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Abstract

With the progress of computing power, artificial intelligence (AI) systems are
able to achieve outstanding results that surpass human-level performance on
some tasks, such as image recognition. Mainstream AI systems are only able
to learn one or more specific tasks, and they commonly fail to go beyond what
they were trained for. To have a real breakthrough in the field of AI, those
systems require adaptability and the capacity to learn general tasks and data
distributions. Such characteristics are among the objectives of artificial gen-
eral intelligence (AGI) research. The inspiration from biology, neuroscience,
and complex systems may guide the development of AGI because AI systems
are still rigid instead of self-organizing. Therefore, the research reported in
this thesis aims at intelligent dynamical systems that resemble the brain, such
as the brain’s critical behavior that may allow the cortex to self-organize to
criticality in order to increase computational capacity. The plan to accomplish
such systems encompasses the usage of optimization methods to find adequate
interactions of the components in a complex system, how they are connected
with each other, and how they adapt those interactions and connections over
time. The dynamical systems investigated in this research are cellular au-
tomata, Boolean networks, and recurrent neural networks with abstract neu-
ron models or with more biologically plausible ones (spiking neurons). The
main optimization method applied in these systems is evolutionary computa-
tion or artificial evolution. There are three parts in the presented research. The
first uses a deep neural network library to evolve dynamical systems towards
criticality. The second part works on the complexification of spiking neural
networks with adaptive synapses for solving tasks in mutable environments.
The last one involves the application of neural cellular automata for control-
ling robots and even developing their morphology with artificial embryogeny.
The results of this research attempt to address some unanswered questions
related to the practicality, methodology, and benefits of applying dynamical
systems in AI.
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Research Overview
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Chapter 1

Introduction

Artificial intelligence systems have advanced dramatically in the last decades,
similarly to the computing power which has pushed forward such advance-
ment. The field of deep neural networks in AI is rising with the support of
more powerful and highly parallel hardware such as the graphics processing
units (GPUs) and has surpassed human-level performance in image recogni-
tion and several control tasks [9]. However, those AI systems are narrow or
specialized to solving those tasks. Therefore, a part of the AI community is
working on artificial general intelligence, which is inspired by how human
intelligence is able to generalize [10, 11]. The current AI systems are rather
rigid and do not adapt enough to different situations. A proposed alternative
for improving AI is by using complex dynamical systems, which can be adap-
tive and even contain self-organizing and self-assembling properties. Success-
fully exploiting complex dynamical systems in AI may pave the way towards
intelligent behavior that is more akin to what is found in nature [12].

It is both a dream and a challenge to have artificial systems similar to bio-
logical ones, particularly for intelligence. In order to do that, the research
community interested in biologically inspired artificial intelligence needs to
deal with interdisciplinarity, as there are many disciplines involved in this
quest. The main ones are AI and neuroscience. However, there are other key
disciplines, such as complex systems, evolutionary computation, and artificial
life. In essence, the study of AI is undertaken to achieve precise descriptions
of learning or intelligence, so a machine can be created to simulate those de-
scriptions [13, 14]. Neuroscience studies the structure and function of the
brain [15]. A complex system consists of a network of components inter-
acting in a nonlinear manner and has two main properties: self-organization
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Chapter 1 Introduction

and emergence [16]. Evolutionary computation is a population-based search
method applied for optimization and inspired by natural evolution [17]. The
goal of artificial life is to synthesize and simulate biological systems [18].

This thesis is focused on the optimization of artificial dynamical systems for
achieving behaviors similar to those found in the brain, such as a dynamical
regime called criticality that is hypothesized to arise via self-organization and
enhance computational capacity in the cortex [19]; and also intelligence itself.
This thesis therefore is interdisciplinary and covers all the aforementioned dis-
ciplines. The dynamical systems used in this thesis include cellular automata
[20], Boolean networks [21], and recurrent neural networks with perceptron
[22, 23] or spiking neuron models [24, 25]. Dynamical systems are mainly
optimized with evolutionary computation methods, such as genetic algorithms
[26], evolution strategy [27], and MAP-elites [28], and also a reinforcement
learning algorithm, which is the deep Q-learning [29].

The research in this work is divided into three parts. The first is the develop-
ment of a framework that leverages the power of GPUs to simulate evolvable
dynamical systems towards criticality and evaluate their robustness against
noise. The second part is the usage of genetic algorithms to grow weight ag-
nostic spiking neural networks with neuroplasticity. In this way, the evolved
networks may present adaptability and generalization in AI tasks. The final
part is the control of robots with a cellular automaton variant, which is updated
by an artificial neural network and may present self-organization depending
on the trained task. The name of such systems is neural cellular automata
(NCAs) [30–32].

1.1 Research questions

Artificial intelligence systems based on artificial neural networks are often
said to be inspired by their biological counterparts. However, this inspira-
tion is rather abstract [14]. The details of the inner workings of biological
neurons and their surroundings are often neglected, together with the dynam-
ical nature of neuronal populations and the way they learn. Intrinsically, deep
learning relies on rigid systems that are in fact quite far removed from their bi-
ological inspiration [12]. Neuroscience has established that the brain is better
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1.1 Research questions

described as a dynamical system with a dynamical state that is self-organizing
through local interactions of the nerve cells. In particular, there is evidence
that a state that allows for higher computational capacity is often reached,
named criticality [19, 33]. In AI, such properties of self-organization and crit-
icality are rarely considered and therefore there is a knowledge gap on how to
incorporate such properties in artificial neural networks. As such, the novel
goal of this research was to explore how the concepts of self-organization and
criticality may be applied to AI systems. The work in this thesis is explo-
rative and experimental and aims at establishing the foundation of criticality
and self-organization in AI with the motivation of inspiring further research
on the topic. With that in mind, the following research questions have been
formulated:

Research question 1

How can dynamical systems be optimized towards criticality?

Criticality is a dynamical state in complex systems. In this state, the system
may have two modes. One is to be in the vicinity of a phase transition between
order and chaos. This mode is tunable by one or more parameters and allows
for the maintenance of complex patterns of activity over a wide range in space
and time. This is also known as the "edge of chaos", and it is said to support
computational capacity through processing, transmission and storage of infor-
mation [19, 34]. The other mode is an infinite correlation between space and
time where information similarly spreads through several scales. Thus, criti-
cality presents a power law distribution over several orders of magnitude, re-
sembling a fractal structure that is similar over different scales. Different from
the first mode, the system may tune itself towards the critical state independent
of its initialization. This is called self-organized criticality and it is hypothe-
sized that it increases computational capacity in the cortex [3, 19, 33, 35].

Dynamical systems can have subcritical, critical, or supercritical behavior,
depending on how synchronous the components of the system are, ranging
from loosely coupled systems with random activity (subcritical) to strongly
coupled systems with highly synchronous activity (supercritical). A system
in criticality is in a small region of the dynamical state space where there is
an average synchronization [19, 36]. This small region for criticality occurs
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Chapter 1 Introduction

when the complex system has proper network topology, communication rules,
and plasticity. The plan to address this research question is to optimize at
least one of these three characteristics of a dynamical system using a fitness
function that measures how critical its dynamics is.

Research question 2

How can dynamical systems be optimized to present adaptable and in-
telligent behavior?

The most common methods in AI are not dynamical systems. As such, they
often lack adaptation and are not self-organizing. The meaning of adaptable
can be understood as that characteristic of a component of a system whereby
it changes how it communicates depending on its previous states. In other
words, it is plastic, and the same input of a component can produce a differ-
ent outcome over time. This is also a feature that biological neurons have for
adaptation and learning, which is known as neuroplasticity. In a biological
neural network, such a feature modifies the synaptic strength of the connec-
tions and also creates and prunes them, but it is not limited to that [37].

Intelligence is still hard to define [38, 39]. Nevertheless, Minsky [40] states
that intelligent behavior is typically the capability to solve hard problems.
For addressing this research question, intelligence is defined as the ability
to act accordingly depending on the state of the environment. The tasks to
measure the intelligence of the optimized dynamical systems are the ones that
require supervised learning and reinforcement learning in AI [41]. Related
to adaptability, the tasks need to be designed to favor adaptable systems; for
example, performing a task in a mutable environment. The main system to
be optimized is an artificial neural network with perceptron or spiking neuron
models. The optimization can affect the network structure, the weights of the
connections, and the neuroplasticity parameters.

Research question 3

Are there benefits of using self-organizing dynamical systems in artifi-
cial intelligence? If so, what are they?

6



1.2 Associated project

Self-organization is a dynamical process in complex systems that governs
them towards nontrivial macroscopic structures and/or behaviors over time
[16]. This encompasses the co-evolution of both structure and function, where
the system is its own designer. This functional organization may provide the
system with stability, adaptability, and autonomy, all properties desirable in
AI systems. Moreover, such properties are considered to be at the foundation
of AGI. This research question can be addressed by analyzing and testing the
features of artificial intelligence systems that can show self-organization.

1.2 Associated project

The research in this thesis is associated with the project named SOCRATES1

(Self-Organizing Computational substRATES). It is funded by the Norwe-
gian Research Council (NFR), grant number 270961. SOCRATES is a long-
term project seeking the creation of cutting-edge data analysis with dynam-
ical hardware. It aims to create a theoretical and experimental foundation
for a new computing paradigm by exploiting novel, self-organizing, robust,
efficient, and unconventional dynamical substrates. SOCRATES works with
two physical substrates, biological and artificial. The biological substrates are
in vitro biological neural networks interconnected to microelectrode arrays
(MEAs) and the artificial ones are ensembles of nanomagnets.

1.3 Thesis outline

This thesis is a compilation of papers and is divided into two parts. The first
and current part is the "Research Overview". It is organized as follows: Chap-
ter 2 consists of the theoretical background necessary to understand the per-
formed research. Chapter 3 explains the research process related to the pub-
lished work. It also describes the ideas and relationships between each work.
Chapter 4 presents the summary of the research results in the form of an ab-
stract and analysis of the published work. Chapter 5 is a discussion of the

1https://www.ntnu.edu/socrates
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Chapter 1 Introduction

research questions in relation to the research results. Chapter 6 concludes the
thesis.

The second part of the thesis is the "Publications", which includes all the
papers summarized in Chapter 4.
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Chapter 2

Background

This thesis covers several disciplines, and this chapter explains the back-
ground theory needed to understand the concepts and approaches applied to
perform the research described in the next chapters, and in the publications.

2.1 Artificial intelligence

The research field of AI may be considered a branch of computer science
and covers a broad range of methods. This field studies the simulation of
intelligent behavior [42]. This section describes the part of AI that is relevant
to this thesis.

2.1.1 Artificial neural networks

The perceptron is the first neuron model. Its theory was introduced in 1943.
Afterwards, many theorists have discussed brain models. The origin of the
artificial neural network came from those discussions and one of the purposes
of the artificial neural network was to resemble the synapses in the brain [14,
43–46].

The perceptron is a function where the input vector x with n elements is mul-
tiplied in an element-wise manner with the weight vector w, also with n ele-
ments. After this multiplication, the resulting vector is aggregated with sum-
mation, which gives a scalar that is then applied to an activation function f .
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Chapter 2 Background

(a) Perceptron (b) Multilayer perceptron

Figure 2.1: Illustration of a perceptron and a multilayer perceptron. (a) The equation
of this perceptron is described by (2.1). (b) This multilayer perceptron has only one
hidden layer, but there can be more.

The output of the perceptron is y and the mathematical formula of this process
is presented by

y = f (
n

∑
i=0

xiwi). (2.1)

The activation function f was initially theorized as a binary threshold or step
function, such as

f (s) =

{
1 s> β

0 s≤ β ,
(2.2)

where β adjusts this threshold and can be understood as the bias of the per-
ceptron. The bias can also be a constant input of value +1, and its adjustment
is performed by changing its connection weight. After introduction of the
perceptron, other activation functions were described, such as sigmoid, hy-
perbolic tangent, and rectified linear unit.

One example of an artificial neural network is the multilayer perceptron. The
architecture of the multilayer perceptron consists generally of an input layer
for stimulating the next layer with the data sample, a defined number of hid-
den layers, and an output layer of perceptrons. The communication happens
sequentially through the layers from input to output [47]. Fig. 2.1 depicts a
perceptron and a multilayer perceptron. When a multilayer perceptron has a
depth of 5 to 20 layers, the network can learn multiple levels of data represen-
tation and also how to extract features from raw data. This method presents

10



2.1 Artificial intelligence

outstanding results in applications ranging from image recognition to natural
language processing. Such a multilayer perceptron is the basis of the promis-
ing research field of deep learning [41].

2.1.2 Spiking neural networks

A more biologically plausible artificial neural network is one consisting of
spiking neurons. This neuron model resembles biological neurons, and their
communication in continuous time with action potentials or spikes through
synapses [48, 49]. The data type processed in a spiking neural network is a
time series of binary values, which indicates whether there is a spike or not.
The spiking neuron has a state named membrane potential that integrates the
synaptic inputs. Once the membrane potential reaches a value above a thresh-
old, this neuron produces a spike. The spikes can be excitatory or inhibitory,
accordingly increasing or decreasing the membrane potential. Consequently,
it alters the likelihood of the neuron generating an action potential. Depending
on the spiking neuron model, the membrane potential can have several dynam-
ics. A commonly applied model of spiking neuron is the leaky integrate-and-
fire. This is a very efficient model, and the membrane potential of the cell
has a leakage that exponentially decreases the membrane potential towards its
resting value.

2.1.3 Reservoir computing

In the field of machine learning, a reservoir is a dynamical system with a cer-
tain behavior. This system may expand the dimensionality of the input data.
The combination of proper dynamics and dimensionality expansion allows for
a linear machine learning technique to (partially) read the state of the reservoir
and then solve tasks with nonlinear input data [50]. When reservoir comput-
ing was introduced, the initial idea was to use a randomly connected recurrent
neural network to be the reservoir. Such an introduction was made by two dif-
ferent research groups independently and almost simultaneously. Jaeger [22]
introduced the echo state network, which is a recurrent neural network with
perceptron, while Maass et al. [24] proposed the liquid state machine that con-
sists of spiking neurons. Fig. 2.2 shows a reservoir computing example with
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Chapter 2 Background

Figure 2.2: Illustration of reservoir computing with a randomly connected recurrent
neural network. The trainable connections are only the ones that go to the linear
readout layer or output layer. In this example, the readout layer also reads some
neurons in the input layer.

a randomly connected recurrent neural network. The linear machine learning
method is a single neural layer indicated by the output layer. Therefore, the
connections to the output layer are the ones that are trainable.

After introduction of these two reservoir computing methods more types of
reservoirs were described, even with physical substrates. Such physical dy-
namical systems can be an analog circuit, a nanomagnet ensemble, a neuronal
culture over microelectrode arrays, and surprisingly even a bucket of water
[51, 52].

2.1.4 Artificial general intelligence

Most of the research in AI is to develop very specialized methods, aiming
at ever better performance on the specific task. On the other hand, a part of
the research community works on general-purpose systems instead of special-
purpose ones. This area of research is known as artificial general intelligence,
also called strong AI. One possible idea of AGI could be the combination of
many specialized methods. However, most of the AGI community believes
that its difference from conventional AI is qualitative rather than quantitative

12



2.2 Dynamical systems

[39, 53]. With the advent of AGI many technologies will be possible, such as
self-driving cars, conversational assistants, and housekeeping robots [11].

2.2 Dynamical systems

Dynamical systems are defined as systems that change their states over time
following predefined rules. The traditional definition of dynamical systems
states that the rules are deterministic. However, stochastic systems can also
be modeled [16].

There are some dynamical systems that are complex. Such systems contain
simple components that interact among themselves nonlinearly. Therefore,
they are capable of producing novel properties in the macroscopic collective
behavior and spontaneously form distinctive structures in time, space, and
function [54].

Examples of complex systems are very noticeable in everyday life. The hu-
man body is a collection of complex dynamical systems, such as the nervous
system and immune system. Our society and ecosystems are also other exam-
ples, but on a larger scale. These systems consist of many interacting elements
that form a network whose behavior goes beyond that of its constituent parts
[54].

2.2.1 Cellular automata

A popular type of complex system is the cellular automaton (CA). This sys-
tem is formed by cells spatially distributed in a regular grid. Such a grid can
have any number of spatial dimensions, but the most researched CAs have
one or two dimensions. The cells have states that are normally binary but can
even be ternary or a larger and finite n-ary. CAs with continuous states exist
as well. The states of all cells in the CA change uniformly and synchronously
over discrete time. These changes are coordinated by a state-transition func-
tion, which considers the local information given by the states of a cell and its
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Chapter 2 Background

neighbors. The application of the state-transition function can also be asyn-
chronous and there are heterogeneous CAs whose cells can be updated with
different state-transition functions [16, 20, 55].

CA was discovered by John von Neumann and Stanislaw Ulam in the 1940s.
Von Neumann was working on an artificial life project aimed at creating a
self-reproducing automaton. While he had an issue with his initial model,
Ulam gave him some advice because of his work on crystal growth. Sub-
sequently, they together developed a two-dimensional abstract universe with
locality properties, and discrete time and space [16, 56, 57].

2.2.2 Random Boolean networks

A random Boolean network (RBN) consists of a cellular automaton with an
irregular grid. Therefore, the nodes in an RBN are randomly connected. This
configuration makes RBNs a generalization of cellular automata. Therefore,
it broadens the research performed in artificial life. Stuart Kauffmann created
RBNs for modeling genetic regulatory networks. The advantage of this dy-
namical system is its generic properties that allow for the modeling of systems
with complex and unknown connectivity [21].

2.2.3 Randomly connected recurrent neural networks

Recurrent connections in an artificial neural network add a dimension of time
to the system. Therefore, recurrent neural networks seem ideal to solve ma-
chine learning tasks with temporal or sequential data. Buonomano and Merze-
nich [58] introduced a randomly connected recurrent neural network with
spiking neurons and short-term plasticity. This network is kept untrained
while a readout layer is trained with a correlation-based learning rule. This
method was the basis for the introduction of reservoir computing (described in
Section 2.1.3), as the echo state networks and liquid state machines [50, 59].
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2.3 Criticality

2.3 Criticality

Complex dynamical systems may be in a dynamical state called "criticality", a
state that may support computation, depending on some favorable conditions.
Such conditions may be found by tuning the system parameters or setting ade-
quate configurations, such as the state-transition function, topology, and plas-
ticity. Langton [34] introduced a tuning parameter for 1D cellular automata.
This parameter is interpreted as the "temperature" of the system and is named
as λ parameter. This tunable parameter also measures the computability of the
substrate. In other words, it quantifies the capacity of the system to transmit,
store, and modify information.

In a synchronous and homogeneous 1D CA with the number of possible cell
states as S, the number of neighbors as N, and the number of transitions to
a chosen state as n while the other transitions in the state-transition rule are
defined randomly with the remaining states, the λ parameter is calculated
with

λ = 1− n
SN . (2.3)

The chosen state counted by n is referred to as the quiescent state and n/SN

indicates the ratio of transitions to this state. If λ = 0, all transitions result in
the quiescent state. Thus, all cells in the CA change to this state in the first ap-
plication of the state-transition function. If λ = 1, it means that n = 0 and the
transitions are randomly selected to change to the remaining (non-quiescent)
states. To equally represent all states in the state-transition function, it results
in λ = 1−1/K. Therefore, λ = 0 is the most ordered state-transition function
and λ = 1− 1/K is the most chaotic one. Wolfram [60] introduces a clas-
sification system for the behavior of the CAs. This system consists of four
classes, and they are:

• Class I means that the CA is static.

• Class II presents cyclic or periodic global states over time.

• Class III has chaotic behavior.

• Class IV presents complex structural patterns, which may support com-
putation.
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Figure 2.3: Location of λc and the four behavior classes of Wolfram in the λ space
over an abstract complexity measurement (Adapted from Ref. [34]).

Order and chaos are the two phases in the CA. Order is represented by classes
I and II, and chaos by class III. If a CA presents these phases at the same time
as complex structures emerge, then the system is in the vicinity of a phase
transition or at the "edge of chaos". Therefore, the system behaves as class
III, so that information can travel long distances without decaying rapidly into
random noise, which supports computability.

The vicinity of a phase transition is characterized by a critical point of a con-
trol parameter. Such a point can be located in the space of the λ parameter
and is represented by λc. Fig. 2.3 exemplifies the location of λc and Wolfram’s
classes in the λ space over an abstract complexity measurement.

Another type of criticality is analyzed by Bak et al. [35]. In this analysis, the
behavior of a critical system presents in several scales a power law distribution
p(x) ∝ x−α of noise (in time) or structure (in space), or even in both [61].
Since it is a power law distribution, the behavior of the system is similar over
different scales, such as a fractal.

If the critical point is an attractor, it is considered that the system self-organizes
towards criticality. This self-organization happens independently of the cur-
rent state of the dynamical system, even when it is far from stable states. This
concept is known as self-organized criticality and can be illustrated with a
sandpile metaphor [62]. When one slowly adds sand grains to the pile, it
will trigger avalanches of any size and duration with the addition of even one
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grain. The distributions of avalanche size and duration follow a power law and
span many orders of magnitude depending on the system size. The sandpile
has a critical angle of the slope that causes avalanches. Therefore, the pile
self-organizes to maintain a constant angle.

2.4 Artificial development

The development of multicellular organisms represents the capacity of a sys-
tem to compress its morphology, functionality, and maintenance in a genetic
code. In the research field of artificial life, this capacity is seen as advan-
tageous for artificial systems, particularly for scalability because the com-
plexity and information of an organism’s phenotype are much greater than
its genome. Such a difference is generally described as genomic bottleneck
[63, 64]. Therefore, a subfield in artificial life is introduced for replicating
those biological features and it is known as artificial development, and also
called artificial embryogeny and artificial ontogeny [65–67].

Some methods in artificial development apply cellular automata for their mod-
els. This approach simulates the cell chemistry during biological development
[65]. A recently popular type of cellular automaton in artificial development
is the neural cellular automaton, which uses an artificial neural network to de-
fine the state-transition function. In 2017, an NCA was used to develop 2D
patterns and trained with artificial evolution [31]. More recent NCAs are dif-
ferentiable and then optimized with gradient descent. The NCA introduced
by Mordvintsev et al. [32] develops a target image from a single active cell in
the grid. The update rule is asynchronous and the NCA can regenerate the de-
veloped image when parts are erased. Another differentiable NCA grows 3D
structures from a "seed" cell [68], which also presents regeneration properties.
This method goes beyond 3D artifacts and can develop functional machines.
That is possible because some components of the structure are dynamic.

The common approach to implementing an NCA is illustrated in Fig. 2.4. The
artificial neural network in the NCA receives as an input the neighborhood of
the cell to be updated. The output of the network is a value that is summed
together with the previous state of the grid after all cells are processed. How-
ever, the update may only occur in the cells depending on a mask. This mask
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Figure 2.4: Illustration of neural cellular automata. All cells in the grid are updated
and their neighborhoods are adjusted to center the updated cell. Update masking
defines the cells that are going to be updated in the next time step (Adapted from
Paper C.2).

is related to the cells that can update due to their state, which may be consid-
ered alive or able to grow, or to a probability that emulates the asynchronicity
in biological systems and also makes the NCA more robust.

2.5 Artificial evolution

Biological life has evolved from single cells to animals with intelligent behav-
ior. In nature, evolution has generated numerous species since the first living
being. Due to natural selection and other factors, some are thriving, and oth-
ers are already extinct [69]. Therefore, the optimization that is observed in
evolution is a population-based method of trial-and-error [70].

In computer science, artificial evolution is a simulation of this natural process,
and so it can be used as an optimization method or a partial search algorithm
that would find solutions to defined tasks and problems. The general scheme
of artificial evolution or evolutionary computing starts with a population of
random solutions, which are tested through a benchmark method to measure a
fitness score; part of the population is selected based on the fitness score, and
these selected individuals reproduce with some variations a new generation
of solutions. This cycle of testing and reproducing solutions continues until
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Figure 2.5: General scheme of artificial evolution. Reproduction occurs with a vari-
ation of the selected individuals.

a terminal condition is met, or a maximum possible number of generations is
reached. Fig. 2.5 illustrates this general process.

The different methods in artificial evolution differ in what their genomes en-
code, such as data in general, real numbers in evolution strategy [27], or com-
puter code in genetic programming [71]. There are varied approaches for
parent selection and reproduction. In genetic algorithm [26], the reproduc-
tion may involve the recombination of the genetic code (or parameters) of the
parents, and also mutation of their genes. In evolution strategy, the new gen-
eration is sampled from a multivariate normal distribution calculated with the
best individuals in the current generation. In MAP-elites [28], the parents are
selected from a population of the best solutions in niches based on specified
features.
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Chapter 3

Research process

This chapter explains the research process during the four-year PhD program
at the Department of Computer Science, Faculty of Information Technology
and Electrical Engineering, NTNU. The research was mostly conducted at
OsloMet because it was initially the primary institution of my main supervisor
as well as a research partner in the SOCRATES project. The four-year PhD
program consists of full-time research work related to the PhD, with 25%
of teaching and administration duties. This thesis only includes the research
work performed during the PhD.

