(X k−1−s − Ck−1−s) (W ⊗ Im)ν(s)

+ φk ((εD− IN )⊗ Im)ν(k) + φk+1ν(k + 1).

Due to the structure of G and φ ∈ (0, 1),
limk→∞ n(k + 1) = 0. Consequently, the estimate r̂n(k)
converges to r̂n = limk→∞ r̂n(k) where

r̂n = αn(0) + lim
k→∞

(
εUL

(
k∑

l=0

Gl

)
zn(0)

)
. (58)

Further, G can be written as G = ΘΛ̃ΘT,
where Θ = [θ1,θ2, · · · ,θ2Nm] ∈ R2Nm×2Nm and
Λ̃ = diag(λ1, λ2, · · · , λ2Nm) consists of eigenvalues of matrix
G, with λ1 < λ2 < · · · < λ2Nm−m+1 = · · · = λ2Nm = 1.
Subsequently, we have

Gl = ΘΛ̄
l
ΘT +

1

2N
(12N1T

2N ⊗ Im) (59)

where Λ̄ = diag(λ1, λ2, · · · , λ(2Nm−m), 0, · · · , 0). Since
the spectral radius of the Λ̄ is less than one, we have
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limk→∞
∑k
l=0 Λ̄

l
= (I − Λ̄)−1 and the asymptotic estimate

r̂n in (58) simplifies to

r̂n = αn(0) + εULΛzn(0) (60)

where Λ = Θ(I− Λ̄)−1ΘT ∈ R2Nm×2Nm. The MSE at the
eavesdropper corresponding to agent j can be computed as

Ej = lim
n→∞

lim
k→∞

Ej(k)

= lim
n→∞

tr
(

(eT
j ⊗ Im)E{(rn − r̂n) (rn − r̂n)

T}(ej ⊗ Im)
)

Hence, from the state decomposition constraint in (8), the
privacy leakage for agent j in (22) can be expressed as

Ej = lim
n→∞

tr
(

(eT
j ⊗ Im) L̃E{zn(0)zT

n(0)} L̃T
(ej ⊗ Im)

)

(61)
where L̃ = 1

2
L− εULΛ. Since we are considering the asymp-

totic analysis, for notational convenience, we remove the
index of k from the parameters. In order to remove the
time-dependence, E

{
zn(0)zT

n(0)
}

needs to be computed. By
stacking all the vectors in (12), we obtain a network-wide
intermediate estimation error as En = 12N⊗xn−zn(0). Since
xn and the intermediate estimation error En are uncorrelated,
we have

E
{
zn(0)zT

n(0)
}

= Σ̃n + 12N1T
2N ⊗ E{xnxT

n} (62)

where Σ̃n = E{EnET
n}. From (1) and assuming that

x−1 ∼ N (0,Π0), we can obtain

E{xnxT
n} = An+1Π0(An+1)T +

n∑

i=0

An−iCvi
(An−i)T

(63)
which is diverging. Since limn→∞Σn = Σ, it follows that
limn→∞ Σ̃n = Σ̃. Thus, limn→∞ E{zn(0)zT

n(0)} consists of
a fixed term Σ̃ and a diverging term as

lim
n→∞

E{zn(0)zT
n(0)} = Σ̃+12N1T

2N⊗ lim
n→∞

E{xnxT
n}. (64)

From (59) and since Gl is a doubly stochastic matrix,
it follows that for all l the sum of elements in each
row (column) of the matrix ΘΛ̄

l
ΘT is zero. Subsequently,

the sum of elements in every row (column) of the ma-
trix Λ = Θ(

∑∞
l=0 Λ̄

l
)ΘT is equal to one. Thus, the term of

L̃(12N1T
2N ⊗ limn→∞ E{xnxT

n})L̃
T in (61) becomes zero due

to the structure of L̃, and, privacy leakage for agent j is
obtained as

Ej = tr
(

(eT
j ⊗ Im) L̃Σ̃L̃T

(ej ⊗ Im)
)

which completes the proof.

APPENDIX C
PROOF OF THEOREM 3

To find a closed-form expression for the error covariance
P̃n(k) in (34), we estimate the initial substates zn(0) using
the observation model in (30). If the perfect observation
matrix H(k) is available, the estimate of the initial substates
zn(0) = [αT

n(0),βT
n(0)]T can be modeled as

z̄n(0) = H†(k)(H(k)zn(0) + F(k)ν̄(k)) (65)

where ν̄(k) = [νT(0),νT(1), · · · ,νT(k)]T. However, the obser-
vation matrix H(k) has to be estimated at the HBC agent due
to the uncertainty of the coupling weight matrix U at the HBC
agent.

Following the estimation procedure in [54], the HBC agent
estimates the coupling weight matrix as Û = U + ∆U

where ∆U shows its uncertainty to determine the coupling
weight matrix U. An estimate of matrix G is obtained using
uncertainty modeling above as Ĝ = G + ε∆G1 where
∆G1 = −LT∆UL. Employing the binomial expansion, the
uncertainty of Ĝk is simplified as Ĝk = Gk + ε∆Gk

where

∆Gk
=

k∑

t=1

k!εt−1

(k − t)!t!G
k−t∆t

G1
∀k ≥ 2.

Thus, estimate of the observation matrix H(k) is is formulated
as Ĥ(k) = H(k) + ε∆H(k) where ∆H(k) denotes the
uncertainty of the observation matrix, independent of H(k),
and is computed as

∆H(k) =




0
φ−1C∆G1

...
φ−kC

∑k
t=1 ∆Gt


 .

Subsequently, the estimate of the initial substates in (65) is
reformulated as

ẑn(0) = Ĥ†(k)yn(k) (66)

where Ĥ†(k) = (H(k) + ∆H(k))
†. The HBC agent is a

legitimate agent of the network and knows the distribution
of coupling weights. Given a negligible uncertainty in Ĥ(k),
the pseudo-inverse in (66) can be approximated by the first
order Taylor expansion as

Ĥ†(k) ∼= H†(k)
(
I(k+1)(NN+1)m − ε∆H(k)H†(k)

)
. (67)

Substituting (67) into (66) results in

ẑn(0) =
(
H†(k)− εH†(k)∆H(k)H†(k)

)
yn(k),

which can be further simplifies as

ẑn(0) = zn(0) + η(k) (68)

where η(k) is the estimation error of the initial substates

η(k) =H†(k)F(k)ν̄(k)− εH†(k)∆H(k)zn(0)

− εH†(k)∆H(k)H†(k)F(k)ν̄(k).

Thus, the estimation error covariance, given
E{ν̄(k)ν̄(k)} = σ2I(k+1)Nm, assuming mutual independence
of the noise sequences wi,n, vn, νi(k), and initial system
state x−1 ∼ N (0,Π0) for all n = 1, 2, · · · , i ∈ N , and
k ∈ [1,K], is obtained as

E{η(k)ηT(k)}=
ε2H†(k)∆H(k)E{zn(0)zT

n(0)}∆T
H(k)(H†(k))T

+ σ2(I− εH†(k)∆H(k))H†(k)F(k)FT(k)(H†(k))T

(I− εH†(k)∆H(k))T. (69)
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The average of the estimation error covariance in (69), with
respect to the uncertainty of the coupling weights is denoted
as P̃n(k) = EU

{
E{η(k)ηT(k)}

}
which by substituting (62)

into (69), we have

P̃n(k) = P̄n(k) +EU

{
ε2H†(k)∆H(k)Π̃n∆T

H(k)(H†(k))T}

where Π̃n = 12N1T
2N ⊗ E{xnxT

n} with xn representing the
state vector in (1) and

P̄n(k) = EU

{
ε2H†(k)∆H(k)Σ̃n∆T

H(k)(H†(k))T (70)

+ σ2(I− εH†(k)∆H(k))H†(k)F(k)FT(k)(H†(k))T

(I− εH†(k)∆H(k))T}.

From (64), it has been shown that P̃n(k) is comprised of a
fixed and a diverging terms, which completes the proof.

APPENDIX D
PROOF OF THEOREM 4

A worst-case scenario for privacy in Appendix C occurs
when the HBC agent has access to coupling weights of the
entire network, resulting in access to the actual value of the
observation matrix H(k). In this scenario, ∆H = 0, the
estimation error covariance matrix in (34) simplifies to

P̃(k) = σ2
(
HT(k)

(
F(k)FT(k)

)−1
H(k)

)−1

(71)

which is the same as the error covariance matrix of an ML
estimator [55] with the observation model in (30). Here,
we show that although the HBC agent has access to the
coupling weights of the entire network, the mean squared
estimation error at the HBC agent attempting to estimate
substates αj,n(0) and βj,n(0), respectively, defined as

Ẽj(k) = tr
(

(ẽj ⊗ Im)P̃(k)(ẽT
j ⊗ Im)

)

ẼN+j(k) = tr
(

(ẽN+j ⊗ Im)P̃(k)(ẽT
N+j ⊗ Im)

)
,

is non-zero, where ẽj ∈ R2N is a vector with 1 in the jth
entry and zeros elsewhere. The mean squared estimation error
Ẽj(k) for j = 1, 2, · · · , 2N is lower-bounded as

Ẽj(k) = tr
(

(ẽj ⊗ Im)(ẽT
j ⊗ Im)P̃(k)

)
> λmin m

where λmin is the minimum eigenvalue of the error covariance
P̃(k) and m is length of the state vector. Therefore, all agents
will have an estimate error greater than zero if we can show
that λmin > 0. In other words, it is sufficient to show that
(71) is invertible. We start by showing the invertibility of
F(k)FT(k) where F(k) , (Ik+1 ⊗Cα)F(k) and

F(k) =




INm 0Nm · · · 0Nm
φ−1C0B INm · · · 0Nm

...
...

. . .
...

φ−kCk−1B φ−(k−1)Ck−2B · · · INm


 .

(72)

To this end, let us consider an arbitrary vector
x =

[
xT

0,x
T
1, · · ·xT

k

]T ∈ R(k+1)Nm, and form

F(k)x =




x0

φ−1C0Bx0 + x1

...
φ−kCk−1Bx0 + · · ·+ xk


 = 0. (73)

It follows that the only vector satisfying (73) is the trivial
solution x = 0. Thus, F(k) is a full rank matrix and invertible.
Considering the structure of the observation matrix H(k) and
P̃(k) in (71), for HT(k)

(
F(k)FT(k)

)−1
H(k) to be invertible

H(k) must have rank greater than or equal to 2mN . By
collecting sufficient information, the observation matrix H(k)
must have at least 2mN independent rows, then the HBC agent
can estimate the initial substate of the network agents with a
non-zero estimation error.

APPENDIX E
FILTERING PERFORMANCE UNDER THE NIP-DKF

Following a same approach to that of the PP-DKF (cf. (17)),
we formulate the network-wide state vector estimation error
dynamics, given k consensus iterations, as follows

Ēn|n =
(
Qk ⊗ Im

) Ēn + φk−1(Q⊗ Im)ν(k − 1)

+
k∑

s=2

φk−s
(
(Qs −Qs−1)⊗ Im

)
ν(k − s)

(74)

where Q is the doubly stochastic consensus weight matrix as
introduced in [45]. For notational convenience, we removed
the index k from the parameters in the following analysis.
Alternatively, (74) can be reformulated as

Ēn|n = P̄Ēn−1|n−1 + Q̄Ῡn − Ω̄n + φk−1(Q⊗ Im)ν(k − 1)

+

k∑

s=2

φk−s
(
(Qs −Qs−1)⊗ Im

)
ν(k − s)

where Ῡn = [vT
n, · · · ,vT

n]T ∈ RNm and

P̄ =
(
Qk ⊗ Im

)
Blockdiag({PiA}Ni=1)

Q̄ =
(
Qk ⊗ Im

)
Blockdiag({Pi}Ni=1)

Ω̄n =
(
Qk ⊗ Im

)
Blockdiag({Qi}Ni=1)[wT

1,n, · · · ,wT
N,n]T.

The second-order statistics of all agents, denoted by Σ̄n =

E{Ēn|nĒT
n|n}, is given by

Σ̄n = P̄Σ̄n−1P̄T
+ Q̄C̄ΥQ̄T

+ C̄Ω + T̄ (75)

where C̄Υ = E{ῩnῩ
T
n}, and C̄Ω = E{Ω̄nΩ̄

T
n}. The effect

of injected noise is manifested in T̄ which evolves as

T̄ =

k∑

s=2

φ2(k−s)T̃ s + φ2(k−1)(Q⊗ Im)Cν(Q⊗ Im)T

with T̃ s =
(
(Qs−1 −Qs−2)⊗ Im

)
Cν

(
(Qs−1 −Qs−2)⊗ Im

)T.
Due to the doubly stochastic matrix Q and similar to [3], P̄
is stable; therefore, Σ̄n → Σ̄ as n→∞ and

E{Ēn|n} = P̄E{Ēn−1|n−1} = P̄nE{Ē0|0}.
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Since P̄ is stable, we have limn→∞ E{Ēn|n} = 0 that indicates
the steady-state estimates are unbiased regardless of their
initializing values or privacy-preserving perturbations. The
effect of injected noise is manifested in terms of T̄ , which
degrades the steady-state MSE.
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Abstract—This paper proposes a privacy-preserving dis-
tributed Kalman filter (PP-DKF) to protect the private infor-
mation of individual network agents from being acquired by
honest-but-curious (HBC) adversaries. The proposed approach
endows privacy by incorporating noise perturbation and state
decomposition. In particular, the PP-DKF provides privacy by
restricting the amount of information exchanged with decomposi-
tion and concealing private information from adversaries through
perturbation. We characterize the performance and convergence
of the proposed PP-DKF and demonstrate its robustness against
perturbation. The resulting PP-DKF improves agent privacy,
defined as the mean squared estimation error of private data
at the HBC adversary, without significantly affecting the overall
filtering performance. Several simulation examples corroborate
the theoretical results.

Index Terms—Estimation, privacy, information fusion, average
consensus, distributed Kalman filtering, multiagent systems.

I. INTRODUCTION

Distributed Kalman filters (DKFs) have gained increased at-
tention due to their high accuracy and computational efficiency
for learning and estimation tasks in multiagent systems [1]–
[4]. In general, distributed Kalman filtering techniques are
based on agents running local Kalman filters and consensus
operations to fuse observation and state information [5]–
[7]. Although local cooperation among agents in distributed
settings facilitates the fusion process, it causes undesirable
information disclosure. Thus, the vulnerability of distributed
procedures to potential eavesdroppers turns privacy preserva-
tion into an urgent issue to tackle in many applications [8]–
[10].

Various methods are present to address privacy issues in
distributed consensus operations in the literature. Differen-
tial privacy (DP) techniques, for example, use uncorrelated
noise sequences within information exchange protocols to
protect individual information [10], [11]. Alternatively, more
recent noise injection-based methods achieve a better privacy-
accuracy trade-off by perturbing the information exchanged
with noise [12]–[14]. Further, decomposition-based techniques
provide privacy by restricting the amount of information that
is shared with other agents [15], [16].

Using DP to protect individual data streams in a system
theoretic context where sensor measurements are transmitted
to a fusion center was first addressed in [17]. In [18], a

This work was supported in part by the Research Council of Norway.

general approach is presented to design a differentially private
Kalman filter in both cases of perturbation before exchanging
information with the fusion center as well as output pertur-
bation that injects noise to the output of the Kalman filter.
In addition, the authors in [19] demonstrate that combining
the input signals before adding DP noises, except for privacy,
enhances the Kalman filtering performance. The privacy-aware
Kalman filter proposed in [20] partitions sensor measurements
into private and public substates to maximize the estimation
error of the private state and minimize that for the public
state. Although most literature discusses centralized filtering
settings with external adversaries [17]–[20], in the context
of distributed filtering applications, honest-but-curious (HBC)
adversaries use local information to infer private data. An HBC
adversary is a network agent that participates in the filtering
process, but is curious and tries to retrieve private informa-
tion from other agents. Although literature includes studies
related to privacy-preserving Kalman filtering techniques, no
attention has been paid to a privacy-preserving framework for
distributed Kalman filtering strategies.

