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Abstract

The work presented in this thesis is part of FME HighEFF - Centre for
an Energy Efficient and Competitive Industry for the Future. This thesis
explores broad topics in the area of optimal control and operation of thermal

energy systems and it is divided into three parts.

Part 1 is entitled Optimal operation and control of heat-to-power cycles:
a new perspective from a systematic plantwide control approach. It aims at
giving an understanding of the operation and control problem for steam
cycles from a plantwide perspective. The analysis concerns a steam cycle
with one pressure level and producing power only. The reason for choosing
this process is that it is an extremely important thermal process where well-
functioning control structures have been developed over many years, and the
aim was to study the present control schemes as see if they could be improved
by applying a systematic plantwide control approach. The contribution is
twofold, consisting of a steady-state, and a dynamic analysis. The former
considers the optimal operation and control problem for a heat-to-power cycle
and provides a clear and systematic procedure for identifying the operational
objectives, specification or constraints and degrees of freedom from a steady-
state point of view. The latter examines the dynamic performance of different

control structures that can be used to implement optimal operation.

Part II is entitled Transformed inputs for linearization, decoupling and

feedforward control. It aims at providing a systematic theory for many

iii



nonlinear model-based calculation blocks used in power plants and the
chemical industry. These blocks include but are not limited to cascade
control, ratio, decoupling or nonlinear feedforward. It introduces inputs
transformation derived from a nonlinear process model with the purpose of
transforming a nonlinear system into a linear and decoupled system which
also has perfect feedforward disturbance rejection. The main assumptions
are that there are as many outputs as inputs, and that disturbances, and in
some cases additional states can be measured. The transformed inputs can
be derived from both a static and a dynamic model. For dynamic systems,
this theory is similar to feedback linearization for systems with relative
order 1. For higher order systems, we may introduce additional process
measurements to account for unmeasured process dynamics or may introduce
a chain of transformations. Three implementations are proposed: model-
based, feedback-based, and a combination of the two. The first option inverts
the process model and, with perfect measurement and perfect model, gives
perfect feedforward action, linearization and decoupling both dynamically
and at steady-state. Because it requires an inversion, it cannot handle process
delays and unstable zero-dynamics (equivalent to right-hand plane zero for
linear systems). The second option, uses a fast inner controller and does
not require inverting the process model. This is important for higher order
systems where the input (u) does not appear explicitly in the output (y)
model equation but has an effect through some internal states (w). However,
the response is not perfect dynamically because of the dynamics introduced
by the inner controller. Several simulation examples are presented. These
include case with a static model used to derive the input transformation and
applied to a dynamic process model. Because of the model difference, the
response may not be perfect dynamically, but some disturbance rejection
properties are kept. The process-model mismatch and unmeasured dynamics

are handled by an outer linear PID controller.

Finally, Part III is entitled Handling constraints on manipulated variables

iv



used for inventory control to balance supply and demand. Specifically, it
studies implementing optimal operation to cover cases of manipulated vari-
ables (MVs) saturation. The proposal is to use classical decentralized control
elements such as split range control or controllers with different setpoints in
combination with min or max selectors. Two applications are analyzed. The
first advocates the use of a bidirectional inventory control structure that is
able to maximize production when temporary or permanent bottlenecks occur
for multiple units in series by employing the buffer inventories at intermediate
storage. This bidirectional inventory control scheme has for each inventory
two controllers; one for the inflow and one for the outflow, with high and low
inventory setpoints, respectively. The inventory can typically be liquid (level)
or gas (pressure). When production cannot be maintained without breaching
physical constraints on the inventory, this control structure automatically
reconfigures the loops for consistent inventory control, which means that it
is radiating around the throughput manipulator to assure local consistency
and feasible operation. The second application is a district heating network
composed of a waste heat boiler, an electric boiler, a dump, a hot water
storage tank, and a set of consumers. Three alternatives for the supervisory
control layer are compared: split range control, controllers with different
setpoints, and model predictive control. The closed-loop performance in
the face of time-varying supply and demand, and using constant electricity
prices is evaluated. All alternatives were found to give similar performance.
Controllers with different setpoints is the easiest to implement, while model

predictive control is the most difficult.
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Chapter 1

Introduction

1.1 Motivation

The work presented in this thesis is part of FME HighEFF - Centre for an
Energy Efficient and Competitive Industry for the Future (HighEFF, 2022).

Within the scope of HighEFF, the initial motivation of this thesis was to
analyze the optimal operation and control problem of heat-to-power cycles.
Therefore, the motivation of the first part of the thesis is to systematically
identify the control objectives, operational and environmental constraints,
and degrees of freedom for a heat-to-power cycle. However, it quickly became
apparent that control strategies of industrial power plants has been developed
over many years to a stage where they are adopted by many plants and
work extremely well and it is not straightforward to make improvements.
Many of these control structures make extensive use of nonlinear model-based
calculation blocks, function blocks, or ratio stations to provide feedforward
action, decoupling or linearization (adaptive gain). These examples are case-
specific based, and a systematic theory for developing these calculation blocks
is missing in the literature. It is therefore the motivation of the second part of

the thesis to give a systematic theory for deriving in a systematic manner these
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model-based calculation blocks, which we will call input transformations.

Finally, the third part of the thesis aims at implementing optimal op-
eration for inventory control systems used to balance supply and demand.
The motivation is to design a supervisory control layer that can handle
active manipulate variables (MVs) or controlled variables (CVs) constraints
changes, using classical control elements such as split range control (SRC)
or PID-controllers with different setpoints in combination with selectors or

other simple logic blocks.

1.2 Scope

This thesis is divided in three parts which aims at answering the following

questions:

Part I: Optimal operation and control of heat-to-power cycles: a
new perspective from a systematic plantwide control approach.
What are the operational objective, degrees of freedom and constraints for
steam (heat-to-power) cycles? What are the resulted operational strategies?
What control structures can we use to implement these resulting operational

strategies?

Part II: Transformed inputs for linearization, decoupling and feed-
forward control. How to derive input transformations that give feed-
forward, linearization and decoupling in a systematic manner? How to
implement the input transformations? How does it relate to previous meth-
ods? How to handle higher order systems? What happens if a dynamic model
is not available? What happens if we apply a transformed input derived from

a static model to a dynamic process? What are the limitations?
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Part III: Handling constraints on MV used for inventory control
to balance supply and demand. How to handle MV-saturations for
inventory control problems used to balance supply and demand? How
to switch automatically between using different MVs to control the same
CV? How to give up automatically controlling less important CVs? How
to maintain production for tanks in series by employing the intermediate

inventory?

1.3 Thermal energy systems

The processes analyzed throughout this thesis fall under the general termi-
nology of thermal energy systems.

Let us first define a system. Figure 1.1 shows a schematic representation
of a system which is as a special domain separated by a boundary from the
environment, and which may be composed of several sub-systems interacting

with each other and with the surrounding environment (Preisig, 2020).

Environment

—> Transfer of mass or energy

Boundary

Figure 1.1: Schematic representation of a system and its subsystems separated by
a boundary from an environment.

In the context of this work, a thermal energy system refers to transfer

3
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of energy as heat or cooling between between the different subsystems of
the system or to the surroundings through boundaries, by convection (i.e.,
with the fluid) or conduction (i.e., direct contact). Examples include heat
exchangers, mixers, tanks used for hot water storage, district heating networks
(or more specifically the transport pipelines) or steam networks. It also
includes the conversion of heat to mechanical power in a turbine driving an

electrical generator to produce electrical power.

1.4 Thesis structure and main contributions

As mentioned before, this thesis is divided into three main parts. Part I
presents a new perspective on optimal operation and control of heat-to-power
cycles from a systematic plantwide control approach. It consists of a steady-
state and a dynamic analysis. The former considers the optimal operation
and control problem for a heat-to-power cycle and provide a clear and
systematic procedure for identifying the operational objectives, specification
or constraints and degrees of freedom from a steady-state point of view. The
latter examines the dynamic performance of different control structures that
can be used to implement optimal operation. This part is based on (Zotica
et al., 2020b).

Part II introduces input transformations for linearization, decoupling
and feedforward control. Section 3.1 presents the three-elements drum level
control used in power plant as an example supporting the need for a systematic
theory for deriving the many nonlinear model-based calculation blocks used
in the industry. Section 3.3 gives a brief overview of related methods in
the literature. Section 3.4 introduces the theory for deriving transformed
inputs from both a static and dynamic model, and Section 3.5 presents how
to implement these transformations. Sections 3.7-3.10 present applications
and the simulation results of transformed inputs (and outputs) for different

thermal energy systems, e.g., mixing processes, heat exchangers and steam
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networks. This chapter is adapted from (Skogestad et al., 2023; Zotica et al.,
2020a; Zotica and Skogestad, 2021; Zotica et al., 2022).

Part IIT presents handling constraints on manipulated variables (MVs)
used for inventory control to balance supply and demand. Chapter 4 describes
a general system for balancing supply and demand by using inventory control.
It proposes to handle saturation of the MV used for inventory control by
implementing MV-MV switching (split range control or controllers with
different setpoints) and potentially CV-CV switching (min or max selectors).
Chapter 5, based on (Zotica et al., 2022), advocates the use of bidirectional
inventory control to maximize production when temporary or permanent
bottlenecks occur for multiple units in series by employing buffer inventories
at intermediate storage. Chapter 6, based on (Zotica et al., 2021), compares
three alternatives for designing the supervisory control layer of a district
heating network with a thermal energy storage tank. The control objective
is to minimizes the use of the more expensive electric boiler by using cheaper
waste-heat first, and storing excess heat for later use.

Part IV concludes this thesis with the main findings and future research

directions.

1.5 Papers not included in this thesis

The following co-authored published papers are related to the topics covered

in this thesis. However, these publications are not included in the thesis.

1. Reyes-Lua A., Zotica C., Das T., Krishnamoorthy D. and Skogestad
S. Changing between active constraint regions for optimal operation:
classical advanced control versus model predictive control. Computer
aided chemical engineering, 43:1015-1020, 2018.

2. Reyes-Lua A., Zoticd C. and Skogestad S. Optimal operation with

changing active constraint regions using classical advanced control.
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IFAC-PapersOnLine, 51(18):440-445, 2018.

3. Reyes-Lua A., Zotica C, Forsman K. and Skogestad S. Systematic
design of split range controllers. IFAC-PapersOnLine, 52(1):898-903,
2019.

4. Rohde D., Andresen T., Zoticd C. and Wilpert P. Energy recovery from
furnace off-gas: Analysis of an integrated energy recovery system by
means of dynamic simulation. Refrigeration science and technology,
373-380, July 2020.
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Chapter 2

Optimal operation and control

of heat-to-power cycles

This chapter presents using a plantwide control framework to systematically
identify the control objectives, operational and environmental constraints,
and degrees of freedom for a heat-to-power cycle with a drum, one pressure
level and with power as the only valuable product. The result is an unified
and systematic perspective on the optimal operation and control problems
for heat-to-power cycles.

The chapter is based based on the article “Optimal Operation and Control
of heat-to-power Cycles: a New Perspective from a Systematic Plantwide
Control Approach” (Zotica et al., 2020b).



2. Optimal operation and control of heat-to-power cycles

2.1 Introduction to heat-to-power cycles

Current industrial control solutions for thermal power plants' have evolved
over the years based on industrial practices to a stage where it becomes
less trivial to understand what are the operational objectives, constraints or
degrees of freedom available for optimal operation. Moreover, their transfer
to new cases or use by newcomers in the field may not be straightforward.

Often plant operators take established practices for granted, mainly
because it has always been done in the same way. On the other hand, optimal
operation changes with current operating conditions, i.e. feed composition,
product specification, prices or equipment which are subject to change during
the operating life of a plant. However, it is difficult to identify the new
optimal operation if the control policy is not systematically specified from
the beginning.

This effect is particularly marked for steam cycles providing utilities
(e.g. steam and power) for downstream units in chemical plants. In these
cases, optimal operation of the steam cycles is often overlooked. However,
considering the large amount of utilities used in chemical processing, there is
much to gain from operating steam cycles at their optimum. For example, we
consider the implication of controlling the superheated steam pressure. Often
power plants are operated at constant pressure to provide faster changes in
produced power. However, operation with floating pressure (i.e. the steam
pressure follows the fuel rate) could potentially result in higher efficiency
at low load for fossil fuel steam cycles (Silvestri et al., 1972) and especially
for combined cycles (i.e. integration of a gas turbine with a steam turbine)
(Polsky, 1982), or co-generation plants (i.e. plant providing both heat and
power) (Jonshagen and Genrup, 2010).

The contribution of this work is twofold, and consists of a steady-state

and a dynamic analysis. The former considers the optimal operation and

!Thermal power plants, steam cycles and heat-to-power cycles are used interchangeably.
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control problem for a heat-to-power cycle and provides a clear and system-
atic procedure for identifying the operational objectives, specification or
constraints and degrees of freedom from a steady-state point of view. The
latter examines the dynamic performance of different control structures that
can be used to implement optimal operation.

We accomplish these objectives in the framework of plantwide control,
which handles control structure decisions for the entire plant. The goal is to
find a control strategy, preferably a simple one, that acts on a short time
scale to stabilize the plant (regulatory control), and on a longer time scale
to reach optimal economic operation (supervisory control). The advantage
of using a systematic plantwide control procedure is that it might reveal
new potentially overlooked control policies for existing processes (Downs and
Skogestad, 2011).

Plantwide control has been extensively applied to chemical plants, but to
a lesser degree for heat-to-power cycles in the open literature. For example,
the work by (Niva et al., 2017) presents a plantwide control analysis for the
combustion side of oxy-fired circulating fluidized bed boilers. The work by
(Prasad et al., 2000) briefly discusses the use of a plantwide control approach
to identify the main control objectives, operational constraints, degrees of
freedom and controlled variables with the purpose of designing a model
predictive control (MPC) strategy for a given thermal plant. The work
by (Govatsmark, 2003) applies a plantwide control design procedure to a
combined-cycle power plant. However, to the best of the authors knowledge
a thorough analysis from a plantwide control perspective for steam cycle is

missing, and it is therefore formalized in this work.

2.2 Plantwide control

The typical control hierarchy in a process plant is decentralized and is

decomposed on a time scale basis into several simpler layers: scheduling

11
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Scheduling
(weeks)

Site-wide Optimization

(day)

Local Optimization
(hours)

..............

Supervisory Control '
(minutes) + MPCor
+ Advanced PID

Control layer

Regulatory Control E PID-controllers
(seconds) '

Figure 2.1: Typical control hierarchy in a process plant.

(weeks), site-wide optimization (days), local optimization (hours), supervisory
control (minutes) and regulatory control (seconds), as shown in Figure2.1.
Note that some processes can be slower. The top layers are responsible
for production planing on a long time scale, while the lower control layer
implements the setpoints given by the upper layer for optimal economic
operation and stabilizes the plant. Each layer receives process measurements
from the layers below, solves an optimization problem by using as degrees of
freedom the setpoints to the lower layers (Skogestad, 2004).

To systematically design each layer, we use the plantwide control proce-
dure proposed by (Skogestad, 2004). The procedure consists of a top-down
analysis concerning optimal steady-state operation, and a bottom-up analy-
sis targeting the lower control layer structure. The steady-state top-down

analysis involves the following steps:

Step 1 Define the optimal economic operation problem: the objective cost

12
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function J and the set of operational constraints.

Step 2 Identify the steady-state degrees of freedom (DOF) (i.e. setpoints
for the lower layers). Determine the optimal operation for expected
disturbances using a steady-state model.

Step 3 Implement optimal operation. Select the primary controlled variables
(CV/) as the active constraints from Step 2, and the self-optimizing
variables (for unconstrained degrees of freedom) (i.e. variables that
give acceptable loss when kept at constant setpoint).

Step 4 Choose the location of the throughput manipulator (TPM), i.e.
decide where to set the production rate. This is both a dynamic issue
(with implications on the inventory control structure design), and an

economic issue (minimize back-off from active constraints).

The bottom-up design focuses on the control layer, which is divided into
the supervisory and the regulatory control layer.

The regulatory control layer typically takes care of control on the fastest
time scale. Controlled variables in the regulatory layer (CV7) include vari-
ables that contribute to “stabilization” of the process, for example levels
and pressures. In addition, they usually include a subset of the economic
controlled variables (CV), typically active constraints, that should be tightly
controlled for economic reasons. The regulatory layer is usually not subject
to reconfiguration, so one should be careful about what happens if one has
MYV saturation in this layer (Reyes-Lua and Skogestad, 2020). Considering
the large number of control loops in a typical plant, simple PID-controllers
are used for the regulatory layer.

The objectives of the supervisory (advanced) control layer are:

1. Achieve the economic objectives given by the upper optimization layers
by controlling the primary CVs at setpoint using as degrees of free-
dom the setpoints to the regulatory layer or any unused manipulated

variables.
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2. Monitor the regulatory stabilizing layer to avoid saturation of MVs.

3. Identify active constrains and self-optimizing variables changes based

on the current operation region, and switch the control structure.
The steps of the bottom-up design are:

Step 5 Design the structure of regulatory control layer. The main issues are:
first, to select what to control on a fast time scale, both for stabilizing
control, and to achieve tight control of important active constraints,
and second, to chose appropriate MVs and pairings.

Step 6 Design the structure of supervisory control layer. Decide between
centralized control (i.e. Model Predictive Control) or decentralized
control (i.e. advanced control structures with simple logic block to
handle changes in active constraints (Reyes-Lua et al., 2018).)

Step 7 Design the real-time optimization layer. Its objectives are to identify
the active constraints and compute the optimal setpoints for the lower
supervisory layer. For many plants, this layer is missing as it requires

a full model.

2.3 Plantwide control for a simple heat-to-power

cycle

2.3.1 Process Description

We consider the steam side of a heat-to-power cycle as shown in the simplified
process flowsheet in Fig. 2.2. Fuel is burned with air in stoichiometric ratio
in a combustion chamber resulting in high temperature flue gases. Thermal
energy carried by the flue gas superheats the working fluid (water) in a
boiler. Then, it is converted to mechanical energy in a turbine, followed

by conversion to electrical energy (W) in a generator connected to the grid.
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In this paper, we consider only the steam side of the process, that is, the

combustion side is excluded.