The 12 scientific publications produced in these four years are divided into
four categories. Table 3.1 summarizes these categories, presenting their topics
and number of papers. Fig. 3.1 illustrates a timeline with the logical connec-
tions of the publications.

Category Topic #papers
A EvoDynamic: general representation of dynamical

systems and their evolution towards criticality
3

B NeuroEvolution of low-level artificial general intel-
ligence

2

C Neural cellular automata for control tasks 3
D Papers not included in the thesis 4

Table 3.1: Paper categories
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Chapter 3 Research process

Figure 3.1: Timeline of the publications with their logical connections.

3.1 Paper category A

The paper category A is related to the development and application of the
Python library, EvoDynamic. This library has a general representation of dy-
namical systems based on artificial neural networks. Therefore, it implements
dynamical systems in a deep learning framework, such as TensorFlow, to al-
low for GPU usage. An application of EvoDynamic was to evolve towards
criticality cellular automata, random Boolean networks, and echo state net-
works (Papers A.1 and A.2). Those dynamical systems could be determin-
istic or stochastic. EvoDynamic was also applied to verify the robustness of
criticality in a critical stochastic cellular automaton (Paper A.3). The main
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objective of this category is to answer research question 1. The papers in this
category are presented in Table 3.2.

ID Title Ref.
A.1 EvoDynamic: a framework for the evolution of generally rep-

resented dynamical systems and its application to criticality
[1]

A.2 A neuro-inspired general framework for the evolution of
stochastic dynamical systems: cellular automata, random
Boolean networks and echo state networks towards criticality

[2]

A.3 Assessing the robustness of critical behavior in stochastic cel-
lular automata

[3]

Table 3.2: Paper category A

3.2 Paper category B

The paper category B is fully related to the method called neuroevolution
of artificial general intelligence (NAGI). Paper B.1 describes the concept of
NAGI. After that, NAGI is implemented, and its results are presented in Paper
B.2. One of the objectives of this category is to address research questions 2
and 3. Table 3.3 presents the papers in this category.

ID Title Ref.
B.1 A conceptual bio-inspired framework for the evolution of ar-

tificial general intelligence
[4]

B.2 Towards the neuroevolution of low-level artificial general in-
telligence

[5]

Table 3.3: Paper category B

3.3 Paper category C

The paper category C corresponds to the usage of neural cellular automata for
control tasks. This dynamical system is known for its capability of presenting
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self-organization when trained in certain tasks where this feature is useful or
required. Paper C.1 applies NCA to control a cart-pole agent. Paper C.2 de-
scribes a single NCA that can develop a robot body from a single cell through
morphogenesis [72]. Paper C.3 describes a spiking NCA for the distributed
control of voxel-based soft robots. The research performed in this category is
also meant to address research questions 2 and 3.

ID Title Ref.
C.1 Towards self-organized control: Using neural cellular au-

tomata to robustly control a cart-pole agent
[6]

C.2 A unified substrate for body-brain co-evolution [7]
C.3 Collective control of modular soft robots via embodied spik-

ing neural cellular automata
[8]

Table 3.4: Paper category C

3.4 Paper category D

The paper category D is the group of papers not included in this PhD thesis.
Of these, Ref. [73] is the preliminary work for Category A. It was published
at a workshop. Ref. [74] is an extended abstract that gives an update of the
work performed in the SOCRATES project that is mainly related to Category
A. It was also published at a workshop and describes the EvoDynamic frame-
work (from Paper A.2), the work with in vitro biological neuronal networks on
microelectrode arrays, and the development of computational hardware made
of two-dimensional arrays of coupled nanomagnets, which is called artificial
spin ice. Refs. [75, 76] were published in conferences and are related to the
application of deep learning methods for neuroscience. Table 3.5 shows a
summary of this paper category.
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ID Title Ref.
D.1 A general representation of dynamical systems for reservoir

computing
[73]

D.2 Method to obtain neuromorphic reservoir networks from im-
ages of in vitro cortical networks

[75]

D.3 A deep learning-based tool for automatic brain extraction
from functional magnetic resonance images of rodents

[76]

D.4 Bridging the computational gap: From biological to artificial
substrates

[74]

Table 3.5: Paper category D
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Chapter 4

Research result

This chapter is an overview of the papers resulting from the research, which
have been included in this thesis. Each section consists of the title of the work,
the authors, and the year and place of the publication. These are followed by
an abstract of the paper, the contributions of every author, and also the story
behind the publication with its reflections.

4.1 Paper A.1

EvoDynamic: a framework for the evolution of generally repre-
sented dynamical systems and its application to criticality

By Sidney Pontes-Filho, Pedro Lind, Anis Yazidi, Jianhua Zhang, Hugo Ham-
mer, Gustavo B. M. Mello, Ioanna Sandvig, Gunnar Tufte and Stefano Nichele
(2020)

Published in EvoApplications 2020: International Conference on the Appli-
cations of Evolutionary Computation (Part of EvoStar)

Dynamical systems possess a computational capacity that may be exploited
in a reservoir computing paradigm. This paper presents a general represen-
tation of dynamical systems which is based on matrix multiplication. That
is similar to how an artificial neural network (ANN) is represented in a deep
learning library and its computation can be faster because of the optimized
matrix operations that such a type of library has. Initially, we implement the
simplest dynamical system, a cellular automaton. The mathematical funda-
mentals behind an ANN are maintained, but the weights of the connections
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and the activation function are adjusted to work as an update rule in the con-
text of cellular automata. The advantages of such implementation are its us-
age on specialized and optimized deep learning libraries, the capabilities to
generalize it to other types of networks and the possibility to evolve cellular
automata and other dynamical systems in terms of connectivity, update and
learning rules. Our implementation of cellular automata constitutes an initial
step towards a more general framework for dynamical systems. Our objective
is to evolve such systems to optimize their usage in reservoir computing and
to model physical computing substrates. Furthermore, we present promising
preliminary results toward the evolution of complex behavior and criticality
using genetic algorithm in stochastic elementary cellular automata.

Role of the authors:
Pontes-Filho had the main idea, started the development of the frame-
work with an application, and wrote the paper. Nichele mainly super-
vised and reviewed the work together with Lind, Yazidi, Zhang, Ham-
mer, Mello, Sandvig and Tufte.

Story and reflections:
This conference paper is an extension of a previous paper published at a
workshop (Ref. [73]). It is also the beginning of the development of the
Python library called EvoDynamic. The library had only the implemen-
tation of cellular automata, which could be 1D or 2D, and deterministic
or stochastic; and genetic algorithms for their optimization, which were
applied towards criticality. EvoDynamic makes it possible to have any
dimensionality and neighborhood in a CA, but it requires a new imple-
mentation of a procedural method to create the adjacency matrix of the
desired dynamical system. The fitness function optimized with genetic
algorithm for criticality was successful, but some adjustments were per-
formed in the function for the next work.

4.2 Paper A.2

A neuro-inspired general framework for the evolution of stochastic
dynamical systems: cellular automata, random Boolean networks
and echo state networks towards criticality
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By Sidney Pontes-Filho, Pedro Lind, Anis Yazidi, Jianhua Zhang, Hugo Ham-
mer, Gustavo B. M. Mello, Ioanna Sandvig, Gunnar Tufte and Stefano Nichele
(2020)

Published in Cognitive Neurodynamics

Although deep learning has recently increased in popularity, it suffers from
various problems including high computational complexity, energy greedy
computation, and lack of scalability, to mention a few. In this paper, we inves-
tigate an alternative brain-inspired method for data analysis that circumvents
the deep learning drawbacks by taking the actual dynamical behavior of bio-
logical neural networks into account. For this purpose, we develop a general
framework for dynamical systems that can evolve and model a variety of sub-
strates that possess computational capacity. Therefore, dynamical systems can
be exploited in the reservoir computing paradigm, i.e., an untrained recurrent
nonlinear network with a trained linear readout layer. Moreover, our general
framework, called EvoDynamic, is based on an optimized deep neural net-
work library. Hence, generalization and performance can be balanced. The
EvoDynamic framework contains three kinds of dynamical systems already
implemented, namely cellular automata, random Boolean networks, and echo
state networks. The evolution of such systems towards a dynamical behav-
ior, called criticality, is investigated because systems with such behavior may
be better suited to do useful computation. The implemented dynamical sys-
tems are stochastic and their evolution with genetic algorithm mutates their
update rules or network initialization. The obtained results are promising and
demonstrate that criticality is achieved. In addition to the presented results,
our framework can also be utilized to evolve the dynamical systems connec-
tivity, update and learning rules to improve the quality of the reservoir used
for solving computational tasks and physical substrate modeling.

Role of the authors:
Pontes-Filho had the main idea, implemented the project, conducted the
experiments, and wrote the manuscript. Nichele, Lind, Yazidi, Zhang,
Hammer, Mello, Sandvig, and Tufte contributed with supervision, dis-
cussions, and reviewing the manuscript.

Story and reflections:
This work is an extension of the previous paper (Ref. [1]), which was
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an extension of a workshop paper that is not included in this thesis
(Ref. [73]). This workshop paper received an invitation into be ex-
tended to a journal manuscript for Cognitive Neurodynamics and was
accepted to be published. Ref. [73] describes the general framework
of EvoDynamic, Paper A.1 includes the application of EvoDynamic to
evolve stochastic cellular automata towards criticality, and Paper A.2
adds the evolution of stochastic random Boolean networks and echo
state networks towards criticality. In this paper, the fitness function for
guiding the evolution to find critical systems was modified. This modi-
fication adds the log-likelihood ratio that makes a comparison between
the power-law model and the exponential model related to their esti-
mation of the empirical probability distribution of the avalanches in the
system. Calculating this ratio is computationally expensive and it is per-
formed only when the temporary fitness score reaches a certain thresh-
old. Even though the fitness functions for criticality of Papers A.1 and
A.2 are slightly different, the resulting cellular automata of both works
are very similar.

4.3 Paper A.3

Assessing the robustness of critical behavior in stochastic cellular
automata

By Sidney Pontes-Filho, Pedro Lind and Stefano Nichele (2022)

Published in Physica D: Nonlinear Phenomena

There is evidence that biological systems, such as the brain, work at a critical
regime robust to noise, and are therefore able to remain in it under perturba-
tions. In this work, we address the question of robustness of critical systems
to noise. In particular, we investigate the robustness of stochastic cellular au-
tomata (CAs) at criticality. A stochastic CA is one of the simplest stochastic
models showing criticality. The transition state of stochastic CA is defined
through a set of probabilities. We systematically perturb the probabilities of
an optimal stochastic CA known to produce critical behavior, and we report
that such a CA is able to remain in a critical regime up to a certain degree of
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noise. We present the results using error metrics of the resulting power-law fit-
ting, such as Kolmogorov-Smirnov statistic and Kullback-Leibler divergence.
We discuss the implication of our results in regards to future realization of
brain-inspired artificial intelligence systems.

Role of the authors:
Pontes-Filho and Lind discussed the initial idea and wrote the paper.
Pontes-Filho implemented and executed all experiments. Nichele con-
tributed with discussions, ideas, and corrections to the paper.

Story and reflections:
With the evolved stochastic cellular automata from Paper A.2, the prob-
abilities found for this critical system were perturbed with an adjusted
Gaussian noise. This adjustment keeps the perturbed probabilities in-
side the valid range between 0 and 1. The avalanche definition was
modified for this paper, but it still keeps the power-law distribution of
the avalanches. This new definition makes the avalanches in cellular
automata closer to the neuronal avalanches defined in the field of neu-
roscience.

4.4 Paper B.1

A conceptual bio-inspired framework for the evolution of artificial
general intelligence

By Sidney Pontes-Filho and Stefano Nichele (2019)

Published in The 3rd Special Session on Biologically Inspired Parallel and
Distributed Computing, Algorithms and Solutions (BICAS 2020) at The 18th
International Conference on High Performance Computing and Simulation
(HPCS 2020)

In this work, a conceptual bio-inspired parallel and distributed learning frame-
work for the emergence of general intelligence is proposed, where agents
evolve through environmental rewards and learn throughout their lifetime with-
out supervision, i.e., self-learning through embodiment. The chosen control
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mechanism for agents is a biologically plausible neuron model based on spik-
ing neural networks. Network topologies become more complex through evo-
lution, i.e., the topology is not fixed, while the synaptic weights of the net-
works cannot be inherited, i.e., newborn brains are not trained and have no
innate knowledge of the environment. What is subject to the evolutionary
process is the network topology, the type of neurons, and the type of learning.
This process ensures that controllers that are passed through the generations
have the intrinsic ability to learn and adapt during their lifetime in mutable
environments. We envision that the described approach may lead to the emer-
gence of the simplest form of artificial general intelligence.

Role of the authors:
Pontes-Filho had the main idea and mostly wrote the paper together
with Nichele. Nichele contributed with discussions, ideas, and correc-
tions to the paper.

Story and reflections:
The main idea of the conceptual method described in this paper came
when I properly learned for the first time about artificial neural net-
works with perceptron and how they learn. This happened in the course
"Introduction to Artificial Intelligence" in 2011 during my bachelor’s.
I was taught that they are trained through a statistical method called
backpropagation of errors, which adjusts their weights and biases ac-
cording to the mistakes that the network makes. I was not satisfied with
this solution, and I wondered if there must be a more realistic way to
imitate how our brains memorize and learn new skills. My idea was
to use more biologically inspired neuron models with neuroplasticity
and optimize those neural networks through artificial evolution. More-
over, the tasks should be simple and require a small adaptable brain to
solve them. This can provide a basis for making more complex artificial
brains for more complex tasks.

4.5 Paper B.2

Towards the neuroevolution of low-level artificial general intelli-
gence
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By Sidney Pontes-Filho, Kristoffer Olsen, Anis Yazidi, Michael A. Riegler, Pål
Halvorsen and Stefano Nichele (2022)

Published in Frontiers in Robotics and AI

In this work, we argue that the search for Artificial General Intelligence (AGI)
should start from a much lower level than human-level intelligence. The cir-
cumstances of intelligent behavior in nature resulted from an organism inter-
acting with its surrounding environment, which could change over time and
exert pressure on the organism to allow for learning of new behaviors or envi-
ronment models. Our hypothesis is that learning occurs through interpreting
sensory feedback when an agent acts in an environment. For that to happen, a
body and a reactive environment are needed. We evaluate a method to evolve
a biologically-inspired artificial neural network that learns from environment
reactions named Neuroevolution of Artificial General Intelligence (NAGI),
a framework for low-level AGI. This method allows the evolutionary com-
plexification of a randomly-initialized spiking neural network with adaptive
synapses, which controls agents instantiated in mutable environments. Such
a configuration allows us to benchmark the adaptivity and generality of the
controllers. The chosen tasks in the mutable environments are food foraging,
emulation of logic gates, and cart-pole balancing. The three tasks are suc-
cessfully solved with rather small network topologies and therefore it opens
up the possibility of experimenting with more complex tasks and scenarios
where curriculum learning is beneficial.

Role of the authors:
Pontes-Filho had the main idea, supervised most of the work, imple-
mented additional experiments, and wrote most of the paper. Olsen
contributed to the writing of the paper, performed most of the experi-
mental work as part of his master’s thesis while being mainly supervised
by Pontes-Filho. Yazidi, Riegler, Halvorsen, and Nichele co-supervised
the work. Olsen, Yazidi, Riegler, Halvorsen, and Nichele reviewed the
manuscript.

Story and reflections:
This paper consists of the implementation and results of the conceptual
method in Paper B.1. The results were very exciting in the beginning,
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especially the general emulation of logic gates performed by one adapt-
able spiking neural network. However, they are simple. Therefore, the
objective of the introduction of this method is to create possibilities to
improve and be a more biological and adaptable alternative to the rigid
backward propagation of errors for training artificial neural networks.

4.6 Paper C.1

Towards self-organized control: using neural cellular automata to
robustly control a cart-pole agent

By Alexandre Variengien, Sidney Pontes-Filho, Tom Glover and Stefano Nichele
(2021)

Published in Innovations in Machine Intelligence (IMI)

Neural cellular automata (Neural CA) are a recent framework used to model
biological phenomena emerging from multicellular organisms. In these sys-
tems, artificial neural networks are used as update rules for cellular automata.
Neural CA are end-to-end differentiable systems where the parameters of the
neural network can be learned to achieve a particular task. In this work, we
used neural CA to control a cart-pole agent. The observations of the environ-
ment are transmitted in input cells while the values of output cells are used as a
readout of the system. We trained the model using deep-Q learning where the
states of the output cells were used as the Q-value estimates to be optimized.
We found that the computing abilities of the cellular automata were main-
tained over several hundreds of thousands of iterations, producing an emergent
stable behavior in the environment it controls for thousands of steps. More-
over, the system demonstrated life-like phenomena such as a developmental
phase, regeneration after damage, stability despite a noisy environment, and
robustness to unseen disruption such as input deletion.

Role of the authors:
Pontes-Filho and Nichele discussed the initial idea for the work. Variengien
conducted the experimental work and wrote the paper. Pontes-Filho,
Nichele, and Glover supervised the work and reviewed the manuscript.
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Story and reflections:
The discussion of the idea for this paper happened when Glover pre-
sented in our lab the method "Growing Neural Cellular Automata" [32].
The purpose of this idea is to leverage the self-organization of neural
cellular automata for control tasks. This method is envisaged to have
some sort of plasticity or even meta-plasticity as an emergent behavior
to solve some tasks that require such features. In this thesis, this paper
is the only one that uses backward propagation of errors as an optimiza-
tion method for the artificial neural network that defines the rule of the
neural cellular automata.

4.7 Paper C.2

A unified substrate for body-brain co-evolution

By Sidney Pontes-Filho, Kathryn Walker, Elias Najarro, Stefano Nichele and
Sebastian Risi (2022)

Published in From Cells to Societies: Collective Learning Across Scales at the
Tenth International Conference on Learning Representations (ICLR 2022)

The discovery of complex multicellular organism development took millions
of years of evolution. The genome of such a multicellular organism guides the
development of its body from a single cell, including its control system. Our
goal is to imitate this natural process using a single neural cellular automaton
(NCA) as a genome for modular robotic agents. In the introduced approach,
called Neural Cellular Robot Substrate (NCRS), a single NCA guides the
growth of a robot and the cellular activity which controls the robot during de-
ployment. In this paper, NCRSs are trained with covariance matrix adaptation
evolution strategy (CMA-ES), and covariance matrix adaptation MAP-Elites
(CMA-ME) for quality diversity, which we show leads to more diverse robot
morphologies with higher fitness scores. While the NCRS can solve the eas-
ier tasks from our benchmark environments, the success rate reduces when the
difficulty of the task increases. We discuss directions for future work that may
facilitate the use of the NCRS approach for more complex domains.
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Role of the authors:
Pontes-Filho had the main idea while discussing with Risi and Najarro.
Pontes-Filho implemented the project, ran all the training and simula-
tions, and wrote the paper. Walker and Najarro helped in the implemen-
tation. Risi and Nichele supervised the work. Walker, Najarro, Nichele,
and Risi contributed through discussions and corrections of the paper.

Story and reflections:
The work in this paper was performed in the Robotics, Evolution and
Art Lab at the IT University of Copenhagen. This was a program of
the Research Council of Norway for PhD candidates who wish to per-
form research abroad. The main idea is based on the method in Paper
C.1 and my desire to develop an approach that gives the necessary free-
dom to the optimization algorithm for complexifying and developing
new solutions of a virtual creature’s morphology and controller. There-
fore, it might be the first step towards a solution of open-endedness in
embodied agents [77].

4.8 Paper C.3

Collective control of modular soft robots via embodied Spiking
Neural Cellular Automata

By Giorgia Nadizar, Eric Medvet, Stefano Nichele and Sidney Pontes-Filho
(2022)

Published in From Cells to Societies: Collective Learning Across Scales at the
Tenth International Conference on Learning Representations (ICLR 2022)

Voxel-based Soft Robots (VSRs) are a form of modular soft robots, composed
of several deformable cubes, i.e., voxels. Each VSR is thus an ensemble of
simple agents, namely the voxels, which must cooperate to give rise to the
overall VSR behavior. Within this paradigm, collective intelligence plays a
key role in enabling the emerge of coordination, as each voxel is indepen-
dently controlled, exploiting only the local sensory information together with
some knowledge passed from its direct neighbors (distributed or collective
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control). In this work, we propose a novel form of collective control, in-
fluenced by Neural Cellular Automata (NCA) and based on the bio-inspired
Spiking Neural Networks: the embodied Spiking NCA (SNCA). We experi-
ment with different variants of SNCA, and find them to be competitive with
the state-of-the-art distributed controllers for the task of locomotion. In addi-
tion, our findings show significant improvement with respect to the baseline
in terms of adaptability to unforeseen environmental changes, which could be
a determining factor for physical practicability of VSRs.

Role of the authors:
Nadizar had the main idea during a meeting with Medvet, Nichele, and
Pontes-Filho. Nadizar performed the experimental work and wrote the
paper. Medvet, Nichele, and Pontes-Filho supervised the work and re-
viewed the paper.

Story and reflections:
The idea of this paper was to merge the work with voxel-based soft
robots from Nadizar and Medvet, adaptive spiking neural networks from
Paper B.1, and neural cellular automata for control from Paper C.1.
The only adaptation applied in the spiking neural cellular automata is
homeostasis, and it already affects positively the distributed controller
for unforeseen conditions of the environment. The expectation is that
spike-timing-dependent plasticity may also be beneficial.
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Chapter 5

Discussion

This chapter consists of a discussion of the research questions and how they
are addressed by the results reported in this thesis.

5.1 Critical dynamical systems

Dynamical systems at criticality are scarce in the space of possible dynamics.
Accordingly, this issue raises the first research question in this thesis:

Research question 1

How can dynamical systems be optimized towards criticality?

The paper category A is the one that addresses this question and Paper A.1
is the first and successful research result to do so. Criticality was obtained in
unidimensional stochastic cellular automata with three neighbors and binary
states. The fitness score is calculated by a function, which is the weighted
sum of normalized multi-objective scores. The objective of the fitness func-
tion is to find avalanche distributions that are power laws. If the objective
is reached, the evolved system is considered to have critical behavior. The
multi-objective scores are calculated using linear fitting with least squares re-
gression in the avalanche distributions where the size and occurrence rate are
mapped to logarithmic scale. In this way, the linear fitting is still useful and
faster than power law model fitting with maximum likelihood estimator [78].
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During the research and experiments for the resulting paper, it was also veri-
fied that linear fitting for power law distribution estimation is more beneficial
for being used to calculate the fitness score because the Kolmogorov-Smirnov
statistic used to compare the theoretical model with the empirical data of the
avalanche distributions gives a much larger error when the distribution is not
a power law. Thus, it makes the fitness landscape less flat.

Paper A.2 confirms and improves the findings of its previous work. The fitness
function is improved to give a more accurate score for power law distribution
similarity while maintaining the efficiency in convergence during the opti-
mization process with genetic algorithm. In this paper, this fitness function
managed to guide a stochastic echo state network towards criticality as well.
This was applied in another dynamical system, which is the random Boolean
network. However, this system was the most difficult one to optimize towards
critical behavior.

With the results of Papers A.1 and A.2, research question 1 is successfully
addressed. Two of the three stochastic dynamical systems clearly achieved
criticality. They are cellular automata, and recurrent neural networks with
perceptron neuron model, also known as echo state networks. The latter sys-
tem is a particular type of artificial neural network that is commonly used in
reservoir computing. The stochastic system that requires more investigation
to evolve critical behavior is the random Boolean network. The answer to this
question is that the goal of the fitness function can be the approximation of
the avalanche distributions to a power law. Therefore, during optimization or
artificial evolution, it can guide the system to be in a critical state. Paper A.3
goes further in this analysis and tests the robustness of the critical behavior
in the optimal stochastic cellular automata found in Paper A.2. Such a ver-
ification indicates how a critical system can self-organize and be maintained
because these characteristics are part of the hypothesis of how the brain resists
noise.

5.2 Intelligent dynamical systems

Dynamical systems have benefits for being used in artificial intelligence, es-
pecially because of their capacity to adapt. However, they are rarely applied
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and are hard to control [12]. Thus, the second research question in this thesis
can be formulated:

Research question 2

How can dynamical systems be optimized to present adaptable and in-
telligent behavior?

There are two paper categories that address this research question. They are
paper categories B and C. The first paper for that is Paper B.1. It describes
a conceptual framework that co-evolves the topology of a spiking neural net-
work and the neuroplasticity of its neurons. The idea behind the proposed
method is that it does not involve the inheritance of synaptic strength during
evolution. Therefore, adaptation of the connection weights must be present.
This is also forced by the abrupt change of the environment that the agent
needs to survive and is controlled by the evolving spiking neural network. In
Paper C.2, such a conceptual method is implemented, and its results indicate
that a fully evolved spiking neural network is capable of adapting even to un-
foreseen environment conditions, which is the case for the general emulation
of logic gates.