This paper proposes a privacy-preserving distributed
Kalman filter that incorporates both noise injection-based and
decomposition-based average consensus techniques to achieve
privacy against HBC adversaries. In the proposed PP-DKF,
agents decompose their private information into public and
private substates, where only the public substate is shared
with neighbors. A noise sequence perturbs the public substate
before being shared with neighbors to provide an additional
layer of protection. The proposed PP-DKF enhances filtering
performance when compared to DKFs employing contempo-
rary privacy-preserving techniques, showing that the method
is more robust to noise-injection. Additionally, the PP-DKF
improves the privacy level for all agents, defined as the mean
squared estimation error of private data at the adversary [21].
Mathematical Notations: Scalars, column vectors, and ma-
trices are denoted by lowercase, bold lowercase, and bold
uppercase letters, while I, and 0 represent identity and zero
matrices, respectively. The transpose and statistical expectation
operators are denoted by (·)T and E{·}, while ⊗ denotes the
matrix Kronecker product. The trace operator is denoted as
tr(·), diag(a) denotes diagonal matrix whose diagonals are the
elements of vector a, and the Blockdiag({Ai}Ni=1) represents
a block diagonal matrix containing Ais on the main diagonal.



II. PROBLEM FORMULATION

We consider a set of N interconnected agents that is
modeled as a graph G = {N , E} with node setN , representing
agents, and edge set E , representing communication links. The
neighborhood of agent i is denoted by Ni, with cardinality Ni.
We revisit the classical DKF to track a dynamic system state
through observations from a network of agents [2], [3], [6].
The state-space model is given by

xn = Axn−1 + vn (1)
yi,n = Hixn +wi,n (2)

where for time instant n and agent i, A denotes the state
transition matrix, and Hi denotes the observation matrix, yi,n

is the local observation, and wi,n, vn, are observation and
process noises, respectively. The process noise and observation
noise are mutually independent white Gaussian sequences
with covariance matrices Cvn and Cwi,n , respectively. The
proposed PP-DKF is based on the DKF in [5], which requires
agents to share local estimates with neighbors and reach
a network-wide consensus by local collaboration. Since the
shared data includes private information, we propose a PP-
DKF that safeguards the private information of individual
agents from being estimated by HBC adversaries.

III. PRIVACY-PRESERVING DISTRIBUTED KALMAN FILTER

Based on the proposed DKF in [5], the proposed PP-DKF
tracks a dynamic system state by updating the local model
given by

x̂i,n|n−1 = Ax̂i,n−1|n−1

Mi,n|n−1 = AMi,n−1|n−1A
T +Cvn

(3)

where, for agent i, x̂i,n|n−1 and x̂i,n|n are the respective
a priori and a posteriori state vector estimates and the
covariance information of agent i, at time instant n is denoted
by Mi,n|n−1. Following the centralized Kalman filter in [6],
the local covariance information of agent i at time instant n
is updated as

Γi,n = M−1
i,n|n−1 +NHT

i C
−1
wi,n

Hi. (4)

Updating the covariance information requires sharing the local
covariance Γi,n to reach the average consensus among agents
as M−1

i,n|n = 1
N

∑
i∈N Γi,n. The local covariance is not

considered as private information and it can be implemented
in a distributed manner by employing an average consensus
filter (ACF) with K consensus iterations as

M−1
i,n|n = Γi,n(K)←− ACF ←− {∀j ∈ Ni : Γj,n(0) = Γj,n}

where the operation at each consensus iteration k is given
as Γi,n(k) = qiiΓi,n(k − 1) +

∑
j∈Ni

qijΓj,n(k − 1) with
consensus weights satisfying qii +

∑
j∈Ni

qij = 1 for each
agent i. It is assumed that the conditions for convergence of
Mi,n|n for all agents are satisfied, as given in [5]. The updated
covariance is then used to evolve the intermediate state vector
estimate of agent i at time instant n as

ψi,n = x̂i,n|n−1 +Gi,n

(
yi,n −Hix̂i,n|n−1

)
(5)

where Gi,n = NMi,n|nHT
i C

−1
wi,n

is the local gain. Subse-
quently, the state vector estimate needs to reach the average
consensus among agents as x̂i,n|n = 1

N

∑
i∈N ψi,n, which

requires agents to share their intermediate state vector estimate
ψi,n among neighbors. Since ψi,n includes private informa-
tion, it needs to be protected from adversaries.

To reach the average consensus of intermediate state vector
estimates, the PP-DKF instructs each agent i to decompose
its initial information ri,n(0) = ψi,n into public and pri-
vate substates αi,n(0) and βi,n(0), respectively. The initial
substates are chosen such that αi,n(0) + βi,n(0) = 2ri,n(0)
is satisfied [15]. The public substate αi,n is shared with
neighbors, while the private substate βi,n evolves internally
without being observed by neighbors. We perturb the public
substate before sharing with neighbors with a noise sequence
ωi(k) at the ith agent and kth consensus iteration in order
to further protect the private information. The designed noise
structure is

ωi(k) = ϕkνi(k)− ϕk−1νi(k − 1), ∀k ≥ 1 (6)

where ωi(0) = νi(0), νi(k) ∼ N (0, σ2I) is an independent
and identically distributed Gaussian sequence for each i ∈ N ,
and ϕ ∈ (0, 1) is a common constant. As a result, each agent i
updates its substates at the kth consensus iteration by injecting
(6) into the public substate before sharing with the neighbors
as follows:



αi,n(k + 1) = αi,n(k) + ε
∑

j∈Ni

wij (α̃j,n(k)−αi,n(k))

+εUi

(
βi,n(k)−αi,n(k)

)

βi,n(k + 1) = βi,n(k) + εUi

(
αi,n(k)− βi,n(k)

)

(7)

where α̃j,n(k) = αj,n(k)+ωj(k) is the received information
from the jth neighbor and ε ∈ (0, 1/(∆ + 1)] with ∆ ≜
maxi∈N Ni is the consensus parameter. The interaction weight
is denoted by wij , while Ui ≜ diag(ui) is a diagonal matrix
containing the the coupling weight vector of the ith agent.
The coupling weight vector ui ∈ Rm contains independent
elements that control the level of contribution of each substate
in the updating procedure. In addition, we require a scalar
η ∈ (0, 1), such that all nonzero wij = wji and all elements of
ui reside in the range [η, 1), [15]. After repeating the steps in
(7) for a sufficient number of iterations, say K iterations, the
local state estimate, x̂i,n|n, is updated as x̂i,n|n = αi,n(K)
for all i ∈ N . The operations of the proposed PP-DKF is
summarized in Algorithm 1.

Theorem 1: The privacy-preserving average consensus oper-
ations in Algorithm 1 converges to the exact average consensus
value, asymptotically.

lim
k→∞

E{αi,n(k)} = lim
k→∞

E{βi,n(k)} =
1

N

N∑

i=1

ψi,n. (8)

Proof: To show the convergence of the derived privacy-
preserving ACF operations to the exact average consensus
value, we first show that the sum of all substates is constant,



Algorithm 1: Privacy-Preserving Distributed Kalman Filter

Model update: For each i ∈ N
x̂i,n|n−1 = Ax̂i,n−1|n−1

Mi,n|n−1 = AMi,n−1|n−1A
T +Cvn

Γi,n = M−1
i,n|n−1 +NHT

i C
−1
wi,n

Hi

M−1
i,n|n ←− ACF ←− {∀j ∈ Ni : Γj,n}

Gi,n = NMi,n|nHT
i C

−1
wi,n

ψi,n = x̂i,n|n−1 +Gi,n

(
yi,n −Hix̂i,n|n−1

)

Set ri,n(0) = ψi,n

Privacy-Preserving ACF:
Select αi,n(0) and set βi,n(0) = 2ri,n(0)−αi,n(0)
Share α̃i,n(0) = αi,n(0) + ωi(0)
for k = 1, . . . ,K do

Receive α̃j,n(k − 1), ∀j ∈ Ni

Update αi,n(k) andβi,n(k), as given in (7)
Share α̃i,n(k) = αi,n(k) + ωi(k)

end
x̂i,n|n = αi,n(K)

asymptotically [15]. The sum of all substates at the kth
iteration is defined as ζn(k) ≜

∑N
i=1(αi,n(k) + βi,n(k)) where

ζn(k) = ζn(0) + ε

N∑

i=1

k−1∑

l=1

di ωi(l).

with di =
∑

j∈Ni
wij . Given the zero mean and decay-

ing covariance properties of the designed noise (6), ζn(k)
converges to ζn(0) in the mean square sense which is
limk→∞ E{∥ζn(k)− ζn(0)∥2} = 0. Subsequently, due to the
connected network assumption and considering that αi,n(0)+

βi,n(0) = 2ψi,n, the ith agent substates, αi,n and βi,n, con-
verge to the desired average consensus value [15], as in (8).

IV. PERFORMANCE EVALUATION

With the equivalent network model of 2N agents, each
private substate corresponds to an agent only attached to its
peer in the original network, we evaluate the effects of incor-
porating privacy-preserving operations on the filtering perfor-
mance. It is assumed that the imaginary agents have the same
observation parameters, yi,n, Hi, and Cwi

, with their original
peers. We also assume that agents start privacy-preserving
steps with equal substates, αi,n(0) = βi,n(0) = ψi,n, so that
their intermediate estimation error is equal to

ϵi,n =xn −αi,n(0) i = 1, · · · , N
ϵi,n =xn − βi−N,n(0) i = N + 1, · · · , 2N

Based on the local observation in (2) and substituting the
intermediate state in (5), the intermediate estimation error of
each agent, ϵi,n = xn −ψi,n, is formulated as

ϵi,n =xn − x̂i,n|n−1 −NMiH
T
iC

−1
wi

Hi

(
xn − x̂i,n|n−1

)

−NMiH
T
iC

−1
wi

wi,n (9)

=
(
I−NMiH

T
iC

−1
wi

Hi

)
Aϵi,n−1|n−1 (10)

+
(
I−NMiH

T
iC

−1
wi

Hi

)
vn −MiH

T
iC

−1
wi

wi,n.

where ϵi,n−1|n−1 = xn−1−x̂i,n−1|n−1. Assuming the stacked
vectors organizing all error terms as En ≜ [ϵT

1,n, · · · , ϵT
2N,n]

T

and En−1|n−1 ≜ [ϵT
1,n−1|n−1, · · · , ϵT

2N,n−1|n−1]
T, the

network-wide state vector estimation error, En|n, which is
the stacked error after the privacy-preserving ACF operations
in (7) with k consensus iterations, is formulated as

En|n = GkEn + ϕk−1Bν(k − 1) (11)

+
k∑

s=2

ϕk−s
(
Gs−1 −Gs−2

)Bν(k − s)

where ν(k) = [νT
1(k), · · · ,νT

N (k)]T, B = [εW,0]T ⊗ I, and
G is a doubly stochastic matrix given by

G =

[
M εU
εU I− εU

]
(12)

with M ≜ (IN − ε(D−W)) ⊗ I − εU, U =
Blockdiag({Ui}Ni=1), D = diag({di}Ni=1), and W as the inter-
action weight matrix consisting all weights wij . Substituting
the network-wide intermediate state vector estimation error En

from (10) into (11) results

En|n =PEn−1|n−1 + θn − µn + ϕk−1Bν(k − 1)

+
k∑

s=2

ϕk−s
(
Gs−1 −Gs−2

)Bν(k − s)
(13)

where P = GkBlockdiag({PiA}2Ni=1) and

θn = GkBlockdiag({Pi}2Ni=1)[v
T
n, · · · ,vT

n]
T

µn = GkBlockdiag({Qi}2Ni=1)[w
T
1,n, · · · ,wT

2N,n]
T

with Pi = I−NMiH
T
iC

−1
wi

Hi and Qi = MiH
T
iC

−1
wi

. Since
Pi is stable and G is doubly stochastic, the block matrix P
is stable; thus, the statistical expectation of any vector norm
for En|n converges to a stabilizing value, as n → ∞. Taking
the statistical expectation of (13) yields

E{En|n} = PE{En−1|n−1} = PnE{E0|0}.
Since P is stable, we have limn→∞ E{En|n} = 0 that indicates
the steady-state estimates are unbiased regardless of their
initializing values or perturbation sequences.

The second-order statistics of all agents is formulated by
defining Σn = E{En|nET

n|n} and given by

Σn =PΣn−1PT + E{θnθT
n}+ E{µnµ

T
n}

+

k∑

s=2

ϕ2(k−s)T s + ϕ2(k−1)BCνBT (14)

with Cν = E{ν(s)νT(s)} at each consensus iteration s and
T s =

(
Gs−1 −Gs−2

)BCνBT (Gs−1 −Gs−2
)T. Since G is

doubly stochastic and P is stable, Σn → Σ as n→∞, where
Σ is the solution of the discrete-time Lyapunov equation in
(14). Compared with the non-private approach, the effect of
injected noise is manifested as a rise in the steady-state mean
square error (MSE) of Algorithm 1. In the next section, we
examine the performance of the derived framework to preserve
agent privacy.



V. PRIVACY ANALYSIS

We consider an HBC agent that can access the interac-
tion weights and exchanged information of its neighbors. To
benchmark the privacy of the derived PP-DKF, we consider
the MSE associated with the estimates of the initial states
ψn = [ψT

1,n, · · · ,ψT
N,n]

T at the HBC agent as a privacy metric.
Without loss of generality, we assume that the N th agent
is an HBC agent that attempts to estimate the initial states
of all agents using the accessible information set I(k) =
{αN,n(k),βN,n(k),ωN (k),uN , wNj , α̃j,n(k) : ∀j ∈ NN} at
each consensus iteration k. We introduce the observation vec-
tor yn(k) that includes the accessible information transferred
to the HBC agent at each iteration k as

yn(k) = Czn(k) +Cαω(k) (15)

where C ≜ [Cα,Cβ ] with Cβ = [0, eN ]
T ⊗ I and Cα =

[ei1 , . . . , eiNN
, eN ]T ⊗ I. The canonical basis ei ∈ RN is

a vector with 1 in the ith entry and zeros elsewhere, while
zn(k) ≜ [αT

n(k),β
T
n(k)]

T with the network-wide agent sub-
state vectors given as

αn(k) ≜ [αT
1,n(k), · · · ,αT

N,n(k)]
T

βn(k) ≜ [βT
1,n(k), · · · ,βT

N,n(k)]
T.

The estimated value of zn(0), i.e., ẑn(0) ≜ [α̂T
n(0), β̂

T
n(0)]

T,
is then used to estimate the initial state of the agents as
ψ̂n = 1

2
(α̂n(0) + β̂n(0)). Substituting the network-wide sub-

state update equations in (7) into (15) results

yn(k) = CGkzn(0)+Cα

k−1∑

t=0

Ck−1−tBω(t)+Cαω(k) (16)

where Ck =
[
I 0

]
Gk
[
I 0

]T
and B = εW ⊗ I.

Since ν(k) is a zero-mean i.i.d. sequence, the accumulated
observation of the HBC agent set-up at consensus iteration k,
ỹn(k) =

∑k
t=0 yn(t), is simplified as

ỹn(k) = C(I−G)k+1(I−G)−1zn(0) +Cαν̃(k) (17)

where ν̃(k) =
∑k−1

t=0 ϕtCk−1−tBν(t) + ϕkν(k). Stacking
all the available accumulated observations at each consensus
iteration k in a vector, ȳn(k) = [ỹT

n(0), . . . , ỹ
T
n(k)]

T, gives

ȳn(k) = H(k)z(0) + F(k)ν̄(k) (18)

where H(k) = (I ⊗ C)[HT
0,H

T
1, . . . ,H

T
k]

T with Hk =∑k
t=0 G

t, ν̄(k) = [νT(0), · · · ,νT(k)]T, and

F(k) =




Cα 0 · · · 0
CαC0B ϕCα · · · 0

...
...

. . .
...

CαCk−1B ϕCαCk−2B · · · ϕkCα


 .

With the perfect observation matrix H(k) available, the esti-
mate of initial substates zn(0) could be modeled as

ẑn(0) = H†(k)(H(k)zn(0) + F(k)ν̄(k)) (19)

where H†(k) is the Moore–Penrose pseudoinverse of H(k).

However, since the HBC agent does not have access to the
coupling weight matrix U, it has to estimate the observation
matrix H(k). Following the estimation procedure in [22], the
HBC agent estimates the coupling weight matrix as Û =
U + ∆U where ∆U shows its uncertainty to determine the
coupling weight matrix U.