Turbine-Generator
Superheated

steam &

ﬂ%l_, Flue gas Mv2
Air—> Boiler
Condenser
Water
Pump

Figure 2.2: Simplified heat-to-power cycle flowsheet. The air feed is set in ratio
to the fuel, but the combustion side of the process is not included in this work.

A detailed representation of the boiler-turbine system is shown in Fig.
2.3. The circulating working fluid (water) is heated from liquid (blue) to high-
pressure superheated steam (red) by receiving heat resulted from burning fuel
(MV1) (black) in a series of three heat exchangers dedicated to well defined
regimes, i.e. economizer (heating to saturated liquid), drum (evaporation)
and superheater (superheating). The superheated steam is desuperheated
by spraying cold feed water in the attemperator, therefore this is a bypass
stream of the three heat exchangers. The superheated steam is expanded in
a condensing type turbine, which drives a generator supplying electricity to
the electric grid. Cooling water (MV4) is used as utility in the condenser.
The low pressure water is then boosted by a variable speed pump (MV5)
and it is fed to the boiler (i.e. economizer). The cycle process also includes
a bypass of the turbine (MV3), and a direct bypass of the economizer cold
side (MV6).

We choose this drum configuration over a once-through boiler (with a

single heat exchanger instead of three) because it is most common both in

15



2. Optimal operation and control of heat-to-power cycles

Drum

Turbine

Cold flue
gas

Fecdvater __( _—
Pump Tank Condenser
MV5 (uncontrolled level)

Figure 2.3: Flowsheet of a steam cycle with a drum boiler, one pressure level,
and condensing turbine. The system has 7 manipulated variables (MVs). There
are shown 8 potential controlled variables (CVs). After closing 4 regulatory loops
for temperatures, pressure and level and noting that the bypass MV3 should be
kept closed if possible, MV1 (fuel) and MV2 (steam valve) are the two remaining
degrees of freedom (See also Table 2.1) and Section 2.3.2.4). Liquid water is in blue,
vapor in red.

operating power plants, and in chemical plants with on-site steam generation.
The once-through boiler is in theory more efficient because it does not have
the requirement of saturation (and thereby a fixed feedwater for a given
steam pressure) at a given location inside the heat exchanger sequence. For a
once-through boiler, the feedwater (MV5) may be used to control the steam
temperature. We choose a single steam pressure level because we want to
have a simple base for our analysis on which we can expand. For the same

reason, we do not include steam extraction or back-pressure turbines.

2.3.2 Top-down analysis

We proceed to formalize the control problem for steam cycles by applying
the top-down analysis to the described process. Therefore we systematically
identify the control objectives, operational and environmental constraints,

degrees of freedom, main disturbances and the location of the throughput
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manipulator.

2.3.2.1 Step 1. Operational objective

The plant has two operational objectives. On a slow time scale (steady-state)
it should achieve the economic optimum, while it contributes to the grid
stability on a fast time scale. Due to the time scale separation, these objectives
are decoupled. However, the grid stability requirement may impose a back-off
from the maximum power production. Depending on local conditions, the

main operational objectives are:
1. Produce the energy as

(a) power to the electric grid at the required voltage and frequency
(usually large power plants with condensing turbines, ie. >

100 MW);

(b) steam at the required flowrate and pressure level (usually for

back-pressure turbines in large chemical plants);

(c) power and steam (combined heat and power cycles);

2. Process a given amount of by-product (e.g. waste gases or biomass

residues).

The same economic cost function, i.e. minimize the negative profit, can

be defined for all operational objectives, given by Eq.2.1.

J=—(pwW +psS—prF —pyU)  [3/s] (2.1)

Here, W |J/s| is the produced power, S [kg/s| is the produced steam (= 0
in this paper), F' [J/s| is the fuel (energy source), U |kg/s| is the utility
consumption, and p [$/kg| or [$/J] is the price of each. There may be

additional terms, for example several feed energy sources or several steam
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products. We analyze an operating plant and therefore, capital costs, personal,
and maintenance costs are not included. The cost J should be minimized
subject to satisfying a set of constraints, related to products specifications,
safe operation and regulations related to the environment. Typical constraints
for the operational objectives listed above for a steam cycle include (Prasad
et al., 2000):

C1 Keep the electrical power (W) at a given value. This is for plants
required to participate in grid frequency regulation, i.e. W > 100 MW).

C2 Produce steam at the required demand (for cycles providing steam as
utility for chemical plants, and not included in the described process).

C3 Stabilize the process (i.e. keep the unstable drum level within limits).

C4 Keep the temperature of the superheated steam at a given value to
maximize turbine work, but within boundaries to prevent large thermal
gradients (i.e. T = 529°C).

C5 Keep the superheated steam pressure below a maximum value to avoid
high thermal and mechanical stress and to extend the operating life
(i.e. p < p™a* =220 bar).

C6 Keep the steam pressure above a minimum value to avoid boiler trip
(le.p>p

C7 Keep the temperature (T5) of the flue gas outlet below environmental

min)

limits, and above dew point to prevent corrosion °C (T > 150°C).
Note that only plants with a higher concentration of pollutants (NOx or
SO have constraints on the maximum temperature, due to operation
limits on the filters used to reduce emissions.

C8 Keep MV4 fully open (i.e. MV4=MV4™2*) to bring the condenser
pressure at lower limit to maximize the pressure ratio in the turbine
(i.e. pc = 0.1bar).

C9 Keep the turbine speed at the setpoint (n = 50 Hz). If connected to the
grid, control is only needed at short time scale to avoid wear, because

on a long time scale, the turbine speed is given by the grid frequency.
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Note that industrial turbines are normally operated at constant speed,
which can be the grid frequency or a different frequency (usually higher),
depending on their design. In the latter, a gear box is used, but the turbine
speed is still kept constant and it is not a degree of freedom available for
operation. Variable speed turbines may be used for experimental low load
organic Rankine cycles. However, variable speed turbines are out of the scope
of this work, and the interested reader is refereed to the work by (Quoilin
et al., 2011).

In addition to constraint C7, there are other operational constraints on
the combustion side, including requirements for waste incineration, Og, CO4
and NO, percentage in the flue gas or furnace pressure. However, a detailed
analysis of the combustion side is outside of the scope of this paper, and we
assume that these operational objectives are met on the combustion side of
the process. The interested reader is referred to the work by (Niva et al.,
2017) for an analysis on the combustion side for an oxy-fired circulating

fluidized bed boiler.

2.3.2.2 Step 2 (a). Identify the steady-state degrees of freedom
(DOF) (i.e. setpoints for the lower layers)

Table 2.1 shows the degrees of freedom together with comments on their
implication to control. The MVs are also shown in Fig.2.3. Note that we
have not decided yet on the pairing, and number of the MV and CV are
not corresponding in the next sections (i.e. MV1 is not necessarily used to
control CV1).

2.3.2.2.1 Steady-state effect of fuel (M'V1) and steam valve (MV2)
Fig. 2.4 shows the open loop response for the superheated steam pressure
(CV8 = p), and power produced (CV7= W) to 1% increase in fuel MV2
in blue, and to fully opening the steam valve (MV2= 1) in green. Let us

explain the open loop response from physical considerations. Consider the
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Table 2.1: Manipulated variables

Manipulated variable

Comments, analysis

MV1:

MV2:

MV3:

MV4:

MV5:

MV6:
MVT:

Fuel

Steam valve

Turbine bypass

Cooling water

Feedwater pump

Economizer bypass
Attemperator

e At steady-state the power produced can

only be changed by manipulating (MV1).
The turbine valve should optimally be
fully open to minimize throttling losses
(Shinskey, 1978).

It has mainly a dynamic effect, as the
steady-state effect on produced power is
insignificant.

It can improve the dynamic response for
power.

To contribute to grid frequency stability it
may be required at nominal conditions to
partly close the steam valve opening (e.g.
90 %). This will provide a back-off for tran-

sient operation.
Normally closed, needed when the energy

in the feed is larger than power demand.
Used to avoid too high pressure, i.e. if p >

220 bar, MV3 opens to reduce the pressure.
Open at MV4=MV4™#* to minimize con-

denser pressure (pc).

e Use only to control the drum level.
e Cannot be used to control the steam pres-

sure, as it has no steady-state effect (see
Table 2.3).

e Use only if T9 < T9:min,
e Use only if 7% > T*max,
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linear valve m = zKy AP where, m is the mass flow rate, z is the valve
opening, Ky is the valve coefficient and AP is the pressure drop across the
valve. Increasing z causes a fast increase of m, which results in a decrease of
the pressure inventory before the valve. The latter results in a smaller AP,
which results in a decrease of m after its initial increase. To increase m at
steady-state, AP has to increase, and this can only be achieved by increasing

the energy supplied to the system (MV1).

= 16.7 B89
= 2,
= -
1665 ] Bl
o) s Step on MV 1 2 s Step on MV1
g I s Step on MV2. | £ 88f s Step on MV2 1
S 166 &
g w 87.5F
7 1655 Z ) ) )
-50 0 50 100 150 -50 0 50 100 150
Time, [s] Time, [s]
(a) Power (b) Pressure

Figure 2.4: Open loop responses for pressure (p) at the valve inlet and power (W)
to a step increase of 1% step increase in fuel (MV1) (green), and 0.1 in steam valve
opening (MV2) (blue).

2.3.2.3 Step 2 (b). Identify the most important disturbances

The main disturbances for this process are given in Table 2.2.

2.3.2.4 Step 2 (c). Determine the optimal operation (including
active constraints) for the expected disturbances using a

steady-state model

Active constraints (AC) are variables that should be kept at their limiting
value for optimality. To determine which constraints will be active, we can
optimize the process at steady-state for the important disturbances. However,
engineering insight is often enough to determine which constraints are active,

and this is the approach we apply in this work. At the nominal operation
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Table 2.2: Main disturbances for steam cycle

Disturbance variable Comments

DV1: Combustion temperature Typically for waste heat

DV2: Fuel specific heat Typically for waste heat

DV3: Grid frequency (Load) Consumers increasing their demand
(load) or producers decreasing their
production

DV4: Required power setpoint Typically for power plants required

to participate in secondary or ter-
tiary grid frequency regulation
DV5: Cooling water temperature

we want to minimize bypass streams, that is the turbine bypass MV3, the
economizer bypass MV6 and the attemperator MV7 should be closed to use
the boiler efficiently. However, when a CV constraint becomes active, we use
the MV to control the respective CV. This implies a CV-MV switch, and it
can be handled by single loop PID-controllers without additional logic given
that antiwindup is implemented (Reyes-Lia and Skogestad, 2020).

The active constraints are:
(AC1) MV3=0 (MV constraint);

(AC2) MV4=MV4max (MV constraint) or CV2= pc = p&i" (CV constraint)

to maximize pressure ratio across the turbine and maximize work (W);

(AC3) MV6=0 (MV constraint) or CV3= T = T¢™™ (CV constraint) to

maximize boiler heat transfer area usage;

(AC4) MV7=0 (MV constraint) or CV4= T4 = T3™** (CV constraint) to
minimize desuperheating and maximize superheated steam tempera-

ture;
(AC5) n = w, (i.e. the turbine speed is equal to the grid frequency).
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We use the term or for AC2, AC3 and AC4 because maximizing cooling
(MV4=MV4™a*) results in pc = pré‘in, closing the economizer bypass stream
(MV6=0) gives minimum temperature T = T%"™", and closing the attem-
peration stream (MV7=0) gives maximum T4 = T7™*. When pc < p&in,
we give-up MV4=MV4™?* and use MV4 to increase pc. When Tg < Tg’min
we give-up MV6=0 and open MV6 to increase T. When T > T7™* we
give-up MV7=0, and open MV7 to decrease Tfl' As mentioned, this CV-MV

switch is handled by PID-controllers without additional logic block.

2.3.2.5 Step 3. Economic controlled variable (CV) selection

The objective is to select controlled variables such that we keep optimal
(or near optimal) operation when disturbances occur. The first controlled
variables candidates are the active constraints from Section 2.3.2.4, as well
as variables that need to be controlled to stabilize the process. Table 2.3
shows the possible controlled variables including the active constraints (a

subset of the operational constraints from Step I in Section 2.3.2.1).

2.3.2.6 Step 4. Location of throughput manipulator

The location of the throughput manipulator (TPM) is important from a dy-
namic point of view as it determines the structure of the inventory (pressure)
control system and also affects the dynamic performance for cases when the
TPM is used for control. In general, the TPM can be located at the feed,
inside the process or at the product. For a power plant, the “product” is the

turbine power output (W), which ideally is given by Eq. 2.2.

ve
w :/ Vdp (2.2)
pr

where V' [m?/s] is the volumetric flow, py and pc [Pa] are the turbine inlet

and outlet pressures. The volumetric flow is affected mainly by the turbine
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Table 2.3: Candidates controlled variables

Controlled variable

Comments, analysis

CV1: Drum level (Mp)

CV2: Condenser pressure (pc)
CV3: Cold flue gas temperature
()

CV4: Superheated steam tempera-
ture (7%)

CV5: Turbine speed

CV6: Grid freqeuncy
CV7: Power produced

CV8: Steam pressure

Levels are unstable inventories
and they need to be controlled

No steady-state effect
See Section 2.3.2.4

See Section 2.3.2.4
See Section 2.3.2.4
Active constraint for all operation

regions.
Imposed by grid stability

e Only for plants required to partic-

ipate in grid frequency regulation
Given by the fuel (MV1) accord-
ing to the boiler energy balance
Should not be at fixed setpoint
to utilize the fuel and boiler effi-
ciently
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speed, which is assumed to be fixed in this work (equal to the grid frequency).
Note that the inlet pressure pr is affected by the steam valve MV2. In

summary, for our plant, there are two possibilities for the TPM location:

e TPM at the feed, that is, the fuel (MV1) is the TPM

e TPM inside the plant, that is, the steam valve (MV2) is the TPM.

In many cases, the fuel rate is given (typically for base load boilers) or
the fuel rate is limiting the power output. In such cases, we clearly want
to have the TPM located at the feed (MV1) in order to maximize power
production. This case is considered briefly in the discussion section, but
otherwise the main focus of this paper is when the power demand is given.
To track variations in the power demand, it would be best from a dynamic
point of view to locate the TPM at the steam valve (MV2) at the inlet to
the power-producing turbine. Nevertheless, most control structures use the
fuel (MV1) as the TPM also in this case, and there are several main reasons
for this. First, it may happen that one would like to operate with a fixed fuel
under some conditions. Second, as seen from Fig. 2.4, the steady-state effect
of the steam valve (MV2) on the power (W) is very small when we have a
constant fuel rate (MV1) and in addition we may want to operate with a fully
open steam valve to minimize throttling losses. Third, the pressure drop over
MV2 is more a dynamic performance matter. The higher the pressure drop,
the higher the energy and mass stored in the boiler, and therefore the system

has better capability to change the load at the required rate (e.g. %/min).

2.3.3 Bottom-up design

We continue with the bottom-up design for the described process.
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2.3.3.1 Step 5. Structure of the regulatory layer

Liquid levels generally need to be controlled to maintain stability (see Section
2.2). The power cycle in Fig. 2.3 contains two liquid levels, but since this is
a closed system only one of them should be controlled, usually the smallest
holdup. Thus, we decide to control the boiler drum level (CV1= Mp) and
leave the feedwater tank level uncontrolled. The steady-state value of Mp
does not matter, except that it contributes to energy storage, which has
dynamic implications. Next, the steam pressure (CV8 = p) is often controlled
because it may be drifting, and control of it may contribute to more stable
and predictable operation. However, as we will see, control of steam pressure
requires closing the steam valve (MV2) which gives losses and is not optimal
from an economic point of view. We will therefore not include control
of CV8 in the regulatory layer, but will leave for the supervisory control
layer (step 6 in Section 2.4). Condenser pressure (CV2= p¢) is usually also
controlled, both because this contributes to stability and because it is optimal
to keep it above its lower constraint to avoid too much liquid at the outlet of
turbine. Two other constraints that are controlled in the regulatory layer are
superheated steam temperature (CV4 = T4) and cold flue gas temperature
(CV3= Tg). CV4 must be below a maximum for material reasons in the
turbine and CV3 should be above a minimum, for example, to avoid corrosion
caused by condensation. In the regulatory layer, we usually use single-loop
PID control, so for each CV we need to identify an appropriate input (MV).
We can make a decision based on mathematical tools such as the relative
gain array (RGA). Alternatively, as in this work, we can use guidelines such
as the pair close rule (i.e. small effective time delay from the MV to CV), or,
input saturation rule (i.e. pair an important CV (which cannot be given-up)
with an MV that is unlikely to saturate (Reyes-Lua et al., 2018)).

We have 7 manipulated variables, but for economic reasons the turbine
bypass (MV3) should always be closed. The steam valve (MV2) and fuel

(MV1) will be used for control of power production and pressure in the
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supervisory layer. Thus, to control CV1, CV2, CV3 and CV4 we have as
manipulated variables MV4, MV5, MV6 and MV7. We follow the pair-close

rule, and suggest the following pairings for the regulatory layer:
e Use the cooling water (MV4) to control the condenser pressure (CV2);

e Use the feedwater pump (MV5) to control the drum level (CV1) (only
DOF left to control the level)

e Use the economizer bypass (MV6) to control the flue gas temperature

(CV3)

e Use the attemperator (MV7) to control the superheated steam temper-
ature (CV4) (only DOF available)

e Assume turbine speed is equal to the grid frequency

Note that MV4, MV6 and MVT are likely to saturate at maximum cooling,
zero bypass and zero bypass, respectively. Fortunately, this is not a problem,
because when we reach one of these constraints, it is optimal to give up control
of the corresponding CV. This happens because the corresponding CV will
move away from its constraints of minimum pressure (CV2), minimum flue
gas temperature (CV3) and maximum steam temperature (CV4), respectively.
Thus, no further attention from the supervisory control layer is required

when these saturations happen.