The research related to the neural cellular automata for control tasks in paper
category C presents results that show intelligent and adaptable behavior. Pa-
per C.1 is the first one in this category and contains a method that is extremely
adaptable and robust for intelligently controlling a cart balancing a pole. The
NCA is resistant to perturbations in the states of the cells, and to missing
inputs. Paper C.2 introduces a single NCA for sequentially developing and
controlling a virtual two-dimensional modular robot consisting of body mod-
ules, wheels in the same orientation, and light sensors. Such a robot has the
objective of chasing a light bulb or carrying a ball to a target area. In this
work, there was no analysis of the existence of adaptable features. However,
since it is a dynamical system, adaptability can be present. Paper C.3 presents
a spiking neural cellular automaton for distributively controlling voxel-based
soft robots in two dimensions. This system has a neuroplasticity that main-
tains the balance of the firing rate of the neurons, which is homeostasis. This
homeostatic plasticity significantly improves the adaptability of the agent’s
controller. This was verified by assessing the agent in unforeseen terrains.
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Research question 2 is addressed by showing that dynamical systems are op-
timizable, and the methods applied for optimizing them were neuroevolution
of augmenting topologies, evolution strategy, deep Q-learning, and evolution-
ary algorithm. In paper category B, the dynamical system is a spiking neural
network, in which artificial evolution optimizes the structure of the network
and the plasticity of the neurons. However, the weights of the connections are
randomly initialized and are not optimized. Therefore, it is a weight agnos-
tic neural network. In paper category C, the neural cellular automata already
have a predefined architecture of the artificial neural networks, and their opti-
mization searches for optimal weights and biases.

5.3 Benefits of self-organization in artificial
intelligence

Self-organizing dynamical systems are an alternative to the current AI sys-
tems that are rigid and lack adaptability to new environment or data condi-
tions. Since self-organizing systems may solve those issues, it brings the third
research question in this thesis:

Research question 3

Are there benefits to using self-organizing dynamical systems in artifi-
cial intelligence? If so, what are they?

The same paper categories for research question 2 also address this ques-
tion. In paper category B, there are the systems with self-organizing weights
through local interactions and evolvable topologies that allow for recurrent
connections. Paper category C describes systems with local interactions and
memory (cell state persistence) that are the neural cellular automata.

The method NAGI is presented in the paper category B. The adaptive spiking
neural networks optimized by the modified NEAT solve the simple tasks with
random initialization of the connection weights and change in the environment
conditions. Such capacity indicates high adaptation. An optimized system can
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also be successful in environment conditions that were never shown during
optimization.

The neural cellular automata for controlling the cart-pole agent in Paper C.1
presents self-organization and it provides the system with adaptable, develop-
mental, and regenerating behaviors. Therefore, the system can suffer damage,
though it quickly recovers from that for maintaining the pole still balanced.
It can start with a completely random state and even resist input deletion.
Moreover, the NCA has an asynchronous and noisy update of the cells that
favors long-term stability. Paper C.2 introduces a single NCA for the devel-
opment and control of a modular robot. The self-organizing system provides
a unified substrate to be optimized for morphogenesis from a single cell and
distributed control. There was a task where the morphology of the robot was
more important than accurate control, and the evolved NCA was successful
in producing an adequate robot body. Paper C.3 describes the spiking NCA
with an additional layer of self-organization, which is the adaptive threshold
of the spiking neurons. As previously mentioned, this dynamical system is
adaptable and intelligent.

Regarding this research question, the results confirm that there are benefits
to having self-organizing artificial intelligence systems. Some of the main
benefits are adaptability, developmental capability, and regeneration as well
as robustness to noise, environmental changes, and missing information.
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Chapter 6

Concluding remarks

This final chapter of the research overview presents a summary and analysis
of the research outcome. Some ideas for advancing the research work in this
thesis are also discussed.

6.1 Conclusion

The field of AI is advancing rapidly, but it consists of mostly specialized so-
lutions and computing power. It is estimated that in a few years the growth
in computing power will plateau. Therefore, AI in future may need to rely
on new algorithmic breakthroughs [9]. In this thesis, a shift from rigid AI
systems to more dynamical ones is proposed such that the dynamics of the
substrate can support more adaptability and generalization.

The research in this thesis promotes the progression of the application of evo-
lutionary algorithms for criticality, the employment of a deep learning library
that takes advantage of the parallelization in graphics cards for the simula-
tion of the simplest to the most complex dynamical systems, the evolution
of the topology and plasticity of spiking neural networks that control em-
bodied agents and adapt through sensory feedback learning, and the use of
self-organizing systems, such as neural cellular automata, in control tasks.

All these new algorithms serve as the first step towards alternatives to the most
common AI innovations in recent years. They bring the benefits of dynamical
systems to AI, as observed from the results presented in this thesis. Exam-
ples of advantages that dynamical AI systems may provide are robustness, the
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ability to regenerate when damaged, and application in the design and control
of modular robots. They may also be more energy efficient in the context of
reservoir computing, for example with spiking neural networks executed in
neuromorphic computers. Those innovations might be useful steps towards
artificial general intelligence and open-endedness.

6.2 Contributions

Besides addressing the research questions as discussed in Chapter 5, the re-
sults in this thesis consist of several self-organizing artificial intelligence sys-
tems, and the application of genetic algorithm for criticality, which may in-
crease the computational capacity of a dynamical system.

The paper category A provides a Python library based on TensorFlow for the
simulation and evolution of different dynamical systems, from cellular au-
tomata to liquid state machines (spiking neural networks). This library is
called EvoDynamic1. The paper category B introduces a framework for low-
level artificial general intelligence, named NAGI2. The three papers in pa-
per category C individually contribute with a different method each, namely
self-organized control3 from Paper C.1, the neural cellular robot substrate
(NCRS)4 from Paper C.2, and the spiking NCA for collective control of voxel-
based soft robots5 from Paper C.3.

1EvoDynamic open-source repository at https://github.com/SocratesNFR/
EvoDynamic

2NAGI open-source repository at https://github.com/SocratesNFR/
neat-nagi-python

3Interactive preprint of self-organized control at https://avariengien.github.
io/self-organized-control/

4NCRS open-source repository at https://github.com/sidneyp/
neural-cellular-robot-substrate

5Spiking NCA open-source repository at https://github.com/
giorgia-nadizar/VSRCollectiveControlViaSNCA
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6.3 Future work

The natural next steps for the research line in the paper category A are the
application of the optimized critical systems in reservoir computing. In this
way, the computational capacity of such systems can be analyzed, and their
performance correlated with criticality. Another idea to advance the research
in Paper A.3 is to verify the robustness of the stochastic cellular automata with
criticality as a reservoir.

For NAGI from paper category B, the plan is to increase the complexity of
the tasks. For example, the classification tasks would have more classes and
more dimensions in the input data. In case of failure to advance to more
complex tasks, some constraints in NAGI can be removed, such as allowing
neuroplasticity to be defined for each connection instead of for each neuron.
This would increase the dimensionality of the search space, but it was proven
to work for the method of Najarro and Risi [79].

The three methods with neural cellular automata for control described in paper
category C have their specific future works. Nevertheless, in general, the plans
to advance those works are to apply NCA in more complex control tasks. In
case there is any issue with training the NCAs for a higher difficulty, the idea is
to train the NCA by slowly increasing the difficulty of the task as in curriculum
learning [80]. If the plan requires a wide grid for the NCA, the strategy may
be to start with a small grid that grows over time, such as in the variational
neural cellular automata [81]. An ambition for this approach is that the NCA
could show emergence of the dynamical features of the brain, such as meta-
learning [82] or even metaplasticity [83]. This could be achieved by designing
tasks that require such intelligent dynamics.
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Abstract. Dynamical systems possess a computational capacity that
may be exploited in a reservoir computing paradigm. This paper presents
a general representation of dynamical systems which is based on matrix
multiplication. That is similar to how an artificial neural network (ANN)
is represented in a deep learning library and its computation can be faster
because of the optimized matrix operations that such type of libraries
have. Initially, we implement the simplest dynamical system, a cellular
automaton. The mathematical fundamentals behind an ANN are main-
tained, but the weights of the connections and the activation function are
adjusted to work as an update rule in the context of cellular automata.
The advantages of such implementation are its usage on specialized and
optimized deep learning libraries, the capabilities to generalize it to other
types of networks and the possibility to evolve cellular automata and
other dynamical systems in terms of connectivity, update and learning
rules. Our implementation of cellular automata constitutes an initial step
towards a more general framework for dynamical systems. Our objective
is to evolve such systems to optimize their usage in reservoir computing
and to model physical computing substrates. Furthermore, we present
promising preliminary results toward the evolution of complex behavior
and criticality using genetic algorithm in stochastic elementary cellular
automata.

Keywords: Cellular automata · Dynamical systems ·
Implementation · Reservoir computing · Evolution · Criticality
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1 Introduction

A cellular automaton (CA) is the simplest computing system where the emer-
gence of complex dynamics from local interactions might take place. It consists
of a grid of cells with a finite number of states that change according to sim-
ple rules depending on the neighborhood and own state in discrete time-steps.
Some notable examples are the elementary CA [30], which is unidimensional
with three neighbors and eight update cases, and Conway’s Game of Life [24],
which is two-dimensional with nine neighbors and three update cases.

Table 1 presents some computing systems that are capable of giving rise to
the emergence of complex dynamics. Those systems can be exploited by reservoir
computing, which is a paradigm that resorts to dynamical systems to simplify
complex data. Such simplification means that reservoir computing utilizes the
non-linear dynamical system to perform a non-linear transformation from non-
linear data to higher dimensional linear data. Such linearized data can be applied
in linear machine learning methods which are faster for training and computing
because has less trainable variables and operations. Hence, reservoir computing
is more energy efficient than deep learning methods and it can even yield compet-
itive results, especially for temporal data [25,27]. Basically, reservoir computing
exploits a dynamical system that possesses the echo state property and fading
memory, where the internals of the reservoir are untrained and the only training
happens at the linear readout stage [16].

Reservoir computers are most useful when the substrate’s dynamics are at
the “edge of chaos” [17], meaning a range of dynamical behaviors that is between
order and disorder. Cellular automata with such dynamical behavior are capable
of being exploited as reservoirs [21,22]. Other systems can also exhibit similar
dynamics. The coupled map lattice [15] is very similar to CA, the only exception
is that the coupled map lattice has continuous states which are updated by a
recurrence equation involving the neighborhood. Random Boolean network [10]
is a generalization of CA where random connectivity exists. Echo state network
[13] is an artificial neural network (ANN) with random topology while liquid
state machine [18] is similar to echo state network with the difference that it is a
spiking neural network that communicates through discrete-events (spikes) over
continuous time.

Table 1. Examples of dynamical systems.

Dynamical system State Time Connectivity

Cellular automata Discrete Discrete Regular

Coupled map lattice Continuous Discrete Regular

Random Boolean network Discrete Discrete Random

Echo state network Continuous Discrete Random

Liquid state machine Discrete Continuous Random
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One important aspect of the computation performed in a dynamical system
is the trajectory of system states traversed during the computation [19]. Such
trajectory may be guided by system parameters [23]. Another characteristic of
a dynamical system, which is crucial for computation, is to be in a critical state,
as indicated by Langton [17]. If the attractors of the system are in the critical
state, this characteristic is called self-organized criticality [7].

Besides, computation in dynamical systems may be carried out in physical
substrates [27], such as networks of biological neurons [3] or in nanoscale mate-
rials [8]. Finding the correct abstraction for the computation in a dynamical
system, e.g. CA, is an open problem [20].

All the systems described in Table 1 are sparsely connected and can be repre-
sented by a weighted adjacency matrix, such as a graph. The connectivity from
a layer to another in a fully connected feedforward ANN is represented with a
weighted adjacency matrix that contains the weights of each connection. Our
CA implementation is similar to this, but the connectivity goes from the “layer”
of cells to itself.

The goal of representing CA with a weighted adjacency matrix is to imple-
ment a framework which facilitates the development of all types of CAs, from
unidimensional to multidimensional, with all kinds of lattices and without any
boundary conditions during execution; and also allowing the inclusion of other
major dynamical systems, independent of the type of the state, time and connec-
tivity. Such initial implementation is the first component of a Python framework
under development, based on TensorFlow deep neural network library [4]. There-
fore, it benefits from powerful and parallel computing systems with multi-CPU
and multi-GPU. One of the framework’s goals is to have a balance between
performance and generalization of computing dynamical systems, since general
methods are slower than specialized ones. Nevertheless, this framework, called
EvoDynamic1, aims at evolving (i.e., using evolutionary algorithms) the con-
nectivity, update and learning rules of sparsely connected networks to improve
their usage for reservoir computing guided by the echo state property, fading
memory, state trajectory, and other quality measurements. Such improvement
of reservoirs is applied similarly in [26], where the internal connectivity of a
reservoir is trained to increase its performance to several tasks. Moreover, evolu-
tion will model the dynamics and behavior of physical reservoirs, such as in-vitro
biological neural networks interfaced with microelectrode arrays, and nanomag-
netic ensembles. Those two substrates have real applicability as reservoirs. For
example, the former substrate is applied to control a robot, in fact making it into
a cyborg, a closed-loop biological-artificial neuro-system [3], and the latter pos-
sesses computation capability as shown by a square lattice of nanomagnets [14].
Those substrates are the main interest of the SOCRATES project [1] which aims
to explore a dynamic, robust and energy efficient hardware for data analysis.

There exist some implementations of CA similar to the one of EvoDynamic
framework. They typically implement Conway’s Game of Life by applying 2D

1 EvoDynamic open-source repository is available at https://github.com/Socrates
NFR/EvoDynamic.
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convolution with a kernel that is used to count the “alive” neighbors, then the
resulting matrix consists of the number of “alive” neighboring cells and is used to
update the CA. One such implementation, also based on TensorFlow, is available
open-source in [2]. We do not use this type of method because it works only
with a regular grid topology and not with a random or custom one. Therefore,
that cannot be a general method for simulating the different types of dynamical
systems.

This paper is organized as follows. Section 2 describes our method according
to which we use weighted adjacency matrix to compute CA. Section 3 presents
the results obtained from the method. Section 4 discusses the initial advances
and future plan of EvoDynamic framework and Sect. 5 concludes this paper.

2 Method

In our proposed method, the equation to calculate the next states of the cells in
a cellular automaton is

ct+1 = f(A · ct). (1)

It is similar to the equation of the forward pass of an artificial neural network,
but without the bias. The layer is connected to itself, and the activation function
f defines the update rules of the CA. The next states of the CA ct+1 is calculated
from the result of the activation function f which receives as argument the dot
product between the weighted adjacency matrix A and the current states of the
CA ct. c is always a column vector of size len(c) × 1, that does not depend on
how many dimensions the CA has, and A is a matrix of size len(c) × len(c).
Hence the result of A · c is also a column vector of size len(c) × 1 as c.

The implementation of cellular automata as an artificial neural network
requires the procedural generation of the weighted adjacency matrix of the grid.
In this way, any lattice type or multidimensional CAs can be implemented using
the same approach. The adjacency matrix of a sparsely connected network con-
tains many zeros because of the small number of connections. Since we imple-
ment it on TensorFlow, the data type of the adjacency matrix is preferably a
SparseTensor. A dot product with this data type can be up to 9 times faster
than the dense counterpart. However, it depends on the configuration of the
tensors (or, in our case, the adjacency matrices) [28]. The update rule of the CA
alters the weights of the connections in the adjacency matrix. In a CA whose
cells have two states meaning “dead” (zero) or “alive” (one), the weights in the
adjacency matrix are one for connection and zero for no connection, such as an
ordinary adjacency matrix. Such matrix facilitates the description of the update
rule for counting the number of “alive” neighbors because the result of the dot
product between the adjacency matrix and the cell state vector is the vector
that contains the number of “alive” neighbors for each cell. If the pattern of the
neighborhood matters in the update rule, each cell has its neighbors encoded as
a n-ary string where n means the number of states that a cell can have. In this
case, the weights of the connections with the neighbors are n-base identifiers and
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Algorithm 1. Generation of weighted adjacency matrix for 1D cellular automa-
ton
1: procedure generateCA1D
2: numberOfCells ← widthCA
3: A ← 0numberOfCells×numberOfCells � Adjacency matrix initialization
4: for i ← {0..(numberOfCells − 1)} do
5: for j ← {−indexNeighborCenter..(len(neighborhood) −

indexNeighborCenter − 1)} do
6: currentNeighbor ← neighborhoodj+indexNeighborCenter

7: if currentNeighbor �= 0 ∧ (isWrappedGrid ∨ (¬isWrappedGrid ∧ (0 ≤
(i + j) < widthCA)) then

8: Ai,((i+j) mod widthCA) ← currentNeighbor

9: return A

are calculated by

neighbori = ni,∀i ∈ {0..len(neighbors) − 1} (2)

where neighbors is a vector of the cell’s neighbors. In the adjacency matrix,
each neighbor receives a weight according to (2). The result of the dot product
with such weighted adjacency matrix is a vector that consists of unique integers
per neighborhood pattern. Thus, the activation function is a lookup table from
integer (i.e., pattern) to next state.

Algorithm 1 generates the weighted adjacency matrix for one-dimensional
CA, such as the elementary CA, where widthCA is the width or number of
cells of a unidimensional CA and neighborhood is a vector which describes
the region around the center cell. The connection weights depend on the type
of update rule as previously explained. For example, in case of an elementary
CA neighborhood = [4 2 1]. indexNeighborCenter is the index of the center
cell in the neighborhood whose starting index is zero. isWrappedGrid is a
Boolean value that works as a flag for adding a wrapped grid or not. A wrapped
grid for one-dimensional CA means that the initial and final cells are neighbors.
With all these parameters, Algorithm 1 creates an adjacency matrix by looping
over the indices of the cells (from zero to numberOfCells − 1) with an inner
loop for the indices of the neighbors. If the selected currentNeighbor is a non-
zero value and its indices do not affect the boundary condition, then the value
of currentNeighbor is assigned to the adjacency matrix A in the indices that
correspond to the connection between the current cell in the outer loop and the
actual index of currentNeighbor. Finally, this procedure returns the adjacency
matrix A.

To procedurally generate an adjacency matrix for 2D CA instead of 1D CA,
the algorithm needs to have small adjustments. Algorithm 2 shows that for two-
dimensional CA, such as Conway’s Game of Life. In this case, the height of the
CA is an argument passed as heightCA. Neighborhood is a 2D matrix and
indexNeighborCenter is a vector of two components meaning the indices of
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the center of Neighborhood. This procedure is similar to the one in Algorithm
1, but it contains one more loop for the additional dimension.

Algorithm 2. Generation of adjacency matrix of 2D cellular automaton

1: procedure generateCA2D
2: numberOfCells ← widthCA ∗ heightCA
3: A ← 0numberOfCells×numberOfCells � Adjacency matrix initialization
4: widthNB, heightNB ← shape(Neighborhood)
5: for i ← {0..(numberOfCells − 1)} do
6: for j ← {−indexNeighborCenter0..(widthNB −

indexNeighborCenter0 − 1)} do
7: for k ← {−indexNeighborCenter1..(heightNB −

indexNeighborCenter1 − 1)} do
8: currentNeighbor ← Neighborhoodj+indexNeighborCenter

9: if currentNeighbor �= 0 ∧ (isWrappedGrid ∨ (¬isWrappedGrid ∧
(0 ≤ ((i mod heightCA)+j) < widthCA)∧(0 ≤ (�i/widthCA	+k) < heightCA))
then

10: Ai,(((i+k) mod widthCA)+((�i/widthCA�+j) mod heightCA)∗widthCA) ←
currentNeighbor

11: return A

The activation function for CA is different from the ones used for ANN.
For CA, it contains the update rules that verify the vector returned by the
dot product between the weighted adjacency matrix and the vector of states.
Normally, the update rules of the CA are implemented as a lookup table from
neighborhood to next state. In our implementation, the lookup table maps the
resulting vector of the dot product to the next state of the central cell.

3 Results

This section presents the results of the proposed method and it also stands for
the preliminary results of the EvoDynamic framework.

Figure 1 illustrates a wrapped elementary CA described in the procedure
of Algorithm 1 and its generated weighted adjacency matrix. Figure 1a shows
the appearance of the desired elementary CA with 16 cells (i.e., widthCA =
16). Figure 1b describes its pattern 3-neighborhood and the indices of the cells.
Figure 1c shows the result of the Algorithm 1 with the neighborhood calculated
by (2) for pattern matching in the activation function. In Fig. 1c, we can verify
that the left neighbor has weight equal to 4 (or 22 for the most significant bit),
central cell weight is 2 (or 21) and right neighbor weight is 1 (or 20 for the least
significant bit) as defined by (2). Since the CA is wrapped, we can notice in row
index 0 of the adjacency matrix in Fig. 1c that the left neighbor of cell 0 is the
cell 15, and in row index 15 that the right neighbor of cell 15 is the cell 0.

Figure 2 describes a wrapped 2D CA (similar to Game of Life but with
less number of neighbors) for Algorithm 2 and shows the resulting adjacency
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Fig. 1. Elementary cellular automaton with 16 cells and wrapped grid. (a) Example of
the grid of cells with states. (b) Indices of the cells and standard pattern neighborhood
of elementary CA where thick border means the central cell and thin border means the
neighbors. (c) Generated weighted adjacency matrix for the described elementary CA.

matrix. Figure 2a illustrates the desired two-dimensional CA with 16 cells (i.e.,
widthCA = 4 and heightCA = 4). Figure 2b presents the von Neumann neigh-
borhood [29] which is used for counting the number of “alive” neighbors (the
connection weights are only zero and one, and Neighborhood argument of
Algorithm 2 defines it). It also shows the index distribution of the CA whose
order is preserved after flatting it to a column vector. Figure 2c contains the
generated adjacency matrix of Algorithm 2 for the described 2D CA. Figure 2b
shows an example of a central cell with its neighbors, the index of this central
cell is 5 and the row index 5 in the adjacency matrix of Fig. 2c presents the same
neighbor indices, i.e., 1, 4, 6 and 9. Since this is a symmetric matrix, the columns
have the same connectivity of the rows. That means the neighborhood of a cell
considers this cell as a neighbor too. Therefore, the connections are bidirectional
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and the adjacency matrix represents an undirected graph. The wrapping effect
is also observable. For example, the neighbors of the cell index 0 are 1, 3, 4 and
12. So the neighbors 3 and 12 are the ones that the wrapped grid allowed to
exist for cell index 0.

Fig. 2. 2D cellular automaton with 16 cells (4 × 4) and wrapped grid. (a) Example
of the grid of cells with states. (b) Indices of the cells and von Neumann counting
neighborhood of 2D CA where thick border means the current cell and thin border
means the neighbors. (c) Generated adjacency matrix for the described 2D CA.

4 On-Going and Future Applications with EvoDynamic

The method of implementing a CA as an artificial neural network is beneficial for
the further development of EvoDynamic framework. Since the implementation
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of all sparsely connected networks in Table 1 is already planned in forthcoming
releases of the Python framework, EvoDynamic shall have a general representa-
tion to all of them. Therefore, CAs are treated as ANNs and then can be extended
to random Boolean network by shuffling the connections, and to the models that
are already ANNs, such as echo state networks and liquid state machines. More-
over, EvoDynamic framework will evolve the connectivity, update and learning
rules of the dynamical systems for reservoir computing improvement and physi-
cal substrate modeling. This common representation facilitates the evolution of
such systems and models which will be guided by several methods that measure
the quality of a reservoir or the similarity to a dataset. The following subsections
explain two on-going applications with CA that use the EvoDynamic framework.

4.1 State Trajectory

An example of methods to guide the evolution of dynamical system is the state
trajectory. This method can be used to cluster similar states for model abstrac-
tion and to measure the quality of the reservoir. Therefore, a graph can be
formed and analysis can be made by searching for attractors and cycles. For
visualization of the state trajectory, we use principal component analysis (PCA)
to reduce the dimensionality of the states and present them as a state transition
diagram as shown in Fig. 3. The depicted dynamical system is Conway’s Game of
Life with 7× 7 cells and wrapped boundaries. A glider is its initial state (Fig. 3a)
and this system cycles over 28 unique states as illustrated in the state transition
diagram of Fig. 3l.