An estimate of matrix G is obtained using uncertainty
modeling above as Ĝ = G+ε∆G1

where ∆G1
= −LT∆UL

with L = [−I, I]. Employing the binomial expansion, the
uncertainty of Ĝk is simplified as Ĝk = Gk + ε∆Gk

where

∆Gk
=

k∑

t=1

k!εt−1

(k − t)!t!
Gk−t∆t

G1
∀k ≥ 2.

Thus, estimate of the observation matrix H(k) is formulated
as Ĥ(k) = H(k)+ε∆H(k) where ∆H(k) denotes the uncer-
tainty of the observation matrix, independent of H(k), and is
computed as ∆H(k) = (I ⊗ C)[0,∆T

G1
, . . . ,

∑k
t=1 ∆

T
Gt

]T.
Subsequently, the estimate of the initial substates in (19)
is reformulated as ẑn(0) = Ĥ†(k)ȳn(k) where Ĥ†(k) =
(H(k) +∆H(k))

†. The HBC agent is a legitimate agent of the
network and knows the distribution of coupling weights. Given
a negligible uncertainty in Ĥ(k), the pseudo-inverse of Ĥ(k)
can be approximated by the first order Taylor expansion as
Ĥ†(k) ∼= H†(k)

(
I− ε∆H(k)H†(k)

)
and subsequently, we

have ẑn(0) =
(
H†(k)− εH†(k)∆H(k)H†(k)

)
yn(k) which

can be further simplified as

ẑn(0) = zn(0) + η(k) (20)

with the estimation error of the initial substates

η(k) =H†(k)F(k)ν̄(k)− εH†(k)∆H(k)zn(0)

− εH†(k)∆H(k)H†(k)F(k)ν̄(k).

For the worst-case scenario, when the HBC agent knows the
exact coupling weights of the entire network, i.e., ∆U = 0,
the estimation error covariance P(k) = E{η(k)ηT(k)} is
computed as

P(k) = σ2
(
HT(k)

(
F(k)FT(k)

)−1
H(k)

)−1

. (21)

As a result, the privacy of the jth agent, pertaining to estimate
its initial information ψj,n, is defined as

Ej(k) ≜ tr
(
(eT

j ⊗ I)P̄(k)(ej ⊗ I)
)
, (22)

where P̄(k) = 1
4 [I, I]P(k)[I, I]T.

VI. NUMERICAL RESULTS

We consider a connected network with L = 5 agents
and edge set E = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)}. The
proposed PP-DKF is considered in a collaborative target
tracking application as given in [5]. To illustrate the benefits
of state-decomposition and noise perturbation, characterizing
the PP-DKF, we also implemented a pure noise-injection-
based privacy-preserving DKF (NIP-DKF), wherein the noise
sequence in (6) perturbed the shared messages of the conven-
tional DKF in [5]. If not stated otherwise, K = 40 consensus
iterations and ϕ = 0.9 are employed.
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Fig. 1. Average MSE versus noise variance σ2.
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Fig. 2. Privacy metric Ej(k) versus noise variance σ2.

Fig. 1 shows the average MSE of the various distributed
Kalman filters versus the injected noise variance. We see that
the PP-DKF has a better filtering performance than NIP-DKF
and achieves an MSE close to the non-private DKF for a
broad range of injected noise variances. Also, our theoretical
prediction in (14) match the simulation results. The agent
privacy Ej(k) in (22), considering the 5th agent as an HBC
agent, is shown in Fig. 2. It shows that injecting more noise
results in higher privacy and PP-DKF improves agent privacy
compared to NIP-DKF settings. Because of the symmetric
topology of the ring network, agents 3 and 4 achieve the same
level of privacy as agents 2 and 1, respectively, so they are
omitted from Fig.2.

VII. CONCLUSION

This paper proposed a privacy-preserving distributed
Kalman filter that employs decomposition-based and noise
injection-based privacy-preserving average consensus tech-
niques to protect private information of agents. It restricts
the amount of information exchanged with decomposition and
conceals the private data from being estimated by adversaries
with perturbation. The convergence and performance of the
PP-DKF have been analyzed. Moreover, the achieved privacy
level of each agent has been defined as the uncertainty of the
honest-but-curious agent in estimating the initial state of other
agents. It has been shown that the proposed PP-DKF solution

improves privacy and performance of the Kalman filtering
operations compared to the DKFs employing contemporary
privacy-preserving consensus techniques. Lastly, several sim-
ulations verified the obtained theoretical results.
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Abstract—Distributed filtering techniques have emerged as
the dominant and most prolific class of filters used in modern
monitoring and surveillance applications, such as smart grids.
As these techniques rely on information sharing among agents,
user privacy and information security have become a focus of
concern. In this manuscript, a privacy-preserving distributed
Kalman filter (PP-DKF) is derived that maintains privacy by
decomposing the information into public and private substates,
where only a perturbed version of the public substate is shared
among neighbors. The derived PP-DKF provides privacy by
restricting the amount of information exchanged with state
decomposition and conceals private information by injecting a
carefully designed perturbation sequence. A thorough analysis
is performed to characterize the privacy-accuracy trade-offs
involved in the distributed filter, with privacy defined as the
mean squared estimation error of the private information at the
honest-but-curious agent. The resulting PP-DKF improves the
overall filtering performance and privacy of all agents compared
to distributed Kalman filters employing contemporary privacy-
preserving average consensus techniques. Several simulation
examples corroborate the theoretical results.

Index Terms—Estimation, privacy, information fusion, average
consensus, distributed Kalman filtering, multiagent systems.

I. INTRODUCTION

Distributed Kalman filtering algorithms became popular
for learning and estimation in multiagent systems [1], [2]
due to their high accuracy and computational efficiency [3]–
[5]. In general, distributed Kalman filtering techniques are
based on agents of a sensor network implementing local
Kalman filtering operations using their observed data. Agents
then employ consensus techniques to fuse local and neighbor
estimates [6]–[8]. However, the local interactions between
agents in distributed filtering settings raise concerns regard-
ing privacy and demands for secure distributed filtering [9],
[10]. Although local cooperation among agents in distributed
filtering facilitates the fusion process, it causes undesirable
information disclosures [11]. This vulnerability of distributed
filters to potential adversaries has made privacy preservation
one of the most pressing subjects in many applications [12]–
[18].

The literature contains various methods to address the
privacy issues in distributed consensus operations. For exam-
ple, differential privacy techniques inject uncorrelated noise
sequences into information exchange procedures to provide
privacy for individual information [13], [14]. In addition, the

This work was supported in part by the Research Council of Norway.

more recent noise injection-based average consensus tech-
niques achieve an improved privacy-accuracy trade-off by
perturbing the information exchanged with noise [15]–[17].
Decomposition-based privacy-preserving techniques, on the
other hand, are based on altering the amount of information
shared with other agents [19], [20].

In particular, privacy in a system theoretic context, where
sensor measurements are transmitted to a fusion center, was
first addressed in [9]. The work therein considers the notion
of privacy characterized by differential privacy, which pro-
tects individual data streams. Subsequently, the work in [21]
presents a general approach to design a differentially private
Kalman filter in both cases of perturbation before exchanging
information with fusion center and output perturbation that
injects noise to the output of the Kalman filter. The authors in
[22] show that adequately combining the input signals before
adding the differential privacy noise can improve the Kalman
filter performance.

The privacy-aware centralized Kalman filter proposed in
[23] partitions sensor measurements into private and public
substates to maximize the estimation error of the private
portion while minimizing the estimation error of the public
substate. The works in [9], [21]–[23] mainly consider a
centralized filtering setting with external adversaries; however,
in the context of distributed filtering applications, honest-but-
curios adversaries employ local information to infer private
data. An honest-but-curious adversary is a legitimate network
agent taking part in the filtering process but is curious and
attempts to retrieve the private information of other agents.
Although considerable research has been devoted to privacy
in centralized Kalman filtering solutions, the dilemma of
privacy-preserving distributed Kalman filters against honest-
but-curious agents has not been appropriately addressed.

In this paper, a privacy-preserving distributed Kalman fil-
tering solution is derived. The derived framework draws upon
the ideas from both noise injection and decomposition-based
average consensus strategies. In this setting, agents decompose
their acquired information into public and private substates,
sharing only the perturbed version of their public substate with
their neighbors. The private substate evolves internally and
will not be shared with neighbors. This process is designed to
provide enhanced privacy, defined as the mean squared estima-
tion error of private data at the honest-but-curious agent [24].
In comparison to distributed Kalman filters employing con-
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temporary privacy-preserving average consensus techniques,
the PP-DKF derived here exhibits higher robustness against
injected noise and accomplishes the filtering process with
enhanced performance. The contribution of the work also
includes a rigorous mathematical analysis of the convergence
and performance of the derived PP-DKF, and formulating a
closed-form expression for agent privacy in the presence of
an honest-but-curious adversary.
Mathematical Notations: Scalars, column vectors, and ma-
trices are denoted by lowercase, bold lowercase, and bold
uppercase letters, while I, and 0 represent identity and zero
matrices, respectively. The transpose and statistical expectation
operators are denoted by (·)T and E{·}, while ⊗ denotes the
matrix Kronecker product. The trace operator is denoted as
tr(·), matrix diag(a) denotes diagonal matrix whose diagonals
are the elements of vector a, and the Blockdiag({Ai}Ni=1)
represents a block diagonal matrix containing Ais on the main
diagonal. A white Gaussian sequence x(k) with covariance Σ
is represented as x(k) ∼ N (0,Σ).

II. PROBLEM FORMULATION

We consider a set of N interconnected agents concerned
with a common task. The agents and their connections are
modeled as a graph G = {N , E} with node setN , representing
agents, and edge set E , representing communication links. The
neighborhood of agent i, denoted by Ni, is the set of agents
that agent i receives information from, which does not include
agent i itself. The cardinality of the set Ni is denoted by Ni.

We revisit the classical distributed Kalman filtering problem
of tracking a dynamic system state through observations from
a network of agents [3], [4], [7]. The state-space model
representing the state vector evolution and local observation
function is given by

xn = Axn−1 + vn (1)

yi,n = Hixn + wi,n (2)

where, A denotes the state transition matrix and Hi is the ith
agent observation matrix. For time instant n and agent i, yi,n
is the local observation, while wi,n and vn are observation
and process noises, respectively. The process and observation
noises are zero-mean Gaussian sequences with joint covariance
matrices given by

E
{[

vn
wi,n

] [
vT
l wT

j,l

]}
=

[
Cvn

0
0 Cwi,nδi,j

]
δn,l

where δn,l denotes the Kronecker delta function. The proposed
PP-DKF is implemented based on the distributed Kalman
filter (DKF) in [6] that requires agents to exchange local
estimates with neighbors, and through local collaboration, to
reach a network-wide consensus. Since the shared data in-
cludes private information, we propose a PP-DKF that prevents
an honest-but-curious adversaries from estimating the private
information of individual agents. An honest-but-curious agent
is a legitimate agent of the network that is curious about private
data from other agents.

III. PRIVACY-PRESERVING DISTRIBUTED KALMAN FILTER

Considering the framework established in the distributed
Kalman filtering [6], each agent implements a model update
as

x̂i,n|n−1 = Ax̂i,n−1|n−1
Mi,n|n−1 = AMi,n−1|n−1A

T + Cvn

(3)

where for agent i and time instant n, x̂i,n|n−1 and x̂i,n|n
are the respective a priori and a posteriori estimates of the
state vector. The ith agent error covariance information at
time instant n is denoted by Mi,n|n−1 which following the
centralized Kalman filter operations in [7] is updated as

M−1
i,n|n = M−1

i,n|n−1 +
∑

j∈N
HT
jC
−1
wj,n

Hj =
1

N

∑

j∈N
Γj,n. (4)

The expression in (4) can be approximated through average
consensus filters (ACFs) after a local update as

Γi,n = M−1
i,n|n−1 +NHT

iC
−1
wi,n

Hi.

The local covariance information Γi,n is not considered pri-
vate, and it can be shared among neighbors to update the a
posteriori covariance information. To this end, the covariance
information M−1

i,n|n is updated via an ACF by averaging the
local covariance information Γi,n among neighbors. The ACF
operations is represented with the following schematic [6]:

Si,n(k)←− ACF ←− {∀j ∈ Ni ∪ i : Sj,n(0)}
where Sj,n(0), j ∈ Ni ∪ i are the initial inputs to the ACF at
node i, and Si,n(k) is the output at node i after k iterations.
The iterative operation of the consensus filter is given by

Si,n(k) = qiiSi,n(k − 1) +
∑

j∈Ni

qijSj,n(k − 1)

where Q = [qij ] is a doubly stochastic consensus weight
matrix [25]. It is assumed that the conditions for convergence
of Mi,n|n for all agents are satisfied (see [6]).

The updated covariance information is employed to calcu-
late an intermediate state estimate update using the sensors
observation as

ψi,n = x̂i,n|n−1 + Gi,n

(
yi,n −Hix̂i,n|n−1

)
(5)

where M−1
i,n|n is used to formulate the update gain Gi,n =

NMi,n|nHT
iC
−1
wi,n

. To improve the state estimation, agents
share their intermediate state estimate ψi,n with their neigh-
bors to reach the average consensus. The intermediate state
estimate, ψi,n, reveals information regarding the observations
and current state vector of an agent, which is considered
private. Thus, to avoid information disclosure, the average
consensus of intermediate state estimates should be imple-
mented in a privacy-preserving manner. To this end, a privacy-
preserving average consensus mechanism is designed to pro-
tect the intermediate state estimates while having minimal
impact on the filtering process.

Before sharing the intermediate state estimate with neigh-
bors, the ith agent decomposes the initial state ψi,n(0) =
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i,n into public and private substates αi,n(0) and βi,n(0),
satisfying αi,n(0) + βi,n(0) = 2ψi,n(0), [19]. The public
substate, αi,n, is shared with neighbors, while the private
substate, βi,n, evolves internally and will not be observed
by neighbors. Although the private substate remains invisible
to neighbors, it directly affects the evolution of the public
substate. To provide an additional protection layer to the
initial state of agent i, we perturb its public substate, at
the kth consensus iteration, by noise sequence ωi(k). The
perturbation-noise is a zero-mean Gaussian sequence, mutually
and temporally independent among different agents, with time-
dependent covariance such that

ωi(k) ∼ N (0, σ2
kI), ∀i = 1, 2, · · · , N. (6)

In order to guarantee the convergence of the overall PP-DKF
operations, the variance σ2

k is chosen to be exponentially
decaying with respect to the consensus iteration k [10], [15].
Thus, as the number of consensus iterations increases, the
shared data of the ith agent converges toward the average
consensus value, which is common among all agents. Hence,
regarding the perturbation sequence (6), the PP-DKF injects
noise with higher variance to the initial substates, while sub-
states approaching the average consensus value are perturbed
with less noise. The substate updates at each agent, and
consensus iteration k, are given by




αi,n(k + 1) =αi,n(k) + εUi(k)
(
βi,n(k)−αi,n(k)

)

+ ε
∑

j∈Ni

wij(k) (α̃j,n(k)−αi,n(k))

βi,n(k + 1) =βi,n(k) + εUi(k)
(
αi,n(k)− βi,n(k)

)
(7)

where α̃j,n(k) = αj,n(k) + ωj(k) is the received informa-
tion from the jth neighbor, wij(k) denotes the interaction
weight between agent i and j at consensus iteration k, and
Ui(k) , diag(ui(k)) is a diagonal matrix containing the ith
agent’s coupling weight vector ui(k) ∈ Rm with independent
elements that controls the level of contribution of each substate
in the updating procedure. The consensus parameter ε resides
in the range (0, 1/(∆ + 1)] where ∆ , maxi∈N Ni. For
k = 0, all weights wij(0) and each elements of ui(0) are
allowed to be arbitrarily chosen from the set of all real
numbers, while satisfying wij(0) = wji(0), ∀i, j. For k > 0,
a scalar η ∈ (0, 1) is required, such that all non-zero wij(k)
and all elements of ui(k) reside in the range [η, 1), [19].
The operations of the proposed PP-DKF at each agent are
summarized in Algorithm 1.