2.4 Step 6. Control structures for supervisory con-
trol

From an optimal operation point of view, we want on a slow time scale

to maximize boiler efficiency (i.e. keep bypass streams closed and let the

pressure float) and minimize throttling losses (i.e. keep all valves close to

maximum). On a short time scale we may need participate in grid frequency
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control. We can meet both objective due to their time scale separation,
and this requires using the steam valve (MV2) dynamically, and drive to its

nominal opening (e.g. 90 % (Weissbach et al., 2006)) at steady-state.

We assume that all other loops are closed according to the pairing from
section 2.3.2.5, and therefore we analyse only the two remaining degrees of
freedom: MV1 (fuel) and MV2 (steam turbine valve). The remaining CVs
from Table 2.3 are the power produced (CV7= W) and the superheated

steam pressure (CV8= p). The main issues that we consider concern:

1. pairing, that is what to do with the remaining degrees of freedom, MV1
and MV2?

2. should the pressure be controlled?

In the following, we show a simplified flowsheet of the steam side, with the
two remaining degrees of freedom: MV1 (fuel) and MV2 (steam valve). The
boiler illustrated symbolizes the economizer and its bypass, drum, superheater

and attemperator.
We analyse the case where we want to keep the power produced at
its setpoint, and we start by presenting the common control structures in

industrial steam cycles.

2.4.1 Standard industrial control structures for control of
power and pressure

The standard industrial control structures are boiler driven, turbine driven,
floating pressure and its variation, sliding pressure (Klefenz, 1986; Welfonder,
1999; der Autumation, 2003). The objective of this analysis is to understand

their steady-state and dynamics characteristics.
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2.4.1.1 Floating pressure operation

In floating pressure operation mode, Figure 2.5, the superheated steam
pressure (CV8) is not controlled, and it is given by the fuel (MV1), according
to the energy balance. The power produced can be controlled by manipulating
the fuel (MV1), the only DOF with a significant steady-state effect. Floating
pressure operation is optimal from an energy point of view because it allows
for the steam valve (MV2) to be fully open. When we say that steam valve
is opened, it may well be partly open because of the back-off required to
participate in droop control (see the discussion in Section 2.6.3). However,
because of the boiler inertia, this operation mode has a slow time constant
for controlling the power produced. When the pressure becomes an active
constraint (i.e. p = p™i" or p = pmax)
MV1 (fuel), and use it to control the pressure instead. This is called CV-CV
switching, and we can use a MID block (i.e. logic to select the middle output
of all three controllers). Note that it is more efficient to use MV1 (fuel)

, we give-up controlling the power using

directly to control the pressure once it reaches its maximum limit than using
MV3 to bypass the steam turbine. Also note that all control structures imply
a MID selector to keep the pressure within bounds, but this is not shown

to simplify the illustrations.

2.4.1.2 Boiler driven operation

In boiler driven operation mode, the power produced is kept at setpoint by
manipulating the fuel MV1 (the throughput manipulator in this case), while
the superheated steam pressure is kept at constant setpoint using the steam
valve MV2, as shown in Figure 2.6. For this reason, boiler driven can be
considered as an extension of floating pressure. In this case, MV2 can only
be used to improve the dynamic response of the cycle, as it has a negligible

steady-state effect (see Figure 2.4).
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Figure 2.5: Floating pressure operation mode with a MID selector to keep the
pressure within bounds (p™* < p < p™max),

MV1

Figure 2.6: Boiler driven operation mode
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2.4.1.3 Turbine driven operation

Turbine driven is the reverse pairing of boiler driven, i.e. the power produced
is controlled using the steam valve MV2 (the throughput manipulator in this
case), and the steam pressure is controlled using the fuel MV1, as shown
in Figure 2.7. Its advantage is a faster time response for control of power
(CVT=W).

Figure 2.7: Turbine driven operation mode

Both turbine and boiler driven have the advantage of utilizing the system’s
energy storage because of pressure build-up in the drum and superheater.

However, compared to floating pressure, there is some loss of energy efficiency.

2.4.1.4 Sliding pressure operation

In practice, power plants operators prefer to control the pressure. This
operation mode is a modification of floating pressure, as shown in Figure 2.8
(Klefenz, 1986). The sliding pressure curve is pre-defined as function of the
produced power (as a simple curve), and the steam mass flow is used to as
an indirect measure of the power produced in many control loops. Note that
disturbances in boiler and combustion may result in changes in steam mass

flow (m), and therefore measuring the steam mass flow rate may give a false
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indication of the changes in produced power. The pressure setpoint is only

changed at steady-state, but not dynamically, during power setpoint changes.

Figure 2.8: Sliding pressure operation (not as optimal at steady state as floating
pressure) (Klefenz, 1986).

2.4.1.4.1 Comparison of different pressure operation modes Fig-

ure 2.9 illustrates the three pressure operation modes:

e constant (blue line), which is the operation mode for turbine driven

and boiler driven. This strategy give fast load changes response.
e sliding (green line), where the pressure is kept constant at high load
(W > W) for fast load change response, and it follows the power

produced at lower loads (W < W¥) to increase the boiler efficiency.

e pure floating (mauve line), where the pressure follows the power pro-

duced and the throttling losses are minimized.
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Figure 2.9: The three pressure operation modes discussed in this work

2.4.2 Improved control structures for floating pressure oper-

ation

We want to look into dynamic improvements of floating pressure operation.
This operation mode is optimal from a steady-state point of view because it is
optimal to keep the steam valve (MV2) fully open to minimize throttling losses.
However, the dynamic response for controlling produced power (CV7= W)
is rather slow because the throughput manipulator is located at the feed side
(MV1). Two alternatives for this are:

1. valve position controller (VPC), Figure 2.10

2. parallel control, Figure 2.11, using two controllers: a PI-controller for
MV1 and P-controller for MV?2.

2.4.2.1 Valve position control

In VPC there is one fast acting MV1 that controls the CV, and one slow
MV2 that acts to bring MV1 to its nominal value (Shinskey, 1988). In our
case, the fast MV is MV2 (steam valve), and the slow MV is MV1 (fuel),
as shown in Figure 2.10. Valve position control acting on a valve-turbine

system is also described in (Farmer and Liptéak, 2006).

33



2. Optimal operation and control of heat-to-power cycles
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Figure 2.10: Valve position controller (VPC) to improves floating pressure opera-
tion

2.4.2.2 Parallel control

Similarly to VPC, this control structure can be used when two MV act on
the same CV, but with different time constants (Balchen and Mummeé, 1988).
Only one of the two controllers can have integral action, otherwise there
maybe no unique steady-state solution for the MVs (Astré')m and Hagglund,
2006). MV1 (fuel) is the only degree of freedom with a significant steady-
state effect on the power, and therefore we use a PI-controller for MV1, and
P-controller for MV2 (steam valve), as shown in Figure 2.11. Once the error
is zero, the P-controller takes MV2 to its nominal values, which is set as the

controller bias.

2.5 Simulation study: optimal operation of a simple

heat-to-power cycle

We consider a typical steam cycle for simulating the control structures

presented in Section 2.4:

e Floating pressure (Figure 2.5)
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@ @@W

PI-control , P-control

Figure 2.11: Parallel control with one PI-controller and one P-controller to improve
floating pressure operation

e Boiler driven (Figure 2.6)
e Turbine driven (Figure 2.7)
e Valve position control (Figure 2.10)

e Parallel control (Figure 2.11).

2.5.1 Model

A heat-to-power cycle can be decomposed into three subsystems (SS), which

can be modelled sequentially (Maffezzoni et al., 1983):

e SS51: water cycle
e S552: combustion

e S553: generator and connection to the electric grid.

Steam cycles models with different complexity are presented in the open
literature, and a good overview of modelling methods and tools is given by

(Alobaid et al., 2017).
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For control purposes, simpler models are often used, and the work by
(Ordys et al., 1994) outlines simple models for each component of a heat-to-
power cycle, which can then be used in a modular simulation approach. A
detailed dynamic model that has been extensively used for both modelling
and controller synthesis is the drum boiler presented in the work by (Astrém
and Bell, 2000). Object oriented approaches have become an attractive
alternative for modelling due to their reusability and versatility. Modelling
and regulatory control design of a subcritical steam cycle using an object

oriented language and library is described in the work by (Chen et al., 2017).

With respect to steam turbines performance maps, static laws are com-
monly used because there is no accumulation in the turbine. The most
common is Stodola’s law of cones (Cooke, 1985), or constant mass flow
coefficient (considering choking conditions) (Cordes, 1963). Both of these
laws related the current operating conditions (i.e. off-design conditions) to
the design point. In addition to first principle derived relations, empirical
linear relations between the power produced and the steam mass flows, called
Willans lines, are described and used in the work by (Sun and Smith, 2015).

For our propose, the model has to be simple and robust, yet it also needs
to capture the main dynamics of the process. We develop a first principle
model for a typical steam cycle to test our analysis. As mentioned in Section
2.3, we consider only the water side subsystem (i.e. SS1). The interface with
SS1 is modelled via the hot flue gas inlet temperature, and the interface with

SS3 is modelled via the generator frequency.

The model consists of both algebraic mass- and energy balance repre-
senting fast time scale processes, as well as dynamic equations representing
the longer time scales. Therefore, the model is a system of differential and
algebraic equations (DAE).The differential states (x) are the temperatures
on the hot side of the heat exchangers (e.g. Tg, Tp and Tg), the superheated
steam temperature after the attemperator (7'4), the holdups in the drum

(Mp) and superheater (Mg) and the frequency (w). The algebraic states (w)
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are the flue gas temperature on the cold side of the heat exchangers (e.g.
T%, T}, and Tg), turbine inlet pressure (pr), and the produced power (W).
The DAE model has a total of 12 states (7 differential and 5 algebraic). The

detailed model equations are given in 2.8.

2.5.2 Nominal operating conditions

We are interested in optimal operation of existing heat-to-power cycles,
therefore, the equipment design is given, and we must decide how to use it
optimally. We consider reasonable values for the nominal operating conditions
for a simple steam cycle with one pressure level (this may be typical for an
older operating plant). Similar values are found in Skogestad (2008) and
Astrom and Bell (1987). Table 2.4 shows the nominal operating conditions.
The design parameters are given in Table 2.9, and are computed by solving

the model at steady-state for the nominal conditions (Table 2.4).

2.5.3 Controller

Eq. 2.3 shows the time domain expression for the Pl-controllers used. Note
that we consider the saturation limits for the applied input u? (i.e. a valve
cannot be more than fully open or close, or mass flows cannot be negative.),
and therefore antiwindup is implemented. We use the back-calculation
antiwindup method, where the controller output tracks the input applied
to the process (uP) with a time constant (77) equal to the integral time
(77)(Astréom and Higglund, 2006).

Ko [* I
u(t) = u® + Kee(t) + =¢ / e(t)dt + — [ e“(t)dt (2.3a)
TI 0 T Jo

e=y"P—y (2.3b)
et =ul —u (2.3¢)

, max (u, u™m)) (2.3d)

uP = min(u™**

37



2. Optimal operation and control of heat-to-power cycles

Table 2.4: Nominal operating conditions

Variable Unit Value Unit
Holdup Economizer 100 kg
Drum 3000
Superheater 100
Attemperator 10
Water Inlet 45 °C
temperature  Economizer 303
Steam Drum 303 °C
temperature  Superheater 595
Attemperator 529
Fuel Economizer 150 °C
(combustion ~ Drum 425
temperature) Superheater ot
Inlet 1000
Flowrate Pump 10.6309 kg/s
Economizer bypass 0
Attemperator 0.6309
Turbine bypass 0
Gas 31.4018
Power 16.55 MW
Frequency 50 Hz

2.5.3.1 Controller tuning

We find the controllers tuning parameters (proportional gain K¢ and inte-

gral time 77) by identifying a first-order plus time-delay (FOPTD) model

(Tslil e~%%) or integrating model ( g(s) = %/ from a step response in the

input u, followed by applying the SIMC tuning rules (Skogestad, 2003) with

a chosen closed loop time constant 7¢.
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For a first-order model, we use Eq. 2.4.

1 7
Ko = - 2.4
CTkro+0 (2.42)
77 = min(7, 4(t¢ + 6)) (2.4b)

where, k is the steady-state gain from u to y, 7 is the open loop time
constant, 7¢ is the closed loop time constant and 6 is the time delay.
For integrating process (i.e. for plants with large time constant such as

levels), we use Eq. 2.5.

C_k’Tc+9 e
1 =4(10 + 0) (2.5b)

where, & is the slope.

2.5.4 Step 5. Regulatory controller design
2.5.4.1 Controller tuning

We begin with tuning the controllers for the regulatory layer (i.e. level
controller and active constraints).

An secondary decision in decentralized control, is the order of tuning the
PI controllers. This is an important decision in highly coupled processes, and
we base our decision based on effective time delays in the process (Skogestad,
2003). In our case, we use a sequential tuning method, that is we first
tune the level controller, then close the loop, tune the next controller and
repeat the procedure. Table 2.5 gives the tuning parameters for the drum
level control (Mp), superheated steam controller (T4), and flue gas outlet
temperature controller (T). Note that we do not need to tune the condenser
pressure controller as we consider it constant, i.e. perfect control. The value

for the closed loop time constant 7¢ is taken quite large to account for any
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unmodelled capacities and holdups, and make the model time scale more

realistic.

Table 2.5: Level and temperature controllers tuning

Type Loop T [8] K¢ 77 [8]
LC MV5-CV1 10 0.1 40
TC MV6-CV3 20 0.05 10
TC MV7-CV4 15 -0.0008 1

2.5.5 Step 6. Supervisory controller design

We proceed with the supervisory control design and we tune the controllers
using the fuel MV1 and the steam valve MV2 for the structures presented
in Section 2.4. In designing the supervisory control layer, we keep the same
tuning for the regulatory layer (Table 2.5), and follow the same tuning
procedure. Is important to note that we use the initial response in tuning
all controllers for MV2 (steam valve), as we are interested in using it on a
fast time scale (see Figure 2.4 and Section 2.3.2.2). For boiler driven, we
close first the pressure loop. Then, the open loop response from fuel MV1 to
power CV7 has one left-hand-plane zero and one left-hand-plane pole, and

we use a pure I-controller tuned based on the initial response.

Table 2.6: Standard industrial controllers tuning

Floating pressure Boiler driven Turbine driven
MV-CV  MV1- MV2=0.9 MV1- MV2- MV1- MV2-
Cvr7 Cv7 Cvs8 CVs Cv7
TCS 30 N/A 30 5 15 5
Ke 0.0028 N/A 0 -1.48 1.1574 0.0004
TI 40 N/A 0.1 20 50 1
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Table 2.7: Parallel controllers tuning

VPC PI and P control
MV-CV MV1-MV2 MV2-CV7 MV1(PI)- MV2(P)-
CvVT7 CvV7
TC S 50 5 30 5
Ko -2.84 0.0004 0.0041 0.0004
™ 115 1 55 N/A

2.5.6 Step 7. Control structure performance

We test the control structures for setpoint changes and disturbance rejection.

2.5.6.1 Setpoint changes

Figure 2.12a shows the response for the power, and Figure 2.12b shows the
pressure response, while Figure 2.12c and Figure 2.12d show the input usage
for fuel MV1 and steam valve MV2 respectively to a 10% step decrease
followed by 10 % step increase in the power setpoint for all five control

structures described in Section 2.4.

2.5.6.2 Disturbance rejection

Figure 2.13a shows the response for the power, and Figure 2.12b shows the
pressure response, while Figure 2.13a and Figure 2.13d show the input usage
for fuel MV1 and steam valve MV2 respectively to a disturbance of 50°C
step increase in the combustion temperature for all five control structures
from Section 2.4. This high change in temperature could be for example

given by changes in the fuel composition or heat quality.

2.5.6.3 Summary of comparison of the five control structures

Comparing the three common industrial standards (floating pressure, boiler

driven, turbine driven) in Figure 2.12, boiler driven structure reacts slower
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Figure 2.12: Closed loop responses to 10 % step decrease at time ¢t = 0s followed
by 10 % step increase at time ¢ = 300s in the power setpoint. Only turbine driven

and boiler driven have pressure control.
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Only turbine driven and boiler driven have pressure control.

43



2. Optimal operation and control of heat-to-power cycles

for change in the produced power, but has the advantage that the fuel rate
(MV1) changes smoothly, and it does not overshoot as for all other control
structures. Turbine driven gives the fastest response to a step change in
power (CV7), yet, in comparison to boiler driven, the pressure (CV8) drifts
significantly from the setpoint in transient operation. These effects can
be explained considering the smaller effective time delay from controlling
CV7 or CV8 using the steam valve MV2, contrast to using the fuel MV1.
The VPC control structure has as similar response to turbine driven for a
power setpoint decrease, while it is the slowest to a setpoint increase because
the steam valve MV2 saturates. In addition, by design, the VPC is tuned
slow, and tuning it faster would result in an aggressive controller with a
high input usage for fuel MV1. In terms of performance the two controllers
(parallel control) seems very good and has the benefit of floating pressure
at steady state.) Considering throttling losses for the steam valve MV2,
both boiler and turbine driven results in higher losses because MV2 needs
to close more to keep the setpoint for power (CV7), compared to the other
control structures that do not have pressure control. To answer the question
if the pressure should be controlled (Section 2.4), we can say that controlling
the pressure gives a faster response when steam valve is used to control the
power, while letting the pressure float minimizes the throttling losses (also
see Section 2.6.1).

The response for a disturbance in the combustion temperature (7§) shows
that the boiler driven control structure may not be suited for plants with
large variations in this disturbances. An increase in 7§ increases the enthalpy
of the hot flue gases, which results in more heat transferred in the boiler,
and an increase in the steam pressure (CV8). To decrease the pressure to
its setpoint, the steam valve MV2 has to open (Figure 2.13d), which results
in a higher overshoot for the power produced (Figure 2.13a) compared to
the other control structures. Moreover, in this particular example, the steam

valve (MV2) saturates, and we loose control of the pressure during transient
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operation. Note that the pressure response for boiler driven follows the
floating pressure initially (Figure 2.13b), but then it decreases faster because
the steam valve MV?2 is fully open for boiler driven, while for floating pressure

is kept at 90 % opening.