4.2 Towards the Evolution for Criticality

Evolution of dynamical systems is a feature currently under development of
EvoDynamic framework. The first on-going evolution task of our framework is
to find systems with criticality [7] using genetic algorithm, in order to allow for
better computational capacity [17]. The first dynamical system for this task is a
modified version of stochastic elementary cellular automata (SECA) introduced
by Baetens et al. [6]. Our stochastic elementary cellular automaton works as a
1D three neighbors elementary CA, but the next state in time t+1 of the central
cell ci is defined by a probability p to be 1 and a probability 1−p to be 0 for each
of the eight different neighborhood patterns this CA has. Formally, probability
p is represented by

p = P (ci,t+1 = 1|N(ci,t)) (3)

where the neighborhood pattern N(ci,t) is denoted as

N(ci,t) = (ci−1,t, ci,t, ci+1,t). (4)

The genetic algorithm for criticality is guided by a fitness function which
mainly verifies if the probability distributions of avalanche size (i.e., cluster size2

2 Cluster size stands for the number of repetitions of a state that happened consecu-
tively without any interruption of another state.
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(a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4

(e) Step 11 (f) Step 12 (g) Step 13 (h) Step 14

(i) Step 26 (j) Step 27 (k) Step 28 (l) Step 29

Fig. 3. States of Conway’s Game of Life in a 7 × 7 wrapped lattice alongside their
PCA-transformed state transition diagrams of the two first principal components. (a)
Initial state is a glider. (a)–(d) Four first steps in this CA. (e)–(h) Four intermediate
steps in this CA while reaching the wrapped border. (i)–(l) Four last steps in this CA
before repeating the initial state and closing a cycle.

in space) and duration (i.e., cluster size in time) follow a power-law distribu-
tion. Such verification can be done by checking how linear is the probability
distribution in a log-log plot, by performing goodness-of-fit tests based on the
Kolmogorov-Smirnov (KS) statistic and by comparing the power-law model with
the exponential model using log-likelihood ratio [9]. For our fitness function, we
estimate the candidate distributions with the linear fitting of the first 10 points
of the log-log plot using least squares regression, which was verified to be not
biased and gives a fast and acceptable estimation of the slope of the power-law
distribution [12]. After the linear 10-points fitting, the model is tested using KS
statistic. One benefit of using such estimation method is that when the model
is not a power-law, the KS statistic reports a large error, i.e., an error greater
than one. Another objective in the fitness function is the coefficient of determi-
nation [31], but for a complete linear fit of the log-log plot. The fitness function
also considers the number of unique states of the stochastic elementary CA, the
number of bins in the raw histogram and the value of the estimated power-law
exponent. All these fitness function objectives are calculated using a randomly
initialized CA of 1,000 cells with wrapped boundaries during 1,000 time-steps.
The avalanche size and duration are computed for the cell values 0 and 1, thus
producing four different distributions (see Fig. 4) for extracting vectors of their
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normalized number of histogram bins3 bin; coefficient of determination R2 of
complete linear fitting; KS statistic D and estimated power-law exponent α̂
from the 10-points linear estimation. The fitness score s for each objective is
then calculated by the following equations:

bins = tanh(5 ∗ (0.9 ∗ max(bin) + 0.1 ∗ mean(bin))), (5)

R2
s = mean(R2), (6)

Ds = exp(−(0.9 ∗ min(D) + 0.1 ∗ mean(D))), (7)

α̂s = mean(α̂), (8)

uniques =
#uniqueStates

#timesteps
. (9)

The (5)–(9) are all objective values for calculating the fitness score s. Those
values are real numbers between zero and one, except the score for the estimated
power-law exponent α̂s, and they have weights attributed to them regarding their
level of importance and for compensating small and large values. The following
equation denotes how the fitness score s is calculated:

s = 10 ∗ bins + 10 ∗ R2
s + 10 ∗ Ds + 0.1 ∗ α̂s + 10 ∗ uniques. (10)

The genetic algorithm has 40 individuals that evolve through 100 generations.
The optimization performed by GA is to maximize the fitness score. The genome
of the individuals has eight real number genes with a value range between zero
and one. Each gene represents the probability of the next state becoming one

Table 2. Best individual

Neighborhood N(ci,t) Probability p

(0,0,0) 0.103009

(0,0,1) 0.536786

(0,1,0) 0.216794

(0,1,1) 0.393468

(1,0,0) 0.679836

(1,0,1) 0.175458

(1,1,0) 0.724778

(1,1,1) 1.000000

3 The actual number of histogram bins is normalized or divided by the possible total
number of bins.
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Table 3. Fitness score of the best individual

Objective Score

10 ∗ bins 9.780749590096136

10 ∗ R2
s 8.832520186440096

10 ∗ Ds 9.655719560019996

0.1 ∗ α̂s 0.18022617747972156

10 ∗ uniques 10.0

s 38.44921551403595

(i.e., p in (3)) for its respective neighborhood pattern. The selection of two par-
ents is done by deterministic tournament selection [11]. After that, the crossover
between the genomes of the parents can happen with probability 0.8, then each
gene can be exchanged with probability 0.5. Afterward, a mutation occurs to a
gene with probability 0.1. This mutation adds a random value from a normal
distribution with mean and standard deviation equals to, respectively, 0 and

(a) Avalanche size of state 0 (b) Avalanche duration of state 0

(c) Avalanche size of state 1 (d) Avalanche duration of state 1

Fig. 4. Avalanche size and duration of the two states 0 and 1 of the evolved stochastic
elementary CA.
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0.2. The mating process of the two parents produces an offspring of two new
individuals who replace the parents in the next generation.

An example of an evolved genome for the best resulting individual is pre-
sented in Table 2. The fitness score s and all objective scores with their respective
weights for calculating s are in Table 3.

With the genome or probabilities of the eight different neighborhood patterns
of the best evolved individual, we can produce the log-log plots of the probability
distribution of avalanche size and duration for the states zero and one. Such plots
are depicted in Fig. 4. The p-value of goodness-of-fit test is calculated using 1,000
randomly generated data with 10,000 samples applying the power-law exponent
α̂ estimated by maximum likelihood estimation method with minimum x of
the distribution fixed to 1. The Figs. 4a and b show the avalanche size and

Fig. 5. Sample of the best evolved stochastic elementary CA of 200 cells (horizontal
axis) randomly initialized with wrapped boundaries through 400 time-steps (vertical
axis).
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duration for the state 0 or black. They present distributions that are not a power-
law because they do not fit the power-law estimation (the black dashed line).
Moreover, the p-value is equal to 0.0 which proves that those two distributions
are not a power-law. The Figs. 4c and d present the avalanche size and duration
for the state 1 or white. Those distributions follow a power-law because, visually,
the estimated power-law distribution fits the empirical probability distribution
and, quantitatively, the p-value is equal to 1.0 which means that 100% of the KS
statistic of the generated data is greater than the KS statistic of the empirical
distribution of avalanche size and duration of state 1. The number of samples in
those distributions (62,731 for avalanche size and 52,902 for avalanche duration)
confirms that the p-value is trustworthy. Such power-law analysis is performed
by utilizing the powerlaw Python library [5]. It is important to warn that high
fitness scores do not mean p-values closer to 1.0 and the goodness-of-fit test is
not part of the fitness score because it is a slow process.

A sample of the resulting stochastic elementary cellular automaton of the best
individual is illustrated in Fig. 5. This CA, as seen, has no static nor periodic
states, and no random evolution of its states. Therefore, this dynamical system
is between a strongly and weakly coupled substrate. Therefore, the CA presents
patterns or structures that mean the cells are interdependent in this system.

5 Conclusion

In this paper, we present an alternative method to implement a cellular automa-
ton. This allows any CA to be computed as an artificial neural network. That
means, any lookup table can be an activation function, and any neighborhood
and dimensionality can be represented as a weight matrix. Therefore, this will
help to extend the CA implementation to more complex dynamical systems, such
as random Boolean networks, echo state networks and liquid state machines.
Furthermore, the EvoDynamic framework is built on a deep learning library,
TensorFlow, which permits the acceleration and parallelization of matrix opera-
tions when applied on computational platforms with fast CPUs and GPUs. The
planned future implementations of EvoDynamic are presented and discussed.
The state trajectory is an important feature for the targeted future tasks. The
evolution with genetic algorithm towards criticality of stochastic CA is show-
ing promising results and our next goal can be for self-organized criticality. The
future work for the CA implementation is to develop algorithms to procedu-
rally generate weighted adjacency matrices for 3D and multidimensional cellular
automata with different types of cells, such as the cells with hexagonal shape in
a 2D CA.
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Abstract
Although deep learning has recently increased in popularity, it suffers from various problems including high computational

complexity, energy greedy computation, and lack of scalability, to mention a few. In this paper, we investigate an

alternative brain-inspired method for data analysis that circumvents the deep learning drawbacks by taking the actual

dynamical behavior of biological neural networks into account. For this purpose, we develop a general framework for

dynamical systems that can evolve and model a variety of substrates that possess computational capacity. Therefore,

dynamical systems can be exploited in the reservoir computing paradigm, i.e., an untrained recurrent nonlinear network

with a trained linear readout layer. Moreover, our general framework, called EvoDynamic, is based on an optimized deep

neural network library. Hence, generalization and performance can be balanced. The EvoDynamic framework contains

three kinds of dynamical systems already implemented, namely cellular automata, random Boolean networks, and echo

state networks. The evolution of such systems towards a dynamical behavior, called criticality, is investigated because

systems with such behavior may be better suited to do useful computation. The implemented dynamical systems are

stochastic and their evolution with genetic algorithm mutates their update rules or network initialization. The obtained

results are promising and demonstrate that criticality is achieved. In addition to the presented results, our framework can

also be utilized to evolve the dynamical systems connectivity, update and learning rules to improve the quality of the

reservoir used for solving computational tasks and physical substrate modeling.

Keywords Dynamical systems � Implementation � Reservoir computing � Evolution � Criticality

Introduction

Every day, humans produce exabytes of data and this trend

is growing due to emerging technologies, such as 5G and

the Internet of Things (McAfee et al. 2012). Given that the

main computing technology is based on von Neumann

architecture, the analysis of enormous amounts of data is

challenging even for the popular deep learning methods

(Oussous et al. 2018). Deep learning is a powerful data

analysis tool, but it has some problems, including high

energy consumption, and lack of scalability and flexibility.

Therefore, a new type of architecture may be required to

alleviate such problems, in particular energy efficiency,

scalability, adaptability, and robustness. The brain, or

rather, an architecture inspired by the brain, can be this new

architecture. This computing organ is energy efficient,
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adaptable, robust, and can perform parallel processing

through local interactions (Markram et al. 2011).

Artificial systems with similar dynamical properties to

the brain exist, such as cellular automata (Wolfram 2002),

random Boolean networks (Gershenson 2004), and artifi-

cial neural networks (Jaeger and Haas 2004; Maass and

Markram 2004). However, their dynamics are difficult to

program or control in order to perform useful computation.

In such systems, Langton (1990) suggests that computa-

tional properties are connected to the ‘‘edge of chaos’’

behavior, a range of dynamical behaviors between order

and disorder. In other words, they are systems critically

near a phase transition. If the attractors of the system are in

the critical state, this characteristic is called self-organized

criticality (Bak et al. 1987). Systems with self-organized

criticality have a common feature, i.e., power-law corre-

lations in time or space that extend over several scales.

Moreover, biological neural networks have been shown to

self-organize into criticality, which is evaluated by the

power-law distribution of neuronal avalanches (Heiney

et al. 2019; Tetzlaff et al. 2010; Yada et al. 2017). Another

important aspect of the computation performed in a

dynamical system is the trajectory of system states tra-

versed during the computation (Nichele and Tufte 2010).

Such a trajectory may be guided by system parameters

(Nichele and Tufte 2012).

Table 1 presents some computing systems that are

capable of giving rise to the emergence of complex

dynamics. The approaches in such a table (and the work

presented herein) are extensions to previous works (Pontes-

Filho et al. 2019a, b). Dynamical systems with complex

behavior can be availed by reservoir computing, which is a

paradigm that resorts to dynamical systems to simplify

complex nonlinear data. Such simplification means that

reservoir computing utilizes the nonlinear dynamical sys-

tem to perform a nonlinear transformation from nonlinear

data to higher dimensional linear data. Such linearized data

can be applied in linear machine learning methods which

are faster for training and computing because they have

less trainable variables and operations. Hence, reservoir

computing is more energy efficient than deep learning

methods and it can even yield competitive results, espe-

cially for temporal data (Schrauwen et al. 2007; Tanaka

et al. 2019). Basically, reservoir computing exploits a

dynamical system that possesses the echo state property

and fading memory, where the internals of the reservoir are

untrained and the training only happens at the linear

readout stage (Konkoli et al. 2018).

Reservoir computers are most useful when their sub-

strates’ dynamics are at the ‘‘edge of chaos’’ (Langton

1990). A simple computing system used as a reservoir is a

cellular automaton (CA) (Nichele and Gundersen 2017;

Nichele and Molund 2017). A CA consists of a grid of cells

with a finite number of states that change according to

simple rules depending on the neighborhood and own state

in discrete time-steps. Other systems can also exhibit

similar dynamics. The coupled map lattice (Kaneko 1992)

is very similar to CA, the only exception is that the coupled

map lattice has continuous states which are updated by a

recurrence equation involving the neighborhood. A random

Boolean network (RBN) (Gershenson 2004) is a general-

ization of CA where random connectivity exists. An echo

state network (ESN) (Jaeger and Haas 2004) is an artificial

neural network (ANN) with random topology. A spiking

cellular automaton (Bailey 2010) is a CA whose cells are

spiking neurons that communicate through discrete-events

(spikes) over continuous time. A spiking neuron is a model

of the biological neuron found in the brain. A lattice of

ordinary differential equations (Chow et al. 1996; Larter

et al. 1999) is a cellular automaton where state and time are

continuous and updated by ordinary differential equations

(ODEs). A liquid state machine (Maass and Markram

2004) is an echo state network with spiking neurons. ODEs

in complex topology are similar to the lattice differential

equations, but the connectivity is random. Moreover,

computation in dynamical systems may be carried out in

physical substrates (Tanaka et al. 2019), such as in-vitro

networks of biological neurons (Aaser et al. 2017) or in

nanoscale materials (Broersma et al. 2017). Finding the

correct abstraction for the computation in a dynamical

system, e.g. CA, is still an open research problem (Nichele

et al. 2017).

Table 1 Examples of dynamical

systems
Dynamical system State Time Connectivity

Cellular automaton Discrete Discrete Regular

Coupled map lattice Continuous Discrete Regular

Random Boolean network Discrete Discrete Random

Echo state network Continuous Discrete Random

Spiking cellular automaton Discrete Continuous Regular

Lattice differential equations Continuous Continuous Regular

Liquid state machine Discrete Continuous Random

ODEs in complex topology Continuous Continuous Random
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One of our goals is to simulate all of these computing

systems in a single general framework. Since generalization

affects performance, we counterbalance it by using an opti-

mized parallel library, such as the TensorFlow deep neural

network framework (Abadi et al. 2016). To be able to exploit

this library, a dynamical system is represented by a weighted

adjacency matrix, such as a graph, and calculated as an

artificial neural network, then taking advantage of the

library’s optimization. Moreover, the weighted adjacency

matrix of a dynamical system with complex dynamics is

normally sparse. Thus, the choice of TensorFlow is advan-

tageous because of its optimized methods and data types for

sparse matrices or tensors. Another goal is to tune dynamical

systems to reach the critical point at the ‘‘edge of chaos’’,

criticality, or even to search for systems with self-organized

criticality. Systems in self-organized criticalitymay be better

suited for performing useful computation in reservoir com-

puting. To accomplish our goals, the presented general

framework for dynamical systems, called EvoDynamic1,

aims at evolving (i.e., using evolutionary algorithms) the

connectivity, update and learning rules of sparsely connected

networks to improve their usage for reservoir computing

guided by the echo state property, fading memory, state

trajectory, and other quality measurements. Such improve-

ment of reservoirs is similarly applied in (Subramoney et al.

2019), where the internal connectivity of a reservoir is

trained to increase its performance to several tasks. To verify

that, we evolved three different stochastic dynamical sys-

tems, namely a cellular automaton, random Boolean net-

work, and echo state network, towards criticality using a

genetic algorithm. In the previous works (Pontes-Filho et al.

2019a, b), only cellular automaton is investigated and the

fitness function for the genetic algorithm in (Pontes-Filho

et al. (2019a) is less effective than the one proposed in this

work. The evolution of these three stochastic dynamical

systems was guided by fitting a power-law model into the

distributions of avalanche size and duration. Moreover, for

futurework, evolutionwillmodel the dynamics and behavior

of physical reservoirs, such as in-vitro biological neural

networks interfaced with microelectrode arrays, and nano-

magnetic ensembles. These two substrates have real appli-

cability as reservoirs. For example, the former substrate is

applied to control a robot, in effect making it a cyborg, a

closed-loop biological-artificial neuro-system (Aaser et al.

2017), and the latter possesses computation capability as

shown by a square lattice of nanomagnets (Jensen et al.

2018). These substrates are the main interest of the

SOCRATES project (https://www.ntnu.edu/socrates) which

aims to explore a dynamic, robust, and energy efficient

hardware for data analysis.

This paper is organized as follows. Section 2 describes

our method of computing dynamical systems in a gener-

alized manner and the approach of evolving three

stochastic dynamical systems towards criticality. Section 3

presents the results obtained from the methods. Section 4

discusses the experimental results. Section 5 states the

initial advances and future plan for the EvoDynamic

framework and Sect. 6 concludes this paper.

Methods

There are two main methods described in this section. One

method is to simulate dynamical systems in a general

manner, which is very similar to simulating an artificial

neural network, and no training is needed. The other

method is to evolve three stochastic dynamical systems

towards criticality. The three systems are based on cellular

automata, random Boolean networks, and echo state net-

works, respectively.

General framework for dynamical systems

Generalization is necessary to be able to simulate several

dynamical systems with a single implementation. There-

fore, our idea is to procedurally modify the computation of

an artificial neural network to fit the dynamics of the

desired dynamical system. In order to do that, modifica-

tions are introduced in the weighted adjacency matrix A

and the mapping function f. A and f are analogous,

respectively, to the weight matrix and activation function

of artificial neural networks. The weighted adjacency

matrix A and the mapping function f are used to compute

the next state in time t þ 1 from the current state in time t

of the components of the dynamical system that are called

cells c. The equation for that is

ctþ1 ¼ f ðA � ctÞ: ð1Þ

This is similar to the equation of the forward pass of an

artificial neural network but without the bias. The next

states of the cells ctþ1 are calculated from the result of the

mapping function f which receives as argument the dot

product between the weighted adjacency matrix A and the

current states of the cells ct. The vector c is always a

column vector of size lenðcÞ � 1, and A is a matrix of size

lenðcÞ � lenðcÞ. Hence the result of A � c is also a column

vector of size lenðcÞ � 1 as c.

Dynamical systems that possess a critical regime are

often sparsely connected networks. Since the EvoDynamic

framework is implemented on TensorFlow, the data type of

the weighted adjacency matrix A is preferably a

SparseTensor. A dot product with such a data type can

result in up to 9 times faster execution than the dense

1 EvoDynamic open-source repository on https://github.com/Socra

tesNFR/EvoDynamic.
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counterpart. However, this depends on the configuration of

the tensors (or, in our case, the adjacency matrices) (https://

www.tensorflow.org/api_docs/python/tf/sparse/sparse_

dense_matmul).

The details of how this general framework is used for

the three stochastic dynamical systems that are evolved

towards criticality are described in the following sections.

Cellular automata in the general framework

The implementation of a cellular automaton in our general

framework requires the procedural generation of the

weighted adjacency matrix of its grid. In this way, any

lattice type or multidimensional CAs can be implemented

using our framework. Algorithm 1 generates the weighted

adjacency matrix for one-dimensional CA, such as the

elementary cellular automaton (Wolfram 2002), where

widthCA is the width or number of cells of a unidimen-

sional CA and the vector neighborhood describes the

region around the center cell. The connection weights

depend on the type of update rule as previously explained.

For example, in the case of an elementary CA,

neighborhood ¼ ½4 2 1� (acquired from (2)). indexNeigh-

borCenter is the index of the center cell in the

neighborhood whose starting index is zero.

isWrappedGrid is a Boolean value that works as a flag for

adding a wrapped grid or not. A wrapped grid for one-

dimensional CA means that the initial and final cells are

neighbors. With all these parameters, Algorithm 1 creates

an adjacency matrix by looping over the indices of the cells

(from zero to numberOfCells� 1) with an inner loop for

the indices of the neighbors. If the selected currentNeigh-

bor is a non-zero value and its indices do not affect the

boundary condition, then the value of currentNeighbor is

assigned to the adjacency matrix A in the indices that

correspond to the connection between the current cell in the

outer loop and the actual index of currentNeighbor.

Finally, this procedure returns the adjacency matrix A.

Minor adjustments need to be made to the algorithm to

procedurally generate an adjacency matrix for 2D CA

instead of 1D CA. Algorithm 2 shows the procedure for

two-dimensional CA, such as Conway’s Game of Life. In

this case, the height of the CA is an argument passed as

heightCA. Neighborhood is a 2D matrix and

indexNeighborCenter is a vector of two components

meaning the indices of the center of Neighborhood. This

procedure is similar to the one in Algorithm 1, but it

contains one more loop for the additional dimension.
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The update rule of the CA alters the weights of the

connections in the adjacency matrix. For example, Con-

way’s Game of Life (Rendell 2002) is a CA whose cells

have two states meaning ‘‘dead’’ (zero) or ‘‘alive’’ (one),

and the update rule is based on the number of ‘‘alive’’ cells

in the neighborhood. Therefore, for counting the number of

alive ‘‘neighbors’’, the weights in the adjacency matrix are

one for connection and zero for no connection, as in an

ordinary adjacency matrix. Such a matrix facilitates the

description of the update rule for counting the number of

‘‘alive’’ neighbors because the result of the dot product

between the adjacency matrix and the cell state vector is

the vector that contains the number of ‘‘alive’’ neighbors

for each cell. This is shown in Fig. 1 for a 2D CA of 16

cells (4� 4), wrapped grids and modification in the origi-

nal neighborhood (Fig. 1a), cells’ indices and von Neu-

mann neighborhood (Fig. 1b), and its weighted adjacency

matrix (acquired from Algorithm 2) which is used to

compute the number of ‘‘alive’’ neighbors for this CA

(Fig. 1c).

Another example where the CA’s update rule affects the

weighted adjacency matrix is when the pattern of the

neighborhood influences the update rule, such as in an

elementary cellular automaton (Wolfram 2002). To do that,

each cell has its neighbors encoded as a n-ary string where

n means the number of states that a cell can have. Hence,

the weights of the connections with the neighbors are n-

base identifiers and are calculated by

neighbori ¼ ni; 8i 2 f0::lenðneighborsÞ � 1g ð2Þ

where neighbors is a vector of the cell’s neighbors. In the

adjacency matrix, each neighbor receives a weight

according to (2). The result of the dot product with such a

weighted adjacency matrix is a vector that consists of

unique integers per neighborhood pattern. Thus, the map-

ping function is a lookup table from integer (i.e., pattern

code) to next state. This is depicted in Fig. 2 for a 1D

elementary cellular automaton of 16 cells and wrapped

grids (Fig. 2a), cells’ indices and neighborhood (Fig. 2b),

and its weighted adjacency matrix (acquired from Algo-

rithm 1) being used to calculate the values for the mapping

function (Fig. 2c).

The mapping function for CA is different from the

activation function used for ANN. For CA, it contains the

update rules that verify the vector returned by the dot

product between the weighted adjacency matrix and the

vector of states. Normally, the update rules of the CA are

implemented as a lookup table from neighborhood to next

state. In our implementation, the lookup table maps the

resulting vector of the dot product to the next state of the

central cell.

Random Boolean networks in the general framework

A random Boolean network (RBN) is an extension of

cellular automata (Gershenson 2004) where the regular

grid is replaced by random connections between the nodes

or cells. An RBN has a similar update function to a CA

whose cells consider the states of each of its neighbors,

such as the neighborhood pattern of an elementary CA.

Basically, a weighted adjacency matrix of a random Boo-

lean network is acquired by shuffling the rows of the matrix

for an elementary CA. Figure 3 illustrates the weighted

adjacency matrix and the graph of a random Boolean net-

work whose cells are randomly connected to three other

cells. The difference between Figs. 2c and 3a shows how

the method for elementary CA is adjusted for a random

Boolean network.

Echo state networks in the general framework

Our general framework for dynamical systems is based on

the computation of artificial neural networks. Since an echo

state network (ESN) (Jaeger and Haas 2004) is a type of
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artificial neural network, the weighted adjacency matrix is

the usual weight matrix and the mapping function is one of

the several activation functions that can be used for the

neurons in an artificial neural network, such as sigmoid,

hyperbolic tangent and rectified linear unit (LeCun et al.

2015). Note that in an ESN, the connection weights are

randomly initialized. This is depicted in Fig. 4 where an

echo state network of 10 cells or neurons are randomly

connected with a certain sparsity. The color of the cells

shows their states between 0 and 1 in grayscale. The edges

are colored as red and blue to represent the negative and

positive weights, respectively. The thickness of the edges is

proportional to the weight value of the connections.

Evolution of stochastic dynamical systems
towards criticality

Using the previously explained general framework, we

simulate three stochastic dynamical systems, namely

cellular automata, random Boolean networks, and echo

state networks. The evolution through genetic algorithm

aims to find systems with criticality (Bak et al. 1987), in

order to improve computational capacity (Langton 1990).

The stochastic dynamical systems

The first stochastic dynamical system towards criticality is

a modified version of stochastic elementary cellular auto-

mata (SECA) introduced by Baetens et al. (2016). Our

stochastic elementary cellular automaton is a modification

of a 1D three neighbors elementary CA. Such modification

is in the mapping function of the CA and the next state in

time t þ 1 of the central cell ci is defined by a probability

p to be 1 and a probability 1� p to be 0 for each of the

eight different neighborhood patterns this CA has. For-

mally, probability p is represented by

Fig. 1 Example of using matrix multiplication for computing a 2D

cellular automaton with 16 cells (4� 4) and wrapped grid. a Example

of the grid of cells with states. State 0 means dead or non-occupied

cell and state 1 stands for alive or occupied cell. b Indices of the cells

and von Neumann counting neighborhood of 2D CA where thick

border means the current cell and thin border means the neighbors.

c Illustration of matrix multiplication between adjacency matrix of the

2D CA and the state vector of the flattened 2D CA, resulting in a

vector that contains the number of alive neighbors for each cell.