To investigate the convergence of the derived privacy-
preserving ACF operations to the exact average consensus
value, one can show that the sum of all substates is constant,
asymptotically [19]. The sum of all substates at the kth
iteration is defined as ζn(k) ,

∑N
i=1(αi,n(k) + βi,n(k))

where

ζn(k) = ζn(0) + ε
N∑

i=1

dii

k−1∑

l=1

ωi(l)

)
. (8)

Algorithm 1 Privacy-Preserving Distributed Kalman Filter
Initialization: For each agent i ∈ N

1: x̂i,0|0 = E{x0}
2: Mi,0|0 = E

{
(x0 − E{x0})(x0 − E{x0})T

}

Model update:
3: x̂i,n|n−1 = Ax̂i,n−1|n−1
4: Mi,n|n−1 = AMi,n−1|n−1AT + Cvn

Measurement update:
5: Γi,n = M−1

i,n|n−1 +NHT
iC
−1
wi,n

Hi

6: M−1
i,n|n ←− ACF ←− {∀j ∈ Ni : Γj,n}

7: Gi,n = NMi,n|nHT
iC
−1
wi,n

8: i,n = x̂i,n|n−1 + Gi,n

(
yi,n −Hix̂i,n|n−1

)

9: Set ψi,n(0) = ψi,n
Privacy-Preserving Mechanism:
10: Select αi,n(0), and set βi,n(0) = 2ψi,n(0)−αi,n(0)
11: Generate {ωi(k), k = 0, 1, · · · ,K} based on (6)
12: Share α̃i,n(0) = αi,n(0) + ωi(0)
13: for k = 1 to K do
14: Receive α̃j,n(k − 1), ∀j ∈ Ni
15: Update αi,n(k) andβi,n(k), as given in (7)
16: Share α̃i,n(k) = αi,n(k) + ωi(k),
17: end for
18: x̂i,n|n = αi,n(K)

where dii is a diagonal element of matrix D ,
diag({∑j∈Ni

wij}Ni=1), to simplify the analysis, we assume
that the interaction weights are time-invariant. Given the zero
mean and decaying covariance properties of the designed noise
(6), ζn(k) converges to ζn(0) in the mean sense which is

lim
k→∞

E{ζn(k)− ζn(0)} = 0. (9)

Due to the connected network assumption and considering that
αi,n(0) + βi,n(0) = 2ψi,n(0), the ith agent substates, αi,n
and βi,n, converge to the desired average consensus value [19],
i.e.,

lim
k→∞

E{αi,n(k)} = lim
k→∞

E{βi,n(k)} =
1

N

N∑

i=1

ψi,n(0).

In practice, due to the finite number of consensus iterations,
the convergence in (9) is achieved with a bounded variance that
reduces the average consensus accuracy. In the next section,
we analyze the impact of this consensus error on the overall
performance and convergence conditions of the proposed PP-
DKF.

IV. PERFORMANCE EVALUATION

To provide an intuitive analysis and a proper insight into
the effects of incorporating the privacy-preserving operations,
we consider the equivalent network of 2N agents so that
each private substate corresponds to an agent only attached
to its peer in the original network with the same observation
parameters, yi,n, Hi, and Cwi

(see Fig. 1). It is assumed
that agents initialize the privacy-preserving steps with equal
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Fig. 1. A ring network topology with N = 5 nodes.

substates, so that the intermediate estimation error of agents
in the decomposed network is expressed as

εi,n =xn −αi,n(0) i = 1, · · · , N
εi,n =xn − βi−N,n(0) i = N + 1, · · · , 2N

Following the made assumption on the initial substates,
αi,n(0) = βi,n(0) = ψi,n, the intermediate estimation
error of each agent i ∈ {1, 2, · · · , 2N}, employing the local
observation in (2), is formulated as

εi,n =xn −ψi,n
=xn − x̂i,n|n−1 −NMiH

T
iC
−1
wi

(
yi,n −Hix̂i,n|n−1

)

=xn − x̂i,n|n−1 −NMiH
T
iC
−1
wi

Hi

(
xn − x̂i,n|n−1

)

−NMiH
T
iC
−1
wi

wi,n.
(10)

Substituting (1) into (10) and after some algebraic manipula-
tion, we have

εi,n =
(
I−NMiH

T
iC
−1
wi

Hi

)
Aεi,n−1|n−1

+
(
I−NMiH

T
iC
−1
wi

Hi

)
vn −MiH

T
iC
−1
wi

wi,n.
(11)

where εi,n−1|n−1 = xn−1−x̂i,n−1|n−1. Considering the block
row vectors organizing all error terms as

En =[εT
1,n, · · · , εT

2N,n]T

En−1|n−1 =[εT
1,n−1|n−1, · · · , εT

2N,n−1|n−1]T

the network-wide state vector estimation error of the state-
decomposed network, En|n, which is the stacked error after the
privacy-preserving average consensus operations in (7) with k
consensus iterations, is expressed by

En|n = GkEn +
k∑

s=1

Gs−1Bω(k − s). (12)

The stacked perturbation sequences is denoted by ω(k) =[
ωT

1(k), · · · ,ωT
N (k)

]T
, while B = [εW,0]T ⊗ I, and G is a

doubly stochastic matrix given by

G =

[
M εU
εU I− εU

]

with M , (I− ε(D−W)) ⊗ I − εU. The interaction and
coupling weight matrices for the entire network are denoted
by W(k) , [wij(k)] and U(k) = Blockdiag({Ui(k)}Ni=1),
respectively. To simplify the state vector error analysis, we

assume that the interaction and coupling weight matrices are
time-invariant. Alternatively, (12) can be expressed as

En|n =PEn−1|n−1 + QΥn −Ωn

+

k∑

s=1

Gs−1Bω(k − s)
(13)

where
P = GkBlockdiag({PiA}2Ni=1)

Q = GkBlockdiag({Pi}2Ni=1)

Υn = [vT
n,v

T
n, · · · ,vT

n]T

Ωn = GkBlockdiag({Qi}2Ni=1)[wT
1,n,w

T
2,n, · · · ,wT

2N,n]T

with Pi = I − NMiH
T
iC
−1
wi

Hi and Qi = MiH
T
iC
−1
wi

.
Following the definition, Pi is stable and since G is doubly
stochastic, the block matrix P is stable; therefore, the statis-
tical expectation of any vector norm for En|n converges to a
stabilizing value as n→∞. Taking the statistical expectation
of (12) yields

E{En|n} = PE{En−1|n−1} = PnE{E0|0}.
Once again, since P is stable, we have limn→∞ E{En|n} = 0

that indicates the steady-state estimates are unbiased regardless
of their initializing values or perturbation sequences.

The recursive expression of the state vector estimation error
in (13), is used to formulate the second-order statistics of all
agents, denoted by Σn = E{En|nET

n|n}, as

Σn = PΣn−1PT + QCΥQT + CΩ + T (14)

where CΥ = E{ΥnΥT
n}, CΩ = E{ΩnΩT

n}, and with respect to
the noise sequence (6), we have

T =

k∑

s=1

σ2
k−sG

s−1BBT (Gs−1)T
.

Since G is doubly stochastic and P is stable, Σn → Σ as
n→∞, where Σ is the solution of the discrete-time Lyapunov
equation in (14). The effect of injected noise is manifested in
terms of T , which increases the steady-state mean squared
error (MSE) of Algorithm 1 compared to the non-private
approach. In the next section, we analyze the performance
of the derived framework to preserve agent privacy.

V. PRIVACY ANALYSIS

We consider an honest-but-curious agent that can access the
interaction weights and information shared by its neighbors. To
benchmark the privacy of the derived PP-DKF, we consider the
MSE associated with the estimates of the initial states ψi,n(0)
at the honest-but-curious agent, as privacy measure. Without
loss of generality, it is assumed that the N th agent is an
honest-but-curious agent that employs a maximum likelihood
(ML) estimator to estimate the initial states of all agents,
ψn(0) = [ψT

1,n, · · · ,ψT
N,n]

T, at time instant n. The honest-but-
curious agent has access to the following information set at
consensus iteration k
I(k) = {αN,n(k),βN,n(k),ωN (k), uN (k),

wNj(k), α̃j,n(k) : ∀j ∈ NN}.
(15)
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Proposition 1. Suppose an honest-but-curious agent has ac-
cess to messages shared by its neighbors and their correspond-
ing interaction weights. If every agent has at least one regular
agent in the neighborhood, an honest-but-curious agent cannot
infer private information of any other agent in the network.

Proof: The proof follows from Theorem 2 in [19] by
showing that an arbitrary change in the initial information of
the jth agent, ψj,n to ψ̄j,n, remains indistinguishable from
the honest-but-curious agent.

In the worst case, the honest-but-curious agent also accesses
the interaction and coupling weights of the entire network,
thereafter it can construct an ML estimator to estimate the
private information of the other agents. To construct an ML
estimator, we introduce the observation vector yn(k) that
includes the accessible information transferred from the neigh-
bors to the honest-but-curious agent at each iteration k as

yn(k) = Czn(k) + Cαω(k)

where C , [Cα,Cβ ] with Cβ = [0, eN ]
T ⊗ I and

Cα =
[
ei1 , ei2 , · · · , eiNN

, eN

]T
⊗ I.

The canonical basis ei is a vector with 1 in the ith entry
and zeros elsewhere, while zn(k) , [αT

n(k),βT
n(k)]T with the

network-wide agent substate vectors given as

αn(k) , [αT
1,n(k), · · · ,αT

N,n(k)]T

βn(k) , [βT
1,n(k), · · · ,βT

N,n(k)]T.

The estimated value of zn(0) , [αT
n(0),βT

n(0)]T is employed
to estimate agent initial states as ψ̂n(0) = 1

2 (α̂n(0)+ β̂n(0)).
Since the information of the N th agent is already known

to the honest-but-curious agent, we reduce the state space
dimension by removing all entries belonging to the N th
agent form the defined variables and find the estimation error
covariance P̃(k) instead of P(k) as it satisfies

P(k) =

[
P̃(k) 0
0T 0

]
.

Accordingly, the reduced version of C and the observation
vector yn(k) can be expressed as C̃ = [C̃α, 0̃] and

ỹn(k) = C̃z̃n(k) + C̃αω̃(k) (16)

where
z̃n(k) = [α̃T

n(k), β̃
T
n(k)]T

C̃α = [ẽj1 , ẽj2 , · · · , ẽjNN
]T.

Substituting the network-wide state update equations (7) in
(16), gives

ỹn(k) = C̃G̃kz̃n(0) + C̃α

(
k−1∑

t=0

Ck−1−tB̃ω̃(t) + ω̃(k)

)

(17)
where B̃ = εW̃ ⊗ I, Ck =

[
I 0

]
G̃k
[
I 0

]T
, and

G̃ =

[
M̃ εŨ

εŨ I− εŨ

]
.

We can simplify the accumulated observation set of the honest-
but-curious agent, up to consensus iteration k, as




ỹn(0)
ỹn(1)

...
ỹn(k)


 = H(k)z̃n(0) + F(k)




ω̃(0)
ω̃(1)

...
ω̃(k)


 (18)

where H(k) , [(C̃)T, (C̃G̃)T, · · · , (C̃G̃k)T]T and

F(k) =




C̃α 0 · · · 0

C̃αC0B̃ C̃α · · · 0
...

...
. . .

...
C̃αCk−1B̃ C̃αCk−2B̃ · · · C̃α


 . (19)

Subsequently, the error covariance of the ML estimator [26], to
estimate z̃n(0), with independent noise sequences is obtained
by

P̃(k) =

(
HT(k)

(
F(k)Γ̃(k)FT(k)

)−1
H(k)

)−1
(20)

where Γ̃(k) = diag
({
σ2
t I
}k
t=0

)
contains the perturbation

sequence covariances up to consensus iteration k. Since the
accessible information of the honest-but-curious agent is ex-
panding, the error covariance P̃(k) is monotonically non-
increasing, i.e., for k1 ≤ k2, we have P̃(k2) ≤ P̃(k1).
This implies that error covariance matrix P̃(k) converges to a
constant matrix P̃ = limk→∞ P̃(k). Let us assume

P̃ =

[
P̃1 P̃12

P̃21 P̃22

]
,

then, the error covariance of the ML estimator to estimate
ψ̃n(0) is given by

P̄ =
1

4

(
P̃1 + P̃12 + P̃21 + P̃22

)
.

Thus, the privacy metric of the ith agent, related to estimate
its initial state ψi,n(0) by the honest-but-curious agent N is
defined as

Ei , tr
(
(ẽT
i ⊗ I)P̄(ẽi ⊗ I)

)
. (21)

The derived privacy metric represents the ability of the
privacy-preserving strategy to conceal the initial states from
being estimated by the honest-but-curious agent. Several sim-
ulations verify the privacy performance of the proposed PP-
DKF in the next section.

VI. NUMERICAL RESULTS

We consider a ring network topology with N = 5 agents
shown in Fig. 1. The proposed PP-DKF is considered in
a collaborative target tracking application. The state-space
model is following the distributed Kalman filter in [6], where
the state vector xn = [Xn, Yn, Ẋn, Ẏn]T consists of the
positions {Xn, Yn} and velocities {Ẋn, Ẏn} in the horizontal
and vertical directions, respectively. For comparison purposes,
we implement a pure noise-injection based privacy-preserving
DKF (NIP-DKF), wherein the noise sequence in (6) perturbs
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Fig. 2. Tracking performance of the derived PP-DKF with K = 40 consensus iterations and noise variance σ2 = 0.5.
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Fig. 3. Average filtering MSE versus injected noise variance σ2.

the shared messages of the conventional DKF [6]. Regarding
the perturbation sequence assumptions in (6), we assume
σ2
k = φ2k

N(k+1)σ
2 at each consensus iteration, where φ = 0.9,

and σ2 is noise variance that controls the amount of the
injected noise.

Fig. 2 shows the performance of the proposed PP-DKF to
track the system state compared to the NIP-DKF and non-
private distributed Kalman filter (DKF). The proposed PP-
DKF performs as well as the non-private distributed Kalman
filter and outperforms the NIP-DKF. This means that the
estimate produced by PP-DKF is closer to the actual position
and speed of the target compared to NIP-DKF. The higher
accuracy of PP-DKF to track the position and speed of
the target, verifying its robustness to the perturbation noise
sequences.

Fig. 3 shows the average MSE of the distributed Kalman
filter versus the noise variance parameter σ2 with K = 40
consensus iterations. We see that the perturbation sequence de-
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Fig. 4. Privacy metric Ei versus injected noise variance σ2.

grades the performance of the privacy-preserving approaches,
PP-DKF and NIP-DKF, compared to the conventional DKF
[6]. We also see that the proposed PP-DKF significantly
outperforms the NIP-DKF method by achieving lower MSE
for a broad range of injected noise variances, indicating lower
sensitivity of the PP-DKF to the noise variance than the
NIP-DKF. This is because the proposed PP-DKF operates
by partially obfuscating shared substates. At the same time,
the NIP-DKF solution perturbs the entire state before sharing
among neighbors, which was the motivation behind the design
of our consensus framework.

Fig. 4 shows the privacy metric (21) for K = 30 consensus
iterations versus the noise variance parameter σ2, for all
agents. We see that injecting a higher amount of noise results
in higher privacy, where the privacy level of all agents is
significantly improved under the proposed PP-DKF compared
to the NIP-DKF. Due to the ring topology, agents 3 and 4
achieve the same privacy level as agents 2 and 1. The improved
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privacy-accuracy trade-off under the PP-DKF is manifested
by achieving lower MSE and higher privacy Ei for all agents
compared to NIP-DKF.

VII. CONCLUSION

This paper proposed a privacy-preserving distributed
Kalman filter that utilizes both decomposition-based and
noise injection-based privacy-preserving average consensus
techniques to protect network agents disclosing their private
information. It provides a private distributed Kalman filter
by restricting the amount of information exchanged with
decomposition and concealing the private data from being es-
timated by adversaries with perturbation. The convergence and
performance of the derived PP-DKF have been analyzed. The
achieved privacy level of all agents, defined as the uncertainty
of the honest-but-curious agent to estimate the initial state
of other agents, has been characterized in the presence of an
honest-but-curious agent. It has been shown that the proposed
PP-DKF solution improves privacy and performance of the
Kalman filtering operations compared to the DKF employing
contemporary privacy-preserving techniques. Lastly, several
simulations verified the obtained theoretical results.
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Abstract—This paper presents a private-partial distributed
least mean square (PP-DLMS) algorithm that offers energy
efficiency while preserving privacy and is suitable for applications
with limited resources and strict security requirements. The pro-
posed PP-DLMS allows every agent to exchange only a fraction
of their perturbed data with neighbors during the collaboration
process to minimize communication costs and guarantee privacy
simultaneously. In order to understand how partial-sharing of
perturbed data affects the learning performance, we conduct
mean convergence analysis. Moreover, to investigate the privacy-
preserving properties of the proposed algorithm, we characterize
agent privacy in the presence of an honest-but-curious (HBC)
adversary. Analytical results show that the proposed PP-DLMS
is resilient against an HBC adversary by providing a fair energy-
privacy trade-off compared to the conventional LMS algorithm.
Numerical simulations corroborate the analytical findings.