2.6 Discussion

2.6.1 Throttling losses

Having the steam valve partly open results in throttling losses. We define
throttling as a reduction in pressure without removal of energy in form of heat
or work, i.e. isenthalpic process. Throttling is irreversible and it translates
into increase of entropy and thereby exergy losses and decrease of available
work (Shinskey, 1978).

Din Dt

7
/

throttling

Enthalpy, h

no
throttling

Pout pout

Ql~........
P
Entropy, S

(b) Steam valve-turbine system

(a) Enthalpy-Entropy diagram

Figure 2.14: Enthalpy-Entropy diagram for an expansion process with and without
throttling, left, and, a steam valve-turbine system indicating the corresponding
pressures, right.

Figure 2.14 shows the enthalpy-entropy diagram for an expansion process

with and without throttling, where the purple lines represent the lines of
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constant pressure. The green path from A to D represents the isentropic
expansion from inlet pressure p;, to outlet pressure p,,; without throttling.
The orange path from A to B represents throttling from inlet pressure p;, to
pressure p;. The orange path from B to C represents the isentropic expansion
from the pressure after throttling p; to outlet pressure poy:.

Considering constant outlet pressure po,:, with throttling, steam is ex-
panded at a higher enthalpy, thus resulting in increase of entropy and loss of
available work. The loss in available work is graphically represented by the
difference in enthalpy between D and C.

Mathematically, the loss of available work is quantified by Eq. 2.6.

Whoss = VAP (26)

where, Wi, = loss in available work, V is the volumetric flow (assumed

constant), and Ap = p;, — p; is the pressure drop across the steam valve.

2.6.2 Floating pressure efficiency

The throttling losses mentioned above are relevant if we could replace the
valve by an adjustable small turbine. However, this is not the case here.
Instead, we consider keeping the steam valve fully open and let the pressure
float, leading to a lower steam drum pressure at low loads. This does not in
itself give an increased efficiency in terms of power produced because it does
not require more energy to increase the pressure. However, by lowering the
pressure and thus the temperature in the drum on the steam side, we get
improved temperature driving forces. Thus, with floating pressure operation
we are able to extract more energy from the fuel because we get a lower flue
gas exit temperature. In some cases, we are not allowed to lower the flue
gas exit temperature because of corrosion issues, and then there will be no
efficiency benefit of floating pressure operation. In Table 2.8, we analyse the

new steady-state operation conditions for a decrease in power by 10 % from

46



2. Optimal operation and control of heat-to-power cycles

nominal (i.e. at 90 % load), both for floating and constant pressure. We
assume that the exit flue gas temperature (CV3=T1%,) is not controlled, that
is, the economizer bypass MV6 is kept closed. We assume that the turbine

efficiency is equal in all cases.

Table 2.8: Comparison of the steady-state values for floating and constant pressure
operation modes at 90 % load without controlling the cold flue gas temperature.

Pressure Power Fuel Pressure T7%, TS (°C)  Attemperator
(MW) (MV1) (CV8) (CV3) (MVT)
(kg/s) (bar)  (°C) (ke/5)
Floating 14.9 27.79 79.9 128.4 611.4 0.7045
Constant 14.9 27.86 88.05 130.7 616.5 0.74

At 90 % load, the loss in used fuel for constant pressure is only 0.2%, and
the additional pump work needed to boost the pressure by 8 bar accounts to
0.05% of the produced power, which adds to only 0.25%. If the temperature of
the cold flue gas is controlled at its minimum limit (i.e. CV3=T§ > Tg’min),
then the loss in efficiency is reduced to 0.05% (i.e. account for the pump),
both floating and constant pressure operation modes At 65 % load, the energy
efficiency loss for constant pressure operation increases to 1% (without flue
gas temperature control). Therefore, the energy efficiency increases at low
loads in floating pressure operation, though the increase is not significant.
These numbers depend naturally on the process design, especially how
the heat exchange area is distributed between the economizer, drum and

superheater.

2.6.3 Steam turbine control

For a stand-alone turbine, or when a gear box is used to connect the turbine
and the generator, the turbine rotational speed may be used as a degree
of freedom, but we are here considering a turbine connected to the grid

without a gearbox. More precisely, the turbine is connected to an electric

47



2. Optimal operation and control of heat-to-power cycles

generator through a shaft and the electric generator is connected to the grid.
In principle, no control of the turbine is needed, because inertia and self-
regulation will imply that all these frequencies (turbine speed wp, generator
speed and grid frequency w) are the same at steady state. However, in

practice, speed (frequency) control is needed for two reasons:

1. Local level (speed control of turbine). To protect the turbine/ generator
system from damage caused by fast changes in the turbine speed, we
must keep the turbine frequency close to the grid frequency on a fast
time scale. This is done by installing a steam valve upstream the
turbine (MV2) which controls CV5 = w; w.

2. Grid level (droop control of grid frequency). The grid frequency w
should be kept close to its desired setpoint w*? (e.g., at 50 Hz in Europe
and 60 Hz in the US). The value of w is directly proportional to the
amount of kinetic energy (inertia) stored in all the rotating equipment
in the grid. Any imbalance between power production and power
demand will therefore change w. There is a certain self-regulation in
the power demand, but this is not enough. Thus, to maintain a desired
grid frequency w*®? in spite of variations in the power demand, some
of the main power producers must participate in controlling w. That
is, we need to control CV6 = w — w*P. The manipulated variables
for this is the power production for each unit i (W;), which at steady
state requires manipulating the fuel rates (MV1;). This control task is
divided into primary (droop), secondary and tertiary grid frequency

control.

The local level turbine speed control (CV5) is always present (Kurth
and Welfonder, 2006), (der Autumation, 2003). As mentioned, the inherent
self-regulation will keep CV5=0 at steady-state. Thus, integral action is not
needed for control of CV5, so in practice a proportional controller (droop)

is used. We will not discuss the control of CV5 in this paper, because it is
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generally considered a part of the equipment protection, and is not available
for control engineers. Furthermore, because the self-regulation of CV5 is fast
anyway, the design of this controller will not affect the rest of the control

System.

Next consider grid frequency control. Not all power producers participate
in grid frequency control, but the ones that do usually get a higher power
price. Let the power production (actually, the setpoint for power production)
from each producer be written as W;? = Wig + AW;P where AW;? comes
from the primary frequency control (proportional droop) and W;¥ from the
secondary frequency control. Figure 2.15 shows the primary and secondary
control loops for plant 7 in an isolated area with N power plants participating
in grid regulation. Note that the inner turbine control loop are not explicitly

shown, but this is inside the Power plant i block.

Let us first consider the primary droop control which takes place on a

fast time scale.

Ideally, we want to avoid centralized coordination of the participating
power producers at the fast time scale. The solution is then that each
producer has local control of the grid frequency, CV6. However, these local
controllers cannot have integral action, because otherwise there is no unique
steady state, and one may even get into cases where the controllers fight
each other, possibly resulting in one power plant closing down and another
reaching full capacity (Cohn, 1984), (Astrom and Higglund, 2006).

To solve this issue, we use proportional control of CV6= w — w*P. This
gives a unique steady state, where the power change from each producer i is
uniquely given by the change in grid frequency, AW;? = —1/R;(w®? — w).
Here 1/R; is the proportional controller gain, typically between 3 and 10
%/ %, where R; is the steady-state process gain from power to frequency.
The MV available for achieving the desired change in power production
(AW;) is as mentioned the fuel (MV1), but to speed up the dynamic response

one frequently makes use of the steam valve (MV2). The required response
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time is usually specified in the contract for each producer. Note that the
steady-state effect of MV2 on the power production is negligible (Figure 2.4).

Next consider the secondary frequency control which involves a central-
ized controller with integral action. Integral action is needed because the
proportional action in droop control results in a steady-state offset in fre-
quency. This controller changes the bias Wi‘fg in the power setpoint for each
producer (adjusted with a gain «;) on a slow time scale. Finally, for larger
changes in power demand on a longer time scale, it may be necessary to start
up or close down power production (tertiary frequency control).

When a plant participates in droop control, the fuel (MV1) has to be
lower that its maximum, which gives a loss in power production. Furthermore,
for fast response to changes in power demands, the steam valve (MV2) has
to be partly closed (e.g. 90 % opening) at nominal operation, which gives
a loss in efficiency. These issues explain why producers who participate in

droop control get a higher electricity price.

secondary frequency control (slow)

Droop

primary frequency control (fast) =1
1

wit /R

Power M Power | Wi Inertia & w
controller i f=—>| plant ¢ self-regulating
MV2
L

Figure 2.15: Primary (green) and secondary (blue) frequency control for power
plant 7 in an area with N power plants participating in grid frequency control
(adapted from (Wood et al., 2014).)

Controller
with I-action

2.6.4 Operation with given fuel rate (MV1)

In this case, MV1 must be used to control the TPM. Hence, from a steady-
state point of view, we have no degrees of freedom left to control the power

produced, and the steam cycle becomes a "swing power producer (Fig-

50



2. Optimal operation and control of heat-to-power cycles

ure 2.16). In this case, the power plant clearly cannot participate in grid
frequency control. More importantly, there must be some other means (not
shown) to make the power output balance the fuel rate by controlling the
steam pressure. For example, there could be another steam flow added to
the turbine inlet or excess steam could be withdrawn and used for other
purposes. In addition, to make sure that the pressure is kept within bounds,
it is suggested (Figure 2.16) to give up controlling the fuel rate when a
or p = p™in).

pressure constraint is reached (i.e. p = p™a*

Figure 2.16: Control structure with given fuel rate (MV1) and fully open steam
valve (MV2) to maximize power production. The mid-selector gives up controlling
the fuel rate when a pressure constraint becomes active. Under normal conditions,
pressure is controlled by some other manipulated variable (not shown), for example,
by producing steam.

2.6.5 Influence of level control time constant

Similarly to floating pressure, the drum level can be let to float between
it’s minimum and maximum limits, to utilize the stored energy in the hot

water. This can be achieved with a slow level control, in which case, the
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drum level would be allowed to decrease to a lower level and the steam flow
would be longer sustained when it is required to produce more power, while
feedwater is slowly pumped into the system. Note that with tight (fast) level
control, cold feedwater is pumped rapidly in the system which decreases the
drum temperature faster in transient operation. However, for the studied
simulation case, a slow level control showed limited improvement of the
dynamic performance. Figure 2.17 shows the power response for setpoint
changes (10% decrease at time t = 0s and 10% increase at time ¢ = 300s
) for floating pressure (Figure 2.17a), boiler driven (Figure 2.17b), VPC
(Figure 2.17¢) and two controllers (Figure 2.17d). Turbine driven has an
insignificant change. Note that the larger the closed loop time constant (7¢),

the slower the drum level control is.

2.6.6 Effect of modelling simplifications

The steam cycle model used in this work makes use of several simplification
with the purpose of developing a process model becomes easier to develop,
use and simulate. The complete set of simplification assumptions are detailed
in Appendix 2.8, while their practical implications are discussed next.

The main real effects not included are unmodelled dynamics and effective
delays, and more rigorous (non-ideal) thermodynamics for the water-steam
side.

The combustion dynamics are not included, as we assume we can directly
manipulated the hot flue gas (MV1) resulted from the combustion process.
Depending on the type of fuel used, this may or may not good simplification.
For example, if the fuel is a gas, the combustion process happens at a
much faster scale than the steam cycle dynamics. On the other hand, these
dynamics may be in the order of minutes for other types of (solid) fuels such
as biomass, coal or waste.

The wall capacities are not included, meaning that the thermal inertia of

the steam cycle is smaller than in reality. In addition, each of the three heat
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Figure 2.17: Influence of the tuning of the drum level controller on the power

response to setpoint changes.
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exchangers are modelled as one cell instead of a distributed cell model. The
steam turbine is modelled as one expansion stage. In reality, these effects
would contribute to higher effective delays. Overall the dynamic response of
the modelled cycle is probably faster than reality.

The steam thermodynamics are assumed to be ideal, that is the water-
steam enthalpy is assumed to be a linear function of temperature only. More
rigorously, at high pressure and temperature, the steam enthalpy is a highly
nonlinear function of both temperature and pressure. One effect of this
assumption is higher turbine inlet temperature when using ideal thermody-
namics, cause by neglecting the temperature drop over the isenthalpic steam
valve throttling.

Nonetheless, these simple models are suitable for the purpose of studying

and understanding the dynamic response of the different control structures.

2.6.7 Implications of process simplification

In a real industrial implementation, a steam cycle is more complex, and
many more process configurations exists than the simple process analyzed in
this work. For example, it may have different pressure levels, a deaeraor for
reducing the feedwater oxygen content or steam extraction to provide heat
utility.

A steam cycle operating at low, intermediate and high pressure levels,
will have for each level the corresponding constraints, MVs and CVs as for
only one pressure level.

Extracting steam for process heating at different pressure levels, will act
as a disturbance for the existing control loops. With respect to operating
combined heat and power cycles, the optimal steam level that maximize
efficiency (or minimizes cost) should be identified.

A deaerator is installed downstream of the condenser and receiving steam
extracted from the turbine to deadsorb oxygen from feedwater and prevent

boiler corrosion. For consistent inventory control in the steam cycle, this
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level will be left uncontrolled.

The exceptions are the very few offshore installations where simpler steam
cycles, with one pressure level and once-through boiler are preferred due
to smaller footprint and simpler operation. As mentioned for once-through
boilers there is no drum level to control, and the feedwater flow is used to

control the superheated steam temperature.

2.7 Conclusions and final remarks

In this work, we used the systematic framework of plantwide control to
analyse the control and optimal operation of a simple steam cycle with one

pressure level, drum and condensing turbine.

After controlling the unstable inventory (drum level CV1), and the active
constraints: condenser pressure CV2, superheated steam temperature CV4,
cold flue has temperature CV3, we have two degrees of freedom left: the
fuel MV1 and the steam valve MV2. MV2 only has a dynamic effect on the
power produced, as shown in the response to setpoint changes in Figure 2.12

and in the disturbance rejection response in Figure 2.13.

At low loads, letting the pressure float is slightly more efficient. By keeping
the pressure constant the dynamic performance is improved, especially for

the turbine driven operation (Figures 2.12 and 2.13).

Of interest for future work is a more comprehensive analysis of the control
implications of variable heat sources with varying inlet temperature. The
extend to which the existing the storage capacity of the process (e.g., drum
and pipeline capacity) can be utilized as a short-time buffer between supply

and demand, should also be further investigated.
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Table 2.9: Design parameters

Parameter Value Unit

UAg 95.12 kW/°C

UAp 464  kW/°C

UAg 19.94 kW/°C

Cy.p 10 kg/°C

K, 2.32  kg/bar

oD 3.625 kg/svK/bar

M, 7.56  pu MW pu /rad/s
Dy 2 pu MW pu /rad/s

2.8 Appendix

2.8.1 Design parameters

where pu represents per-unit, and it is used in electrical system to normalize

a given parameter wrt. a selected base value (i.e., ratio to a base value).

2.8.2 Model thermodynamics

Assumptions

(A1) Constant specific heat for each fluid (water, steam and flue gas);
(A2) The reference temperature is 77 = 0 °C;

(A3) The boiling reference temperature is 778 = 576 °C (drum nominal

temperature);
(A4) Ideal gas behaviour for steam;

(A5) Saturated steam pressure follows Antoine equation (Eq. 2.8b).
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Considering a constant c,, the specific enthalpy for the gas, water and steam

has a linear dependency on the temperature, as shown in Eq. 2.7.

AHY = c(T9 —T") Vj € (i,8,D, E) (2.7a)
AHY = c¥(T; —T") Vje (P,E) (2.7b)
AH® = c¥(T" = T™) + ¢5(T; — T") + AH"(T°) (2.7¢)

Vj € (D,S,AT)
Table 2.10 shows the specific heat for each component.

Table 2.10: Specific heat

Component ¢, Unit
water 418 kJ/kg/°C
steam 3 kJ/kg/°C

hot flue gas 1.25 kJ/kg/°C

The saturation pressure in the drum is computed using Antoine relation

(Eq. 2.8b) as a function of the temperature.

pp =10 (2.8a)

(2.8b)

where T is in K and pp is in bar, and the constants are A = 5.11564 B =
1687.537 C' = 42.98 (Reid et al., 1987).

2.8.3 Economizer and bypass model

Assumptions
(A6) Constant inlet temperature (due to tight condenser pressure control,see

below);
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2. Optimal operation and control of heat-to-power cycles

(A7) Constant water holdup (— neglect the mass balance);

(A8) Static mixing for the bypass and economizer outlet streams (i.e. fast
heat and mass dynamics and negligible holdup)(— static mass and

energy balances);

We write a dynamic energy balance in temperature form for the steam side,

and an algebraic energy balance for the gas side.

MBE &

Figure 2.18: Economizer

dIg 1 Qp
2E_ Tp —Tg) + & 2.9
dt Mg <mE( P E)+ cﬁ) (2.9)
0 = m9e(T§ — TY) — Qp (2.9b)
TS +T% T T
QE:UAE<D;_ B _ 0—2% E) (2.9¢)
T T
Ty = mgplp +mpplp (2.9d)

my

2.8.4 Mass flowrates model

The flowrate for the pump, economizer bypass and attemperator are directly
given by (PI)-controllers (we assume fast inner cascade controllers on the

valve position), according to the general Eq. 2.10. Antiwindup with a
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tracking time constant equal to the integral time (7p = 77) is used.

Koo [t ¢
m; = 'm? + Kcﬂ‘ei + Ot / €i(t)dt + / em,i(t)dt (2.10&)
0 0

I TT,i
e =y — vy (2.10b)
em,i = Mip — My (2.10¢)
mjp = max(m;,0) (2.10d)

i€ (P,AE,BE) and y € (Mp,T9,Ts)
The remaining flowrates are computed from steady-state mass balances,

according to Eq. 2.11.