Please note that an alive cell does not count itself as an alive neighbor
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p ¼ Pðci;tþ1 ¼ 1jNðci;tÞÞ; ð3Þ

where the neighborhood pattern Nðci;tÞ is denoted as

Nðci;tÞ ¼ ðci�1;t; ci;t; ciþ1;tÞ: ð4Þ

The second stochastic dynamical system that we evolve is

based on random Boolean networks (RBNs). Basically, this

is a modification of our stochastic cellular automata, but

with the connectivity between the cells being random.

Our third and last stochastic dynamical system is based

on echo state networks (ESNs). As its activation function,

we use the sigmoid function denoted as

sigmoidðxÞ ¼ 1

1þ e�x
: ð5Þ

Since our echo state network is stochastic, the probability

pESN of next state being 1 is calculated by the sigmoid

function in (5). This is given formally by

pESN ¼ Pðci;tþ1 ¼ 1Þ ¼ sigmoidðA � ctÞ: ð6Þ

Evolution through genetic algorithm

The evolution towards criticality is performed by a genetic

algorithm. As described in the previous section, three dif-

ferent stochastic dynamical systems are evolved: CA, RBN

and ESN. The genotype (or genetic code) for CA and RBN

is the same. It contains one probability (value between 0.0

and 1.0) for each of the eight possible neighborhood con-

figurations (three binary neighbors). The genome of the

ESN consists of six values denoting mean and standard

deviation of the weights of the positive connections

(meanþ and stdþ), mean and standard deviation of the

negative connections (mean� and std�), probability of

positive connections (probþ), and sparsity. The range of

meanþ and mean� is between 0.2 and 4.0, the values of

stdþ and std� are determined by meanþ and mean�, and
their genes geneStdþ and geneStd� (values between 0.0

and 1.0). The equations for stdþ and std� are

Fig. 2 Example of using matrix multiplication for computing a 1D

elementary cellular automaton with 16 cells and wrapped grid.

a Example of the grid of cells with states. State 0 means dead or non-

occupied cell and state 1 stands for alive or occupied cell. b Indices of

the cells and 3-neighbors pattern neighborhood of 1D CA where thick

border means the current cell and thin border means the neighbors.

c Illustration of matrix multiplication between adjacency matrix of the

1D CA and the state vector of the 1D CA, resulting in a vector that

contains the pattern code of the neighborhood for each cell. Important

to consider that an alive cell counts itself as an alive neighbor and that

is why the diagonal of the adjacency matrix is fulfilled with weight 2
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stdþ ¼ 0:2�meanþ � geneStdþ; ð7Þ

std� ¼ 0:2�mean� � geneStd�: ð8Þ

The standard deviation values have a minimum of 0.0 and a

maximum of 20% of their corresponding mean. Such a

maximum value for the standard deviation reduces the

chances of sampling negative weights from the positive

weight normal distribution, and vice-versa. However, in

case this occurs, the absolute function is applied.

The fitness function which guides the stochastic

dynamical systems towards criticality mainly verifies

whether the probability distributions of avalanche size and

duration follow a power-law distribution. The avalanche

size and duration are acquired by the cluster size of iden-

tical states, which means the number of repetitions of a

state that happened consecutively without the interruption

of another state. The avalanche size stands for the clusters

in the states in the same time-step and the avalanche

duration consists of the clusters in the same cell through the

Fig. 3 Example of a weighted adjacency matrix and graph for a random Boolean network with 16 cells and neighborhood of 3 cells. Self-

connections are not shown in the graph

Fig. 4 Example of a weighted adjacency matrix and graph for an echo

state network with 10 cells or neurons. Red edges mean negative

connections and blue edges mean positive connections. The thickness

of the edges indicates the weight values. Self-connections are not

shown in the graph
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time-steps of the simulation. The power-law distribution

verification of the probability distributions of avalanche

size and duration can be done in several ways. In our task,

evolution is based on the verification of linearity in a log-

log plot and the model comparison between power-law and

exponential by the log-likelihood ratio (Clauset et al.

2009). The model comparison is an addition to the previous

version of the fitness function for criticality in (Pontes-

Filho et al. 2019a), which facilitates the convergence

towards such a goal. After the evolution is completed, we

test the best genome or individual with goodness-of-fit tests

based on the Kolmogorov-Smirnov (KS) statistic (Clauset

et al. 2009). To do that, the p-value of goodness-of-fit test

is calculated using 1000 randomly generated data with

10,000 samples applying the power-law model estimated

by maximum likelihood estimation method with minimum

x of the distribution fixed to 1. The p-value measures the

percentage of the KS statistic of the generated data when it

is greater (worse) than the KS statistic of the empirical

distribution. Therefore, a p-value of 1.0 or 100% is the best

possible value and, to be accepted as power-law, the p-

value must be greater than 0.1 (Clauset et al. 2009). The

fitness function does not have goodness-of-fit test because

it is computationally intensive. In our code, the log-like-

lihood ratio, generation of data from power-law model, and

maximum likelihood estimation method are imported from

the powerlaw Python library (Alstott et al. 2014).

The fitness function, used during evolution to calculate

the genome’s fitness score, estimates the power-law model

of the four distributions (avalanche size and duration for

the state 0 and 1) acquired from the simulation of the

stochastic binary dynamical system produced by the gen-

ome. The simulation runs 1,000 time-steps of a system with

1000 cells. The power-law model estimation is performed

by linear fitting of the first 10 points of the log-log plot

using least squares regression, which was verified to be

unbiased and gives a fast and acceptable estimation of the

slope of the power-law distribution (Goldstein et al. 2004).

Their power-law models and empirical probability distri-

butions are subsequently compared with the KS statistic

and coefficient of determination (Wright 1921). The

advantage of using the KS statistic with a model estimated

by a linear 10-points fitting is that it reports a large error

when the empirical distribution does not follow a power-

law distribution. Another objective in the fitness function is

the number of non-zero bins of size one in the raw his-

togram (empirical probability distribution). The number of

non-zero bins is then normalized by dividing it with the

maximum number of bins, which is 1000 for our case

because 1000 cells are simulated through 1000 time-steps.

Another objective is the percentage of unique states during

the simulation (value between 0.0 and 1.0). In summary,

the fitness function has scores calculated from the four

probability distributions, which are the normalized number

of non-zero bins bin; coefficient of determination R2 of

complete linear fitting; and KS statistic D. All these values

are vectors of four elements. The fitness score s for those

objectives is then calculated by the following equations:

bins ¼ tanhð5 � ð0:9 �maxðbinÞ þ 0:1 �meanðbinÞÞÞ;
ð9Þ

R2
s ¼ meanðR2Þ; ð10Þ

Ds ¼ expð�ð0:9 �minðDÞ þ 0:1 �meanðDÞÞÞ: ð11Þ

The fitness score which is based on the simulation result is

the percentage of unique states, which is denoted by

uniques ¼
#uniqueStates

#timesteps
: ð12Þ

The Eqs. (9)–(12) are all objective values for calculating

the temporary fitness score stemp. Those values are real

numbers between zero and one. Some important scores are

squared, such as R2
s and Ds. The following equation

denotes how the temporary fitness score stemp is calculated:

stemp ¼ bins þ ðR2
s Þ

2 þ ðDsÞ2 þ uniques: ð13Þ

The final fitness score includes the log-likelihood ratio

which compares the power-law model with the exponential

model for estimating the probability distribution. This

process is computationally intensive. Therefore, such a

score is only computed when the temporary fitness score

stemp reaches a certain value. If the stemp is greater than this

threshold value of 3.5, then the log-likelihood ratio is

calculated for the four distributions and stored in the vector

l. The log-likelihood ratio which is not trustworthy (p-value

of ratio greater or equal to 0.1) are ignored (set as zero).

The score for the log-likelihood ratio ls is then calculated

by

ls ¼ sigmoidð10�2 � ð0:9 �maxðlÞ þ 0:1 �meanðlÞÞÞ:
ð14Þ

After describing all the objectives and their scores of our

fitness function, the final equation is

s ¼
stemp þ ls; stemp [ 3:5

stemp; otherwise.

�
ð15Þ

The configuration of the genetic algorithm consists of 40

individuals evolving through 100 generations. We run the

genetic algorithm five times for each of the three dynam-

ical systems. The goal of the genetic algorithm is to

maximize the fitness score. The selection of two parents is

done by deterministic tournament selection of two indi-

viduals (Goldberg and Deb 1991), which means that all

individuals are assigned for the tournaments. Afterwards,
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the crossover between the genomes of the selected parents

may occur with probability 0.8, and then each gene can be

exchanged with probability 0.5. After that, a mutation can

modify a gene with probability 0.1. This mutation adds a

random value from a normal distribution with mean and

standard deviation equal to 0 and 0.2, respectively. The

mating process of the two parents produces an offspring of

two new individuals who replace the parents in the next

generation.

Experimental results

The results of the methods described for a general frame-

work for dynamical systems are described and explained in

this section. The results of the genetic algorithm for criti-

cality in three stochastic dynamical systems are also

described and explained.

Results of general framework

Figure 1 shows the result of Algorithm 2. It describes a

wrapped 2D CA (similar to Game of Life but with a lower

number of neighbors) and shows the resulting adjacency

matrix. Figure 1a illustrates the desired two-dimensional

CA with 16 cells (i.e., widthCA ¼ 4 and heightCA ¼ 4).

Figure 1b presents the von Neumann neighborhood with-

out considering the center cell (Toffoli and Margolus 1987)

which is used for counting the number of ‘‘alive’’ neigh-

bors (the connection weights are only zero and one, and

defined by Neighborhood argument of Algorithm 2). It

also shows the index distribution of the CA whose order is

preserved after flattening it to a column vector. Figure 1c

contains the generated adjacency matrix of Algorithm 2 for

the described 2D CA. Figure 1b shows an example of a

central cell with its neighbors, the index of this central cell

is 5 and the row index 5 in the adjacency matrix of Fig. 1c

presents the same neighbor indices, i.e., 1, 4, 6 and 9. Since

this is a symmetric matrix, the columns have the same

connectivity of the rows. This implies that the neighbor-

hood of a cell considers the cell itself as a neighbor.

Therefore, the connections are bidirectional and the adja-

cency matrix represents an undirected graph. The wrapping

effect is also observable. For example, the neighbors of the

cell index 0 are 1, 3, 4 and 12. So the neighbors 3 and 12

are the ones that the wrapped grid allowed to exist for cell

index 0.

Figure 2 contains the result of Algorithm 1 together with

(2). It illustrates a wrapped elementary CA and its gener-

ated weighted adjacency matrix. Figure 2a shows the

appearance of the desired elementary CA with 16 cells

(widthCA ¼ 16). Figure 2b describes its 3-neighborhood

pattern and the indices of the cells. Figure 2c shows the

result of Algorithm 1 with the neighborhood calculated by

(2) for pattern matching in the activation function. In

Fig. 2c, we can verify that the left neighbor has weight

equal to 4 (or 22 for the most significant bit), central cell

weight is 2 (or 21) and the right neighbor weight is 1 (or 20

for the least significant bit) as defined by (2). Since the CA

is wrapped, we can notice in row index 0 of the adjacency

matrix in Fig. 2c that the left neighbor of cell 0 is cell 15,

and in row index 15 that the right neighbor of cell 15 is cell

0.

Figure 3 sets out the result of (2). The neighborhood is

defined as n-ary string for the purpose of identifying the

states of each neighbor. The neighbors of a cell are selected

randomly and are represented in the matrix row of the

cell’s index. Therefore, the neighbor identifiers, which are

in this case 1, 2 and 4, are assigned to their corresponding

neighbor.

Results of evolving dynamical systems
towards criticality

After five independent runs of the CA evolution, the best

genome solutions turn out to be unstable, i.e., the test score

of the best genome differs significantly when compared to

the score obtained during evolution. For this reason, the

2nd best solution is selected, as its test score shows

Table 2 Selected 2nd best CA in fitness score

Neighborhood Nðci;tÞ Probability p

(0,0,0) 0.394221

(0,0,1) 0.094721

(0,1,0) 0.239492

(0,1,1) 0.408455

(1,0,0) 0.000000

(1,0,1) 0.730203

(1,1,0) 0.915034

(1,1,1) 1.000000

Table 3 Fitness score of the selected 2nd best CA. Testing simula-

tions were performed 5 times and ‘‘std.’’ stands for standard deviation.

Numbers are rounded to three decimal places

Objective Evolution score Test score mean Test score std.

R2
s

0.870 0.866 0.006

Ds 0.961 0.961 0.003

bins 0.966 0.980 0.007

uniques 1.000 1.000 0.000

ls 0.728 0.733 0.016

s 4.376 4.387 0.015
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Fig. 5 Test sample of the 2nd best evolved stochastic elementary CA

of 1,000 cells (horizontal axis) randomly initialized with wrapped

boundaries and run through 1,000 time-steps (vertical axis), and its

avalanche size and duration of the two states 0 (black) and 1 (white).

Fitness score of this simulation is 4.383
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stable results. The genome of the stable solution is pre-

sented in Table 2. Its fitness score and all objective scores

during evolution and testing are in Table 3. It can be

observed that the CA results are stable because of the low

standard deviation of the scores in the five testing execu-

tions. This is further supported by the mean test score being

larger than the score during evolution. Fig. 5 contains the

image produced by the entire simulation, by the first 200

cells and 200 time-steps, and by the four probability dis-

tributions with their corresponding power-law model esti-

mated by maximum log-likelihood and p-value of the

goodness-of-fit test. The empirical probability distributions

(depicted in Figs. 5c–f) which fit to a power-law model are

the probability distributions of avalanche size and duration

of state 1 (Figs. 5e and 5f). This can be concluded quan-

titatively by the p-values of their goodness-of-fit test being

equal to 1.0, which to be considered a power-law distri-

bution p-value must be greater than 0.1 (Clauset et al.

2009). Moreover, the large number of samples confirms

that these p-values are reliable; and qualitatively by the

similarity of their power-law estimated models (black

dashed line) and the empirical distributions (blue solid

line). Therefore, we can conclude that the presented CA

shows criticality for state 1.

Repeating the same procedure used for CA, the RBN’s

1st best individual presented a high score as the 2nd best

CA score, but the 1st best RBN is unstable. The following

best individuals are also showing instability. Hence, we

keep the selection of the 1st best individual. Table 4 con-

tains the genome of the selected RBN. Table 5 has the

scores acquired during evolution and the mean and stan-

dard deviation of the five test runs. Figure 6 illustrates the

simulation of the RBN and their avalanche distributions. It

can be noted that none of the distributions qualitatively

resembles a power-law, but Fig. 6c shows the distribution

of avalanche size of state 0 which has a p-value of good-

ness-of-fit test equal to 1.0 which means that it is classified

as power-law according to this evaluation method. Nev-

ertheless, if we consider that such RBN does not achieve

criticality, we can hypothesize that the random connections

may be a bottleneck to achieving this behavioral regime

while, with a regular grid, CA more easily achieved a

critical behavior through its evolution.

The ESN results are presented in Table 6, Table 7, and

Fig. 7. The 1st best ESN was found to be unstable as the

1st best CA. Therefore, the selected genome is the 2nd best

which presents stable results. The CA and ESN’s selected

best individuals possess two distributions which are con-

sidered power-laws by the p-value of goodness-of-fit test.

However, the ESN’s avalanche distributions with p-value

equal to 1.0 are the avalanche duration of state 0 and 1.

This means that avalanches that present criticality do not

occur within the states through the simulation. The

criticality occurs only by combining the cluster sizes of

each of the cells in the system during the simulation.

We consider that the evolved stochastic dynamical

system achieved criticality when at least one of the prob-

ability distributions of the avalanche size and duration is a

power-law distribution. That is, quantitatively evaluated by

the p-value of the goodness-of-fit test. Table 8 contains the

mean and standard deviation of the p-value of the four

avalanche distributions. Through this result, we can affirm

that two out of the four presented distributions for the CA

and ESN show a power-law distribution, i.e., at criticality.

The presented results also show that the tested RBN pos-

sesses only one avalanche distribution which can be con-

sidered as a power-law; the avalanche size distribution of

state 0. Moreover, the p-value of this distribution of RBN is

not as stable as the two critical avalanche distributions of

CA and ESN with mean equaling 1.0 and standard devia-

tion equaling 0.0.

Discussion

The results of the evolution of the three stochastic

dynamical systems show the potential of such systems to

produce criticality. Evaluating these systems, we can

Table 4 Selected 1st best RBN in fitness score

Neighborhood Nðci;tÞ Probability p

(0,0,0) 1.000000

(0,0,1) 0.844143

(0,1,0) 0.950141

(0,1,1) 0.314001

(1,0,0) 0.527704

(1,0,1) 0.314433

(1,1,0) 0.109056

(1,1,1) 0.015699

Table 5 Fitness score of the selected 1st best RBN. Testing simula-

tions were performed 5 times and ‘‘std.’’ stands for standard deviation.

Numbers are rounded to three decimal places

Objective Evolution score Test score mean Test score std.

R2
s

0.886 0.905 0.002

Ds 0.953 0.867 0.050

bins 0.867 0.864 0.007

uniques 1.000 1.000 0.000

ls 0.706 0.145 0.291

s 4.266 3.583 0.353
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Fig. 6 Test sample of the 1st best evolved stochastic RBN of 1000 cells (horizontal axis) randomly initialized and run through 1000 time-steps

(vertical axis), and its avalanche size and duration of the two states 0 (black) and 1 (white). Fitness score of this simulation is 3.315
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deduce that the stochastic cellular automaton is the system

that can become critical most easily. This is followed by

the stochastic echo state network, which in our results

presented an unexpected behavior where the only ava-

lanche distributions that can be considered critical are the

two avalanche duration distributions. This result is unex-

pected if compared to the presented CA, which presents

only one state (state 1) as critical in both avalanche size

and duration. The stochastic random Boolean network is

very similar to the stochastic CA, with the difference that

the connectivity is randomized instead of regular. Such

modification may make it more difficult to evolve the RBN

into a critical system behavior. The RBN only shows a

single critical avalanche distribution and is not stable like

the two critical avalanche distributions of CA and ESN.

Ongoing and future applications
with EvoDynamic

The generalization of representations for different dynam-

ical systems presented in this work is beneficial for the

further development of the EvoDynamic framework. Cel-

lular automata, random Boolean networks, and echo state

networks are already implemented in our Python library.

The implementation of the other described dynamical

systems in the EvoDynamic framework is ongoing. In

addition, the EvoDynamic framework will incorporate the

possibility to evolve the connectivity, the update rules and

the learning rules of the dynamical systems, in order to

allow the dynamical systems to be used efficiently for

reservoir computing, as well as for physical substrate

modeling. The introduced general representation facilitates

the evolution of such systems and models through methods

that measure the quality of a reservoir system or the sim-

ilarity to a given input dataset. The following subsection

will further document an additional method under devel-

opment, which can be used to assess the quality of a

dynamical system model or substrate for reservoir

computing.

State trajectory

A method that can guide dynamical systems’ evolutionary

search is the state trajectory. This method can be used to

cluster similar states for model abstraction and to measure

the quality of the reservoir. For this purpose, a graph can be

generated and analyzed by searching for attractors and

cycles in the obtained state space. For visualization of the

state trajectory, we apply principal component analysis

(PCA) to reduce the dimensionality of the states consid-

ering the entire dynamical system simulation (each time-

step produces a sample for PCA). An example of the

produced visualization is depicted in Fig. 8, where every

produced state is shown as a state transition diagram. The

chosen dynamical system shown in the Figure is a CA

using Conway’s Game of Life’s rules with 5 x 5 cells and

wrapped boundaries. The CA is initialized with a glider

configuration as the initial state (Fig. 8a) and, subse-

quently, the CA cycles over 20 unique states, as illustrated

in the state transition diagram in Fig. 8l.

Conclusion

In this work, a general framework for simulating dynamical

systems is described, which utilizes the computation of

artificial neural networks as a general method for executing

different dynamical systems. The presented framework,

called EvoDynamic, is built on the Tensorflow deep

learning library, which allows better performance and

parallelization while keeping a common general represen-

tation based on operations on sparse tensors. The applica-

tion of this framework is used in the work herein to evolve

three different dynamical systems, i.e., cellular automata,

random Boolean networks, and echo state networks,

towards criticality. The presented results are promising for

CA and ESN evolution, while further analysis and exper-

iments are required to confirm critical behavior in the

evolved RBNs. As future work, our goal is to evolve

dynamical systems towards self-organized criticality, i.e., a

dynamical system that self-organizes into a critical state

Table 6 Selected 2nd best ESN

in fitness score
Genome Value

meanþ 4.000000

stdþ 0.800000

mean� 0.100000

std� 0.007792

probþ 0.064934

sparsity 0.963955

Table 7 Fitness score of the selected 2nd best ESN. Testing simu-

lations were performed 5 times and ‘‘std.’’ stands for standard devi-

ation. Numbers are rounded to three decimal places

Objective Evolution score Test score mean Test score std.

R2
s

0.891 0.891 0.006

Ds 0.903 0.885 0.038

bins 0.968 0.965 0.004

uniques 1.000 1.000 0.000

ls 0.613 0.479 0.239

s 4.190 4.024 0.282
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Fig. 7 Test sample of the 2nd best evolved stochastic ESN of 1000 cells (horizontal axis) randomly initialized and run through 1,000 time-steps

(vertical axis), and its avalanche size and duration of the two states 0 (black) and 1 (white). Fitness score of this simulation is 4.158
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without the need to tune control parameters. Ongoing and

future implementations of EvoDynamic are presented and

discussed, such as the visualization and usage of state

trajectories, as well as the possibility of physical substrate

modeling. EvoDynamic is an open-source framework cur-

rently under development that primarily targets applica-

tions in reservoir computing and artificial intelligence. We

envision that the generalization and parallelization of the

described dynamical systems will enable our Python

library to be widely used by the research community.
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Table 8 Goodness-of-fit test of the three evolved stochastic dynam-

ical systems. Avalanche size (AS) and avalanche duration (AD) are

followed by the state from which they were calculated. Testing

simulations were performed 5 times and p-values are denoted as

‘‘mean ± standard deviation’’. The p-values in bold are the ones that

are considered a power-law distribution. So, p-value[ 0:1

System p-value of AS p-value of AD p-value of AS p-value of AD

of state 0 of state 0 of state 1 of state 1

CA 0.0 ± 0.0 0.0 ± 0.0 1.0 – 0.0 1.0 – 0.0

RBN 0.969 – 0.021 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ESN 0.0 ± 0.0 1.0 – 0.0 0.0 ± 0.0 1.0 – 0.0

(a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4

(e) Step 11 (f) Step 12 (g) Step 13 (h) Step 14

(i) Step 18 (j) Step 19 (k) Step 20 (l) Step 21

Fig. 8 States of Conway’s Game of Life in a 5 x 5 wrapped lattice

alongside their PCA-transformed state transition diagrams of the two

first principal components. a Initial state is a glider. a–d Four first

steps in this CA. e–h Four intermediate steps in this CA while

reaching the wrapped border. i–l Four last steps in this CA before

repeating the initial state and closing a cycle
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a b s t r a c t

There is evidence that biological systems, such as the brain, work at a critical regime robust to
noise, and are therefore able to remain in it under perturbations. In this work, we address the
question of robustness of critical systems to noise. In particular, we investigate the robustness of
stochastic cellular automata (CAs) at criticality. A stochastic CA is one of the simplest stochastic models
showing criticality. The transition state of stochastic CA is defined through a set of probabilities. We
systematically perturb the probabilities of an optimal stochastic CA known to produce critical behavior,
and we report that such a CA is able to remain in a critical regime up to a certain degree of noise. We
present the results using error metrics of the resulting power-law fitting, such as Kolmogorov–Smirnov
statistic and Kullback–Leibler divergence. We discuss the implication of our results in regards to future
realization of brain-inspired artificial intelligence systems.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Critical phenomena in general share two important featu-
res [1]. First, they show an infinite correlation length, which
means that information spans throughout several scales, both
in time and in space. Second, they occur between two well-
defined phases each one assuming a specific range of values of
an observable which can be ‘‘tuned’’ or controlled by one or
more parameters. These parameters, called control parameters,
can drive the system to switch between phases and for specific
values, so-called critical values, one observes critical behavior.
While most critical phenomena share these two ingredients, the
second one is sometimes not observed, which means the system
still shows correlation spanning through different scales, but
there is no explicit control parameter to be tuned: independently
of how we tune the system and initialize it, the system always
evolves towards the critical state. In other words, the critical state
is a stable state, an attractor of the system. This sort of critical
behavior is called self-organized criticality (SOC), which is one of
the most striking non-linear phenomena found in nature. Since its
discovery in the 80s [2,3], several natural phenomena have been

∗ Corresponding author at: Department of Computer Science, OsloMet – Oslo
Metropolitan University, P.O. Box 4 St. Olavs plass, N-0130 Oslo, Norway.