Index Terms—Distributed learning, energy-efficiency, privacy-
preservation, average consensus, multiagent systems.

I. INTRODUCTION

In the past decade, distributed computing systems have
played a significant role in advancing signal processing and
machine learning over multiagent networks [1]–[5]. The dis-
tributed network structure facilitates local communication be-
tween agents and their neighbors, thus enhancing the learning
performance and robustness against dynamic changes in net-
work topology. The local interactions among agents are real-
ized via radio communication, which consumes large amounts
of power and bandwidth. Local interactions are not only
energy-intensive but also vulnerable to potential adversaries
[6]. Thus, a distributed learning procedure that reduces the
communication load as much as possible without significantly
impairing the privacy of agents and overall estimation perfor-
mance is always preferred.

Cryptography-based methods can provide secure communi-
cation between agents. However, they add substantial com-
munication overhead and require considerable amounts of
power [7]–[9], prohibiting their use in resource-constrained
networks. Furthermore, cryptographic techniques are ineffec-
tive against privacy theft by dishonest network agents. Instead,
low-complexity methods like noise injection-based mecha-
nisms are attractive alternatives for preserving the privacy
of individual agents [10]–[17]. In this category, differential-
privacy techniques inject uncorrelated noise sequences into the

The first two authors contributed equally to this work.
This work was supported by the Research Council of Norway.

information exchanged to ensure data privacy [10], [11]. The
privacy-accuracy trade-off was improved in [15]–[18] by in-
jecting correlated noise sequences with decaying variances into
the exchanged information. Meanwhile, decomposition-based
privacy-preserving techniques divide the private information
into two substates, of which only one is shared among agents,
hence making inference more difficult for adversaries [19],
[20].

Distributed computing systems are often associated with
limited computational and power resources, so resource-
intensive local interactions should be minimized. This can
be accomplished by performing dimensionality reduction [21]
and 1-bit quantization [22] on the information before exchang-
ing. Although these methods reduce communication costs,
they are time-consuming and add additional computational
burden to agents. Employing a probabilistic communication
strategy is also an alternative solution to reduce local com-
munication among agents [23]. Furthermore, partial-sharing
concepts proposed in [27]–[29] reduce the consumption of
resources by allowing agents to share only a fraction of
information during each inter-agent interaction. The ease of
implementation has made partial-sharing concepts popular in
distributed learning. These communication-efficient methods,
however, have not been investigated for privacy protection.
To this end, in this paper, we propose a distributed learning
framework that simultaneously attains both energy efficiency
and privacy preservation.

This paper presents a private-partial distributed LMS (PP-
DLMS) algorithm that enables agents to participate in local
interactions by sharing only a fraction of their perturbed
information, thus reducing resource consumption as well as
preserving privacy. To investigate the impact of partial-sharing
of perturbed data on the performance of distributed learning,
we analyze the mean convergence and study the privacy
of agents in the presence of an honest-but-curious (HBC)
adversary. The HBC agent is a legitimate agent in the network
that is curious about the private information of other agents.
Since an HBC agent is a member of the network, it has
access to the information exchanged in the neighborhood
as well as to the information of the partial-sharing-based
communication mechanism. As a result, the network becomes
more vulnerable to information leakage. The privacy analysis
shows that the proposed PP-DLMS provides a fair energy-
privacy trade-off against HBC adversaries. Finally, we provide
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numerical simulations that corroborate our analytical findings.
Mathematical notation: Scalars are denoted by lowercase

letters, column vectors by bold lowercase, and matrices by
bold uppercase. Superscripts (·)T and (·)−1 denote the trans-
pose and inverse operators, respectively. The symbol 1K

represents the K × 1 column vector with all entries equal to
one and IK is the K×K identity matrix. The right Kronecker
product of two matrices is denoted by ⊗, while λi(A) denotes
the ith eigenvalue of matrix A.

II. BACKGROUND AND PROBLEM FORMULATION

Consider a sensor network modeled as a connected graph
G = {N , E}, where the node set N represents the agents of the
network and E is the set of edges that represent bidirectional
communication links between the nodes, i.e., (k, l) ∈ E if
nodes k and l are connected. Additionally, the set Nk indicates
the neighborhood of the node k that includes itself and the
cardinality of the set Nk is denoted by |Nk|, while K = |N |
is the number of agents in the network. At time instant n
and agent k, the input signal xk,n and desired signal yk,n are
assumed to be described as

yk,n = xT
k,n w⋆ + ǫk,n, (1)

where w∗ ∈ RL is an optimal parameter vector to be
estimated, xk,n = [xk,n, xk,n−1, . . . , xk,n−L+1]

T is the input
signal vector, and the observation noise ǫk,n is a zero-mean
Gaussian random sequence. The estimate of w⋆ at time instant
n, i.e., wn is chosen so that it minimizes

Jn =
1

K

∑

k∈N
E[e2k,n], (2)

where ek,n = yk,n − ŷk,n with ŷk,n as the estimated filter
output at agent k. At every time instant n, wn can be updated
via steepest-descent approach as

wn+1 = wn − η

2
∇Jn = wn + η

∑

k∈N
ek,nxk,n, (3)

where η is the step size. The operation in (3) can be modeled
as wn+1 = 1

K

∑
k∈N

ψk,n+1 with

ψk,n+1 = wn + µ ek,n xk,n, (4)

being the intermediate estimate of w⋆ at node k and time
instant n, and µ = ηK is the new step size. The average of the
intermediate estimate ψk,n+1 across the entire network can be
evaluated in a distributed manner using an average consensus
filter (ACF) [24]–[26].

In the process of obtaining an average consensus, agents
exchange local information ψk,n+1 with their neighbors that
contains node-sensitive information and might be exploited by
potential adversaries. To protect the node-sensitive information
from being inferred by adversaries, agents exchange perturbed
versions of their private information [15]–[17]. Thus, the state
of the ACF after m consensus iterations is

hk,(m) =
∑

l∈Nk

alkh̃l,(m−1), (5)

where alk is the consensus weight between agents l and k,
h̃l,(m−1) = hl,(m−1) + ωl,(m−1) is the perturbed local infor-
mation with hl,(0) = ψl,n+1, and ωl,(m−1) is the perturbation
noise at agent l and (m − 1)th consensus iteration [15]. The
perturbation noise at agent l and consensus iteration m is given
by

ωl,(m) =

{
νl,(0), m = 0

φmνl,(m) − φm−1νl,(m−1), otherwise,
(6)

where constant φ ∈ (0, 1) is same for all agents, and νl,(m) ∈
RL is a zero-mean Gaussian sequence with E[νl,(m)ν

T
l,(m)] =

σ2
νIL. If A with [A]l,k = alk is a doubly stochastic matrix that

satisfies the conditions stated in [25] and the perturbation noise
follows (6), all agents reach consensus on the exact average,
given by

lim
m→∞

hk,(m) =
1

K

∑

l∈N
hl,(0), (7)

asymptotically.

III. PP-DLMS ALGORITHM

As shown in (5), the collaboration between agents is vital
for distributed learning. Privacy-preserving distributed learning
techniques are no exception. However, although collaboration
among agents improves learning accuracy, it is resource-
intensive. As nodes in sensor networks have limited battery
power, reducing the inter-node communication overhead is
essential while maintaining inter-node cooperation benefits. By
promoting partial-sharing [27]–[29] among agents in privacy-
preserving distributed learning systems, we aim to achieve
both privacy and energy efficiency in a single framework.

In the proposed PP-DLMS, during each consensus iteration
m, every agent shares only a portion of the perturbed version
of its private information with neighbors (i.e., M out of L
entries in hk,(m)) to reduce the communication load while
maintaining privacy. The entry selection procedure at each
agent k is characterized by a diagonal selection matrix of size
L×L, the main diagonal of which consists of M numbers of
ones and L − M numbers of zeros. The selection matrix of
agent k at time instant n and consensus iteration m is denoted
by Sk,n,(m), where the position of ones indicates which entries
of the private information are to be shared with neighbors. The
selection of M out of L entries can be made stochastically, or,
sequentially as in [27], [28]. We adopt a coordinated partial-
sharing scheme, which is a special case of sequential and
stochastic partial-sharing methods [28]. In coordinated partial-
sharing, all agents are initialized with the same selection
matrices, i.e., S1,0,(0) = S2,0,(0) · · ·SK,0,(0). Since we are
using the coordinated partial-sharing, we drop node index in
Sk,n,(m) and continue with Sn,(m). Additionally, the selection
matrix at the current consensus iteration, i.e., Sn,(m), can be
obtained by applying a right-circular shift operation on the
main diagonal elements of the selection matrix during the
previous consensus iteration, i.e., Sn,(m−1). We also consider
Sn,(0) = Sn−1,(m) at each time index n. This process has an
entry-sharing probability of p = M

L because each entry will be
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Algorithm 1: Private-Partial DLMS (PP-DLMS)
• For each agent k ∈ N
Initialize: Sn,(0), τ ,
ŷk,n = xT

k,nwk,n

ek,n = yk,n − ŷk,n
Local Update:

ψk,n+1 = wk,n + µ xk,n ek,n

Average Consensus Update:
Set hk,(0) = ψk,n+1

For m = 1 to T
Perturb the local data h̃k,(m−1) = hk,(m−1)+ωk,(m−1)

Share Sn,(m−1)h̃k,(m−1)

Receive
{
Sn,(m−1)h̃l,(m−1) : ∀l ∈ N−

k

}

hk,(m) = akkh̃k,(m−1)

+
∑

l∈N−
k

alk

(
Sn,(m−1)h̃l,(m−1) + (I− Sn,(m−1))h̃k,(m−1)

)

Sn,(m) = circularshift
(
Sn,(m−1), τ

)

Endfor
wk,n+1 = hk,(T )

shared M times during L subsequent iterations. By using the
selection matrices, the privacy-preserving average consensus
state update at each agent k can be expressed alternatively as

hk,(m) = akkh̃k,(m−1)

+
∑

l∈N−
k

alk
(
Sn,(m−1)h̃l,(m−1) + (I− Sn,(m−1))h̃l,(m−1)

)
,

(8)

where N−
k indicates the neighborhood of node k excluding

itself. As a result of partial information sharing, agents do
not have access to the portion of the information that was
not shared. However, by allowing each node to use its own
internal information instead of the unshared information of
neighboring agents, this challenge can be solved. At each agent
k, we therefore substitute (I−Sn,(m−1))h̃k,(m−1) in the place
of (I− Sn,(m−1))h̃l,(m−1) for each l ∈ N−

k as

hk,(m) = akkh̃k,(m−1)

+
∑

l∈N−
k

alk

(
Sn,(m−1)h̃l,(m−1) + (I− Sn,(m−1))h̃k,(m−1)

)
·

(9)

After a sufficient number of consensus iterations, say T ,
the parameter vector wk,n is updated to wk,n+1 = hk,(T ).
The workflow of the proposed PP-DLMS is summarized in
Algorithm 1.

IV. PERFORMANCE ANALYSIS

In this section, we examine the impact of partial sharing of
information on convergence and privacy.

A. Network Global Model

At each time instant n, we define the optimal model
parameter vector w⋆

net = 1K ⊗w⋆, estimated model parame-
ter vector wnet,n = col{w1,n,w2,n, . . . ,wK,n}, input data
matrix Xn = blockdiag{x1,n,x2,n, . . . ,xK,n}, observation
noise vector ǫnet,n = col

{
ǫ1,n, ǫ2,n, . . . , ǫK,n

}
, and private

information

h(0) = col{h1,(0),h2,(0), . . . ,hK,(0)}
= col{ψ1,n,ψ2,n, . . . ,ψK,n}, (10)

where the column-wise stacking and block diagonalization
operations are represented by col{·} and blockdiag{·}, respec-
tively. Using the above definitions, data model and error vector
at network-level are

yn = col{y1,n, y2,n, . . . , yK,n} = XT
nw

⋆
net + ǫn

en = col
{
e1,n, e2,n, . . . , eK,n

}
= yn −XT

nwnet,n.
(11)

According to definitions in (11), the average consensus state
update in (9), and

ψk,n+1 = wk,n + µ xk,n ek,n, (12)

the network-level model of the PP-DLMS can be stated as

wnet,n+1 = Bn

(
wnet,n + µXn en

)
+ cn (13)

with

Bn =
m−1∏

i=0

Bn,(i) and cn =
m−1∑

i=0

(m−1∏

j=i

Bn,(j)

)
ω(i), (14)

where Bn,(m) = A ⊗ Sn,(m) + IK ⊗ (IL − Sn,(m)), ω(i) =
col{ω1,(i),ω2,(i), . . . ,ωK,(i)}, and the network-level pertur-
bation noise vector is given by

ω(i) =

{
ν(0), i = 0

φiν(i) − φi−1ν(i−1), otherwise,
(15)

where ν(i) = col{ν1,(i),ν2,(i), . . . ,νK,(i)}. In order to obtain
the convergence condition for PP-DLMS, we assume the
following:
A1. For all k ∈ N , the input signal vector xk,n is drawn from

a WSS multivariate random sequence with correlation
matrix Rk = E[xk,nx

T
k,n]; in addition, the input signal

vectors xk,n and xl,m are independent for all k 6= l and
n 6= m.

A2. The noise process ǫk,n is assumed to be zero-mean i.i.d.
and independent of any other quantity.

A3. For all k ∈ N , the selection matrix Sn,(m) is assumed
to be independent of any other data.

B. First-order Convergence

Considering w̃net,n = w⋆
net − wnet,n, and using the fact

that w⋆
net = Bnw

⋆
net (since Bn,(m)w

⋆
net = w⋆

net for all m),
then form (13), w̃net,n+1 can be recursively expressed as

w̃net,n+1 = Bn

(
ILK−µXnX

T
n

)
w̃net,n−µBnXnǫnet,n−cn.

(16)
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Applying expectation E[·] on the both sides of (16) and using
the assumptions A1 − A3, we obtain

E[w̃net,n+1] = E[Bn]
(
ILK − µR)

E[w̃net,n], (17)

where R = E[XnX
T
n ] = blockdiag{R1,R2, . . . ,RK}. From

(17), one can see that limn→∞ E[w̃net,n] attains finite value if
and only if ‖E[Bn]

(
ILK −µR)

‖ < 1 for all n, where ‖ · ‖ is
any matrix norm. Here, we use the block maximum norm of
the matrix, i.e., ‖·‖b,∞ in [30], to obtain the mean convergence
condition. From the properties of block maximum norm, one
can obtain

‖E[Bn]
(
ILK − µR)

‖b,∞ ≤ ‖E[Bn]‖b,∞‖ILK − µR‖b,∞·
Additionally, we have

‖E[Bn]‖b,∞ = ‖
m−1∏

i=0

E
[
Bn,(i)

]
‖b,∞ ≤

m−1∏

i=0

‖E[Bn,(i)]‖b,∞ ≤ 1,

and using the similar procedure in [27], [28], one can prove
that

‖E[Bn,(i)]‖b,∞ = ‖p(A⊗ IL) + (1− p)ILK‖b,∞ ≤ 1·
By using [31, Lemma D. 5], it is seen that E

[
w̃net,n

]
con-

verges under the condition ρ
(
ILK−µR)

< 1, or, equivalently,
∀k, i : |1 − µλi(Rk)| < 1, where ρ(·) denotes the spectral
radius of the argument matrix. As a result, we obtain the mean
convergence condition as

0 < µ <
2

max
∀i,k

{λi(Rk)}
· (18)

Accordingly, as long as the step size µ satisfies (18), the
operations will converge in the mean.

C. Privacy Analysis

This section examines the privacy of agents in the presence
of an HBC agent. The HBC agent is an adversary, but a
legitimate agent of the network that has access to informa-
tion associated with the selection of elements in the partial
sharing process and consequently increases the likelihood of
information leakage. Let us assume that agent k is an HBC
agent trying to estimate the private information of other agents
at each time instant n, i.e., hl,(0) = ψl,n+1 for l ∈ N \ {k}.
The privacy of agent l is defined as the mean squared esti-
mation error at the adversary attempting to infer the private
information as

El,(m) , tr
(
E[(ĥl,(m) − hl,(0))(ĥl,(m) − hl,(0))

T]
)

(19)

where ĥl,(m) denotes the estimate of the private information
hl,(0) after m consensus iterations at the adversary.