ME = Mp — MAE — MBE (2.11a
mp = Cy,p(pp — ps) (2.11b

ms = My — MAE (2.11c

~—_ — ~—

my = 2y Kc(ps — pr) (2.11d

2.8.5 Drum model

Assumptions
(A9) Perfect mixing;

(A10) Equal temperature in liquid and vapour phases;
(A11) Negligible vapour holdup (compared to the liquid holdup);
(A12) Saturated steam;

(A13) Outlet flow is given by a linear valve (fully open) equation as a function

of the pressure drop;
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(A14) Fixed vaporization in the drum, i.e. the drum inlet is saturated liquid
water, and the outlet is saturated vapour. This means that the vapor-
ization is know a-priori. Note that fixing the vaporization point may
not be optimal for operation, as the heat transfer area is not optimally
utilized. However, a variable phase transition point raises additional

modelling challenges, which we want to avoid;

For the drum, we write a dynamic mass (Eq.2.12a) and energy balance on
temperature form on the steam side (Eq.2.12b), and algebraic energy balance
on the gas side(Eq.2.12¢).

Figure 2.19: Drum

M

ddtD R (2.12a)

dT'p 1
= Hy —Tp) + ... 2.12b
pn Mpey (mar(Hayr — ¢Tp) + ( )

—mp(Hp — ¢, Tp) + Qp)
0=m?c) (T} —Tg) — Qp (2.12¢)
T + T

QD:UAD< S; D—TM;FTD> (2.12d)
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2.8.6 Superheater and attemperator models

Assumptions

(A15) The steam holdup accounts for the entire steam holdup in the cycle

(— need to consider a dynamic mass balance );

(A16) Static mixing in the attemperator (i.e. fast heat and mass dynamics

and negligible holdup) (— static mass and energy balance);

We write a dynamic mass (Eq.2.13a) and energy balance on temperature

form on the steam side (Eq.2.13b), and algebraic energy balance on the gas

side(Eq.2.13c).

Figure 2.20: Superheater and attemperator

dMg

—= =mp-—-m

dt D S

aTs 1

_—2 — Hp - ST
dt Mscf)(mD( p=6Ts) +

—ms(Hs — ¢;Ts) + Qs)
0=mIe(T§ —T¢) — Qs
ﬁ+ﬁ%+%>
2 2
O0=msHs;+msHp —mygHz

Qs = UAS(

(2.13a)

(2.13b)

(2.13c)
(2.13d)
(2.13¢)
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2.8.7 Steam valve, turbine and generator models

Assumptions. Steam turbine valve

(A17) Linear valve equation and pressure drop;
(A18) Isenthalpic;

(A19) Negligible holdup;
Assumptions. Turbine
myVT

(A20) Turbine map: constant mass flow coefficient (¢ = *2==);

(A21) Isentropic expanssion with 100% efficiency;
(A22) Speed is given by generator frequency;

(A23) Neglijable holdup;
Assumptions. Generator
(A24) Another power plant is responsible for keeping the frequency at the
nominal value, therefore we can only use a P-controller for frequency

control;

2.8.8 Condenser models

Assumptions
(A25) Tight pressure control, i.e. constant condenser pressure (— is not

modelled and the cycle is open);

2y
o
Ta Tr

mpr

mr
Tc

Figure 2.21: Steam turbine
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mpr =0
T
0 mrvTa y
pr
(R\cp)
wen(3)
br
0=W +mrc,(Tr — Tc)
dw 1
= — (P—L-Dylw—
a =1 w0 — o))

2.8.9 General for heat exchangers models

Assumptions
(A26) Constant and negligible holdup for the hot side;

(2.14a)
(2.14b)

(2.14c)

(2.14d)

(2.14¢)

(2.14f)

(A27) Constant UA (heat transfer coefficient U (W/(m?K) times heat surface

area A (m?);

(A28) Temperature difference (AT) is the difference between the algebraic

mean on each side.

(A29) Neglected wall capacity
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Chapter 3

Transformed inputs for
linearization, decoupling and

feedforward control

The goal of the previous chapter was to have a better understanding of the
operation and control problem of steam cycles. However, it quickly became
apparent that control of industrial power plants has been developed over
many years to a stage where they are adopted by many plants and work
extremely well and it is not straightforward to make improvements.

Many of these control structures make extensive use of nonlinear model-
based calculation blocks, function blocks, or ratio stations to provide feed-
forward action, decoupling or linearization (adaptive gain). Examples from
steam cycles include superheated steam enthalpy control for disturbance
rejection (Shinskey and Louis, 1968), two-elements and three-elements drum
level control (Lindsley, 2000) or use of simplified reference dynamic models for
decoupling and linearization for coordinated load control (Welfonder, 1999).
Examples related to chemical processes are available in Shinskey (1981),

ch.8. These include air-to-feed ratio control for a Claus sulphur process,
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3. Transformed inputs for linearization, decoupling and feedforward control

manipulating the ratio reflux-to-distillate for pressure control to provide
decoupling. In the latter, changes in the distillate flow used to control the
top composition, is reflected immediately in the reflux flow without needing
to wait for a change in the column pressure, thus reducing interactions and
improving the composition response. An example for stabilizing a distillation
column with two reboilers and controlling the two reboiler levels and column
temperature by means of “reversing” the static process model (given by mass
and energy balances) is also provided. These examples are case specific based,
and a systematic theory for developing these calculation blocks is missing. It
is therefore one of the the goal of this work to give some theoretical back-
ground for these nonlinear model calculation blocks studied in the context
of nonlinear input and output transformations. The question we want to

answer is

How do we derive good transformed inputs in a systematic man-

ner?
This part is based on the papers:

1. “Transformed manipulated variables for linearization, decoupling and

perfect disturbance rejection ” (Zotica et al., 2020a)

2. “Input transformation for linearization, decoupling and disturbance
rejection with application to steam networks ” (Zoticd and Skogestad,
2021)

3. “Control of steam bottoming cycles using nonlinear input and output
transformations for feedforward disturbance rejection ” (Zotica et al.,
2022)

4. “Transformed inputs for linearization, decoupling and feedforward con-
trol” (Skogestad et al., 2023).
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3.1 Motivating example: three elements drum level

control

measured L _h_ -

level

measured d

steam ------- @
flow '

1 ws = ’USAT + d
measured

1

1
feedwater | U=z
flow X

Figure 3.1: Cascade implementation of the three elements drum level control.
Adapted from (Lindsley (2000), ch.6). The variables’ names and colors reflect the
block diagram for transformed inputs in Figure 3.2

This section briefly explains the three elements drum level control solution,
and motivates the introduction of transformed inputs theory later in this
chapter.

The three elements control was introduced to speed-up the response to
a disturbance in the steam demand compared to the conventional feedback
solution where the drum level is controlled by manipulating the feedwater
flowrate (also see the process flowsheet in Figure 2.3). The name is derived
from the three measurements used: drum level, the steam flowrate and
the feedwater flowrate. It is widely applied (ABB, 2022; Lindsley, 2000),
and many implementations are available. One of them, a cascade based

implementation, is shown in Figure 3.1. As we will see later, this is equivalent
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to the feedback-based implementation of transformed inputs (see Figure 3.4c).

The control objective is to provide fast feedforward disturbance rejection
for changes in the steam demand. It uses the drum steady-state mass balance
to set the feedwater flowrate equal to the steam demand. The response
is improved compared to feedback only because it accounts for process
delays, nonlinearities in the valve characteristics and inaccurate drum level
measurement caused by the shrink and swell effect.

The shrink and swell effect may happen when steam demand increases
reducing the drum vapour mass and thus decreasing pressure. As a result,
the saturation temperature also decreases and, with the same heat input, the
evaporation rate increases producing more bubbles entrapped in the liquid
causing an “artificial” increase of the liquid level (swelling), although the mass
is decreasing. There is some self-regulating effect and eventually with the

same heat input, the steam outflow decreases when the pressure decreases.

3.1.1 Deriving the model-based flowsheet in Figure 3.1.

This example is given in the framework of the input transformation theory
later introduced in Section 3.4. However, it should be easy to follow without
knowing the theory.

Assume for simplicity a drum with constant cross-sectional area (A, [m?])

and the mass balance
dh 1

@~ atar—as) (3.1)

where the feedwater flow gz [m?/s] may be expressed by the valve equation

q=Cuf(2)V|AP| (3.2)

where C,, is valve coefficient, f(z) is the valve characteristic and AP = p; —pa
is the pressure drop over the valve with the opening z.

Defining the right-hand side of the mass balance equation as a transformed
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input v,
1
v=—(qr — qs) (3.3)

Ay
which replaces the feedwater flow gr to control the level h.
This is selected such that when substituted into the model gives the

transformed system
dh
dt

which is independent of disturbance gg.

v (3.4)

To implement the transformed input v, we need to generate the feedwater
flowrate by solving (“reversing”) Eq. 3.3 for gp knowing the controller output

v and the measurement ¢g (the red circle in Figure 3.1).

qr = vAr +4qs (3.5)

Finally, to implement ¢z an inner flow-controller is used which manip-
ulates the valve position z. This is cascade control which linearizes the

nonlinear valve characteristic f(z) in Eq. 3.2.

3.2 Introduction to transformed inputs

Figure 3.2 shows the block diagram for transformed inputs for achieving
linearization, decoupling and feedforward disturbance rejection. In Figure
3.2, u is the original (physical) input while v is the transformed input which
depends on u and other variables. The main idea is that the controller C' (or
in some cases the operator) sets the value of the transformed input v rather
than the physical input w.

Shinskey (1981) (on page 119) writes in relation to selecting input and

output variables for control:

“There is no need to be limited to single measurable or ma-

nipulable variables. If a more meaningful variable happens to
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Transformed system |d

[ ]
"
:
ys e v : u:g_l(v7w7y~,d) "
Controller C' o Inverse input Process w
. transformation

Figure 3.2: Use of transformed inputs v. For example, the transformed input
could be the ratio v = g(u,d) = 4, and the “inverse input transformation” block
that inverts this relationship would then be u = g=!(v,d) = vd.

be a mathematical combination of two or more measurable or

manipulable variables, there is no reason why it cannot be used.”

We formalize the above statement and define the objective of introducing
the transformed input v as: The transformed input v replaces the physical
mput v as the manipulated variable for control of the output y, with the
aim of simplifying the control task by including elements such as decoupling,
linearization and feedforward action.

Generally, the transformed input v is defined as a nonlinear static function

g of the physical input u and other variables:

v =g(u,w,y,d) (3.6)
where the specific function g is a design choice, and the other variables are:
v = transformed inputs
u = physical inputs
d = measured disturbances

y = controlled outputs (measured)
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w = other measured dependent variables (states).

Note that in this work, we do not include dynamic elements in the
definition of the transformed input v, although this is frequently done in
industrial practice.

In Eq. 3.6 we assume that we can measure disturbances d and some of the
internal variables (states) w. This is often not the case for real applications,
and there are two alternatives to deal with this. First, we can simplify the
expression for the ideal transformed variable by keeping only parts of the
benefits, for example decoupling, and leave the disturbance rejection to the
outer feedback controller C. Second, we can use an observer to estimate
d or w, though this is outside the scope of this work. To implement the
transformed inputs we need to find the physical input u by solving a set of

nonlinear algebraic equations that give u as a function of v, y, w, d.

Examples of transformed inputs from the process industry

v=u+d (3.7a)
u

= — 3-7b

v=" (3.7h)

v =u] — ug (3.7¢)
uy

= = 3.7d

b=l .7

v=w (3.7¢)

Such transformed inputs are often introduced using a physical understanding
of the process. The transformed input v = u + d in Eq. 3.7a provides
feedforward action from a measured disturbance d, for example, in water
make-up systems where u and d represent two feedrates and we want to control
the combined flowrate u + d. The ratio v = § in Eq. 3.7b gives feedforward
action and linearization, for example when v and d are two feedrates and

we want to control the quality (e.g., composition or temperature) of the
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combined feed. The transformed variables with two inputs such as the
difference v = u1 —u9 in Eq. 3.7c or the ratio v = Z—; in Eq. 3.7d may provide
decoupling.

Starting from a static or dynamic process model, we derive ideal trans-
formed inputs which achieve linearization, decoupling and perfect disturbance
rejection.

To implement transformed inputs, we need to generate the physical input
u from a given value of v = g(u, w,y,d). Shinskey (1981) calls this “reversing

the process model”. There are two main ways of generating this inverse:
A. Model-based inverse

B. Feedback-based inverse using a cascade implementation with an inner

controller for v or w.

3.3 Literature review

The following paragraph give a short overview of a few selected methods
relevant to this work. The focus is on methods that are general rather than
case specific applications.

Shinskey (1981) presents several examples from his industrial process
control experience where nonlinear model-based calculation blocks are used
to provide feedforward action, decoupling or linearization for a nonlinear
system. These calculation blocks can often be traced back to a steady-state
nonlinear process models. However, there is no academic literature that offers
a systematic derivation of these calculation blocks based on static process
models.

On the other hand, there is a large body of academic literature that uses
a thorough mathematical treatment to transform a dynamic nonlinear model
into a dynamic linear system. These methods may also be extended to provide

disturbance rejection (sometimes called disturbance decoupling) or input-
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output decoupling for special classes of systems (Isidori, 1995; Khalil, 2015;
Nijmeijer and Schaft, 2016). A comprehensive review of specific nonlinear
control methods for process control applications is presented in (Bequette,
1991).

Perhaps the better known and studied in nonlinear control course of
these methods is feedback linearization (Isidori, 1995; Khalil, 2015). In
its pure form, feedback linearization uses change of coordinates and a full
static state feedback law to render the entire input-state map linear. This
requires that a full state measurement is available (or estimated) and that
the zero-dynamics are stable (i.e., equivalent to LHP-zero for linear systems,
so RHP-zeros are not allowed). Feedback linearization uses elements of
differential geometry and applies for systems with relative order r greater
or equal to 1. The relative order represents the number of times the output
needs to be differentiated wrt. time such that the input appears explicitly.
For linear systems, the relative order represents the difference between poles
and zeros. A similar relative order (pg) can be defined for disturbances.
Then, perfect disturbance rejection can be achieved only if py < r (Isidori,
1995; Henson and Seborg, 1997). Note that this is a physical limitation of
the system and not of the method itself, as a higher relative order from
disturbances implies a smaller effective delay from disturbance d to output y

than from the input u to output y.

For systems that either cannot be fully linearized or it is desired to
preserve some of their nonlinear dynamics, only the input-output map may
be linearized. The remaining dynamics of the system are included in the
zero-dynamics of the system (Isidori and Ruberti, 1984; Henson and Seborg,
1997). Systems that cannot be linearized include cases where the full state
measurement is not available, or the relative order of the systems is lower

than the system’s order (n).

For higher order systems, the transformed system becomes a chain (series)

of linear differential equations. Most examples in the literature transform
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the nonlinear system into an integrator system, which brings additional
control limitations and a state-feedback controller is needed to stabilize the
system. However, there is no requirement of transforming the systems into
an integrator and, for process control applications, we generally want to
avoid transforming the nonlinear system into an integrating system unless
it was originally already integrating. For example, in (Nijmeijer and Schaft,

2016) (ch.5 and 6) a nonlinear system affine in the input of the type

L = f(@) + gl (38)

is transformed into a linear first-order system of the type
dx

— =Ay+B .
at Yy + Bv (3.9)

Similarly, for input-output linearization, Isidori and Ruberti (1984);
Bastin and Dochain (1990) proposes obtaining a first order model linear
input-output of the form % = Ay + Bw. This is also the methods used in

this work for transformed input derived from a dynamic model.

In some cases, the state feedback law may not be possible to implement,
for example because the model equation becomes singular for some operating
points. To resolve this issues, a dynamic state feedback can be implemented
(Lee et al., 2016). Essentially, this is a pure integral controller which solves
numerically without the need to invert the transformation to generate the
physical input, similar to the feedback-based implementation described later

in Section 3.5.

Another method that provides nonlinear feedforward and linearization
is reference system synthesis (Bartusiak et al., 1989). The focus is not on
linearizing the original system, but rather on providing disturbance rejection

and offset-free control. A nonlinear feedforward and feedback control law is
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derived based on a nonlinear model such that the closed-loop behaviour of
the system follows a desired trajectory given by a set of integral-differential
equations, which may be linear or nonlinear. For systems with relative order
r = 1 it is equivalent to the differential geometric approaches of input-output

linearization.

Full mathematical treatment of feedback linearization with necessary
and sufficient conditions is presented in several nonlinear control books, e.g.,
Isidori (1995); Khalil (2015); Nijmeijer and Schaft (2016). This literature
provides a mathematical basis for issues related to the invertibility and stabil-
ity of the transformations proposed in this work. However, the mathematical
treatment is at a quite low level, such that these results may find their way

into industrial practice.

3.4 Derivation of ideal transformed inputs

This section explains how to systematically derive transformed inputs and

outputs starting from either a steady-state or dynamic model.

Consider a n x n system with n inputs u and n outputs y. The goal is
to use the steady-state or dynamic model equations to define n transformed

inputs v which ideally give linearization, decoupling and disturbance rejection.

Section 3.4.1 presents the derivation from a steady-state process model,
while Section 3.4.2 shows the derivation for transformed inputs from a
dynamic model. Section 3.4.3 discusses how in some cases, the model and
thus the expression for transformed inputs may be simplified by introducing
additional measured state variables (e.g., flowrates). Section 3.4.4 shows
how in other cases, the model becomes simpler by introducing a transformed
output (e.g., enthalpy). As shown in the example in Section 3.7, we may also

use a combination of steady-state and dynamic models.
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3.4.1 Obtaining ideal transformed system from a steady-state
process model

There are many examples from the process industry for specific application
that use steady-state process models to derive nonlinear feedforward or
decoupling blocks (e.g.,Shinskey (1981)) that on a closer inspection are similar
to the static input transformation derived below. While this derivation may
seem trivial, its purpose is to provide a formal theory that can be used
to move from case specific applications to a systematic approach. This
section discusses the ideal transformation with no model error and perfect

measurement of d.

We start from a steady-state process model with n + n, independent

equations given in its general form by Eq. 3.10.

where z are internal variables (states) and n, is the number of additional

equations necessary to have determined system.

Assuming that we can separate the variables x and y, we can use the n,
extra equations to eliminate the internal variables  to obtain a model (at

least formally) as given in Eq. 3.11.