E-mail address: sidneyp@oslomet.no (S. Pontes-Filho).

reported as showing SOC, ranging from the stock market [4–6] to
the brain [7,8].

Indeed, brain functioning involves the coordination of neural
activity across several scales, ranging from few neurons to large
brain neural networks, leading to a natural resemblance to critical
phenomena [9], and since this functioning is the ‘‘natural’’ state of
the brain, it may be reasonable to hypothesize that this criticality
follows some principles of self-organization. Recent discussions
and investigations point indeed towards the possibility that SOC
is the main factor for intelligence in the human brain [7] and
therefore such findings from physics of critical phenomena may
help to investigate how to learn from brain dynamics in order
to improve the capacity of computation of artificial intelligence
(AI) systems. How can self-organized criticality emerge in simple
computational systems?

In this work, we address this question using cellular automata
(CAs). CAs comprehend a family of models, in which a set of
elementary ‘‘cells’’ form a lattice, typically with one or two di-
mensions [10]. The lattice iteratively evolves, and each cell takes
one of a countable number of states. CAs are, therefore, models
with discrete space, discrete time, and discrete state space.

Due to their simple implementation, they have been used to
approach several complex phenomena, namely those showing
large-scale correlations as a result of short-range, typically near-
est neighbor, interactions [11]. The update of each cell considers

https://doi.org/10.1016/j.physd.2022.133507
0167-2789/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. (a) Illustration of the evolution of an optimal stochastic CA for critical behavior. The CA started with N = 1000 lattice squares and its evolution is plotted
for T = 1000 time steps from top to bottom. The number of avalanches and the distributions of this illustration is shown in Fig. 2 (first row). (b) Illustration of the
three properties characterizing an avalanche: its area, defined by the total number of active sites in the same connected set; its size, given by the total number of
different cells (sites) belonging to the avalanche, at least at one iteration; its duration, given by the total number of (successive) iterations that include at least one
site in the avalanche. In this example, we have size of 7 cells, a duration of 9 iterations, and a total area of 25 sites. Active cells are black and have state 1. The
boundary of the CA also limits an avalanche.

the composition of its state together with the state of its nearest
neighbors. From the very beginning, studies on CAs have also
reported the emergence of critical behavior in general [12,13] and
SOC in particular [14], where a prototypical example is the so-
called Game of Life [15]. Recently, the concept of SOC in Game
of Life was used in the context of machine behavior to introduce
collective robots with simple control and local interactions [16],
as well as for discussing the general features of artificial life [17].

The rules governing the evolution of each cell and its coupling
with nearest neighbors can be deterministic: state configurations
of one cell and its neighboring cells impose always the same state
on the cell in the next iteration. A more realistic extension of such
a model is to enable the iteration throughout CA’s evolution to
be updated according to some rules, with a certain probability
p not necessarily 0 or 1. Such CAs are usually called stochastic
CAs [18,19]. An example of a one-dimensional stochastic CA is
shown in Fig. 1(a). Indeed, if the brain functioning shows critical
behavior, it should involve critical states which can be achieved
through dynamical processes driven by some stochastic freedom.
Stochastic CAs seem therefore to be a better choice to explore
criticality in the context of artificial intelligence.

Recently [18], using a genetic algorithm (please see [20] for an
introduction to genetic algorithms), the authors found eight opti-
mal probabilities that grant critical behavior in a 1D stochastic CA
with 3 neighbors. Due to its freedom, this stochastic CA can have
different outcomes, starting from the same initial configuration of
the cells composing the CA, all of them showing critical behavior.
One question which remains unanswered is how sensitive this
stochastic CA is to small changes of the optimal probabilities. The
brain functioning is driven by dynamical processes with some
stochasticity, but it is also robust against changes in its stochastic
features. Namely, its critical behavior is observed even under
changes in the stochastic dynamics. The goal of this work is
to assess the robustness of the critical behavior in the optimal
stochastic CA presented in [18].

We start in Section 2 by introducing the main tools and
methods, namely, how the optimal stochastic CA is obtained,
the tools to uncover the critical behavior in the evolution of
one particular CA and the measures to quantitatively assess the
robustness of its critical behavior. In Section 3, we present our
main results, reporting a broad range of probabilities for which
criticality remains in the evolution of the CA. Section 4 concludes
the paper.

2. Methods

2.1. Background and prior model

A CA that is one-dimensional, 2-state, and based on local
interactions evolves according to an update rule of the form

ci,t+1 = F(ci−1,t , ci,t , ci+1,t ), (1)

where ci,t is either 0 or 1, denoting the state of cell i in iteration
t . Periodic boundary conditions, c0,t = cN,t and cN+1,t = c1,t , are
used where N is the number of cells in the CA. In general, the
function F maps each of the 8 possible 3-tuple at iteration t into
the updated state of the middle cell i in the next iteration t + 1.
If the CA is deterministic, there are exactly 28

= 256 possible
choices of F .

If the CA is stochastic, instead of such F-functions, we define
a function P which gives the probability for the state at cell i in
iteration t + 1 to be one, given the present state of the 3-tuple
defining its nearest neighborhood:

P(ci−1,t , ci,t , ci+1,t ) = Pro
([

ci,t+1 = 1
]
|ci−1,t , ci,t , ci+1,t

)
. (2)

Function P is fully described by a vector of eight probabilities,
one for each possible 3-tuple (ci−1,t , ci,t , ci+1,t ).

In Fig. 1(a), we present one example of a stochastic CA with pe-
riodic boundary condition, states uniformly initialized, and state

2
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Fig. 2. Stochastic CAs and their avalanche distributions of the cells with state 1 (black cells) while affected by Gaussian noise. Here the CAs are produced with
N = 1000 lattice squares and T = 1000 time steps. Large avalanches that happen only one time are ignored in these distributions. The dashed lines indicate the
power-law fit, with a slope defined as α̂ and a goodness-of-fit given by the p-value (see text).

transition probabilities shown in Table 1. This choice of proba-
bilities maximizes the critical behavior of the CA in such a con-
figuration of boundary condition and initialization. There is a
dependency in this configuration because if the CA starts with
too many cells in the strong quiescent state (state 1), the rest-
ing state can be reached faster, then requiring re-initialization
because all the cells have the same state and become static. With
the re-initialization, the CA will maintain its activity and more
avalanches can be produced. Also, some boundary conditions can
make the CA never reach the resting state. The criticality of the
CA will be assessed by measuring the statistical distribution of
features characterizing an avalanche in the CA evolution. We

define an avalanche during the evolution of a specific CA as the
connected cluster of active states – i.e. state-1 cells – throughout
the chain of cells composing the CA and throughout its time
evolution. Fig. 1(b) illustrates an avalanche together with its three
main features. The area of the avalanche corresponds to the total
number of active states throughout the CA and during the full
evolution which forms a connected set. The avalanche size is
given by the total number of adjacent cells which are activated
(c = 1) at least once, during the avalanche. The avalanche
duration is given by the total number of successive iterations
from the beginning until the end of the avalanche, including at
least one site in the avalanche. The boundary of the CA is also
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Table 1
Selected stochastic CA in [18].
State at t P (Eq. (2))

(0,0,0) 0.394221
(0,0,1) 0.094721
(0,1,0) 0.239492
(0,1,1) 0.408455
(1,0,0) 0.000000
(1,0,1) 0.730203
(1,1,0) 0.915034
(1,1,1) 1.000000

the end of an avalanche. In the example of Fig. 1(b) the avalanche
has a size of 7 cells, a duration of 9 iterations, and a total area of
25 sites. Our initial goal was to have a CA as wide and lasting as
possible because we could get a broader range of avalanche size,
duration and area. However, due to memory and time limitations,
our selected number of lattice squares is N = 1000 and the
number of time steps is T = 1000.

By keeping track of the avalanches emerging during the evo-
lution of a stochastic CA, we can record the distribution of their
area, size and duration. These three types of avalanche measure-
ments are more similar to neuronal avalanches [7]. Moreover, the
closer the distribution is from a power-law the closer the CA be-
havior is from a critical regime. Therefore, we recently introduced
a fitness score (defined in Eqs. (4) and (5)), to assess how ‘‘critical’’
a particular CA realization is [18], based on different measures of
the error associated with the fit. Using a genetic algorithm, we
found the set of eight probabilities that leads to the most critical
CA realizations (see Table 1).

Recently we implemented a Python library called EvoDynamic,
to simulate several dynamical systems [18], such as cellular au-
tomata, random Boolean networks, and echo state networks. This
library is based on the TensorFlow deep neural network frame-
work [21], and it includes genetic algorithms that can be used to
evolve dynamical systems towards a desired behavior or dynam-
ics.

EvoDynamic has a general and single implementation that can
simulate various dynamical systems because they are, in essence,
dynamical graphs or networks. Since the weighted adjacency
matrix and mapping function are specific to a dynamical system,
they need to be adapted to simulate a stochastic elementary
cellular automaton because the implementation of EvoDynamic
is based on artificial neural networks. To make this possible, the
implementation of an artificial neural network is generalized to
incorporate the possibility of simulating CA. More specifically,
EvoDynamic uses the general form of a feed-forward artificial
neural network (ANN) without bias, li+1 = a(W · li), with li, the
layer index i of the ANN; W, a weight matrix; and a, an activation
function, and interprets it as a non-linear dynamical system with
discrete time steps, namely:

ct+1 = f (A · ct ). (3)

where ct is a group of cells (or nodes in a graph) in iteration t , A is
the weighted adjacency matrix, and f represents the (non-linear)
mapping function. For the stochastic CA, the weighted adjacency
matrix A connects the center cell ci,t with its three neighbors
(ci−1,t , ci,t , ci+1,t ). To identify which neighbor has state 0 and 1
after the matrix multiplication between A and ct , the weights
assigned to (ci−1,t , ci,t , ci+1,t ) are (4, 2, 1). Therefore, each of the
eight neighborhood combinations is represented by a unique
number from 0 to 7, which the mapping function f maps it to
its corresponding probability for the random generation of state
0 or 1 in the next iteration.

The EvoDynamic framework was used to find the eight prob-
abilities in Table 1 which maximizes the critical behavior of a

stochastic CA, applying a so-called genetic algorithm. The ge-
netic algorithm, in general, mimics a ‘‘natural selection’’ process,
searching for optimal parameter values (the probabilities) by
changing the parameter values and maximizing a pre-defined
fitness function that calculates a fitness score. Instead of max-
imizing the function through a ‘‘supervised’’ path, such as a
gradient descendent scheme, the genetic algorithm updates the
values of the probabilities, starting from some set of initial val-
ues, and then applying random perturbations. If the perturbation
increases the fitness score, the set of probabilities increases the
chance to be selected as a ‘‘parent’’ for the next generation of new
sets of probabilities. In the end, the genetic algorithm retrieved
the ‘‘genotype’’ of the stochastic CA with the best fitness score,
composed of the eight probabilities pi (i = 0, . . . , 7) for each of
the eight 3-tuple (ci−1,t , ci,t , ci+1,t ).

The fitness function is based on the fitness measures of the
avalanche size and duration with a power-law function and is
heuristically defined as [18]

Stemp = (R2)2 + D2
+ B + U, (4)

S =

{
Stemp + L, Stemp > 3.5
Stemp, otherwise.

(5)

where R2 is the coefficient of determination of complete linear
fitting [22], D is the normalized coefficient of the Kolmogorov-
Smirnov (KS) statistic [23], B is the percentage of non-zero bins
with size one in the avalanche histograms, U is the percentage
of unique states through time, and L is the normalized log-
likelihood ratio of the comparison between the power-law model
and the exponential model for estimating the avalanche distri-
butions [23]. These fitness function objectives are normalized to
the range [0, 1] if necessary and the genetic algorithm is applied
to indirectly maximize them through the fitness function. The
squared values in Eq. (4), R2 and D, are the most important ones
for the fitness function and were empirically chosen. In Eq. (5),
the adjusted log-likelihood ratio L is only calculated if Stemp > 3.5
because this is a computationally intensive process; and if L is not
trustworthy (p-value of the ratio is greater or equal to 0.1), then
this measurement is ignored (set as zero). In the end, we obtain
the fitness score S.

2.2. Adapted model with stochastic transition rates

To test the robustness of the stochastic CA for remaining in
criticality, Gaussian noise with a varying standard deviation σ is
applied to affect the probabilities pi of the CA for every time step.
Since the Gaussian noise will make the perturbed probabilities
pass the valid range between zero and one, normalization to the
Gaussian mean (original probability) is used. Thus, the equation
for the normalization is

µ̃i = log
(

pi
1 − pi

)
. (6)

With the normalized mean µ̃i, we sample xi from a Gaussian
distribution, such as

xi ∼ N (µ̃i, σ ). (7)

The random variable xi is sampled each time step, preserving
the definition of CA, i.e. at each time step all cells follow the
same (probabilistic) updating rule. To make xi a valid perturbed
probability p̃i, the sigmoid function is applied to it, then

p̃i =
1

1 + e−xi
. (8)

While there are other possible choices, this choice maps a Gaus-
sian distributed variable into a sigmoid function between 0 and
1 which for the average of xi, µ̃i retrieves the initial value of pi.
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Fig. 3. Histogram of the valid perturbed probability p̃i for different values of σ . The vertical dashed line indicates the unperturbed probability (σ = 0). The probabilities
p̃4 and p̃7 are not shown because they are always 0 and 1, respectively, independent of the value of σ . Each histogram was generated with 100,000 samples.

Having settled this, our research question can be reformulated
as follows: for σ = 0 we have exactly the optimal solution, i.e. a
power-law of the size of clusters, their duration, and their area,
then, by increasing σ > 0 one will eventually destroy the power-
laws observed for the optimal solution, pushing the system away
from criticality. So, is there a transition from critical to non-
critical stage tuning the σ? We note that the maximum value
of σ for which criticality is still observed can be thought of as
a measure of the robustness of the optimal (critical) stage.

3. Results

For producing the perturbed stochastic CAs and the distribu-
tion of their area, size and duration; we repeat the simulations for
the values of the standard deviation σ from 0.1 to 2.0 in step size
of 0.1, and also for values of 5, 10, 20, 50, 100, 200, 500, and 1000.
For each of those values of σ , we perform 1000 CA simulations
with a uniform random initialization. This is presented for some
values of σ in Fig. 2. Its first row shows an illustrative realization
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Fig. 4. Mean and standard deviation of (a) the number of avalanches and (b) reset period.

of the optimal stochastic CA with the probabilities in Table 1,
showing the distribution of avalanche size, duration and area. A
distribution is plotted as the avalanche measurement x with its
occurrence probability P(x). The power-law fit is indicated with
dashed lines and we can see that a power-law distribution fits
well the empirical histogram. The power-law fit is also indicated
by its estimated slope α̂ and goodness-of-fit given by the p-value.
This p-value is introduced by Clauset et al. [23], stating that a
p-value greater than 0.1 indicates a valid power-law fit.

Fig. 3 presents the histograms of the valid perturbed proba-
bility p̃i calculated through Eq. (8) for some values of σ . When
σ = 2.0, it is noticeable that the original Gaussian distribution
becomes distorted. By increasing σ even more, the distribution
of the valid perturbed probability p̃i becomes concentrated in 0
and 1.

Notice that, in case the strong quiescent state fully occupies
the CA, its cells’ states are re-initialized. For larger values of
σ , since the CA reaches the inactivity state quicker than the
optimal and unperturbed CA, the re-initialization happens more
frequently. In Fig. 4, we plot the number of avalanches as well
as the number of iterations before a re-initialization caused by
all cells being in the quiescent state. As one sees in this figure,
due to a more frequent re-initialization the average avalanche
size, duration and area is reduced. In Fig. 2, this is not noticeable
in the avalanche distributions because the large avalanches that
happen just one time during the simulations are ignored. In those
samples of the simulations, all goodness-of-fit p-value remains
1.0 as for the unperturbed CA. The standard deviation σ of the
Gaussian noise to the probabilities strongly reduces the number
of avalanches, especially from σ between 0.3 and 10.0. After that,
the number of avalanches stabilizes around 2,000. This is because
the avalanches became so short that they reach the resting state
with all cells in the strong quiescent state much faster, then re-
initializing the CA more often and having a similar number of
avalanches. Such a reduction in the number of avalanches of state
1 is also due to the decrease in the occurrence of state 0 because
the avalanches of state 1 need to be surrounded by cells with state
0 or boundary. We can perceive that the state 0 patterns became
not only shorter but also thinner. To confirm this behavior and
to have a sense of what happens at individual cell scale, Fig. 5
shows the occurrence rates and their standard deviation of state
0 and 1, and the transitions between these two states in both
directions, from 0 to 1 (0 → 1) and from 1 to 0 (1 → 0).
The occurrence rate of state 1 tends to increase until σ = 2.0

Fig. 5. Occurrence rates in the cells and their standard deviations of state 0 and
1, and the transitions between them that are from 0 to 1 (0 → 1) and from 1
to 0 (1 → 0). The statistics are calculated for each cell in 1000 CA simulations
with N = 1000 and T = 1000.

because it is the strong quiescent state. The occurrence rate of
state 0 and the transitions are inversely or directly proportional
to the rate of state 1 because they are interdependent. However,
for σ > 2.0, the re-initialization of the CA counterbalances the
trend of changes in those rates, even though it does not occur
with the number of avalanches.

For the systematic evaluation of the robustness, we analyze
the distributions of duration, size and area of the avalanches, by
fitting to them a power-law and estimate their slope α̂, as well
as their uncertainty through a Kolmogorov-Smirnov test and the
corresponding Kullback-Leibler (KL) divergence [24,25].

The Kullback–Leibler divergence is defined as:

DKL =

∑
x

P(x)log
(

P(x)
Q (x)

)
(9)

where P(x) is the probability distribution of the empirical data
and Q (x) is the probability distribution function of the estimated
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Fig. 6. Mean and standard deviation of the measurements of the power-law estimation for the avalanche distributions of state 1.

Fig. 7. Comparison between the empirical distributions of each σ and the empirical distribution with σ = 0 used as a baseline.

power-law, and the supremum measuring the KS test is given by

DKS = sup
x

|PC (x) − QC (x)| (10)

where PC (x) is the cumulative distribution of P(x) and QC (x) is the
cumulative distribution function of Q (x).

Results are shown in Fig. 6: the slope is plotted in Fig. 6(a),
while the KL divergence is plotted in Fig. 6(b) and the KS test
(supremum) statistic is shown in Fig. 6(c). Clearly, the slopes are
almost constant for all distributions – size, duration and area –
till a value of σ ≳ 1. Above σ = 2, the estimated slopes reduce
drastically, indicating the deviation from critical behavior.

The KL divergence DKL presents a constant (small) value for
σ ≲ 1, indicating a constant small error associated with the
power-law fit. Beyond σ = 2 this error increases considerably.
The KS statistic DKS shows a more fluctuating behavior. Indeed,
counter-intuitively, before reaching σ = 1, the supremum de-
creases to values smaller than the ones observed for σ < 1. This
may be due to the occurrence of many small avalanches and one
single large avalanche.

A comparison between the avalanche distributions of each σ
and the avalanche distributions of the stochastic CA with σ = 0
is shown in Fig. 7. Therefore, avalanche distributions with σ = 0
are used as a baseline for KL divergence (Fig. 7(a)) and KS statistic
(Fig. 7(b)). This comparison indicates how the dynamics changes
when additional noise is applied, and it confirms our observations
from the KL divergences with their power-law fits.

4. Discussion

The optimal stochastic CA without perturbations (σ = 0) and
probabilities shown in Table 1 can maintain its critical behavior

even when perturbed (σ > 0), but only up to a certain point.
By analyzing Figs. 6 and 7, we can conclude that σ = 1 is the
breaking point between behaving and not behaving similarly to
the unperturbed one. This can be noticed especially in Fig. 6(a).
The estimated slopes α̂ for size, duration and area remain almost
unvaried until σ = 1, while their standard deviations slowly
increase as a result of the fluctuations in the values of the prob-
abilities. Fig. 4(a) shows that the number of avalanches starts to
decrease from approximately 12,000 to around 4000 in the range
σ = [0, 1], even though the behavior is still maintained with
respect to the estimated slopes α̂, KS statistic, and KL divergence.
This cannot be seen in the reset period (Fig. 4(b)) because the
number of time steps simulated is 1000, making it the maximum
reset period possible.

Neuronal stochastic variability [26] happens all over the brain
and on all scales. Since the optimal stochastic CA investigated in
this work presented robustness up to perturbations with σ = 1,
biological neural networks may also allow for similar robustness
to perturbations. Therefore, both systems may preserve critical-
ity even in noisy conditions. Because self-organized criticality is
possibly one of the main factors for the emergence of intelligence
in the human brain [7], the evaluation of robustness to stochastic
variability can be an important measurement for indicating the
presence of intelligence in artificial systems.

In future work, we plan to evaluate the performance of the
optimal stochastic CA under perturbations in a machine learn-
ing framework called reservoir computing [27–29]. Reservoir
computing is a biologically-plausible neural model inspired by
the functioning of cortical microcircuits [30]. There is indeed
evidence that reservoir computing achieves better performances
when it produces critical dynamics [31–33]. This benchmark
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would inform how the artificial intelligence system can maintain
its accuracy while increasing the probability noise. Therefore,
such investigation may confirm that this robustness is also es-
sential for future artificial intelligence systems, and in particu-
lar inform the realization of novel brain-inspired neuromorphic
hardware.
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Abstract—In this work, a conceptual bio-inspired parallel and
distributed learning framework for the emergence of general
intelligence is proposed, where agents evolve through environ-
mental rewards and learn throughout their lifetime without
supervision, i.e., self-learning through embodiment. The chosen
control mechanism for agents is a biologically plausible neuron
model based on spiking neural networks. Network topologies
become more complex through evolution, i.e., the topology is
not fixed, while the synaptic weights of the networks cannot
be inherited, i.e., newborn brains are not trained and have
no innate knowledge of the environment. What is subject to
the evolutionary process is the network topology, the type of
neurons, and the type of learning. This process ensures that
controllers that are passed through the generations have the
intrinsic ability to learn and adapt during their lifetime in
mutable environments. We envision that the described approach
may lead to the emergence of the simplest form of artificial
general intelligence.

Index Terms—Bio-inspired AI, Self-learning, Embodiment,
Conceptual framework, Artificial General Intelligence

I. INTRODUCTION

The brain is a truly remarkable computing machine that
continuously adapts through sensory inputs. Rewards and
penalties are encoded and learned throughout the evolution
of organisms living in an environment (our world) that con-
tinuously provides unlabeled and mutable data. The supervi-
sion in the brain is a product of such evolutionary process.
A real-world environment does not provide labeled data or
predefined fitness functions for organisms and their brains as in
supervised and reinforcement learning in Artificial Intelligence
(AI) systems. However, organisms selected by natural and
sexual selection [1] know or are able to learn which sensory
inputs or input sequences may affect positively or negatively
their survival and reproduction. One of the key components
which ensures that a species will reproduce is the lifetime
of the organisms. Pleasure, joy, and desire (or other positive
inputs) may increase the lifetime of an organism and act as
rewards. Pain, fear, and disgust may decrease the lifetime and
act as penalties. All those feelings and emotions are results
of the evolutionary pressure for increasing the life expectancy
and succeeding in generating offspring [2]. One example is
the desire and disgust that arise for some smells. The desire
may come from the smell of nutritive food which increases
life expectancy, while the disgust may come from spoiled
food which may cause food poisoning, and therefore causing

a lifetime reduction. Evolution by natural selection made it
possible for living beings to be “interpreters” of sensory inputs
by being attracted to rewards and repulsed by penalties, even
though their first ancestors did not know what was beneficial
or harmful in the surrounding environment.

Artificial General Intelligence (AGI) or strong AI has been
pursued for many years by researchers in many fields, with
the goal of reproducing human-level intelligence in machines,
e.g., the ability of generalization and self-adaptation. So far,
the AI scientific community has achieved outstanding results
for specific tasks, i.e., weak or narrow AI. Such narrow AI
implementations require highly specialized high performance
computing systems for the training process. In this work,
we propose to tackle the quest for general intelligence in
its simplest form through evolution. It is therefore essential
to develop a mutable environment that mimics what the first
living beings with the simplest nervous systems faced. We
define the simplest form of artificial general intelligence as
the ability of an organism to continuously self-learn and
adapt in a continuously changing environment of increasing
complexity. Our definition of self-learning covers the meaning
of self-supervised learning [3] and self-reinforcement learning
[4]. Therefore, a self-learning agent is capable of interpreting
the reactions of the surrounding environment affected by the
agent’s actions, then the sensory inputs of the agent are utilized
to supervise or reinforce itself. This occurs because the sensory
inputs contain cues for the agent to learn on its own. For
example, the pain after touching a candle’s flame (as the
authors experienced in their childhood).