The HBC agent has access to its own information and
the information exchanged in the neighborhood at each con-
sensus iteration m, i.e., {hk,(m),Sn,(m),Sn,(m)h̃l,(m)}, for
l ∈ N−

k . Since the HBC agent already knows its own
information, the corresponding entries are removed from
ω(m),ν(m),h(0), and,Bn,(m), and denote the quantities with

reduced dimensions as ω̌(m), ν̌(m), ȟ(0), and, B̌n,(m), respec-
tively. From (9), the network-level consensus operation with
reduced dimensions can be stated as

h̃(m) =
( m∏

i=0

B̌n,(i)

)
ȟ(0) +

m∑

i=0

( m∏

j=i

B̌n,(j)

)
ω̌(i). (20)

Without loss of generality, we consider the case where agent
K is an HBC agent. At the HBC agent, let θ(m) = Ch̃(m)

be the observation vector that comprises the information
captured at mth consensus iteration with C = C̄T ⊗ IL where
columns of C̄ ∈ R(K−1)×|N−

K | consist of the canonical vectors
corresponding to neighbors of agent K. The canonical vector
corresponding to agent l, el ∈ RK−1, is a vector with 1 in
the lth entry and zeros elsewhere. Then, following similar
procedure as in [15] and substituting (6) in (9), observation
model at the HBC agent, after m consensus iterations, is
described as

ϑ(m) = H(m)ȟ(0) + F(m)υ(m) (21)

where ϑ(m) = col{θ(0), · · · ,θ(m)}, H(m) =
col{H(0), · · · ,H(m)} with H(m) = C

∏m
i=0 B̌n,(i), ȟ(0) =

col{h1,(0), · · · ,hK−1,(0)}, υ(m) = col{ν̌(0), · · · , ν̌(m)}, and

F(m)=




CB̌n,(0) 0 0 · · · 0
CF(1),(0) φCB̌n,(1) 0 · · · 0
CF(2),(0) φCF(2),(1) φ2CB̌n,(2) · · · 0

...
...

...
. . .

...
CF(m),(0) φCF(m),(1) φ2CF(m),(2) · · · φmCB̌n,(m)




with F(m),(i) =
∏m

t=i+1 B̌n,(t)(B̌n,(i) − I). Using the model
in (21) the HBC agent can obtain the maximum likelihood
(ML) estimate of ȟ(0), with associated error covariance

P(m) =
(
HT

(m)

(
F(m)ΓF

T
(m)

)−1
H(m)

)−1

(22)

where Γ = E{υ(m)υ
T
(m)} = σ2

νI. As the HBC agent collects
more information from neighbors, the mean squared error of
the ML estimator decreases and the privacy metric (19) at each
agent k is obtained as

Ek,(m) = tr
(
(eT

k ⊗ IL)P(m)(ek ⊗ IL)
)
. (23)

V. NUMERICAL SIMULATIONS

To demonstrate the effectiveness of PP-DLMS, we con-
ducted simulations for identifying an unknown system of
length L = 32. For this, we considered a network of K = 5
agents with the adjacency matrix of

E =




0 1 0 0 1
1 0 1 0 0
0 1 0 0 1
0 0 0 0 1
1 0 1 1 0



,

as in [15]. The input signal xk,n and observation noise se-
quence ǫk,n, were drawn from zero-mean Gaussian distribution
with variance σ2

x = 1 and σ2
ǫ ∈ U(0.008, 0.03) where U(·)

is the uniform distribution. The average consensus weights
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Fig. 1: Network-level MSE (in dB) versus time.

are non-negative coefficients and were obtained through the
Metropolis rule [25]. The ACF was iterated for T = 40 itera-
tions to approximate the required averages and the perturbation
noise sequence at each agent follows (6) with φ = 0.9. The
proposed PP-DLMS was simulated under coordinated partial-
sharing scheme for different values of M (say 0.75L, 0.5L,
0.25L) and the network-level MSE (NMSE) was considered as
the performance metric. The results were obtained against the
injected noise variance σ2

ν , by averaging over 500 independent
experiments.

Firstly, the learning curves (i.e., NMSE in dB vs iteration
index n) for perturbation noise variance σ2

ν = 5 are shown
in the Fig. 1. Next, for different values of σ2

ν , the steady-
state NMSE is displayed in Fig. 2. From these plots, it can be
observed that the proposed PP-DLMS scheme simultaneously
achieves energy efficiency and privacy at the cost of a slight
degradation in the NMSE. This performance degradation is
inversely proportional to the amount of information shared
during the average consensus operations. The degradation in
performance increases with less information shared at each
iteration, smaller M , resulting in a larger NMSE.

Finally in the presence of an HBC agent, agent 5 in the
network, the privacy metric (23) versus σ2

ν for different values
of M is illustrated in Fig. 3. A similar breach of privacy occurs
with agent 4 as in [15], and agent 3 obtains identical privacy
as agent 1 due to symmetric topology, they are omitted in
Fig. 3. From Fig. 3, it can be seen that the proposed PP-DLMS
provides a reasonable privacy-energy trade-off. For the case of
sharing M = 0.75L, the algorithm achieves the same level of
privacy as in the case of full information sharing. In the case
of sharing less information, M = 0.5L and M = 0.25L, the
level of privacy decreases, however since smaller portions of
information are shared at each consensus iteration, the HBC
agent must collect information for more consensus iterations
to accurately estimate the private information of other agents.
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Fig. 2: Network-level MSE (in dB) for different values of M ,
i.e., the portion of the shared information, versus injected noise
variance σ2

ν .
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Fig. 3: Agent privacy (in dB) for different values of M versus
injected noise variance σ2

ν .

VI. CONCLUSIONS

This paper proposed an energy-efficient and privacy-
preserving distributed LMS algorithm. By allowing each agent
to share only a fragment of perturbed local information with
its neighbors, the proposed private-partial distributed LMS
(PP-DLMS) simultaneously achieved both energy-efficiency
and privacy-preservation. A mean-convergence analysis of the
proposed PP-DLMS algorithm has been conducted to examine
the impact of partial-sharing of information on the estimation
performance. Further, agent privacy has been characterized in
the presence of an honest-but-curious (HBC) adversary, in
order to investigate the privacy-preserving properties of the
proposed algorithm. Analytical results revealed that the PP-
DLMS is resilient to the perturbation sequence and provides a
fair energy-privacy trade-off against HBC agents. Numerical
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simulations have validated the analytical findings.
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least mean-square estimation with partial diffusion,” IEEE Trans. Signal
Process., Vol. 62, no. 2, pp. 472–484, Jan., 2013.
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Abstract— This paper proposes a distributed Kalman filter (DKF)
with enhanced robustness against Byzantine adversaries. A Byzan-
tine agent is a legitimate network agent that, unlike an honest
agent, manipulates information before sharing it with neighbors to
impair the overall system performance. In contrast to the literature,
the DKF is modeled as a distributed optimization problem where
resiliency against Byzantine agents is accomplished by employing
a total variation (TV) penalty term. We utilize a distributed subgra-
dient algorithm to compute the state estimate and error covariance
matrix updates of the DKF. Additionally, we prove that the proposed
suboptimal solution converges to a neighborhood of the optimal
centralized solution of the Kalman filter (KF) with a bounded radius
when Byzantine agents are present. Numerical simulations corrob-
orate the theoretical findings and demonstrate the robustness of the proposed DKF against Byzantine attacks.

Index Terms— Multiagent network, Kalman filtering, Distributed optimization, Byzantine attack, attack robustness

I. INTRODUCTION

D ISTRIBUTED filtering techniques have found
widespread use in diverse applications such

as environmental monitoring, smart grids, and state
estimation [1]–[4]. Due to the lack of a fusion center
in distributed Kalman filtering scenarios, agents rely on
local interactions to complete a common task across the
network [5], [6]. However, the local collaboration renders
distributed Kalman filtering susceptible to security attacks.

Attacks on multi-agent networks can be classified as ei-
ther active or passive; for example, a passive attack can be
an eavesdropper intercepting a communication link between
agents in order to obtain information [7]. On the other hand,
active attacks include denial-of-service attacks (DoS) and
data falsification attacks. During DoS attacks, agents cannot
exchange information due to link blockages [8]. In contrast, in
data falsification attacks, false information is injected into the
network [9] by either external adversaries or malicious agents,
also termed Byzantine agents, to degrade the overall system
performance. Data falsification attacks can be performed inde-
pendently by each Byzantine agent or designed cooperatively
in order to maximize system degradation [9].

Data falsification attacks, in general, have been extensively
studied to analyze the impact of malicious behaviors on
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distributed filtering and estimation [10]–[18]. One approach to
reducing the impact of malicious adversaries on the network
performance is to detect them and counteract their actions
by implementing correction measures [19]–[21]. For example,
[22] proposed a defense strategy for a distributed recursive
filter by detecting adversarial attacks based on changes in
innovation signals of agents and redesigning their gains.
Several studies have been proposed in the literature to design
an optimal data falsification attack from the perspective of an
adversary that evades detection [23]–[26]. For example, the
authors in [23] and [24] propose stealthy linear data falsifica-
tion attacks in remote state estimation scenarios assuming K-
L divergence and χ2 detectors, respectively. Furthermore, the
integrity attack also includes stealthy attack strategies, which
inject false data into the network without being detected [27]–
[29]. In contrast, [25], [26] mainly focus on designing attacks
to ensure that the probability of detection does not exceed
a given threshold. These have shown that relying on attack
detection to limit the impact of adversaries has limited utility
in the presence of stealth attacks. Hence, there is a need for
a robust algorithm that can operate effectively even when
unidentified attacks occur [30].

To that end, works in [31], [32] propose using the statistics
of innovation signals to re-design the consensus weights of
agents in distributed signal detection and filtering scenarios
to minimize the impact of Byzantine agents. A Byzantine-
resilient distributed state estimation algorithm is proposed
in [33], which allows agents to update state estimates locally
by selecting the best subset of neighbors to be effective in
updating the state estimate. To reduce computational resources,
in [34], [35], distributed state estimation approaches provide
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resilience against measurement attacks by assigning adaptive
weights to received measurements from neighbors. By assign-
ing smaller weights to measurements whose norm exceeds
a certain threshold, they would have a smaller impact on
updating state estimates. The studies in [36], [37] investigate
the problem of multi-sensor estimation under undetectable
attacks. From the perspective of an adversary, authors in [36],
[37] design the attack to maximize the estimation error of the
network. Moreover, the gains of the estimator are re-designed
in order to mitigate the impact of the designed optimal attack.
In addition, a secure state estimation strategy with triple-loop
local state observers is proposed in [38], while in [39], the
secure state estimation problem is solved by a local observer
that achieves robustness against sensor attacks by employing
the median of its local estimates.

Homomorphic encryption schemes have been proposed to
further ensure the confidentiality of the signals sent over
the network [40]. In [41], the authors propose employing
additively homomorphic encryption, which enables the cloud
server and security module to integrate the information of
multiple parties while maintaining data privacy. However, the
authors in [42] propose a modified encoding and decoding
scheme that, unlike the previous work in [43], does not nega-
tively affect estimation performance in the absence of attacks
and further protects data integrity in multi-sensor networks.
Moreover, utilizing randomization-based methods to disrupt
and mislead attackers in their malicious activities is a less
resource-intensive method to mitigate the impact of adversarial
attacks in the network [44]. Furthermore, to improve network
resistance in the presence of adversarial attacks, [45], [46]
introduced a redundancy-based approach for CPSs at different
levels of communication, channels, software, and hardware.
Redundant subsystems serve as backups or parallel integrity
verification units to reduce the effect of malfunctioning be-
haviors in the network [47]. However, an approach based on
redundancy demands strict network requirements and can only
tolerate a few Byzantine adversaries. Accordingly, the authors
in [48] reduce the stringent requirements of redundancy to only
a group of agents and make them resistant to attacks. Gener-
ally, these approaches reduce the impact of adversarial attacks
on the network. Still, they require more local computations
and information transfer in the network, which is undesirable
in resource-constrained situations.

The Kalman filtering algorithm has been modeled as an
optimization problem. However, this optimization-based ap-
proach has not been analyzed in adversarial situations or
adapted for robustness in the presence of Byzantine agents.
Therefore, contrary to the literature, we propose a distributed
Kalman filtering algorithm modeled as an optimization prob-
lem with total variation-based constraints that provides ro-
bustness to coordinated Byzantine attacks. First, we design
the filtering algorithm by adapting the framework proposed
in [49] to model the Kalman filtering operations as a so-
lution to an optimization problem and using the TV-norm
penalty in the objective function to enforce resiliency against
data-falsification attacks in [50]–[52]. Then, we solve the
TV-norm-penalized optimization problem using a distributed
subgradient algorithm that updates the state estimate for all

agents through local collaborations. Furthermore, we model
the error covariance update of agents as a TV-norm-penalized
optimization problem, which is solved by a similar subgradient
approach in the presence of Byzantine agents. Moreover,
we show that the proposed TV-norm penalized optimization
problem corresponding to the state estimate update results
in the same solution as the centralized Kalman filter (CKF).
In addition, in the presence of Byzantine agents, we show
that the proposed suboptimal solution for the state estimate
update, obtained by the subgradient algorithm, converges to
a bounded neighborhood of the optimal solution. Finally, we
provide numerical simulations to demonstrate the resiliency
against Byzantine behavior by obtaining lower filtering mean
square error (MSE).

The remainder of this article is organized as follows.
Section II presents the problem formulation and provides
background information. Section III proposes a DKF with a
TV-norm penalized objective function that is robust against
Byzantine agents. Section IV presents the convergence of the
proposed TV-norm-penalized distributed optimization problem
to a bounded neighborhood of the CKF solution. Finally,
numerical results are provided in Section V to demonstrate
the resiliency against Byzantines, and Section VI concludes
the article.

Mathematical Notation: Scalars are denoted by lower-
case letters, column vectors by bold lowercase, and matrices
by bold uppercase. Superscripts (·)T and (·)−1 denote the
transpose and inverse operators, respectively. The symbol 1m

represents the m × 1 column vector with all entries equal
to one, and Im is the m × m identity matrix. The trace
operator is denoted as tr(·), whereas the greater than and
less than symbols in the scalar inequalities are represented
by > and <, respectively. A positive semidefinite matrix A
is denoted by A ≽ 0 and A ≽ B indicates that A − B is a
positive semidefinite matrix. The element-wise sign function
is represented by sign(·) where given x > 0, sign(x) = 1
and sign(x) = −1 when x < 0. In case of x = 0, the
value of sign(x) can be any arbitrary value within [−1, 1].
The half vectorization of a symmetric matrix M ∈ Rm×mis
denoted by vech(M) ∈ Rm(m+1)/2, where vech(M) =
[M1,1, · · · ,M1,m,M2,2, · · · ,M2,m, · · · ,Mm,m]T with Mij as
the ijth element of M. The operator of vec−1

h (·) denotes the
inverse function of vech(·), i.e., vec−1

h (vech(M)) = M. The
stacked vector x = [a]Ni=1 ∈ RNm corresponds to N times
stacking the smaller vector a ∈ Rm together.

II. BACKGROUND AND PROBLEM FORMULATION

Consider a network modeled as a connected graph G =
{N , E}, where the node setN represents agents of the network
and E is the set of edges that represent communication links
between agents, i.e., (i, j) ∈ E if nodes i and j are connected.
Additionally, the set Ni specifies the neighborhood of node
i and does not include the node itself. The cardinality of the
set Ni is denoted by |Ni|, while N = |N | is the number of
agents in the network.
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A. Distributed Kalman Filter (DKF)
We revisit the DKF problem that is modeled as a maximum

likelihood estimation problem and represents the relationship
between a KF [5] and an optimization problem [49]. The
state-space model characterizes the state vector evolution and
observation vectors and is given by

xk+1 = Fxk +wk (1)
yi,k = Hixk + vi,k (2)

where for time instant k, F ∈ Rm×m denotes the state
transition matrix, H = [HT

1, · · · ,HT
N ]T ∈ RNn×m denotes the

network observation matrix, yk = [yT
1,k, · · · ,yT

N,k]
T ∈ RNn

is the network observation vector, and wk ∈ Rm and vk =
[vT

1,k, · · · ,vT
N,k]

T ∈ RNn, are process and observation noises,
respectively. The process noise wk and observation noise vk

are zero-mean white Gaussian noise processes with a covari-
ance matrices Q ∈ Rm×m and R ∈ RNn×Nn, respectively,
where R ≜ diag({Ri}Ni=1) and Ri = E{vi,kv

T
i,k} ∈ Rn×n.