0= f(u,y,d) (3.11)

Assuming that all model equations in Eq. 3.11 independent, we can
separate y on the LHS and all the other variables on the RHS to obtain a

steady-state nonlinear model in the form of Eq. 3.12.

y = fo(u,d) (3.12)
where the subscript 0 in fy denotes a steady-state (algebraic) function.
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Using the RHS of Eq. 3.12 and by introducing a tuning parameter By,

we define the ideal static transformed input as:

vo = By ' folu, d) (3.13)
————

g(u,d)

where the matrix By is free to choose. The selection of By is discussed in
Section 3.4.1.1, for example, we may select to have a steady-state gain of 1.

From Eq. 3.13 we have that fy(u,d) = Byvg and substituting it into
Eq. 3.12 yields the transformed system:

y = Bovo (3.14)

The transformed system in Eq. 3.14 is linear and independent of disturbances,
and for the multivariable case it is also decoupled if we select By to be a
diagonal matrix.

To implement the transformed input vy, we solve Eq. 3.13 with respect

to u given all other variables to obtain the ideal input

u= g Yvg,d) (3.15)

where we assume we can explicitly or numerically find g—!. This implemen-
tation is discussed in Section 3.5.

Note that it may not be necessary to explicitly derive the expression for
fo(u,d) in Eq. 3.12. Rather, since the objective is to find the ideal input
u = g~ (vg,d) that gives the transformed system y = Byvg in Eq. 3.14, it
may be simpler to keep with the original model equations in Eq. 3.11 or
Eq. 3.10, and solve these with respect to u for a given value of y = Bgyvg
to obtain u = g~ !(vg,d). This solution can be done either analytically or
numerically, but a numerical solution is usually necessary for complicated

models, for example for the heat exchanger discussed in Section 3.8.
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3.4.1.1 Choice of the tuning parameter By

The choice of By is not critical, as it can be compensated by changing the

gain of the outer controller C'. It is more intuitive to select

By =1, (3.16)

such that the ideal transformed input is simplified to the right-hand side of
the model in Eq. 3.12

vy = fg(u,d) (317)

and the transformed system becomes

vo = folu,d) (3.18)

In this case it may be tempting to think of the transformed input vy as
the setpoint for the output y, but this is misleading because we usually have
an outer feedback controller C' which has the “true” setpoint y® as one of its
inputs, whereas vg is the output from C' (see Figure 3.2). Thus, it is better
to think of vy as the transformed process input, or possibly as a modified

setpoint as it is done in (Bastin and Dochain, 1990).

3.4.2 Obtaining ideal transformed input from a dynamic
process model

The ideal transformed input (v4) derived in this section is closely related to
the theory of feedback linearization for a system with relative order r = 1,

that is the input u explicitly appears in the time derivative of the output y.

We start from a nonlinear dynamic model written in the form of Eq. 3.19.

dy _

= f(u,y,d) (3.19)
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Using the right-hand-side of the model in Eq. 3.19, and by introducing
the tuning parameters the matrices A and B, we define the ideal transformed
input vy for as

va = B Y(f(u,y,d) — Ay) (3.20)

g(u,y,d)

where the subscript A in v4 denotes a transformed input derived from a
dynamic function f and with a tuning parameter A. The tuning of the
matrices A and B is discussed in Section 3.4.2.1.

From Eq. 3.20 we have that f(u,y,d) = Bvs + Ay which substituted
into Eq. 3.19 gives the transformed system from Eq. 3.21.

Then assuming no uncertainty (no model error for f(u,y,d) and perfect

measurements of d and y) the transformed system becomes

dy
2 — Ay+ B 3.21
o y + Bua (3.21)

The transformed system in Eq. 3.21 is linear and independent of distur-
bances, and for the multivariable (n x n) case, it is also decoupled if we select
A and B to be diagonal matrices.

Note that we have assumed that we can generate from the transformed

input v4 the exact corresponding physical input u using Eq. 3.22.

u=g '(va,y,d) (3.22)

To guarantee invertibility in Eq. 3.22, it is possible to restrict the class
of models to guarantee that we always have a solution, as is done in the
literature on feedback linearization. In particular, in this literature it is
assumed that the model is linear in the input u, that is, that we can write
the right-hand side of Eq. 3.19 as shown in Khalil (2015) (p. 293).

flu,y,d) = fiy,d) + fo(y, d) u (3.23)
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where the functions f; and fo must satisfy certain smoothness conditions.
Interestingly, many process models are linear in the flows, so if we make use of
inner flow controllers then many process models satisfy Eq. 3.23. Nevertheless,
we do not make this assumption in this paper, so the invertibility may need

to be studied separately for each application.

3.4.2.1 Choice of tuning parameter B

To achieve dynamic decoupling in Eq. 3.21 for the multivariable case, we
need to select both matrices B and A to be diagonal. Dynamic decoupling
is desirable because the optimal outer controller C' is then diagonal (single-
loop controllers). Otherwise, the choice of B is not critical as it may be
compensated by changing the gain in the feedback controller C.

One simple choice is B = I, which is often used in feedback linearization.
Alternatively, to keep the initial (high-frequency) gain from v; to y; equal to
that of the original system (from u; to y;) we may choose B = diag(B) =
diag(df /0u). where the differentiation is performed at the nominal operating

point *. However, in most of the examples in this paper we select

B=-A (3.24)
because this gives y = v4 at steady state (where Z—lt/ = f(u,y,d) = 0). ' With
the choice B = —A, the transformed input and corresponding transformed
system become

VA = _Ailf(u7 Y, d) +y (325&)
d
W Ay — va) (3.25b)

dt

Equivalently, we may introduce the time constant matrix of the transformed

Mnterestingly, since y = Iva at steady state, where I is the identity matrix, the choice
B = —A gives decoupling at steady state even if A (and thus B) is not diagonal. However,
to also get dynamic decoupling, we must choose A to be diagonal.
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system
Ta=-A"" (3.26)
and the transformed input and corresponding transformed system may be
written as
VA = 7:4f(u7 Y, d) +y (3273“)
d
TA% ty=u4 (3.27D)

3.4.2.2 Choice of tuning parameter A

The choice of the parameter A (or equivalently of T4 = —A~!) is important
as it determines the dynamics of the transformed system. However, the
importance should not be overemphasized, since we can change the closed-
loop dynamics by design of the outer controller C. Note that we must
choose A < 0 for the transformed system to be stable. We discuss below
three choices for the tuning parameter A, which we will then compare in

simulations using a mixing example in Section 3.11.2.

1. Keep the original dynamics, A = A. In most cases we propose

A=A= (gil (3.28)

where the derivative of f wrt. y is evaluated at the nominal point * of

selecting

operation. With this choice, the time constant of the transformed system
is equal to the time constant of the linearized system. This choice also

minimizes the effect of the measurements y on the transformed variables v 4.

Proof: Linearizing the “original” nonlinear model % = f(u,y,d) yields

% = df = Ady + Bdu + Bydd (3.29)

83



3. Transformed inputs for linearization, decoupling and feedforward control

where the ~ variables correspond to the linearized dynamics of the original
system A = (8f/dy),, B = (0f/0u), and By = (9f/dd),, where the

evaluation of the derivatives is performed at the nominal point of operation,

* 7

denoted by . Thus, if we select the tuning parameter A = A then the
transformed system in Eq. 3.21 will locally (close to the nominal operating

point *) have the same dynamics as the original system in Eq. 3.29.

Furthermore, from Eq. 3.20 the linearized transformed input becomes

dvay = B™Y(df — Ady) = B~Y(Bdu + Bydd) (3.30)

and we find that dv,4 is independent of dy.
Thus, with the choice for A in (Eq. 3.28), there is no feedback from y

on the transformed input v4 at the nominal point *. For the multivariable
case, to get a decoupled response, we may choose A equal to the diagonal

elements of the A-matrix of the original system,

A = diag(A) = diag <8f> (3.31)
),

For the multivariable case, this will not exactly keep the original dynamics

and there will be some feedback from y to v at the nominal point. However,

it provides a good comprise between decoupling and minimizing the feedback

from y. In any case, the exact value for A should not be overemphasized,

since we can change the closed-loop dynamics by design of the outer controller

C.

2. Make the transformed system faster: |[A| > |A|. To speed up
the response from v to y, we may use larger magnitudes for the elements
in A than that resulting from Eq. 3.28. However, note that the presence of
a time delay in the measurement of y (or other dynamics that result in an

effective delay) may give instability if we choose the elements in A too large
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in magnitude. Alternatively, note that it is always possible to select A = A
as in Eq. 3.28 and instead “speed up” the response with the outer controller
C, which can be designed based on the experimental response from v4 to y
and for which established robust design methods are available, for example,
the SIMC PID-rules (Skogestad, 2003).

3. Make the system integrating: A = 0. The choice A =0 is often
seen in the examples in feedback linearization literature (Isidori, 1995). This

results in an integrating transformed system,

dy _

=B .32
7 v (3.32)

where usually B = I,,.

However, except for cases where the original system is already unstable
or close to integrating, the choice A = 0 is not recommended, at least not
for process control applications. There are two reasons for this. The main
reason is that the transformed system will not reach steady state without
the outer controller C. In particular, any unmeasured disturbances will
cause the output y to integrate and drift away from its desired steady state
(also see the simulations in Section 3.11.2). This drifting will only stop
when the input u reaches its physical maximum or minimum constraint,
when we loose control of y. This is very undesirable, because we may want
to be able to operate the transformed system without the outer controller
C. The second reason is that we generally want to use integral action in
the outer controller C' to correct for uncertainty in the model, unmeasured
disturbances or delays. With A = 0, the integrator in the transformed
system poses performance limitations for disturbances at the plant input
(e.g., (Skogestad, 2003)). This performance limitation is not considered in the
feedback linearization literature because the theory assume state feedback,

that is, the outer controller C' is a P-controller.
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3.4.3 Model and transformed input in terms of measured
state variables w

So far we have defined transformed variables for systems with relative order
at most 7 = 1 (the steady-state system in Eq. 3.12 and dynamic in Eq. 3.19).
Thus, for the scalar case we are restricted to first-order systems. However, if
we allow the function f to depend on additional measured states w, then the

class of systems is significantly larger.

However, the derived expressions for the ideal transformed inputs (vg and
v4) also hold when we include additional measured dependent variables w
(states) in the expressions for fy and f, that is, if we consider steady-state

models in the form
y = fO,w(anad) (333)

and dynamic models in the form

dy
T fw(uawayvd) (334)
dt

Thus we treat the additional states w as measured (internal) disturbances.
This allows to simplify higher order models, because we no longer require a

model for w in Eq. 3.33 or Eq. 3.34.

By including the w variables, the ideal transformed input for the steady-

state system in Eq. 3.33 becomes

vo = By fouw(u, w, d) (3.35)

g(u,w,d)

and the ideal transformed input for a dynamic model in Eq. 3.34 becomes

va = B7 (fulu,w,y,d) — Ay) (3.36)

g(u,w,y,d)
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Assuming that we are able to generate the exact inverse g~ and that
the resulting transformed system is internally stable (see Section 3.6), the
resulting transformed system from the transformed input v to the output y
is defined as before, i.e., in Eq. 3.13 for the steady-state case, and in Eq. 3.20
for the dynamic case. That is the system is also decoupled, independent
of disturbances. Note that the the transformed system may no longer be
steady-state or first-order because it may include “hidden” dynamics through
the measured state variables w. These “hidden” dynamics may in some cases
result in unstable zeros 2 (inverse response in the scalar linear case) from u
to v and in such cases the use of the exact inverse will result in an internally
unstable transformed system (also see the simple example in Section 3.6.

Examples of w variables include the temperature in a steam network
when the CV is the network pressure (see the example in Section 3.10), or
the temperature at the cold outlet of a heat exchanger when the CV is the

temperature at the hot outlet (see the example in Section 3.8).

3.4.3.1 Dynamics of transformed system with measured state (w)

variables

When we include w-variables in the ideal static transformed inputs vg, then
the dynamics of the transformed system (from vy to y) will no longer be the
same as of the original system (from u to y). The reason is the feedback
from w. An example is given by the variables v, for the heat exchanger
in Section 3.8 (Figure 3.15) where we find that the the dynamics of the
transformed system become slower. Note that for the steady-state case, we

have no tuning parameter to change the dynamics of the transformed system.

2Unstable zero dynamics go by many names. They are the same as RHP-zeros for
linear systems, and linear systems with RHP-zeros and/or time delay are also called
non-minimum phase systems. In the linear scalar case, RHP-zeros always give inverse
response in the time domain. More generally, for nonlinear systems the unstable zero
dynamics from u to v correspond to the unstable dynamics of the inverse map from v to u
(Isidori, 1995).
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On the other hand, in the dynamic case, that is, with ideal dynamic
transformed inputs v, we can use the matrix A to freely set the dynamics
of the transformed system, also when v4 depends on w. However, note that
in such cases the dynamics of the transformed system (from v4 to y) will not
be the same as for the original dynamics (from u to y), no matter how we
choose A. One reason is that the number of differential equations describing
the transformed dynamic system (ZTZt/ = Ay + Bw is generally lower than that
of the original dynamic system. The choice A = diag(df,/dy). may be a
good starting point as it gives little feedback from y, but this choice will
not keep the original dynamics, because u also has an indirect (and possible

high-order) effect on y through the variable w.

3.4.4 Transformed outputs

Often, when we develop a process model, we start from a linear model,
and we introduce bilinear or nonlinear expressions for variables we cannot
measure, thus complicating the model equations. For example we express
the mass of a tank as a function of the level or we write the energy balance
in form of temperature thus replacing internal energy as a state. The reason
to introduce the transformed output z is that the model may be simpler to
express in terms of z compared to in terms of the output y. In a way, we
want to mimic the linear model we started with. This also simplifies the
implementation of the transformed input v because it may be simpler to
invert the function g to generate the process input u, as later shown in the
steam cycle example in Section 3.9.

The transformed output z can be introduced both for steady-state and

dynamic systems and it is generally defined as

z = h(y,w,d) (3.37)
where y are the outputs that we want to control at a given setpoint y* and h
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is a static function of our choice.
By introducing the transformed output z, the transformed input v be-

comes a function of z instead of y (and of u, w, d.):

Uy = gz(uvwvzad) (338)

where the index z in v, and g, denotes the introduction of the transformed

output z.
3.4.4.1 Ideal transformed inputs and outputs from steady-state
model

Consider a steady-state process where we can write the model in Eq. 3.12

(y = fo(u,w,d)) in its simpler and more general form

h(y,w,d) = g;(u,w,d) (3.39)
—_——— —
z V20

where h is the function introduced in Eq. 3.37. Note that the outputs y are
on the LHS and the inputs u are on the RHS. The key idea now is that the
function g, on the right-hand side is easier to invert.

Similar to the previous section, we want to find a transformed input v
and output z that at steady-state give a transformed system y = vy (Eq. 3.14
with By = I,,). It is straightforward to see that this can be achieved by
selecting the transformed output as the LHS of Eq. 3.39 which yields the
definition of z from Eq.3.37, and the transformed input the RHS of Eq. 3.39

V20 = g2 (u, w, d) (3.40)
To generate the process input u, we solve Eq. 3.40 for u, given

U = g;l(vzo,w,d) (3.41)
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which may be implemented as in Figure 3.7b.

3.4.4.2 Ideal transformed inputs and outputs from dynamic model

The idea is that it is easier to write the dynamic model in terms of the
transformed outputs z rather than in terms of the outputs y. Consider a
dynamic process where the model Eq. 3.19 can be written in its simpler and

more general form
dz
pri f2(u,w, z,d) (3.42)
where z = h(y,w, d) is the transformed output.
From Eq. 3.36 the ideal transformed input is v,4 = B~!(f, — Az), and

the transformed system as seen from the controller C' becomes

d
d—j = Az+ Bu,a (3.43)

which is decoupled, linear and independent of disturbances. This simplifies
the design of the outer controller C. However, note from Figure 3.7a that
the disturbances that effect the transformed outputs z = h(y, d) will only be

counteracted if the feedback controller C' is implemented.

3.4.5 Extension to higher order systems: chain of input

transformations

The transformed input derived in Section 3.4 is limited to systems where
the relative order from the input w to the output y is 0 for the steady-state
model case (vg) and 1 for the dynamic model case (v4).

The question we want to answer is how can we extend the theory to higher
order systems, that is when the input u does not appear explicitly in the model
equation for y, e.g., tanks in series when we want to control the temperature
of the last tank by using the inlet flow of the first tank. One option is

to introduce additional state measurements w and use the feedback-based
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implementation from Figure 3.4b. However, with this approach we will not
have perfect control of y because of dynamics introduced by the inner cascade
controller in generating the inversion v = g~ (v, w,y, d). Alternatively, if we
have a model for w as a function of u, we may introduce a second transformed

input vy = ga2(u, w, d) resulting in a chain of transformation, see Figure 3.3.

dy

17(12

1
u =gy (v2,w,dp) u | Process 2 w_
Inverse input (dynamic)
transformation 2

Process 1
(dynamic
or static)

—1
vy =g (vi,y,d1) vy
Inverse input
transformation 1

v’ Controller | v1
C

Figure 3.3: Chain of input transformations

Consider a system formed by two processes in series (the relative order

from u to y is 2), given by

Process 1: CC% = fi(w,y,dr) (3.44a)
Process 2: % = fa(u,w,ds) (3.44b)

Note that process 1 (Eq. 3.44a) may be either be steady-state or dynamic,
while process 2 (Eq. 3.44b) is dynamic.

Using Eq. 3.20 the transformed inputs for process 1 and process 2 are
defined as

Input transformation 1: v =va =B (fi(w,y,d1) — Ay)  (3.45a)
g1(w,y,d1)

Input transformation 2: vy = B (fo(u,w,y,ds) — Aw) (3.45b)
g2 (u,w,y,d2)
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The corresponding inputs are computed as

For control of y: u = gy ' (va, w,ds) (3.46a)
For control of w: vy = g7 (v1,y,d1) (3.46b)

Note that the transformed system is subject to the same control limitation
as the original system. Therefore, we can only have perfect feedforward control
for disturbances with the same relative order as the input w. This means that
we cannot have perfect disturbances rejection if there is a larger effective
delay from u to y than from d to y. For example, consider a continuous
process with two mixing tanks in series where the objective is to control the
outlet temperature in the second tank (y = T5) using the heat input to the
first tank (v = @Q1). We have an extra state measurement of the temperature
in the first tank (w = 77). In this case the relative order from u to y is 2
and perfect disturbance rejection is not possible for disturbances dy directly
affecting y (e.g., another inlet stream to tank 2). However, since the relative
order from u to w is 1, it is possible, by using a chain of transformations,
to get perfect control for disturbances dg directly affecting w (e.g., the inlet
feed temperature to tank 1).