In this work, we propose the Neuroevolution of Artificial
General Intelligence (NAGI) framework. NAGI is a bio-
inspired framework which uses plausible models of biological
neurons, i.e., spiking neurons [5], in an evolved network
structure that controls a sensory-motor system in a mutable
environment. Evolution affects the connection structure of
neurons, their neurotransmitters (excitatory and inhibitory),
and their local bio-inspired learning algorithms. The inclusion
of such learning algorithms under evolutionary control is an
important factor to generate long-term associative memory
neural networks which may have cells with different plasticity
rules [6]. Moreover, the genotype of the NAGI’s agents does
not contain the synaptic strength (weights) of the connections
to avoid any innate knowledge about the environment. How-
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ever, controllers that are selected for reproduction are those
rewarded for their ability of self-learning and adaptation to
new environments, i.e., an artificial newborn brain of an agent
is an “empty box” with the innate ability to learn how to
survive in different environments during its lifetime. That is
somewhat similar to how humans have a specialized brain part
for learning quickly any language when they are born [2].

The remainder of this paper is organized as follows.
It provides background knowledge for the proposed NAGI
framework, and then describes related works. Afterward, it
contains a detailed explanation of the conceptual framework.
Finally, we conclude this work by discussing the relevance of
our approach for current AGI research, and we elaborate on
possible future works which may include such a novel bio-
inspired parallel and distributed learning method.

II. BACKGROUND

The proposed NAGI framework brings together several key
approaches in artificial intelligence, artificial life, and evolu-
tionary robotics [7], briefly reviewed in this section. A Spiking
Neural Network (SNN) is a type of artificial neural network
that consists of biologically plausible neuron models [5]. Such
neurons communicate with spikes or binary values in time
series. SNNs incorporate the concept of time by intrinsically
modeling the membrane potential within each neuron. Neurons
spike when the membrane potential reaches a certain threshold.
When the signals propagate as neurotransmitters to the neigh-
boring neurons, their membrane potentials are therefore af-
fected, increasing or decreasing. While SNNs are able to learn
through unsupervised methods, i.e., Hebbian learning [8] and
Spike-Timing-Dependent Plasticity (STDP) [9], spike trains
are not differentiable and cannot be trained efficiently through
gradient descent. NeuroEvolution of Augmenting Topologies
(NEAT) [10] is a method that uses a Genetic Algorithm (GA)
[11] to grow the topology of a simple neural network and
adjust the weights of the connections to optimize a target
fitness function, while allowing to keep diversity (speciation)
in the population and to maintain compatible gene crossover
with historical marking. The neuroplasticity used to adapt
the weights in the proposed NAGI framework includes the
Hebbian learning rule as STDP. In particular, the weight
adaptation of STDP happens when the neuron produces a spike
or action potential through the axon (i.e., output connection).
Such an event allows the modification of the synaptic strength
of the dendrites (i.e., input connections) that caused or did not
cause that spike.

Funes and Pollack [12] describe the body/brain interaction
(sensors and actuators vs. controller) as “chicken and egg”
problem; the course of natural evolution shows a history of
body, nervous system, and environment all evolving simultane-
ously in cooperation with, and in response to, each other [13].
Embodied evolution [14] is an evolutionary learning method
for training agents through embodiment, i.e., embodied agents
learning in an environment. Thus, in nature, general intelli-
gence is a result of evolved self-learning through embodiment.

III. RELATED WORK

The idea of neuroevolution with adaptive synapses is not
new. Stanley et al. [15] present NEAT with adaptive synapses
using Hebbian local learning rules, with the goal of training
neural networks for controlling agents in an environment.
The authors verify the difference in performance with and
without adaptation on the dangerous food foraging domain.
The differences between their approach and ours are that
their environment is static throughout the agent lifetime and
they have inheritance of synaptic strength. Their results show
that both networks with and without adaptive synapses reach
the maximum fitness on that domain, and therefore both
present “adaptation”. An extended version of the previous
method is Adaptive Hypercube-based NEAT (HyperNEAT)
[16]. Adaptive HyperNEAT includes indirect encoding of the
network topology as large geometric patterns.

A recent work that uses NEAT and no weight inheritance
is Weight Agnostic Neural Networks (WANN), introduced by
Gaier and Ha [17]. WANN is tested successfully with different
supervision and reinforcement learning tasks whose weights
are randomly initialized. Such promising results demonstrate
that the network topology is as important as the connection
weights in an artificial neural network. This is one of the
motivations for the development of the NAGI framework.
WANN and NEAT with adaptive synapses have been shown
to be successful methods. However, such methods miss an
important component for self-learning, which is a mutable
environment as proposed in this work.

A recent review of neuroevolution can be found in [18]
and it shows how competitive NEAT and its extensions are
in comparison to deep neural networks trained with gradient-
based methods for reinforcement learning tasks. Neuroevolu-
tion provides several extensions, which include indirect encod-
ing to allow scalability, novelty search to promote diversity,
meta-learning for training a network to learn how to learn,
and the combination with deep learning for searching deep
neural network architectures. Furthermore, its authors envisage
that neuroevolution will be a key factor to reach AGI through
meta-learning and open-ended evolution. However, in NEAT
the neural weights are inherited, so there is no explicit target
for general intelligence and adaptation.

A framework for the neuroevolution of SNNs and topology
growth with genetic algorithms is proposed by Schaffer [19],
with the goal of pattern generation and sequence detection.
Eskandari et al. [20] propose a similar framework for artificial
creature control, where the evolutionary process modifies and
inherits the network topology and the SNN weights to perform
a given task.

A method which tries to produce general intelligence incre-
mentally is PathNet [21], where deep neural network paths are
selected through evolution to perform the forward propagation
and weight adjustment. Such evolving selection allows the
network to learn new tasks faster by re-using frozen (previ-
ously learned) paths without catastrophic forgetting. Another
framework that tries to produce low-level general intelligence
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is described by Voss [22]. It is a functional proof-of-concept
prototype, owned by the company Adaptive A.I. Inc., which
can interact with virtual and real world through sensors and
actuators. Its controller, which has conceptual general intelli-
gence capabilities, consists of a memory to save all data and
to store the proprietary cognitive algorithms.

Multi-agent environments have also been considered a valu-
able stepping-stone towards AGI because the behavior of
agents must adapt to cooperate and compete among them. One
of the first examples of such multi-agent environment is the
PolyWorld ecological simulator, introduced by Yaeger [23].
PolyWorld is a simulated environment of randomly generated
food where evolving artificial organisms controlled by neural
networks with Hebbian learning live. Organisms are able to
eat, mate, fight, move, change the field of view, and utilize
body brightness as a form of emergent communication. Their
emergent behaviors are to some extent similar to the ones
found in nature. Another recent multi-agent environment is
presented by Lowe et al. [24]. However, in such an environ-
ment, the adaptation occurs in the actor-critic methods of their
reinforcement learning framework. Such method outperforms
traditional reinforcement learning approaches on competitive
and cooperative multi-agent environments. Another reinforce-
ment learning method which exploits multi-agent environ-
ments is introduced by Jaderberg et al. [25]. In their work,
they use the environment of Quake III Arena Capture the
Flag, a 3D first-person multiplayer game. Their method in
this game exceeds human-level performance, therefore the
artificial agents are able to cooperate and compete among
them and even with human players. One work that provides an
open-source competitive multi-agent environment for research
purposes is Neural MMO [26]. Here, the agents are players
which need to survive and prosper in an environment similar
to the ones used in Massively Multiplayer Online Role-Playing
Games (MMORPGs).

One important aspect of natural evolution is the ability to
endlessly produce diverse solutions of increasing complexity,
i.e., open-ended evolution (OOE). In contrast, OOE is difficult
to achieve in artificial systems. A conceptual framework for the
implementation of OOE in evolutionary systems is presented
by Taylor [27]. Embodiment plays a key role in OOE in
the context of the agent and its morphology, as discussed
by Bongard [28]. For an articulated summary and discussion
of OOE see [29]. In [30] the authors argue that open-ended
evolution is a grand challenge for artificial general intelligence,
and artificial life methods are promising starting points for the
inclusion of OOE in AI systems.

IV. FRAMEWORK CONCEPT

The main concept of the proposed NAGI framework is to
mimic as close as possible the evolution of general intelligence
in biological organisms, starting from the simplest form. To
do that, we propose a minimalistic model with the following
components. An agent is equipped with a randomly-initialized
minimal spiking neural network. The agent is placed in a
mutable environment in order to be able to generalize (learn

to learn), instead of merely learning to solve the specific
environment. Agents are more likely to survive if they perform
correct actions. Agents have access to the environment through
sensory inputs. The environment also provides intrinsic re-
wards and penalties. New agents inherit the topologies of
the controllers from the previous generation (untrained), with
the possibility of complexification (e.g., new neurons and
synapses can appear through genetic operators). Training or
learning happens throughout a generation. The goal of the
untrained inherited controllers is to possess a topology that
supports the ability to learn new environments. Neural learning
occurs by utilizing environmental information (sensory input
and environmental rewards/penalties) and neuroplasticity (e.g.,
Hebbian learning through spike-timing-dependent plasticity).
The expected result is an unsupervised evolving system that
learns without explicit training in a self-learning manner
through embodiment. In this section, the components of the
conceptual framework are described in details.

A. Data representation

The data that flows to and from the spiking neural networks
that control the agents are encoded as firing rate, i.e., the
number of spikes per second. The firing rate has minimum and
maximum values, and is represented for simplification as real
number between 0 and 1 (i.e., range [0.0, 1.0]). The stimulus
to the neural networks can be Poisson-distributed spikes which
have irregular interspike intervals, as observed in the human
cortex [31]. That representation can be used for encoding input
from binary environments (e.g., binary numbers 0 and 1 or
Boolean values False and True), or multi-value environments
(e.g., represented as grayscale from black to white), and allows
for representation of minimum and maximum activation values
of sensors and actuators.

B. Self-Learning through Embodiment

A new agent learns through the reactions of an environment
via embodiment (i.e., by having a “body” that affects an
environment while sensing it). As such, the input of the neural
network controller includes reward and penalty information
for the learning process, such as the collision sensor in
an autonomous robot whose activation represents a penalty,
and a reward otherwise. This feedback information is the
key factor for achieving self-learning. The concept of self-
adaptation is closely connected with embodied cognition, a
core property of living beings [32]. In contrast, supervised
learning and reinforcement learning use the error of the neural
network output to globally adjust the network model through
methods of iterative error reduction, such as gradient descent.
In embodied learning, the input itself is used to adjust the
agent’s controller. Such sensory input contains the reactions
of the environment to the actions of the agent.

In the proposed framework, the local learning rules of the
spiking neural network controller are responsible to correct the
global behavior of the network according to agent experiences.
This learning approach is, therefore, a result of self-learning
through embodiment. The framework overview is depicted
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in Fig. 1. Note that self-learning through embodiment only
works with agents in reactive environments (environments
that affect the agents and are affected by them), such as any
sensory-motor system deployed in the real-world. Non-reactive
environments, on the other hand, do not react to any action of
the agent, like any image classifier or object detector which
only gives environmental information, thus there is no mutual
interaction between an agent and a non-reactive environment.
Therefore, we propose to create a virtual reactive environment
for such cases. Virtual Embodied Learning (VEL) is the
proposed method for such cases when no reward and penalty
feedback is available through the sensory input. VEL adds
reward and penalty inputs to a given sensory-motor system as
illustrated in Fig. 1. It can also include the internal states of
the agents, such as hunger and health. In addition, VEL can
substitute supervised and reinforcement learning by using the
loss of the model as penalty input and the opposite of the loss
as reward input.

C. Mutable environment

To truly exploit and assess the self-learning capabilities and
the generalization of the evolving spiking neural network,
a mutable environment is proposed. The evolutionary goal
of agents is to survive the changes in their environment. In
the real-world, living organisms inherit modifications to their
body and/or behavior through the generations. For example,
a species may evolve a camouflage, such as the stick insects
[33], and another one may evolve the appearance of a poi-
sonous or venomous animal, such as the false coral snakes
[34]. The proposed mutable environment is a simple metaphor
of such examples.

Fig. 2a shows mutable environments that every agent in
the population faces during its lifetime. Each agent has one
sensor which provides one bit of information (i.e., black or
white) and can perform two actions (i.e., eat or avoid). In
each generation, the agents are presented with environmental
data from several environments. Each sample is presented for
a given period to allow the agents’ controllers to learn. In
the first environment, the correct action eat is associated with
the white color while the action avoid is associated with
black. Once the environmental data has been consumed by
the agent, there is an abrupt change in the interpretation of
the environment (black and white are flipped) and the agents
are presented with the environmental data again. Agents that
perform well in many environments within each generation
are more likely to go through the next generation.

Fig. 2b presents more complex mutable environments where
agents have two sensors and non-binary environmental values
can be received. As shown in the figure, different environments
are procedurally generated and presented in each generation,
where abrupt changes in the labeling of correct and wrong ac-
tions have happened. The set of actions may also be expanded
to more than two, with different effects on agents’ lifetime and
their fitness scores.

D. Neuroplasticity

Each neuron in the evolved spiking neural network may
have a different plasticity rule. The different types of learning
rules are subject to evolutionary control. Examples of learning
rules include asymmetric Hebbian, symmetric Hebbian, asym-
metric anti-Hebbian, symmetric anti-Hebbian [9]. Together
with all the Hebbian learning rules encoded in the genome,
there will be the effectiveness of the potentiation and the
depression of the synapse strengths, i.e., how strong the
learning rules are going to be for reducing or increasing the
weight of the synapses. Moreover, other types of learning rules
discovered in neuroscience may be added together or in paral-
lel to those, such as non-Hebbian learning, neuromodulation,
and synapse fatigue [35]–[37]. The neuroplasticity will also
be regulated by a maximum total value of synaptic strength
that a neuron can have for its dendrites. In case this value is
reached, the increase in the weight of a synapse will cause a
decrease of the others in the same neuron. This type of weight
normalization is reported in [38], [39] for biological neurons.

E. Neuroevolution

The population of genomes (spiking neural network con-
trollers) for the agents is evolved through a modification of
NEAT [10]. The genotypes of NEAT describe the topology
and weights of the synapses, while our proposed method does
not evolve the weights while includes in the genotype the
type of neurotransmitter and neuroplasticity [9]. The weights
of the spiking neural networks are randomly initialized in
every generation because the agents should not have innate
knowledge of the environment [2]. Therefore, the proposed
framework focuses on the self-learning capabilities of the
agents. Their lifetime will be longer when agents perform
correct actions and shorter when they perform wrong actions.
The lifetime of agents is used as fitness score to define the
best performing neural networks.

Algorithm 1 explains how an agent’s genome is evaluated
while it is in a mutable environment during its lifetime. The
fitness score for the agent is equal to the time the agent is alive
until its death. Each agent has a maximum life expectancy.
Such life expectancy is reduced faster when an agent receives
a penalty and it is reduced slower when the agent receives
a reward. Both penalties and rewards reduce the lifetime of
agents, as one agent is not to live for an infinite amount of
time if it always performs the correct action.

The neuroevolution process allows the growth of neural net-
work topologies and therefore the population is initialized with
minimal networks that complexify over time. Nevertheless,
there may be a penalty on lifetime to avoid the generation of
big networks which may have neuron groups that specialize
for each different environment. Therefore it allows the network
to learn how to forget the previous environment, and then
be able to adapt to the new one [40]. Another reason to
apply this penalty for the size of the network is that more
neurons require more energy to maintain them. This reduction
of lifetime caused by the number of neurons can be regulated
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controller

Agent

Sensors Actuators

Data
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Action

Correct action?

Yes

No

Environment Internal states

Fig. 1. Illustration of virtual embodied learning or self-learning through embodiment in a non-reactive environment. In the case of a reactive environment,
rewards and penalties are embedded within the environmental data.

(a)

(b)

Fig. 2. Samples of mutable environments that can be presented to the agents through their evolution. Agents can execute two actions (eat or avoid). Within
each generation, after the agents of a generation have seen all samples of an environment, a new one is presented. (a) 1D environment where the agent has
one binary sensor. (b) The agent has two non-binary sensors (i.e, the axes).

by a parameter, therefore choosing it is of high importance to
the fitness and lifetime of the agent.

V. DISCUSSION AND CONCLUSION

While current AI methods such as deep learning and rein-
forcement learning (and their combinations) have proven to
be successful in solving a multitude of challenging tasks, e.g.,
defeating humans in the real-time strategy game Starcraft II
[41], there is a lot of debate around the limitation of current
methods for breakthroughs in Artificial General Intelligence.

One key difference between AI and AGI is the learning
ability. Most of AI methods (supervised, unsupervised, and
reinforcement learning) are explicitly trained, while AGI needs
some intrinsic ability to self-learn.

One of the open questions for AGI research is: how can
artificial agents be able to acquire the general skill of learning,
in order to continuously adapt throughout their lifetime?

In biological systems, we infer that self-learning is a result
of rewards and penalties which are embedded in the sensory
data living beings receive from the environment (unlabeled
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Algorithm 1 Agent’s genome evaluation using mutable environment and virtual embodied learning
1: procedure EVALUATE(genome)
2: agent← new Agent(genome) ⊲ Agent is initialized with untrained neural network
3: lifetime← 0
4: while agent is alive do
5: if dataset is empty then
6: dataset← getNextDatasetForCurrentGeneration() ⊲ Next temporary environment of the current

generation
7: data, label← getRandomSampleAndDeleteFrom(dataset)
8: reward← False ⊲ Initialization of reward
9: penalty ← False ⊲ Initialization of penalty

10: while (agent is learningSample)∧ (agent is alive) do ⊲ Agent learns the presented sample with neuroplasticity
for a period of time

11: lifetime← lifetime + 1
12: action← agent(data, reward, penalty)
13: reward← action = label
14: penalty← action 6= label
15: agent.healthReduction(reward, penalty) ⊲ Penalty reduces the agent’s health faster than reward, then

accelerating its death
16: return lifetime

and mutable data). Their ability to learn through this form of
self-learning through embodiment is a result of evolution.

One of the goals of the proposed NAGI framework is an
AGI system that allows the adaptation and general learning
skills through the three main levels of self-organization in
living systems [42]:

• Phylogeny, which includes evolution of genetic represen-
tations;

• Ontogeny, which takes care of the morphogenetic process
(growth) from a single cell to a multicellular machine, by
following the genotype instructions;

• Epigenesis, which allows the emergence of a learning sys-
tem through an indirect encoding between genotype and
phenotype, and the phenotype is subject to modifications
(learning) throughout the lifetime while interacting with
the environment.

We, therefore, envision the proposed spiking neural net-
work model will include developmental and morphogenetic
processes [43] in future extensions of the framework.

Another envisioned stepping-stone to AGI is the extension
of the framework to artificial life multi-agent systems. Multi-
agent environments will allow the emergence of more ad-
vanced strategies of adaptation and learning based on collabo-
ration and competition. In addition, the framework may benefit
from extending the environment itself into an evolving agent,
which can also allow for increased complexity and open-ended
evolution.

Finally, we expect that future implementations of the NAGI
framework and its extensions will be deployed/embodied into
real robot agents equipped with physical sensors.

In conclusion, this work proposes a novel general frame-
work for the neuroevolution of artificial general intelligence
(NAGI) in its simplest form, which can be extended to more

complex tasks and environments. In NAGI, the general intelli-
gence, i.e., learning to learn to adapt to different environments,
is a result of self-learning through embodiment. Therefore,
the learning process is not a result of explicit training with
supervision or reinforcement learning, as there is no loss
function used to adjust the neural network weights. The
proposed neural network model is a bio-inspired model based
on spiking neural networks. Their learning is based on spike-
timing-dependent plasticity which uses only input data for
learning. As such, penalties and rewards are embedded within
the environmental data sensed by the agents.

This work describes the details of the NAGI conceptual
framework as a novel paradigm for self-learning. Therefore,
the experimental results are not included in this contribution.
However, our current experimental results are promising, and
part of a separate contribution.

The NAGI conceptual framework proposes a computational
system which may allow the simplest form of general intelli-
gence observed in nature to emerge. Self-learning through em-
bodiment shifts the way machines currently learn by changing
the paradigm of supervised and reinforcement learning. Our
efforts are also to reduce the gap between biological neural
networks computation and artificial intelligence implemen-
tations, allowing for a biologically-inspired neural network
model that suits the paradigm in artificial life of massively
parallel, distributed, and local interactions.
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In this work, we argue that the search for Artificial General Intelligence should

start from amuch lower level than human-level intelligence. The circumstances

of intelligent behavior in nature resulted from an organism interacting with its

surrounding environment, which could change over time and exert pressure on

the organism to allow for learning of new behaviors or environment models.

Our hypothesis is that learning occurs through interpreting sensory feedback

when an agent acts in an environment. For that to happen, a body and a reactive

environment are needed. We evaluate a method to evolve a biologically-

inspired artificial neural network that learns from environment reactions

named Neuroevolution of Artificial General Intelligence, a framework for

low-level artificial general intelligence. This method allows the evolutionary

complexification of a randomly-initialized spiking neural network with adaptive

synapses, which controls agents instantiated in mutable environments. Such a

configuration allows us to benchmark the adaptivity and generality of the

controllers. The chosen tasks in the mutable environments are food

foraging, emulation of logic gates, and cart-pole balancing. The three tasks

are successfully solved with rather small network topologies and therefore it

opens up the possibility of experimenting with more complex tasks and

scenarios where curriculum learning is beneficial.

KEYWORDS

neuroevolution, artificial general intelligence, spiking neural network, spike-timing-
dependent plasticity, Hebbian learning, weight agnostic neural network, meta-
learning

1 Introduction

Artificial General Intelligence (AGI) or strong Artificial Intelligence (AI) is commonly

discussed among AI researchers. It is often defined as human-level AI. However, the

generality of an AI does not need to be considered at such a level of complexity. Even an

artificial neural network that performs lots of different tasks as a collection of specialized
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or weak AI (Reed et al., 2022) may not provide the level of

generality observed in simple biological systems. In fact, our

current artificial intelligent systems cannot emulate the

adaptability to unknown conditions and learning capabilities

of an animal with a simple nervous system, such as a worm

(Ardiel and Rankin, 2010; Randi and Leifer, 2020). An alternative

approach is to start the quest for the generality of AI from the

simplest tasks that animals can do, but machines cannot, like

behaving intelligently even in new environments (Crosby et al.,

2019), i.e., out-of-distribution generalization (Shen et al., 2021).

Moreover, AGI systems should be tested in tasks that require self-

learning on the fly from sensory feedback, as it is often done in

meta-learning and continual learning (Najarro and Risi, 2020;

Zohora et al., 2021).

We argue that a radical paradigm change is needed in order

to reach general intelligence (Lake et al., 2017; Crosby et al.,

2019). Our hypothesis is that such a new paradigm requires

learning systems with self-organizing properties, as discussed by

Risi, (2021). In this work, our goal is to achieve the learning

capabilities of a primitive brain. Therefore, we aim at a low-level

AGI, i.e., a system that can learn a map function through sensory

experience. Interpreting and understanding sensory inputs are

achieved through evolution, particularly supervised evolution

(Zador, 2019) of agents interacting with their environment.

The brain is the organ that interprets the encoded signals

from our sensory organs, thanks to the ability to distinguish

between positive and negative sensory experiences depending on

what is considered to be good or harmful, e.g., pleasure and pain.

The experiences of pleasure and pain serve as reward and penalty

mechanisms that may affect our behavior by conditioning

associative positive and negative cues with specific memories.

In this work, we evaluate the Neuroevolution of Artificial

General Intelligence (NAGI) framework (Pontes-Filho and

Nichele, 2019). NAGI is a low-level biologically-inspired AGI

framework. NAGI consists of an evolvable spiking neural

network with adaptive synapses and randomly-initialized

weights. The network is evolved by an extension of the

method NeuroEvolution of Augmenting Topologies (NEAT)

(Stanley and Miikkulainen, 2002). The source code of NAGI

is available at https://github.com/SocratesNFR/neat-nagi-

python.

The evolved spiking neural network controls an agent placed

in a mutable environment. Its chances of reproduction are

proportional to how long it can survive in an environment

that is constantly changing, sometimes abruptly. Evolution

optimizes how the neurons are connected in the network,

their type of neurotransmitters (excitatory or inhibitory), their

susceptibility to background electrical current noise (analogous

to bias), and their neuroplasticity. With such degrees of freedom

in the optimization process, we attempt to approximately

recapitulate the evolutionary process of the simplest brains.

The mutable environment and random weight initialization

propitiate a benchmark for generality and adaptivity of the agent.

We test NAGI in three mutable environments. The first one

is a simple food foraging task, in which the agent has one

photoreceptor (or light intensity sensor) used to identify food.

The food type (color) is either black or white. Food can be edible

or poisonous and this feature changes over time. The agent can

also taste the food as its sensory feedback for good and bad

actions. The second environment is a logic gate task. The spiking

neural network needs to emulate different logic gates in series

where the only reward and penalty sensory signals are the

supporting mechanisms to identify the correct output. The

third environment is a cart-pole balancing task. In this

environment, the goal of the agent is to control the forces

applied to the cart in order to maintain the pole above itself

upright. The mutable component of this environment is the pole

length, which changes during the lifetime of the agent. Because

this environment has sensory feedback for the agent’s actions,

there is no need to add reward and penalty sensory signals.