We assume that the pair (F,H) is observable and observation
noise sequences are uncorrelated. Every agent estimates the
state of the network by processing its local and neighboring
information. A local estimate for each agent must be provided
in a way that the local mean squared error of the agent is
minimized.

B. Byzantine Attack Strategy
We assume a distributed setting in which a subset of agents

B are Byzantines, i.e., B ⊂ N , and unlike honest agents,
they share the manipulated version of their local estimates. In
order to update the a posteriori state estimate, agents need
information exchange with neighbors; we, therefore, assume
that Byzantine agents falsify their state estimate before sharing
it with neighbors at each iteration. The shared state estimate
can be modeled as

x̃l
i,k =

{
xl
i,k + δli i ∈ B

xl
i,k i /∈ B (3)

where at agent i and iteration l, xl
i,k denotes the state estimate

and δli ∈ Rm is the perturbation sequence of the Byzantine
agent. To maximize the attack stealthiness, as shown in [53],
[54], we consider the perturbation sequence to be a zero-
mean Gaussian sequence with covariance matrix Σi ∈ Rm×m.
Moreover, in order to maximize the damage caused by the
Byzantine attack, we assume that Byzantines design a co-
ordinated attack with covariance matrix Σ = E{δl(δl)T} ∈
RNm×Nm where δl = [(δl1)

T, · · · , (δlN )T]T is the network-
wide perturbation sequence and δli = 0 if i /∈ B.

III. BYZANTINE-ROBUST DISTRIBUTED KALMAN FILTER
(BR-DKF)

We consider a network of N agents and assume each agent
runs a local KF without sending information to a fusion center.
Instead, agents exchange information with their neighbors to
develop their optimal estimates. The communication network
is considered as graph G with adjacency and Laplacian ma-
trices E and L, respectively. Each agent i ∈ N updates its

local estimate by employing the local observation vector in (2).
Similar to the centralized case in [49], the DKF also requires
two steps of prediction and correction, where for each agent
i and time instant k, the prediction updates are modeled as

x̂i,k|k−1 = Fx̂i,k−1 (4)

Pi,k|k−1 = FPi,k−1F
T +Q (5)

with x̂i,k−1 and Pi,k−1 = E{ei,k−1e
T
i,k−1} being the state

estimate and error covariance matrix at time instant k − 1,
and ei,k−1 = xk−1 − x̂i,k−1. The a priori state estimate
and error covariance are denoted by x̂i,k|k−1 and Pi,k|k−1 =
E{ei,k|k−1e

T
i,k|k−1}, respectively, with ei,k|k−1 = xk −

x̂i,k|k−1.
The correction steps of the DKF can be modeled as the solu-

tion of a constrained optimization problem [49]; in particular,
the a posteriori state estimates can be obtained by solving the
optimization problem

min
{xi,k}N

i=1

N∑

i=1

fi(xi,k)

s. t. xi,k = xj,k, ∀j ∈ Ni, i = 1, 2, · · · , N
(6)

where the local objective function fi(xi,k) is given by

fi(xi,k) =
1

2

(
(yi,k −Hixi,k)

TR−1
i (yi,k −Hixi,k) (7)

+
1

N
(xi,k − x̂i,k|k−1)

TP−1
i,k|k−1(xi,k − x̂i,k|k−1)

)

and the constraints enforce consensus across all the agents
in the network. The distributed Kalman filtering problem can
be solved by any distributed algorithm that finds the optimal
solutions in (6), i.e., x∗

i,k for each i ∈ N . Subsequently, the
a posteriori state estimates of agents are obtained as x̂k =
[x̂T

1,k, · · · , x̂T
N,k]

T where x̂i,k = x∗
i,k.

Motivated by [50], [51], the constraints in (6) can be approx-
imated by a TV-norm penalty which also endows robustness to
data falsification attacks. In the absence of a Byzantine agent
in the network, the TV-norm-penalized problem of (6) can be
formulated as

x∗
ck

= min
{xi,k}N

i=1

N∑

i=1


fi(xi,k) +

λtv

2

∑

j∈Ni

∥xi,k − xj,k∥1




(8)
where x∗

ck
= [(x∗

1,k)
T, · · · , (x∗

N,k)
T]T and λtv is a penalty

parameter. Due to the penalty parameter λtv, estimates xi,k

and xj,k are forced to be close. The larger the λtv, the closer
xi,k and xj,k become. However, the TV-norm penalty allows
for some pairs of xi,k and xj,k to be different, which is crucial
when Byzantine agents are present in the network.

We solve the optimization problem in (8) with a subgradient
method [51], and derive the state estimate update at each agent
i ∈ N as

xl+1
i,k = xl

i,k−αk


∇xi,k

fi(x
l
i,k) + λtv

∑

j∈Ni

sign(xl
i,k − xl

j,k)




(9)
where αk > 0 denotes the step size and xl

i,k is the state
estimate of the subgradient method at agent i and iteration
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l. Assuming that a group of agents is conducting Byzantine
attacks on the network, i.e., B ⊂ N , and by substituting the
gradient ∇xi,k

fi(xi,k), we obtain

xl+1
i,k = xl

i,k − αk

(
Ωi,kx

l
i,k − θi,k + λtv

∑

j∈Ri

sign(xl
i,k − xl

j,k)

+ λtv

∑

j∈Bi

sign(xl
i,k − x̃l

j,k)

)
(10)

where x̃l
j,k = xl

j,k + δlj is the state estimate received from
the jth Byzantine neighbor, Ri and Bi include honest and
Byzantine members of Ni, and

Ωi,k = HT
iR

−1
i Hi +

1

N
P−1

i,k|k−1

θi,k = HT
iR

−1
i yi,k +

1

N
Ωi,k|k−1x̂i,k|k−1

(11)

with Ωi,k|k−1 = P−1
i,k|k−1. Regardless of the state estimate

received from neighbors, the value of sign(xl
i,k − x̃l

j,k) is
restricted to [−1, 1]. Thus, the last term in (10) limits the effect
of perturbed data received from a Byzantine agent, so that the
state estimate update is more resistant to Byzantine attacks.

Similarly, the error covariance update also requires design-
ing an optimization problem to obtain the average consensus
of the information matrices NΩi,k throughout the network.
To this end, we propose the following optimization problem
that derives the error covariance update

min
{ζi}N

i=1

N∑

i=1

∥ζi − vech(NΩi,k)∥2F

s. t. ζi = ζj , ∀j ∈ Ni, i = 1, 2, · · · , N ·
(12)

The optimal solution of (12) is denoted by ζ∗ =
[(ζ∗1)

T, · · · , (ζ∗N )T]T which returns the average of
vech(NΩi,k) throughout the entire network. Subsequently,
the error covariance matrix can be updated as
Pi,k = (vec−1

h (ζ∗i ))
−1. Motivated by the TV-norm-penalized

optimization problem in (8), we modify the optimization
problem in (12) as

ζ∗ = min
{ζi}N

i=1

N∑

i=1


gi(ζi) +

λtv

2

∑

j∈Ni

∥ζi − ζj∥1


 (13)

where gi(ζi) = ∥ζi − vech(NΩi,k)∥2F . Employing a similar
subgradient approach as in (9), results in

ζl+1
i = ζli − γk


∇ζi

gi(ζ
l
i) + λtv

∑

j∈Ni

sign(ζli − ζlj)


 (14)

where γk > 0 denotes the step size and the update equation
in (14) is simplified as

ζl+1
i =ζli − γk


ζli − vech(NΩi,k) + λtv

∑

j∈Ni

sign(ζli − ζlj)




(15)

After a large enough number of iterations, say l∗, the subopti-
mal solutions in (10) and (15) converge to (xl∗

i,k, ζ
l∗

i ) and the

Algorithm 1 Byzantine-Robust DKF (BR-DKF)
• For each agent i ∈ N
• Initialize x̂i,0 and Pi,0

1: for all k > 0 do
2: x̂i,k|k−1 = Fx̂i,k−1

3: Pi,k|k−1 = FPi,k−1F
T +Q

4: Ωi,k|k−1 = P−1
i,k|k−1

5: Ωi,k = HT
iR

−1
i Hi +

1
NΩi,k|k−1

6: θi,k = HT
iR

−1
i yi,k + 1

NΩi,k|k−1x̂i,k|k−1

7: Set x1
i,k = 0 and ζ1i = 0

8: for l = 1 to l∗ do
9: Share xl

i,k + δli with neighbors if i ∈ B
10: xl+1

i,k = xl
i,k − αk

(
Ωi,kx

l
i,k − θi,k + λtv

∑
j∈Ni

sign(xl
i,k − x̃l

j,k)
)

11: ζl+1
i = ζl

i − γk

(
ζl
i − vech(NΩi,k) + λtv

∑
j∈Ni

sign(ζl
i − ζl

j)
)

12: end for
13: x̂i,k = xl∗

i,k

14: Pi,k = (vec−1
h (ζl

∗

i ))−1

15: end for

filtering a posteriori state estimate and error covariance matrix
can be updated as

x̂i,k = xl∗
i,k

Pi,k = (vec−1
h (ζ∗i ))

−1·
Assuming that Byzantine agents manipulate only state esti-
mates, i.e., falsify the state estimate xl

i,k at each iteration l,
Algorithm 1 summarizes detailed operations of the proposed
BR-DKF. It can be seen in Algorithm 1 that two additional
sign(·) operations are computed at each iteration l, compared
to conventional consensus-based DKFs. The complexity of
sign(·) operator is dominated by the complexity of O(m2) for
the multiplication of Ωi,kx

l
i,k at each iteration l. As a result,

the local computational complexity of the proposed method
is the same as that of the conventional consensus-based DKF
algorithms.

IV. PERFORMANCE ANALYSIS

In this section, we demonstrate that the TV-norm-penalized
problem in (8) yields a feasible solution when the penalty
parameter λtv is sufficiently large. We also show that the
suboptimal solution in (10) converges to a neighborhood of the
optimal solution of the problem in (8) with a bounded radius
when Byzantine agents are in the network. To assist in future
calculations, we define A = [aij ] ∈ RN×|E| as the node-edge
incidence matrix where for each edge e = (i, j) ∈ E with
i < j, we set aei = 1 and aje = −1, otherwise, the elements
of A remain zero. In the following Theorem, we establish the
optimality of the proposed solution in (8) to yield the same
solution as the centralized solution x̂∗

k in [49]. We provide
a lower bound threshold for the penalty parameter λtv that
guarantees convergence of the solution in (8) to the centralized
solution in [49].

Theorem 1: Given that the network topology is connected,
if λtv ≥ λ0 where

λ0 =

√
N

σmin(A)
max
∀k

max
i∈N
∥Ωi,kx

∗
i,k − θi,k∥∞ (16)
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with σmin(A) being the minimum non-zero singular value of
A, Ωi,k and θi,k defined in (11); then, for the optimal solution
x∗
ck

in (8) and the optimal solution of the CKF problem x̂∗
k

in [49], we have x∗
ck

= [x̂∗
k]

N
i=1.

Proof: The proof begins with stating the fact that for
each i ∈ N , the optimal solution x∗

ck
= [x∗

i,k]
N
i=1 satisfies the

optimality condition

∇xi,k
fi(x

∗
i,k) + λtv

∑

j∈Ni

sign(x∗
i,k − x∗

j,k) = 0· (17)

Let us assume sij = sign(x∗
i,k − x∗

j,k) and νi,k =

∇xi,k
fi(x

∗
i,k);

1 then knowing that sji = −sij , we have

νi,k + λtv

∑

j∈Ni,i<j

sij − λtv

∑

j∈Ni,i>j

sij = 0· (18)

Assuming νk = [νT
1,k, · · · ,νT

N,k]
T and s = [sT

1, · · · , sT
|E|]

T

with st = sij for each (i, j) ∈ E , we have

νk + λtvAs = 0· (19)

Now the problem is to show that (19) has at least one solution
s∗ and due to the structure of s its elements are within [−1, 1]
or ∥s∥∞ ≤ 1. The rank of A is N − 1 with the column
null space of one vector, i.e., 1N , since G = {N , E} is
bidirectionally connected. In addition, the optimality condition
of the centralized solution in [49] satisfies

∑

i∈N
νi,k =

∑

i∈N
∇xi,k

fi(x
∗
i,k) = 0 (20)

which means λtvA and νk share the same null space and have
the same rank that consequently, states that we will have at
least one solution for (19). In order to find the solution that
satisfies ∥s∥∞ ≤ 1, we consider the least-squares solution as
s = − 1

λtv
A†νk where † denotes the pseudo inverse. The least-

squares solution is bounded as

∥s∥2 =
1

λtv
∥A†νk∥2· (21)

Then, we have

∥s∥2 ≤
1

λtv
σmax(A

†)∥νk∥2 ≤
1

λtvσmin(A)
∥νk∥2 (22)

where σmax(·) and σmin(·) represent the maximum and min-
imum non-zero singular values of the argument matrix, re-
spectively. Since ∥s∥∞ ≤ ∥s∥2 and ∥νk∥2 ≤

√
N∥νk∥∞, we

have

∥s∥∞ ≤
√
N

λtvσmin(A)
∥νk∥∞ =

√
N

λtvσmin(A)
max
i∈N
|νi,k|·

(23)
Thus, ∥s∥∞ ≤ 1 if λtv ≥

√
N

σmin(A) maxi∈N |νi,k| for each k,
which results in the requirement of λtv ≥ λ0 where

λ0 =

√
N

σmin(A)
max
∀k

max
i∈N
∥∇x∗

ci
fi(x

∗
ci)∥∞

=

√
N

σmin(A)
max
∀k

max
i∈N
∥Ωi,kx

∗
i,k − θi,k∥∞

1Throughout the article, we remove the index k from sij in order to
simplify the notation.

that completes the proof.
After showing the convergence of the proposed method to

the desired centralized case, we need to theoretically analyze
the performance of the proposed solution in the presence of
Byzantines. The following theorem shows that the proposed
suboptimal solution in (10) converges to a neighborhood of the
optimal centralized solution within a bounded radius despite
the presence of Byzantine agents.