A more detailed treatment of implementing the chain of transformations
together with simulation examples are available in the Master Thesis of
Kingstree (2021).

3.5 Implementation of transformed inputs

This section explains how to implement the transformed variables (v and z)
introduced in Section 3.4, starting with the the transformed input v.

As mentioned previously in Section 3.4 is is not enough to define and
derive the transformed input v, we need also to generate the corresponding

physical input u to implement v in the real process, that is we need to solve
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v = g(u,w,y,d) for u given all other variables. There are two main options:

A Model-based implementation, which solves numerically or algebraically

u =g '(v,w,y,d) (Figures 3.4a and 3.4a)

B Feedback-based implementation, which uses an inner (P)I-controller to
find the u that gives v = v®, where v® is given by the outer controller
C that controls y (Figure 3.4b).

Note that we may also combine A and B (alternative C, Figure 3.4c). We
begin with a generalization of these three alternatives, followed by exemplify-
ing them for a level control problem, motivated by the three elements drum

level control common in power plants control systems (also see Section 3.1).

3.5.1 Alternative A: Model-based inversion (Figure 3.4a and
Figure 3.4a)

The first approach is shown in Figures 3.2 and 3.4a. The idea is to invert
the input transformation v = g(u,w,y,d) in Eq. 3.6, by analytically or
numerically finding the input » that corresponds to given values of v* w,y
and d, which gives exactly v = v® both dynamically and at steady-state. We

can formally write the solution as

u=g""(v,w,y,d) (3.47)

This gives the exact inverse g~ (v, w,y, d) if the inverse exists, if there is

no model uncertainty and if all variables w, y and d are measured perfectly.

3.5.2 Alternative B: Feedback inversion with inner v-controller
(cascade control) (Figure 3.4b)

1

In some cases the analytic inverse function g~" may be difficult to compute.

In other cases, the inverse g~! does not exist (even numerically) because g
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u=g (v,w,y,d)

Inverse input Process

transformation (nonlinear)
(static)

*t:

Controller C

(a) Model-based implementation A of transformed input v = g(u, w,y, d).
The physical input « = ¢~ ' (v, w,y,d) is generated by a static (algebraic)
calculation block which inverts the transformed input model equations. The
model-based implementation generates the exact inverse for the case with no
model error.

v = g(u,w,y,d) |
Input transformation
(static)

=

w
Controller C,, Process

(fast) (nonlinear)

y® s
L@L Controller C' v

(b) Feedback implementation B of transformed input v = g(u, w,y, d) using
cascade control with an inner v-controller. The computed value of v is driven
to its setpoint v® by the inner feedback controller C, which generates the
physical input w. This implementation generates an approximate inverse.

d

w=g"'(v*,y,d) y
“»| Controller ¢ |~ Inverse input Controller C', u Process —T
transformation (fast) (nonlinear)
(static)

(c¢) Combined model-based and feedback implementation C of transformed
input v = g(w,y,d) using inner w-controller. Commonly, C\, is a flow
controller (w = flowrate) and u is the valve position. This implementation
generates an approximate inverse.

Figure 3.4: Alternative implementations for inverting the input transformation

v = g(u,w,y,d). C,C, and C,, are usually single-loop PID controllers. The red
boxes fulfil the same role.
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does not depend explicitly on u (i.e., system with relative order r > 1), or it
may have a singularity. Finally, when v depends on some state variables w, it
may happen that the inverse map g~! gives internal instability (zero dynamics
or inverse response). In all these cases, we may instead use the approximate
feedback-based approach for generating the physical input u. Note that this
approach is equivalent to the dynamic inversion implementation of feedback

linearization for avoiding problems with singularities (Lee et al., 2016).

Figure 3.4b shows the second implementation approach. This approach
does not imply inverting the transformed input, rather relies on feedback
and integral action to generated dynamically the physical input u. The
idea is that we compute the transformed input v = g(u,w,y,d) from the
physical measurements of u, w, y and d, and the inner controller C, adjust
u dynamically such that v = v®, where v® is given by the outer controller C
controlling y. At steady-state v = v* and the nonlinearity in the responses
from u to v is effectively removed by the action of the feedback (P)I controller
Cy.

To tune the inner controller C), in Figure 3.4b we may use a pure linear
I-controller (Eq. 3.48) because the function g is defined as a static function
and thus the response from u to v usually has a large direct (static) effect.
Note that an I-controller is generally recommended for pure steady-state
processes (Skogestad, 2003).

t
u(t) = u(ty) + K[/ (v°(t) — v(t))dt (3.48)

to
where u(tg) is the bias and the integral gain K is a tuning parameter.
The value of u(tp) does not matter (except initially), because it will be
compensated by the integral action. The integral action will make v = v*®
at steady state (as time goes to infinity) and a larger value of K will make

v(t) approach v* faster.

However, there may be some dynamics from u to v through the w variables.
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Thus, more generally, we may tune linear PID-controllers using the SIMC
rules (Skogestad, 2003) based on the experimental step response from u to
v. For the n x n multivariable case, we usually design n single-loop linear

controllers for C, although it is possible to use multivariable control.

3.5.3 Alternative C: Combined feedback- and model-based

inversion with inner w-controller (Figure 3.4c)

Figure 3.4c shows the combined implementation (C). This may be applied
when v does not depends explicitly on u, and instead we use measurement
of w in deriving the transformed input v = g(w(u),y,d) (see Section 3.4.3).
This alternative contains an inner Cy,-controller that controls w at its setpoint
w® given by inverting the function g in a model-based inversion block (w® =
g (v, y,d)), which we assume can be inverted. Because of this assumption,
the cascade implementation C in Figure 3.4c is less general than the cascade
implementation B in Figure 3.4b.

There are a few advantages to the C' implementation. First, the model
based inversion may contribute to linearization, feedforward and decoupling
compared. Second, control of w is usually less interactive than control of
v, which is a significant advantage for faster convergence with single-loop
control. Finally, the inner controller C,, controls a physical measurement
w, whereas v in Figure 3.4b is usually not a physical variable. The inner
controller C', may be tuned in a similar way as C, based on an experimental
response from u to w.

For examples w may be the flowrate, and C\, is a fast flow controller
which allows us to use directly the flow in deriving the transformed input
v instead of the true plant input u, the valve position z. Another common
example is when w is temperature (7") or power (@) and w is a valve position
(z), and Cy, is a temperature or power controller. In both these cases, we
may have a model for the relationship from u to w, which we could have

inverted and used in a model-based implementation A (Figure 3.4a), but
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instead we prefer to use feedback control based on a measurement of w to
invert the relationship, either because it is simpler or because it is more
accurate. Of course, this assumes that we can use a relatively high gain
in the inner controller C,, such that the time constant for the slave loop is
much smaller (typically by a factor 10 or more) than the time constant of

the outer loop controller C.

3.5.4 Comparison of the three alternative implementations
in Figure 3.4

Although the red blocks in the three block diagrams in Figure 3.4 perform the
same task of inverting the input transformation and generating the physical
input u from a given value of transformed input v and the other measured
variables (w,y, and d), there are important differences. First, in the two
feedback implementations (B, C), the transformed input v is replaced by its
setpoint v*® and the response will not be perfect dynamically. Second, there
may be differences in the variables used. For example, and as mentioned,
the use of measured w-variables in the two feedback implementations (B, C)
may replace some process model equations and disturbance variables (d) in

the exact model-based implementation (A).

3.5.5 Implementation of transformed inputs: drum level
control example revisited

The objective of this example is to compare the three alternative implemen-
tations in Figures 3.4a to 3.4c on a (steam) drum level control problem.
Moreover, this example is chosen to show case how the input transformation
theory can be applied to derive a well adopted control structure in power
plants, i.e., the so-called 3-elements control (see Section 3.1). Similarly to
Section 2.3, we use the inflow to control the level y = H. We consider that

we have a fixed speed feedwater pump and the physical input w is the valve
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position, that is, u = z. From a mass balance for a tank with constant

cross-sectional area and constant density, the model can be written as
(3.49)

dH 1
ar fTr (qr(u) — gs)
where H [m] is the level, A, [m?] is the tank area, qr(u) [m3/s] is the
inflow (feedwater) and gs [m?/s| is the outflow (steam). The inflow ¢r [m3/s]
depends on z by the following valve equation:
o () = Fluhy [ 2222 (3.50)

where F(u) is the valve characteristic, ki, [m?] is the valve constant,
p [kg/m3] is the liquid density, and p; — ps [N/m?| (disturbance d) is the

pressure drop over the valve.
We assume that the level (y = H) measurement is available, but it has
a delay and it may be inaccurate because of the shrink and swell effect as

explained in Section 3.1. We also have a measurement of the outflow (w = gg)

which we may use if desired.

1
U=z
qr

Figure 3.5: Level control with no input transformation
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Figure 3.6: Three alternative implementations for level control. The input trans-
formation provides feedforward control from ¢g thus linearization of the valve. The
transformation also provides disturbance rejection from p; and po (by feedforwar
in (a) and through feedback in (b) and (¢).
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3.5.5.1 No input transformation

The simplest solution to implement is conventional feedback, as shown in
Figure 3.5. We directly control the level using a controller C', for example
a Pl-controller, which adjusts the valve position u, that is without making
use of the extra measurement w = gp or of the model Eq. 3.49. While this
solution is simple, it may not give a good performance for tight level control
when there is delay and inaccuracy in the measurement of y = H. Thus, the
level may vary if there are disturbances in gg, p1 and ps. Furthermore, the
valve characteristic F'(u) may be nonlinear which may give a low process
gain and thus slow control when F'(u) is in a “flat” region, that is, when gp is
insensitive to changes in uw. Typically, this will be when the valve approaches

fully open or fully closed.

3.5.5.2 With input transformation

We can select the transformed input as the right-hand side of the dynamic
model in Eq. 3.49 multiplied with a constant % (where B is a parameter
that we introduce to generalize the method and that we can choose see
Section 3.4.2.1),
v=B" 1 (gr(u) — g5) (3.51)
r

Compared to the generic transformed input in Eq. 3.20 derived systemat-
ically, we select the tuning parameter A = 0, which is typical for integrator
systems.

From Eq. 3.51 we have that A% (¢gr(u) — gs) = Bv which substituted
into the dynamic model in Eq. 3.49 yields a transformed system that is an
integrator, similar to feedback linearization (Isidori, 1995),

dH
— B .52
o v (3.52)

The system in Eq. 3.52 has two advantages compared to the dynamic
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model in Eq. 3.49. First it is independent of disturbance p; and ps. Second,
the possible nonlinearities from the valve characteristic F'(u) are eliminated,
at least from the point of view of outer controller C' which manipulates v to
control y = H.

For simplicity, in the following, we select the parameter B = A%_ such

that the transformed variable becomes

v=gqr(u) —qs (3.53)

The transformed input in Eq. 3.53 will give the transformed system in
Eq. 3.52 only if we generate and implement the corresponding physical input
u from a given value of v and the other measured variables. As described
above, there are two main options, model-based and feedback-based using

cascade.

3.5.5.2.1 Exact implementation: Inverting the valve model This
is the implementation from Figure 3.4a, which adapted to the drum level
control problem gives the solution in the flowsheet in Figure 3.6a.

Substituting the valve equation in Eq. 3.50 into Eq. 3.53 yields

Ip1 —p2|) B
p

g(u,d)

v=F(u)ky qs (3.54)

where d = [gg, p1, p2]. Solving Eq. 3.54 with respect to u = z gives

U = F(u)_l(v — qS) (355)

P1—p2
kvy/ =5

gil(vvd)

/

where F(u)~! denotes the inverse of the valve characteristic F'(u). How-

ever, the inverse transformation in Eq. 3.55 requires a good model and it
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also requires measurements of the disturbances p; and ps. Therefore, rather
than inverting the valve equation, it is more common and easier to measure

the inflow w = ¢r and use an inner flow controller, discussed next.

3.5.5.2.2 Alternative cascade implementations: Using the flow
measurement (cascade control) Introducing the extra measurement w,

the transformed input from Eq. 3.53 becomes

v=w—qg (3.56)

Observe that v in Eq. 3.56 does not depend explicitly on u, and we
must use one of the two cascade implementations in Figures 3.4b and 3.4c.
Adapted to the drum level control problem, this gives the flowsheets in
Figures 3.6b and 3.6¢c. More importantly, these implementations are similar
with the two implementation for 3-elements control from Lindsley (2000),
p.110 and p.111.

Note that for the cascade control of v, the controller C,, is actually a flow
controller because v is the difference between two flows. For the cascade
control of w, Cy, is of course a flow controller since w = qp is a flow. For
cascade control of w, we need to invert Eq. 3.56 with respect to w = qp

which gives the “inverse static transformation”

w® =v° —qg (3.57)
N——
9w (v,d)

The subscripts superscript s on w and v denote that w® and v*® are
the setpoints for w and v, respectively. To achieve the desired disturbance
rejection and linearization, we must assume that the inner flow controller
(Cy or Cy) can be made fast compared to the expected process dynamics for

y = H and compared to the outer controller C. This is most likely possible,

102



3. Transformed inputs for linearization, decoupling and feedforward control

since the valve response from u to w = g is usually very fast, that is, the
process is essentially static with a time constant (7) close to zero. From the
SIMC PID rules (Skogestad, 2003), a pure I-controller may then be a good

choice for this flow controller.

3.5.6 Implementation of transformed outputs

Figure 3.7a shows the general implementation of combined transformed inputs
and outputs, whereas Figure 3.7b shows the block diagram for the case when
the transformed input is derived from a steady-state model. In Figure 3.7,
the outer controller C' is controlling the transformed outputs z rather than
the (physical) outputs y for which we have a setpoint y°. However, because
both y and y® are sent through the same static transformation h, we will
achieve y = y*° at steady state. Also note from Figure 3.7 that the input
transformation ¢, needs to be inverted (or approximately inverted using one
of the three options in Figure 3.4a), whereas inversion is not necessary for

the output transformation h.

Y

[ C ]L[g;l(ﬂ,m‘Z.d)]—u>[Process| w

! | (o)

z

(a) General implementation of transformed output z
d

L%e_[ C ]—U>[h,(v.w,d)]ﬂ[g;1(vzmw,d)]—u>[Process| T e
t

(b) Alternative implementation of transformed output when the ideal
transformed input is based on a steady-state model.

Figure 3.7: System with both input and output transformations.
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3.6 Stability of the transformed system

It is beyond the scope of this work to give a detailed stability analysis of
nonlinear systems, and the reader is referred to the literature on feedback
linearization for related mathematical proofs (Isidori, 1995; Khalil, 2015).
The main objective of this section is to give the reader some insight into how
instability may arise and how to avoid it, particularly for using the state

measurement w.

3.6.1 Unstable zero dynamics and internal instability result-

ing from using the model-based inverse

So far, the w variables have been treated as a measured disturbances. If w is
a dynamic state variable, that is, w depends on the input v in a dynamic
way, then this will introduce dynamics in the map from u to the transformed
input v. If this results in unstable zero dynamics from u to v (which may
be v or v or any other transformed input), then this will result in internal
instability for the transformed system if we implement the model-based
inverse u = g~ !(v,w,y,d). This follows because the unstable zeros of the
original map become unstable poles of the inverse map. A simple example is
given in Section 3.6.

The model-based implementations (Alternative A) in Figures 3.4a and
3.2 may yield internal instability in some cases. Fortunately, it is not very
likely to happen in practice, because unstable zero dynamics require that the
indirect dependency of v on u through w is strong.

The internal instability can in any case be avoided if we use the alternative
feedback-based implementation with an inner v-controller in Figure 3.4b,
but the inner controller C,, then needs to be tuned sufficiently slow so that
the unfavorable zero dynamics do not cause closed-loop instability. Thus,
linearization, decoupling and disturbance rejection will not be perfect in this

case.
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The internal instability resulting from using an exact inverse u = ¢~ (vw, y, d)
(model-based implementation) for systems with unstable zero dynamics from
u to v applies to any transformed input v = g(u,w,y,d) that depends on
internal state variables w. For the systematically derived transformed inputs
vg and v4, we have the additional property that the zero dynamics from u to
v are the same as the zero dynamics from u to y. This follows because of the
direct relationship between these variables, for example, y = vy for the static
case. The problem with internal stability for the model-based inverse, is then
seen to be a special case of the well-known fact that with a causal controller
(no prediction allowed) and requiring internal stability, perfect control of the
output y cannot be achieved for a system with unstable zero dynamics from

u to y, no matter how good the model is or what we measure.

3.6.1.1 Example: Simple linear system with unstable zeros

As an example, we will analyze a simple linear system with unstable zero

dynamics. Consider the steady-state system
y=ut+w+d (3.58)
The ideal transformed input is defined as the right-hand-side of Eq. 3.58.
vo=g(u,w,d) =u+w+d (3.59)

For implementation, Eq. 3.59 may be solved with respect to u to get the

“inverse input transformation”
uw=g '(v,w,d) =vg—w—d (3.60)

Note that in deriving vy or generating u we have treated w as a measured

disturbances which we counteract by using the “feedforward” controller in
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Eq. 3.60. However, there is a “hidden” problem with potential internal
instability caused by the dynamic map from u to w. As an example, assume
the response from u to w is first-order with a steady state gain of -2

—2u dw

- M _0.25(2 3.61
YTl Y (2u+w) (3.61)

Substituting the w—dynamics (Eq. 3.61) into the input transformation
(Eq. 3.59) gives (in transfer function form)

2u
4s +1
_43—1
o 4s+1

+d

Vo =U—
(3.62)
u+d

which has a RHP-zero at z = 0.25 from u to v. The reason is the
combined effect of a direct static effect from u to v with a gain of 1, and an
indirect dynamic effect from u to v (through w) with steady-state gain of
-2. Therefore, the indirect effect of u on v through w is larger in magnitude
than the direct effect.

This will result in internal instability if we use the exact inverse in Eq. 3.59.
To see this, we substitute Eq. 3.61 into Eq. 3.60, to get

_4s+1
“= 4s —1
which as expected is unstable because of the RHP-pole at p = 0.25.

(vo — d) (3.63)

Similarly, the response from v to w is also unstable

)
W= (vo — d) (3.64)

The two instabilities in Eqs. 3.63 and 3.64 cancel each other in Eq. 3.58

to give

Y=o (3.65)

106



3. Transformed inputs for linearization, decoupling and feedforward control

The system from vy to y therefore appears to be stable, but this is
not true if we consider the input u, and the “hidden” internally instability
will eventually appear also in the output y, either because of model error
or because infinite inputs u are not physically realizable. This “hidden”
internally instability may be avoided by implementing the feedback-based

method in Figure 3.4b which does not require generating an inverse for u.

We compare the model-based inversion (Figure 3.4a) and feedback-based
implementations (Figure 3.4b) by simulations. The outer controller is set
to C' = 0. Figure 3.8 shows the response for the transformed system to a
setpoint change of Av® = 1 at time ¢t = 1s. Similarly, Figure 3.9 shows
the simulation responses for a step change in disturbance d of Ad = 1 at
time ¢ = 1s. For the cascade implementation, we use an I-controller, with

the integral gain K; = —1/16. To find this value, we use the first order

_ 4s—1
T 4s+1

SIMC-rules (Skogestad, 2003) with 7¢ = 8s.

Padé approximation, that is G, ~ —exp(—8s). Then we apply the

As explained and as expected, the exact model-based inversion imple-
mentation gives perfect control of y (Figures 3.8a and 3.9a respectively),
at the expense of internal instability for w (Figures 3.8b and 3.9b) and u
(Figures 3.8c and 3.9c)

In summary, the requirement for using the model-based inverse in Figure
3.4a is that the response from w to v has stable zero dynamics. For the case
when the transformed input v is obtained using one of the systematic methods
in Section 3.4, this is equivalent to requiring that the transfer function from
u to y has stable zero dynamics. In other cases and if one is uncertain, the
safest is to use the feedback-based implementation in Figure 3.4b which gives

an approximate inverse, but which can always be tuned to be stable.
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2 2
> 0 20
=== Model-based
2 — Feedback—based 2 e Model-based
== Setpoint === Feedback-based
0 10 20 30 40 50 0 10 20 30 40 50
Time Time
(a) Controlled variable (y) (b) Measured variable (w)
=== Model-based === Model-based
2 === Feedback-based 2 === Feedback-based
= 0 > 0
) r -2
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Time Time
(c) Physical input (u) (d) Transformed input (v)

Figure 3.8: Comparison of model-based and cascade implementations for the
model in Egs. 3.58 and 3.61 for a setpoint change of Av® =1 at time ¢t = 1s.
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Figure 3.9: Comparison of model-based and feedback-based implementations for
the model in Egs. 3.58 and 3.61 for disturbance rejection. Ad =1 at time t =1 s.
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3.7 Example 1: mixing process flow and tempera-

ture control

Fig. 3.10 shows the mixing process with two inflows and one outflow for
which we systematically derive transformed inputs with the purpose of
linearization, decoupling and feedforward disturbance rejection. The purpose
of this example is to illustrate how we can combine the transformed inputs

derived from steady-state and dynamic model equations.

Ul:Fl TL2:F2

; d1 = T] dg = Tg ;

V (m?)

y=[F T]

Figure 3.10: Mixing process with two original MVs (u; = F; and uy = F3) and
two CVs (y1 = Fand y2 =T).

The original inputs of the process are the two inlet flows: u; = Fy [kg/s];
up = Fy [kg/s|. The outputs are the outlet flow F' and temperature T y; =
F [kg/s| y2 = T [°C|. The main disturbances are the temperatures of the
two inlet flows: dy = T3 [°C|; d2 = T3 [°C]. Assuming constant m holdup,
and fast mixing (reasonable assumption for a pipe), the mass balance (static)

is given by Eq. 3.66.

F=FN+F
Y1 = u1 + u (3.66)
——
fi(u)

Assuming constant and equal heat capacity cp, and after substituting the
mass balance (Eq. 3.66), the dynamic energy balance can be rearranged as

given by Eq. 3.67.
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dT Fy Fy
C A -+ 2 -T
dt m(1 )+m(2 )
dy2  wy () (3.67)
292 _ Zlia, — 204, — .
g yl(l y)+y1(2 Y)

Fa(uy,d)

We see from Eq. 3.66 and Eq. 3.67 that this is a coupled (interactive)
process, since both inputs (u; = F; and ug = Fy) affect both outputs
(y1 = F and yo = T'). This makes single-loop control challenging and control
performance may be poor. We therefore want to consider the use of ideal
transformed inputs which has the potential of giving a linear and decoupled
transformed system, and in addition give perfect feedforward action from the

disturbances in d; = 17 and dy = T5.

3.7.1 Ideal transformed inputs for the mixing process

We can derive two ideal transformed inputs, one from the steady-state mass

balance in Eq. 3.66 and one from the dynamic energy balance in Eq. 3.67.

The first transformed input is defined in Eq. 3.68 as the right-hand side of
the mass balance (f1(u) in Eq. 3.66). We chose the tuning parameter By = I
(also see the theory in Section 3.4 and the general definition in Eq. 3.14).

V0,1 = U1 + U2 (3.68)

The second ideal transformed input is defined in Eq. 3.69 by using the
right-hand side of the dynamic energy balance (f2(u,y,d) in Eq. 3.67) and
by introducing the tuning parameter A and B = —A (which gives yo = v42
at steady state) from the theory in Section 3.4.
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va2 =y2 — A7 fo(u,y, d) (3.69a)
1
=y2 — A_lg (ur(dy — y2) + ua(d2 — y2)) (3.69b)
g2 (usy.d)

3.7.1.1 Implementation of transformed inputs

To implement the transformed inputs vg1 and va 2 in practice, we need
to compute the physical inputs u (flowrates u; and uy) from the inverse
transformation u = g~ (v, y, d), see Figure 3.4a. From Eq. 3.68) and Eq.

3.69b we solve for wu:

~ vo,1(y2 — d2) — Am(vaz — y2)

=g! d); = :
ur =g (v,y,d)1 A (3.70a)
dy — Am —
up =g '(v,y,d)2 = 20 (dh ygc)lf_ s w42 — 1) (3.70Db)

Note that the denominator in Eq. 3.70 becomes 0 when d; = do. However,
physically, temperature control of the mixing is clearly not possible when
both inlet stream have equal temperature, so this is then a control limitation

of the system, and not of the transformed inputs method.

3.7.1.2 Transformed system for the mixing process

Introducing the ideal transformed inputs v = [vp;1 v42] into the model

equations yields the transformed system in Eq. 3.71

Y1 = 0,1 (3.71a)
dy2

— — 3.71b
2= (g2~ va2) (3.71D)

112



3. Transformed inputs for linearization, decoupling and feedforward control

which is decoupled, independent of disturbances and linear since the tuning
parameter A is a constant.

As discussed in Section 3.4.2.2 and Eq. 3.28, we may eliminate the
feedback from the output yo = T to the transformed variable vs in Eq. 3.69b
at the nominal operating point, by choosing A such that we keep the nominal

linearized dynamics of the original system, which from Eq. 3.28 gives

af2
()
02/, (3.72)
7

m

where * denotes nominal condition, i.e., F* = u] + u5 = v{j; is the nominal

total flowrate.

3.7.1.3 Outer controller C

The outer controller C' in Figure 3.4a manipulates the transformed input
such that the output y is kept at its setpoint. Because the transformed
system in Eq. 3.71 is decoupled and we may use single-loop controllers
C = diag(C1,Cs). Here, Cy is a flow controller with integral action only?

that computes vg 1, and a temperature controller (PI) that computes v 2.

With perfect model and measurement, the outer controller C' is not
necessary. The effect of disturbances is eliminated in the input calculation
block in Figure 3.4a, while the setpoint y® can be changed by directly setting
vp,1 and vy equal to the setpoint yi and y3, respectively. However, in practice,
there will always be unmeasured disturbances (for example heat losses) and
model or measurement uncertainty. In addition, the outer controller C' can

be used to speed up or slow down the response of from v to y.

3From the SIMC tuning rules (Skogestad, 2003), it results that a pure I-controller is
used for a static process.
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3.7.2 Ideal static transformed input derived from steady-
state model

The purpose of this example is to illustrate the effect of using a transformed
input derived from a steady-state model applied to a dynamic system. These
types of transformations are often applied in industrial process control
applications, e.g., see (Shinskey, 1981). Therefore, we use transformed
inputs derived from a steady-state model for control of both the total flow
and temperature.

We start by deriving the steady-state energy balance. Setting % =0
in the dynamic energy balance in Eq. 3.67, dividing by the mass m (non-

negative) and solving for 7' yields

T BT+ FyTy
Fy+ F
urdy + uads (3.73)
y2 = (u7 y’ d)

urtu2 gy,

The transformed input derived from a steady-state model (vg2) for
controlling the temperature is simply the right-hand side (fp2) of Eq. 3.73
uidy + uads

Vg9 = ————— 3.74
0.2 U1 + u2 ( )

The transformed input (vg;) for controlling the total flow (y;) remains
the same as given in Eq. 3.68. To answer what happens when we apply the
static transformed input vg 2 to the dynamic system in Eq. 3.67, we need to
solve wrt. the physical inputs u; and us the system formed by Eq. 3.68 and
Eq. 3.74 given all other variables. This results in

v1(vg — da)

_ 1 _
uyr =49 (vaud)l — dl — d2 (375&)
do —
uy =g~ (v,y,d)o2 = W (3.75b)
1 — Q2
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Substituting u; and wus from Eq. 3.75 into the steady-state mass balance
(Eq. 3.66) and the dynamic energy balance in Eq. 3.67, and simplifying the

expression gives the transformed system

Y1 = vo,1 (3.76a)
dya V0,1
22 _ — 3.76b
o (g2 = v02) (3.76Db)
Note that at the nominal point, the fraction —%1 in Eq. 3.76b is equal to

the tuning parameter A from Eq. 3.72. This indicates that the two systems
in Eq. 3.76b and Eq. 3.71 will respond similarly if starting from the same
steady-state, as later shown in the simulations results in Figure 3.11.

The transformed system in Eq.3.76 is independent of both disturbances
di and do both dynamically and at steady-state*. However, the transformed
system in Eq. 3.76 is not decoupled dynamically because vg 1 also affects
output ys. Nevertheless, if the system is initially at steady-state, we have
that y2 = v 2 and the right-hand side of Eq. 3.76b is 0 regardless of change
in vg,1. Moreover, compared to transformed system derived from a dynamic
energy balance (Eq. 3.71) the transformed system derived using a steady-state
energy balance (Eq. 3.76) is no longer linear because of the multiplication
with the term v ; which is time-varying.

In conclusion, the advantage of using a transformed input derived from
a more complex dynamic model is that the transformed system is linear
dynamically. In addition, in some cases, the steady-state process model is
simpler to derive (see the heat exchanger example in Section 3.8 and the

steam generator example in Section 3.9). Therefore, it not surprising that

4Generally, when we apply static transformed inputs vy to a dynamic system of the
form % = f(u,y,d), we need to make the assumption that the system is initially at
steady state to get perfect dynamic disturbances rejection. However, this assumption is
not necessary for this particular case since the disturbances drop out completely in the

transformed system.
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these static transformations are commonly used.

3.7.3 Dynamic simulations results

We illustrate how the input transformations work in a simulation case study,
assuming no model error and perfect measurement of the disturbances. In all
simulations, the process is given by the nonlinear model in the steady-state
mass balance (Eq. 3.66) and the dynamic energy balance (Eq. 3.67). In
addition, all simulations use the implementation with the model-based inverse
in Figure 3.4a. That is, the physical input is calculated using the inverse
transformation in Eq. 3.70 when we use the ideal transformed inputs vg 1 and
v4,2 based on a dynamic model for temperature (y2) or Eq. 3.75 when we
use the ideal transformed inputs vg 1 and vg 2 based on a steady-state model
for temperature (y2). The outer controller is not needed in these simulations
because we assume perfect model and perfect disturbance measurement.
That is we set C' = 0, and setpoint changes are handled by directly changing

.

Process data Table 3.1 shows the nominal operating conditions for the
mixing process. At the nominal operating point the two inputs are equal
(F} = Fy), which makes the process highly coupled and difficult to control

using conventional single-loop PID-controllers.

Table 3.1: Nominal operating conditions for Example 5 (mixing process).

Variable F 1 F 2 F T1 T2 T m
Value 5 5 10 20 50 35 100
Unit kg/s kg/s kg/s °C °C °C kg

With no model error and perfect disturbance measurement, the simula-
tions show that both outputs y; = F (Figure 3.11a) and yo = T' (Figure

3.11b) are independent of the two disturbances, and for setpoint changes
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they follow the original system dynamics. This holds for both ideal static
transformed variables vy and the ideal dynamic variables v4. The inputs ug
in Figure 3.11c and w9 in Figure 3.11d change in a step-wise manner because
we use a static algebraic block to compute them.

The simulation results are not very exciting or surprising, and simply
confirm what is expected from the transformed system models in Eq. 3.71
and Eq. 3.76b. The responses for the ideal static and dynamics transformed
inputs are identical, except for the dynamic transients when we have a
setpoint change for yo (at ¢ = 100s). This is because vg 1 is at 12 kg/s, rather
higher than at it’s nominal value of 10 kg/s, which results in a slightly faster
response for yo for the static case (vg). We also see that the inputs u; and
uo make a larger initial change at ¢ = 100s for the static case.

The benefit of using the dynamic transformed input v4 rather than the
static transformed input vy is mainly that we get a linear transformed system
for designing the outer controller C, but this benefit is not seen in these

simulations since we have used C' = 0.

3.8 Example 2: heat exchanger process outlet tem-

perature control

We continue the analysis of the systems behaviour when we apply a static
transformation on a dynamic system. We now consider a heat exchanger,
which may benefit from introducing input transformations to reduce nonlin-
earity and improve the disturbance rejection.

The objective of the heat exchanger in Figure 3.12 is to control the outlet
temperature of stream 1 (the process side) by exchanging heat with stream 2
(the utility side). The MV is the utility flowrate, u = F,, where we assumer
a fast inner loop flow controller manipulates the true MV which is the valve

position z. The MV and CV for this example are the utility flowrate and
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Figure 3.11: Simulation response for the mixing process in Example 5 using using
both ideal static (vy) and dynamic (v4) transformed inputs and using the exact
implementation of the inverse (Figure 3.4a).

The simulations are for the following four step changes: 1kg/s increase in setpoint
yi = F'* at time ¢t = 50s. 1°C increase in setpoint y5 = 7 at time ¢t = 10s. 2°C
increase in disturbance d; = T} at time ¢t = 150s. 5°C increase in disturbance
do = Ty at time t = 200s. The responses are without the outer controller C, so the
setpoint changes are implemented by changing the corresponding vy and v4.
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dy =T
d3 = F

N

\ y="T,
J

Figure 3.12: Heat exchanger where the objective is to control the outlet temper-
ature T}, of stream 1 (hot process side) by exchanging heat with stream 2 (cold
utility side).

process side temperature respectively:

U/:Fw Z/:Th

The measured disturbances are the inlet temperatures and the flowrate of

stream 1:
d=[T}) T) F)

In the simulations, we will also consider an unmeasured disturbance in the

U A-value, for example, caused by fouling or gas bubbles in the streams:
dunmeasured =UA

A possible extra measurement (in addition to F.) which depends on the input

u is the utility outlet temperature
w="T,

The dynamic and steady-state behaviors of heat exchangers are highly non-

linear. For example, for small values of u = F, (relative to F},), the process
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gain k = Z—Z is large and relatively constant, but for large values of u = Fg,
the gain k approaches 0 and makes it difficult to control y = T}. This is
because we get a pinch for T}, (constant value) with y = T}, approaching the

inlet temperature 7.

3.8.1 Dynamic cells heat exchanger model

The process is given by the dynamic lumped model given in Eq. 3.77
(Mathisen, 1994), where the heat exchanger is discretized in space in N = 100
cells. The boundary conditions for cell i = 1 is T? = T,? , and for cell : = N is
TN+ = T9. With infinite cells, the dynamic model has the same steady-state
as the steady-state model. Wall capacities are neglected. Phase changes are

not considered.

dTt F . L UAT —TY)
¢ — e (piFt iy 2 h  tc) 3.77
dt pc‘/cl ( C C) + N[)C‘/Cchc ( a‘)
dT! F , . UA(T: —T¢
h— “h (T ) + UAT; —Te) Z. o) (3.77b)
dt — ppVy NpnVyicp,
Viel...N

where, N = 100 well-mixed cells, c is the cold side, h is the hot side, V is
the volume, U is the heat transfer coefficient, A is the heat transfer area, p

is density and ¢, is specific heat.

In total, the model in Eq.3.77 gives 200 differential equations to represent
the temperature dynamics, and we cannot use it to derive the input trans-
formation because its relative order is greater than 1. That is, we cannot
rewrite it in the form of the general model in Eq. 3.19 (fli—zt’ = f(u,y,d)) which

which allows for only one differential equation.
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3.8.2 Input transformation

This leads us to consider transformed inputs based on a steady-state model
of the heat exchanger. We will consider two transformed inputs, defined

formally in Eq. 3.78.
vo = fo(u,d) (3.78a)
V0,0 = fow(u, w,d) (3.78b)

The transformed input vg is defined from a detailed steady-state model
using as variables the input u and the three disturbances d. The second
transformed input vg,, is defined from a simpler steady-state energy balance
where we use as additional measured variables the cold side outlet temperature

w = T,. This is inspired by an actual industrial implementation.

3.8.3 Ideal transformed input vy based on full steady-state

model

Assuming ideal countercurrent flow, no phase change and constant he