Theorem 2: Given the assumptions in Theorem 1 and λtv ≥
λ0, at each agent i ∈ N and the presence of Byzantine agents,
the solution proposed in (10) stays in the neighborhood of the
optimal solution x∗

ck
= [x∗

i,k]
N
i=1 in (8) with radius

lim
l→∞

El{∥xl+1
i,k − x∗

i,k∥2} ≤
∆0

1− ∥∆∥ (24)

where ∆ =
(
1 + 2α2

k∥Ωi,k∥2 + 2εαk

)
I − 2αkΩi,k, ∆0 =

λ2
tvαk(4αk+

1
ε )(4|Ri|2+|Bi|2)m, and the step size αk satisfies

αk ≤ min
i∈N

{
λmin(Ωi,k)− ε

∥Ωi,k∥2
}
· (25)

Proof: The proof begins by computing the gap between
the optimal solution in (8) and the proposed solution in (10)
after l iterations as follows

El{∥xl+1
i,k − x∗

i,k∥2} = El{∥xl
i,k − x∗

i,k (26)

− αk

(
Ωi,kx

l
i,k − θi,k + λtv

∑

j∈Ni

sign(xl
i,k − xl

j,k)
)
∥2}·

In this case, (26) can be further simplified as

El{∥xl+1
i,k − x∗

i,k∥2} = El{∥xl
i,k − x∗

i,k∥2} (27)

+ α2
k El{∥Ωi,kx

l
i,k − θi,k + λtv

∑

j∈Ni

sign(xl
i,k − xl

j,k)∥2}
︸ ︷︷ ︸

β1

− 2αk < xl
i,k − x∗

i,k,Ωi,kx
l
i,k − θi,k + λtv

∑

j∈Ni

sign(xl
i,k − xl

j,k) >

︸ ︷︷ ︸
β2

Considering the optimality condition for the optimal solution
x∗
ck

in (8) as

Ωi,kx
∗
i,k − θi,k + λtv

∑

j∈Ri

sign(x∗
i,k − x∗

j,k) = 0, (28)

we have

β1 =El{∥Ωi,kx
l
i,k − θi,k + λtv

∑

j∈Ri

sign(xl
i,k − xl

j,k)

+ λtv

∑

j∈Bi

sign(xl
i,k − x̃l

j,k)−Ωi,kx
∗
i,k + θi,k

− λtv

∑

j∈Ri

sign(x∗
i,k − x∗

j,k)∥2} (29)

=El{∥Ωi,k(x
l
i,k − x∗

i,k) + λtv

∑

j∈Bi

sign(xl
i,k − x̃l

j,k)

+ λtv

∑

j∈Ri

(
sign(xl

i,k − xl
j,k)− sign(x∗

i,k − x∗
j,k)
)
∥2}·
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Due to the inequality (a+ b)2 ≤ 2a2 + 2b2, we have

β1 ≤ 2El{∥Ωi,k(x
l
i,k − x∗

i,k)∥2}
+ 2λ2

tvEl{∥
∑

j∈Ri

(
sign(xl

i,k − xl
j,k)− sign(x∗

i,k − x∗
j,k)
)

+
∑

j∈Bi

sign(xl
i,k − x̃l

j,k)∥2} (30)

≤ 2El{∥Ωi,k(x
l
i,k − x∗

i,k)∥2}
+ 4λ2

tv El{∥
∑

j∈Bi

sign(xl
i,k − x̃l

j,k)∥2}
︸ ︷︷ ︸

≤|Bi|2m

+ 4λ2
tv El{∥

∑

j∈Ri

(
sign(xl

i,k − xl
j,k)− sign(x∗

i,k − x∗
j,k)
)
∥2}

︸ ︷︷ ︸
≤4|Ri|2m

·

Since for the matrix norm ∥ · ∥, we have2

tr(AB) ≤ min {∥A∥tr(B), ∥B∥tr(A)} (31)

where A and B are positive semi-definite and ∥AB∥ ≤
∥A∥∥B∥, we can show that

∥Ωi,k(x
l
i,k − x∗

i,k)∥2 ≤ ∥Ωi,k∥2∥xl
i,k − x∗

i,k∥2,
and subsequently

β1 ≤ 2∥Ωi,k∥2∥xl
i,k −x∗

i,k∥2 +4λ2
tv(4|Ri|2 + |Bi|2)m· (32)

Additionally, we have

−2× β2 = −2 < xl
i,k − x∗

i,k,Ωi,kx
l
i,k − θi,k

+ λtv

∑

j∈Ni

sign(xl
i,k − xl

j,k)

−Ωi,kx
∗
i,k + θi,k − λtv

∑

j∈Ri

sign(x∗
i,k − x∗

j,k) >

= −2 < xl
i,k − x∗

i,k,Ωi,k(x
l
i,k − x∗

i,k) >

− 2 < xl
i,k − x∗

i,k, λtv

∑

j∈Bi

sign(xl
i,k − x̃l

j,k) >

− 2 < xl
i,k − x∗

i,k, λtv

∑

j∈Ri

(
sign(xl

i,k − xl
j,k)

− sign(x∗
i,k − x∗

j,k)
)
> · (33)

The inequality −2ab ≤ εa2 + b2

ε for each ε ≥ 0 gives

−2 <xl
i,k − x∗

i,k, λtv

∑

j∈Bi

sign(xl
i,k − x̃l

j,k) >

≤ ε∥xl
i,k − x∗

i,k∥2 +
λ2

tv

ε
|Bi|2m (34)

and

−2 <xl
i,k − x∗

i,k, λtv

∑

j∈Ri

(
sign(xl

i,k − xl
j,k)

− sign(x∗
i,k − x∗

j,k)
)
>

≤ ε∥xl
i,k − x∗

i,k∥2 +
4λ2

tv

ε
|Ri|2m· (35)

2The matrix norm ∥ · ∥ is defined as ∥A∥ ≜ σmax(A) with σmax(·)
representing the largest singular value of the argument matrix.

After substituting (29) and (33) in (27), we get

El{∥xl+1
i,k − x∗

i,k∥2}
≤
(
1 + 2α2

k∥Ωi,k∥2 + 2εαk

)
El{∥xl

i,k − x∗
i,k∥2}

− 2αkEl{(xl
i,k − x∗

i,k)
TΩi,k(x

l
i,k − x∗

i,k)}

+ λ2
tvαk(4αk +

1

ε
)(4|Ri|2 + |Bi|2)m (36)

= El{(xl
i,k − x∗

i,k)
T
((

1 + 2α2
k∥Ωi,k∥2 + 2εαk

)
I− 2αkΩi,k

)

(xl
i,k − x∗

i,k)}+ λ2
tvαk(4αk +

1

ε
)(4|Ri|2 + |Bi|2)m·

To guarantee that the error is decreasing with each iteration,
we must have

(
1 + 2α2

k∥Ωi,k∥2 + 2εαk

)
I− 2αkΩi,k ≼ I (37)

that yields

2αk

(
αk∥Ωi,k∥2I+ εI−Ωi,k

)
≼ 0 (38)

Since αk ≥ 0 and by assuming ᾱk = αk∥Ωi,k∥2+ ε, we only
need to have

Ωi,k − ᾱkI ≽ 0 (39)

which requires ᾱk ≤ λj(Ωi,k) for each j = 1, 2, · · · ,m that
means

αk ≤
λmin(Ωi,k)− ε

∥Ωi,k∥2
·

Thus, to ensure that the error gap El{∥xl+1
i −x∗

i ∥2} is bounded
for all agents, the step size must satisfy

0 ≤ αk ≤ min
i∈N

{
λmin(Ωi,k)− ε

∥Ωi,k∥2
}

(40)

where 0 ≤ ε ≤ λmin(Ωi,k). Defining

∆ =
(
1 + 2α2

k∥Ωi,k∥2 + 2εαk

)
I− 2αkΩi,k

∆0 = λ2
tvαk(4αk +

1

ε
)(4|Ri|2 + |Bi|2)m

and assuming that αk satisfies (40), we get ∥∆∥ ≤ 1. Now,
employing (31), the error gap in (36) turns into

El{∥xl+1
i,k − x∗

i,k∥2} ≤ ∥∆∥El{∥xl
i,k − x∗

i,k∥2}+∆0, (41)

which simplifies as

El{∥xl+1
i,k −x∗

i,k∥2} ≤ ∥∆∥l+1 El{∥x0
i,k−x∗

i,k∥2}+∆0

l∑

s=0

∥∆∥s·

(42)
As a result of ∥∆∥ ≤ 1, the error gap becomes

lim
l→∞

El{∥xl+1
i,k − x∗

i,k∥2} ≤
∆0

1− ∥∆∥ (43)

asymptotically, which completes the proof.
Remark 1: The error gap in (43) illustrates that the BR-

DKF restricts the impact of attack amplitude completely due
to the sign(·) terms; however, the number of Byzantine agents
in the network still affects the error bound in (43) by altering
∆0.

Remark 2: This work provides the analysis for an undi-
rected graph topology, and analyzing the algorithm with a
directed graph topology requires a new analysis, which is
beyond the scope of this work.
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V. SIMULATION RESULTS

The performance of the proposed Byzantine-Robust DKF
(BR-DKF) is illustrated by considering two network topolo-
gies, including a network of N = 5 agents with the edge set of
E = {(1, 2), (2, 3), (3, 5), (4, 5), (5, 1)}, same as [15], shown
in Fig. 1, and a randomly generated undirected connected
network with N = 25 agents with the topology shown
in Fig. 6. The discrete-time system and agent parameters are
considered similar to the work in [49], and are given by

xk+1 =




0.4 0.9 0 0
−0.9 0.4 0 0
0 0 0.5 0.8
0 0 −0.8 0.5


xk +wk,

yi,k =




1 0 0 0
1 1 0 0
0 0 1 1
0 0 1 0


xk + vi,k,

where the state noise covariance Q = 0.1I, and the ob-
servation noise covariance Ri = diag(0.1, 0.2, 0.3, 0.1). To
benchmark our proposed algorithm, we evaluate the following
scenarios: the centralized KF (CKF), distributed KF (DKF)
[49], DKF subject to Byzantine attack (B-DKF), and the
proposed BR-DKF subject to Byzantine attack.

Considering Byzantines as B agents with the largest node
degree in the graph topology, the corresponding perturbation
covariances are designed following the optimization problem
P1 in [16]. In problem P1, the steady-state network mean
squared error (NMSE) is maximized by designing the covari-
ance of the perturbation sequences at the Byzantine agents.
The NMSE is defined as

NMSE ≜ lim sup
K→∞

1

K

K∑

k=1

N∑

i=1

tr(Pi,k),

where Pi,k is the error covariance of the DKF in [16] at agent
i and time instant k. Accordingly, the optimization problem
to design the perturbation covariances is modeled as

max.
Σ

NMSE

s. t.
∑

j∈B
tr(Σj) ≤ η,

Σ ≽ 0,

where the first constraint limits the total power of the falsifi-
cation sequences and satisfies the detection-avoidance target
with parameter η. The second constraint ensures that the
perturbation covariance Σ is positive semidefinite. As a result,
the proposed algorithm is examined under the worst-case
scenario of an attack that maximizes the network MSE.

In the first scenario, we consider the network in Fig. 1
comprising N = 5 agents, of which B = 2 are Byzantine
agents, taken as the agents with the highest node degree. We
plot the average MSE across agents, i.e.,

MSE =
1

N

N∑

i=1

(xk − x̂i,k)
T(xk − x̂i,k)· (44)

Fig. 1. Network topology with N = 5 agents.
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0
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10

15

Fig. 2. MSE versus filtering time index k in the network with N = 5
agents.

In the absence of Byzantines, the parameters of αk, γk, and
λtv of the BR-DKF are tuned to obtain the nearest possible
MSE to the DKF algorithm. Even without a Byzantine attack,
the BR-DKF does not reach the same performance as the
DKF method; this is because the sign(·) terms in the updating
process restrict the actual values of the state estimate. Here,
Byzantine agents conduct a coordinated data-falsification at-
tack where Σi denotes the covariance matrix of perturbation
sequences of agent i ∈ B.

Fig. 2 shows the MSE in (44) versus the filtering time index
k in a network of N = 5 agents. The number of iterations for
the state estimate and the error covariance updates is set to
l∗ = 25 and the results are averaged over 2000 Monte Carlo
experiments. The BR-DKF achieves lower MSE than the B-
DKF under the same Byzantine attack, which demonstrates its
robustness. There is a performance gap between centralized
and distributed Kalman filters, even without Byzantine agents,
which is due to the number of iterations in the subgradient
solution. By increasing the number of l∗, the performance of
the DKF will approach the CKF asymptotically.

Fig. 3 shows how the actual state of the network, with m =
4, is closely estimated by various filtering methods. Tracking
performance for different filtering settings is illustrated in
shaded colors for all agents in the network, and the average
of the estimate for all agents is shown as a solid line. We see
that the proposed BR-DKF method estimates the actual state
elements with a smaller variance than the B-DKF method.

Fig. 4 shows the MSE versus the percentage of Byzantine
agents in the network. The BR-DKF method is significantly
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Fig. 3. State estimation accuracy for the different elements of the state
in a network of N = 5.
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Fig. 4. Steady-state MSE versus percentage of the Byzantine agents
in the network with N = 5 agents.

less sensitive to the number of Byzantines in the networks than
the B-DKF method. Fig. 5 shows the MSE versus the trace
of perturbation sequence covariance of individual Byzantine
agents. As shown, even without injecting any noise by the
Byzantine agent, the MSE in BR-DKF does not reach the
DKF method; this is because the sign(·) terms in the updating
process limit the actual value of the state estimates. Upon
starting the Byzantine attack, the obtained MSE under the B-
DKF increases dramatically as more noise is injected, but the
obtained MSE under the BR-DKF does not change. This is
due to the restriction that the sign(·) term provides, and as
stated in Remark 1, the number of Byzantine agents is the
only factor impacting the steady-state MSE in BR-DKF.

In the second scenario, we consider a network of N = 25

0 5 10 15
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-6

-4

-2

0

2

Fig. 5. Steady-state MSE versus trace of the Byzantine agent attack
covariance in the network with N = 5 agents.

Fig. 6. Network topology with N = 25 agents.
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Fig. 7. MSE versus filtering time index k in a network N = 25 agents.

agents as in Fig. 6, including B = 5 Byzantine agents that
are chosen as network agents with the highest node degree. A
similar tuning is made to the step size parameters in order to
ensure the smallest difference in MSE for DKF and BR-DKF
algorithms in the absence of an attack. In Fig. 7, the MSE
in (44) is plotted versus the filtering time index k for different
filtering approaches. The subgradient solution for the state and
error covariance are iterated for l∗ = 25 iterations. Under the
same Byzantine attack, the proposed BR-DKF obtains a lower
MSE than the B-DKF, which verifies its robustness against
Byzantine behaviors.

Similar to the previous scenario, the estimation accuracy for
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Fig. 8. State estimation accuracy for the different elements of the state
in a network of N = 25.

different state vector elements, with m = 4, is shown in Fig. 8.
The estimated values of agents are plotted in shaded colors and
their average of the estimated values in solid colors. It can be
seen that the proposed BR-DKF reduces the variance of the
estimated values and can robustly track the actual state of the
network with higher accuracy than the B-DKF algorithm.

Fig. 9 illustrates the obtained MSE versus the percentage
of Byzantine agents in the network for different algorithms.
A similar trend is observed, showing that the greater the
percentage of Byzantine agents in the network, the higher
the MSE, while the BR-DKF sensitivity to the Byzantine
percentage is significantly less than the B-DKF. In Fig. 10,
the MSE is illustrated versus the trace of the perturbation
covariance of individual Byzantine agents, which shows that
under the BR-DKF, as the trace of attack covariance is low,
sign(·) terms in the state estimate update equations constrain
the actual values and degrade the MSE compared to the DKF.
When Byzantines inject more noise, the performance of the
BR-DKF is not degraded, while under the B-DKF algorithm,
the MSE increases significantly as more noise is injected. This
confirms the resilience of the BR-DKF to the coordinated data
falsification attack.

Simulation results are provided for a stable state matrix F,
spectral radius less than one, while the algorithm also performs
efficiently for unstable state matrices. To verify the stability
of the proposed algorithm using an unstable state matrix,
in Fig. 11 and Fig. 12, we plot the MSE versus the trace of
perturbation covariance for the case where only F is different

0 20 40 60 80 100

-15

-10

-5

0

Fig. 9. Steady-state MSE versus percentage of the Byzantine agents
in the network with N = 25 agents.
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Fig. 10. Steady-state MSE versus trace of the Byzantine agent attack
covariance in the network with N = 25 agents.
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Fig. 11. Steady-state MSE versus trace of the Byzantine agent attack
covariance, with unstable state matrix, in the network with N = 5
agents.

and is considered as

F =




0.6 0.9 0 0
−0.9 0.6 0 0
0 0 0.7 0.8
0 0 −0.8 0.7


 . (45)

It can be seen that the trend of changing MSE versus trace
of the perturbation covariance in different algorithms remains
the same.
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Fig. 12. Steady-state MSE versus trace of the Byzantine agent attack
covariance, with unstable state matrix, in the network with N = 25
agents.

VI. CONCLUSION

This paper proposed a distributed Kalman filter (DKF)
with resiliency against Byzantine attacks. Considering the
Byzantine agent as a network member that alters information
before exchanging it with neighbors, we investigated DKF
operations from the perspective of distributed optimization.
The resulting optimization-based DKF solution improved the
robustness of the filtering operations against Byzantine behav-
iors by employing a TV-norm penalty term for the objective
function. We utilized a distributed subgradient algorithm to
derive a suboptimal solution to update the state estimate and
error covariance matrix of the proposed Byzantine robust DKF
(BR-DKF). Furthermore, we demonstrated that the proposed
suboptimal solution converges to a neighborhood of the opti-
mal centralized solution with a bounded radius in the presence
of the Byzantine agents. Numerical simulations corroborated
the theoretical findings and demonstrated the robustness of
the proposed BR-DKF against Byzantine behaviors. In future
research, the impact of time-varying and directed graph topolo-
gies on the performance of the proposed algorithm will be
investigated.
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