The article is organized as follows: Section 2 explains the

theoretical basis for understanding NAGI. Section 3 discusses the

related work to our approach. Section 4 describes the details of

the method and experiments. Section 5 presents the experimental

results. Section 6 concludes the article including a discussion of

the results and plans for future work.

2 Background

The components of the NAGI framework are inspired by the

overlapping research fields of artificial life (Langton, 2019),

evolutionary robotics (Doncieux et al., 2015), and

computational neuroscience (Trappenberg, 2009). In

particular, the controller for the agents is a Spiking Neural

Network (SNN) (Izhikevich, 2003), which is a more

biologically-plausible artificial neural network. The neurons in

an SNN communicate through spikes, i.e., binary values in time

series. Therefore, an SNN adds a temporal dimension to binary

data. A neuron propagates such data depending on whether its

membrane potential crossed a threshold value or not. If the

threshold is crossed, the neuron propagates a signal represented

as neurotransmitters to its connected neurons; otherwise, the

action potential is not propagated. When neurotransmitters are

released by a neuron, they can be of two types: excitatory, which

increases the membrane potential and the likelihood of

producing an action potential; or inhibitory, which has the

opposite effect by decreasing the membrane potential.

Efficient optimization of an SNN cannot happen through

gradient descent as spike trains are not differentiable

(Tavanaei et al., 2019). Instead, spiking neurons have

biologically inspired local learning rules, such as Hebbian

learning and Spike-Timing-Dependent Plasticity (STDP)

(Hebb, 1949; Li et al., 2014). Those neuroplasticity rules are

unsupervised, and their functionality in the brain is still not fully

understood. However, it is inferred that the supervision comes
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from a certain network configuration acquired through

evolution. Therefore, in this work, we use a modification of

NeuroEvolution of Augmenting Topologies (NEAT) (Stanley

and Miikkulainen, 2002). NEAT uses a Genetic Algorithm

(GA) (Holland, 1992) to optimize the weights and the

topology of a growing neural network that is initialized with a

minimal and functional size. NEAT is typically used to search for

a network configuration that improves a fitness score while

maintaining population diversity (speciation) and avoiding

loss of genes during crossover (historical marking). For an

accessible and extensive explanation of NEAT, please refer to

Ref. (Welleck, 2019).

A distinction from NEAT is that the weights in the NAGI

framework are randomly initialized, and they change (adapt)

after deployment. The adaptation is coordinated by a realistic

Hebbian learning rule, i.e., STDP. This neuroplasticity adjusts the

synaptic strength of a neuron’s dendrites (i.e., input connections)

when it fires an action potential (or spike) that goes through its

axon (i.e., output connection). The weights are modified

according to the difference in time between incoming spikes

and the generated action potential. More detailed information

about SNN and STDP is available in Ref. (Camuñas-Mesa et al.,

2019).

The body and brain interaction (sensors and actuators vs.

controller) is often described as “chicken and egg” problem

(Funes and Pollack, 1998). The natural evolution of body and

brain happens together with the evolution of the environment.

They evolve in cooperation and response to each other (Mautner

and Belew, 2000). The application of supervised evolution of

agents interacting with the environment is defined as embodied

evolution (Watson et al., 1999). As such, an agent needs a body to

learn from the reaction of its environment. We hypothesize that

low-level general intelligence in nature emerged through the

evolution of a sensory feedback learning method.

3 Related work

Neuroevolution with adaptive synapses was introduced in

2003 by Stanley et al. (2003). Such a method is a version of NEAT

where the synaptic strength of the connections changes with

Hebbian local learning rules. In their work, they used a food

foraging task where an agent moves around a field surrounded by

edible and poisonous food. The type of food did not change over

time, but it was initialized differently at every new run. The

agents needed to try the food first before identifying it. Therefore,

the agents possess reward and penalty sensory signals as in

NAGI. This method is rather similar to ours. However, NAGI

is more biologically plausible, weight agnostic, and is tested in a

mutable environment. Risi and Stanley, (2010) proposed an

extended version by replacing the direct encoding of the

network in NEAT with an indirect encoding.

Additional related methods are described in Refs. (Gaier and

Ha, 2019) and (Najarro and Risi, 2020) where randomly-

initialized artificial neural networks are used. The work of

Gaier and Ha, (2019) uses a version of NEAT where each

neuron can have one activation function out of several types.

While in the method of Najarro and Risi, (2020), the network

topology is fixed and each connection evolves to optimize the

parameters of its Hebbian learning rule.

In a recent review on neuroevolution (Stanley et al., 2019),

NEAT and its extensions are comparable to deep neural networks

trained with gradient-based methods for reinforcement learning

tasks. Such methods allow evolving artificial neural networks

with indirect encoding for scalability, novelty search for diversity,

meta-learning for learning how to learn, and architecture search

for deep learning models. Moreover, neuroevolution is described

as a key factor for reaching AGI, particularly in relation to meta-

learning and open-ended evolution. Meta-learning encompasses

the training of a model with certain datasets and testing it with

others. The goal of the model is therefore to learn any given

dataset by itself from experience (Thrun and Pratt, 1998). Open-

ended evolution is the ability to endlessly generate a variety of

solutions of increasing complexity (Taylor, 2019). In NAGI,

meta-learning is an implicit target in the mutable

environments and is implemented as neuroplasticity in the

spiking neural network.

In 2020, Nadji-Tehrani and Eslami, (2020) introduced the

framework for evolutionary artificial general intelligence

(FEAGI). This method uses an indirect encoding technique

for a spiking neural network that resembles the growth of the

biological brain, which is called “neuroembryogenesis.” As a

proof of concept, FEAGI demonstrates successful handwritten

digits classification by learning through association and being

able to recall digits from different image samples in real-time.

4 Neuroevolution of Artificial General
Intelligence

The NAGI framework aims at providing a simplified model

of the initial stages of the evolution of biological general

intelligence (Pontes-Filho and Nichele, 2019). The evolving

agents in NAGI consist of randomly-initialized spiking neural

networks. Thus, a genome in NAGI does not require the

definition of synaptic weights of the connections between

neurons, as it is done in NEAT. Therefore, the synaptic

weights in the genome are replaced by an STDP rule and its

parameters for each neuron. Since biological neurons may

provide one of the two main neurotransmitters, NAGI’s

genome defines such a feature in the neurons’ genes. As such,

a neuron can be either excitatory or inhibitory. To imitate the

function of bias in artificial neural networks, neurons may be also

susceptible to a “background electrical current noise.”
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The environment changes during the lifetime of the agent.

This forces the agent to learn new environmental conditions.

Therefore, the agent is encouraged to generalize and learn how to

learn. The aforementioned random initialization and mutable

environment aim at benchmarking the basic properties needed

for low-level AGI.

4.1 Spiking neural network

The spiking neural network has a fixed number of input and

output neurons depending on the task to be solved. The

neuroevolution process defines the number of hidden neurons

that will be available. Hidden neurons can be either excitatory or

inhibitory, while input and output neurons are always excitatory.

Self-loops and cycles are permitted while duplicate connections

between two neurons in the same direction are prohibited. The

SNN is stimulated from the input neurons, as such units are spike

generators. The spikes are uniformly generated in an assigned

frequency or firing rate.

As a spiking neuron model, we use a simplification of the

leaky integrate-and-fire model (Liu andWang, 2001). A neuron’s

membrane potential v is increased directly by its inputs and

decays over time by a factor λdecay. We can then express the

change in membrane potential Δv with regards to a time step

Δt by

Δv Δt( ) � ∑n
i�1

wixi − Δtλdecayv, (1)

where xi is the input value 0 (no spike) or 1 (spike) from the

presynaptic neuron i, the dendrite for this connection has the

synaptic strength defined as wi, and n is the total number of

presynaptic neurons that the dendrites are connecting. If the

membrane potential v is greater than the membrane threshold

vth, a spike is released and the membrane potential returns to the

resting membrane potential vrest, which is 0. The time step Δt we
use in the experiments is 0.1 ms, and decay factor λdecay is 0.01Δt.
An action performed by the SNN is calculated by the number of

spikes in a time window. Such an actuator time window covers

250 ms or 2,500 time steps. In NAGI, the weights of the SNN are

randomly initialized with a normal distribution. The mean is

equal to 1 and the standard deviation is equal to 0.2. The weights

are always positive. As mentioned, the excitation and inhibition

of a neuron are defined by the neurotransmitter of the

presynaptic neuron.

4.1.1 Homeostasis
Biological neurons have a plasticity mechanism that

maintains a steady equilibrium of the firing rate, which is

called homeostasis (Betts et al., 2013; Kulik et al., 2019). In

our method, the spiking neurons can have non-homogeneous

inputs, which could lead to very different firing rates. It is

desirable that all neurons have approximately equal firing

rates (Diehl and Cook, 2015). In order to homogenize the

firing rates of the neurons in a network, the membrane

threshold vth is given by

vth � min vpth + Θ,∑n
i�1

wi
⎛⎝ ⎞⎠, (2)

where vth* is the “resting” membrane threshold equals to 1; and Θ
starts with value 0, increases 0.2 every time a neuron fires, and decays

exponentially with a rate of 0.01Δt. Each neuron has an individualΘ.
Therefore, a neuron firing more often will get a larger membrane

threshold and consequently a lower firing rate. To compensate for a

neuron with weak incoming weights, which causes a low firing rate;

we instead use the sum of the incoming weights as the threshold.

4.1.2 Spike-Timing-Dependent Plasticity
The adjustment of the weights of the connections entering into a

neuron happens on every input and output spike to and from a

neuron. This is performed by STDP. It is done by keeping track of

the time elapsed since the last output spike and each input spike

from incoming connections within a time frame. Such a time frame

is called the STDP time window and is set to be ±40 ms. The

difference between presynaptic and postsynaptic spikes, or the

relative timing between them, denoted by Δtr is given by

Δtr tout, tin( ) � tout − tin, (3)

where tout is the timing of the output spike and tin is the timing of

the input spike.

The synaptic weight change Δw is calculated in accordance

with one of the four Hebbian learning rules. The functions for

each of the four learning rules are given by

Δw Δtr( ) �
A+e

−Δtr
τ+ Δtr > 0,

−A−e
Δtr
τ− Δtr < 0,

0 Δtr � 0;

⎧⎪⎪⎪⎨⎪⎪⎪⎩ Asymmetric Hebbian (4)

Δw Δtr( ) �
−A+e

−Δtr
τ+ Δtr > 0,

A−e
Δtr
τ− Δtr < 0,

0 Δtr � 0;

⎧⎪⎪⎪⎨⎪⎪⎪⎩ Asymmetric Anti −Hebbian

(5)

Δw Δtr( ) �
A+g Δtr( ) g Δtr( )> 0,
A−g Δtr( ) g Δtr( )< 0,
0 g Δtr( ) � 0;

⎧⎪⎨⎪⎩ SymmetricHebbian

(6)

Δw Δtr( ) �
−A+g Δtr( ) g Δtr( )> 0,
−A−g Δtr( ) g Δtr( )< 0,
0 g Δtr( ) � 0;

⎧⎪⎨⎪⎩ Symmetric Anti −Hebbian

(7)

where g (Δtr) is a Difference of Gaussian function given by

g Δtr( ) � 1
σ+

���
2π

√ e−
1
2

Δtr
σ+( )2 − 1

σ−
���
2π

√ e−
1
2

Δtr
σ−( )2 , (8)
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A+ and A− are the parameters that affect the height of the curve,

τ+ and τ+ are the parameters that affect the width or steepness of the

curve of the Asymmetric Hebbian functions, and σ+ and σ− are the

standard deviations for the Gaussian functions used in the

Symmetric Hebbian functions. It is also required that σ− > σ+.

We experimentally found fitting ranges for each of these parameters,

which are A+ = [0.1, 1.0], A− = [0.1, 1.0], τ+ = [1.0, 10.0], and τ− =

[1.0, 10.0] for the asymmetric STDP functions; and A+ = [1.0, 10.6],

A− = [1.0, 44.0], σ+ = [3.5, 10.0], and σ− = [13.5, 20.0] for the

symmetric ones. The STDP curves with themaximumvalue of those

parameters are illustrated in Figure 1.

Weights can take values in a range [wmin, wmax], and every

neuron has a weight budget wbudget it must follow. What this

means is that if the sum of a neuron’s incoming weights exceed

wbudget after initialization or STDP has been applied, they are

normalized to wbudget, given by

if ∑n
i�1

wi >wbudget, thenwi � wiwbudget∑n
i�1wi

. (9)

The parameters used during our experiments are wmin = 0,

wmax = 1, and wbudget = 5. In case of a SNN without

homeostasis, if a connection i has wi = wmax, then wi = vth.

Therefore, an action potential coming from i will always produce

a spike. This is the reason why wmax = vth.

4.2 Genome

The genome in NAGI is rather similar to the one in NEAT.

Its node genes have three types: input, hidden, and output.

Depending on the type of the node gene, there is a different

collection of loci1. The input node is a spike generator and

provides excitation to the neurons it is connected to. The

gene of an input node is the same as in NEAT. The hidden

and output nodes represent adaptable and mutable spiking

neurons. They have three additional loci: the type of the

learning rule, the set of the learning rule parameters, and a

bias. The connection gene in NAGI has no weight locus as in

NEAT. The reason for its removal is that the weights of the SNN

are defined by a normal distribution.

The learning rule is one of the four STDPs. The set of learning

rule parameters consists of four parameters that adjust the intensity

of the weight change. They are different for symmetric and

asymmetric learning rules. The symmetric parameters are A+{ ,

A−, σ+, σ−} and the asymmetric parameters are A+{ , A−, τ+, τ−}.
The bias is a Boolean value that determines if the neuron has a

constant input of 0.001 being added toΔv, which is analogous to the
background noise of the neuron.

FIGURE 1
Spike-timing-dependent plasticity rules.

FIGURE 2
Genotype and phenotype in NAGI. Image taken from Ref.
(Olsen, 2020).

1 In the terminology of genetic algorithms, a value within a gene is also
called a locus (plural loci).
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The hidden node genes have a unique locus, which is a

Boolean value that determines whether it represents an inhibitory

or excitatory neuron. This locus is not included in the output

node genes because they are always excitatory. As a result of

combining all the descriptions of the genome in NAGI, the

genotype and the phenotype are illustrated in Figure 2.

The initialization of the additional loci in the node genes can

be conditional and non-uniform. The initialization of the

neurotransmitter type of a neuron follows a similar

proportion of excitatory and inhibitory neurons in the brain

(Sukenik et al., 2021). The probability of a neuron being added as

excitatory is 70%. The probability of having a bias is 20%.

Depending on the neurotransmitter, excitatory neurons have a

70% chance of initializing with Hebbian plasticity, and inhibitory

neurons have the same chance but for anti-Hebbian plasticity.

The learning rule parameters are initialized by sampling from a

uniform distribution within the STDP parameter ranges.

The mutations of the additional loci happen in 10% of chance

to switch the neurotransmitter type, bias, learning rule, and

learning rule parameters. Those parameters have 2% chance

of a fully re-initialization. When the parameters are assigned

to be mutated, a random value sampled from a normal

distribution with μ = 0 and σ2 = m(p) is added to the

parameter p. The equation of m(p) is

m p( ) � 0.2 pmax − pmin( ), (10)

where pmax and pmin are the maximum and minimum values the

parameter can have, given by the STDP parameter ranges.

During the neuroevolution, 10% of the genotypes with the

best fitness scores will be passed to the next generation

unchanged, i.e., elitism.

4.3 Mutable environments

The benchmark tasks for NAGI are meant to evaluate the

agent’s ability to generalize and self-adapt. Therefore, they

consist of environments that change during the lifetime of the

agent. Two types of tasks are provided, binary classification (two

tasks of this kind are provided) and control (one task of this kind

is provided). The first type (binary classification) is the simplest

one, however, it provides the most abrupt changes in the

environment. The binary classification tasks are food foraging

with one input, and logic gates with two inputs. The control task

in a simulated physical environment is the cart-pole balancing

from OpenAI Gym (Brockman et al., 2016). The changes are less

abrupt in this last task as they consist in modifying the pole size.

The fitness scores are calculated using the number of time steps t

that the agent survived in these environments, normalized to the

range [0, 1] using the maximum possible lifetime Lmax and

minimum possible lifetime Lmin. Therefore, the fitness

function f is given by

f t( ) � t − Lmin

Lmax − Lmin
. (11)

In the binary classification tasks, the agents have an initial

amount of health points that is reduced every time step as

continuous damage. If a correct action is chosen, the health

point amount is reduced by dc health point. Otherwise, it is

reduced by di. The input sample is given to the agent for 1 s or

10,000 time steps, then it is changed to a new one. The mutation

of the environment condition happens when the agent has seen

four samples. The order of the input samples and the

environment conditions is fixed and cyclic.

We noticed that the number of spikes within the actuator

time window can be the same for the output neurons and

therefore allowing for a tie in many cases. Our solution to

avoid spiking neural networks with this behavior is to include

a “confidence” factor in the fitness score calculation. Therefore,

the higher the difference between the spike count, the more

confident the action is. If the action is correct and highly

confident, the damage is dc or closer. If the action is incorrect

but highly confident, the damage is di or closer. The lack of

confidence would make the damage lie between the values dc and

di. The spike count for the correct action sc and incorrect one si
are used to calculate the participation of the spikes for deciding

the correct action pc and the participation for the incorrect action

pi. In the iterations without spikes of the output neurons,

normally the initial ones; the agent takes di as damage.

Otherwise, the damage is calculated by

pc sc , si( ) �
max 0, min sc , st( )( ) −max 0, min sc , st( )( ) + st

2st
sc + si ≤ 2st

sc
sc + si

sc + si > 2st

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (12)

pi sc, si( ) � 1 − pc sc − pi( ) (13)

where st is the minimum “target” number of spikes. The purpose

of st is to avoid assigning a too high or low fitness to agents that

fire few spikes through their outputs. The agent takes damage at

every time step and is given by

d sc, si( ) � dcpc sc, si( ) + dipi sc, si( ) (14)

Damaging is performed until the agent runs out of health

points and ‘dies’. Subsequently, the fitness score of the agent is

calculated from the fitness function expressed in Eq. 11. The

damage to the health points in a correct action dc is 1, in an

incorrect one di is 2. Therefore, correct actions result in a longer

lifetime. The value for the minimum ‘target’ number of spikes st is

3 spikes.

In the control task of cart-pole balancing, the behavior of the

mutable environment is different. A new environment is

presented to the agent either after its failure or after the

maximum number of environment iterations is reached.

Moreover, the agents do not have health points. The fitness

score is the normalization of the number of iterations that the

agent survived after all environment conditions were executed.
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4.3.1 Food foraging
The agent in the food foraging environment possesses just one

light sensor for identifying the food “in front of it.” There are two

types of food: edible and poisonous. As such, food is represented in

two colors: black and white. The environment changes by randomly

defining which food color is edible or poisonous. In this

environment, the agent can act in two ways: eating or avoiding

the food. The sample has a predefined time of exposure to the agent.

An action is performed after the first spike and it continues for every

time step in the environment simulation. After this exposure time,

the food is replaced by a new one. The agent can only discover

whether it is exposed to an edible or poisonous food by interacting

with it. An incorrect action is defined as eating poisonous food, or

avoiding edible food, while a correct action is defined as eating edible

food or avoiding poisonous one. If the agent makes an incorrect

action, it receives a penalty signal, fromwhich the agent should learn

over the generations that it represents pain, revulsion, or hunger. If

the agent makes a correct action, it receives a reward signal, from

which it should learn that it represents the pleasure of eating

delicious food or recognizing that the food is poisonous. In

Figure 3, the food foraging environment is illustrated, how the

environment changes and provides new food samples. In our

experiment, the change of the environment occurs after

presenting four food samples to the agent. The first food sample

type is chosen randomly and alternates in every sample change. In

Table 1, the four combinations of edible and poisonous food for the

white and black ones are shown. To evolve the spiking neural

network for the food foraging task, the parameters of the genetic

algorithm are the following: the population size is set to

100 individuals, and the number of generations is set to 1,000.

This task was chosen because of its simplicity. In particular, it allows

a virtual wheeled robot to forage for food using proximity sensors,

such as in the related work of Stanley et al. (2003).

4.3.2 Logic gates
In this environment, the mutable environmental state is a

two-input logic gate. The environment provides the agent with

two binary inputs, i.e., 0’s and 1’s. The agent’s task is to predict

the correct output for the current logic gate given the current

input. Similar to the food foraging environment, it receives a

reward signal if it is currently predicting the correct output, and a

penalty signal if it is currently predicting the wrong output.

In order to measure the generalizing properties of agents, we

use two different sets of environments: a training environment,

which is used in calculating the fitness score while running the

evolutionary algorithm, and a test environment which has a fully

disjoint set of possible environmental states. A full overview of

the logic gates found in both the training and the test

environments, as well as the truth values for all input and

output combinations, are found in Table 2 and Table 3. The

evolution of the spiking neural network is performed by a

population of 100 individuals through 1,000 generations.

4.3.3 Cart-pole balancing
The cart-pole balancing is a well-known control task used as

a benchmark problem in reinforcement learning. In this

environment, there is a cart that moves when a force is

applied to the left or to the right every time step. In the

middle of the cart, there is a vertical pole connected to a non-

actuated joint. The goal of this environment is to maintain the

pole balanced upright by controlling the forces that move the

cart. Moreover, the cart cannot move beyond the limits of the

track. The observations available to the controller are the cart

position, the cart velocity, the pole angle, and the pole angular

velocity.

For training, we use poles of different sizes, which are 0.5

(default), 0.3, and 0.7. For testing, the sizes are 0.4, and 0.6.

Those pole sizes are depicted in the Supplementary Material.

Each size can run up to 200 environment iterations and it is

repeated three times during training for promoting stable

controllers. If there are no more environment iterations or

the pole falls, the cart-pole environment restarts with the next

pole size while using the same SNN or finishes when all pole

sizes were executed. The fitness score is calculated using the

number of iterations the pole kept balanced. Subsequently, it

is normalized to values between 0 and 1. The evolution for this

task occurs with a population size of 256 during

500 generations.

FIGURE 3
Example of the food foraging environment and how it
progresses through the lifetime of the agent in a generation. The
eight food samples per environment are illustrative. Our
experiment uses four.

TABLE 1 Correct actions for all combinations of input food color and
edible food in the food foraging task.

Food foraging environment conditions

Edible Black White None Both

Input

Black Eat Avoid Avoid Eat

White Avoid Eat Avoid Eat
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4.4 Data representation

The data type in a spiking neural network is a binary time series

or a spike train. Because the agent senses and acts in the

environment, such data must be converted from the sensors and

to the actuators. The flow of spikes over time can be quantified as

firing rate, which corresponds to a frequency, or the number of

spikes per second. The firing rate is the data representation that is

converted as inputs and outputs for the SNN. However, the input

firing rate must be within aminimum and amaximum value. In our

experiments, we use the value range [5Hz, 50Hz]. The minimum

andmaximum value of the firing rate are simplified to a real number

range [0, 1]. It is preferable that the data from the sensors has also a

minimum and a maximum value. Otherwise, it will be necessary to

clip sensory values or map the values to a desirable range.

In the binary classification tasks, all inputs and outputs are

binary. Therefore, the minimum and maximum values for the

input firing rate stand for, respectively, 0 and 1, or False and True.

To avoid having a predefined threshold firing rate for the output

neurons, we opt to have two output neurons for one binary value.

The neuron with the highest firing rate within the actuator time

window is the one defining the binary output value. If these two

output neurons have the same firing rate, then the last one with

TABLE 2 Truth table showing the correct output for each training logic gate.

Training logic gates

Input A B NOT A NOT B Only 0 Only 1 XOR XNOR

A B

0 0 0 0 1 1 0 1 0 1

0 1 0 1 1 0 0 1 1 0

1 0 1 0 0 1 0 1 1 0

1 1 1 1 0 0 0 1 0 1

TABLE 3 Truth table showing the correct output for each testing logic
gate.

Test logic gates

Input AND NAND OR NOR

A B

0 0 0 1 0 1

0 1 0 1 1 0

1 0 0 1 1 0

1 1 1 0 1 0

FIGURE 4
Evolution history of food foraging environment showing the average, minimum and maximum per generation.
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the highest value is selected. We also decided to have the same

“two neurons-one binary value” strategy with the inputs, which

consists of 0 or False being 01 in one-hot encoding, then (low,

high) in firing rate, while 1 or True is 10 in one-hot encoding, so

the firing rate is (high, low).

For the cart-pole control task, the inputs are real numbers, and

the left and right actions are represented as two output neurons,

similar to the outputs of the binary classification tasks. In this

environment, the inputs are the cart position, cart velocity, pole

angle, and pole angular velocity. Because we infer that real numbers

converted to the firing rate of one neuron can be difficult to deal with

in an adaptive spiking neural network (as also mentioned in Ref.

(Pontes-Filho and Liwicki, 2019)), we decided to have three neurons

for each input. The firing rate of the three neurons is similar to the

sensitivity for the light spectrum of the three cone cells in the human

eye (Bowmaker and Dartnall, 1980). We use the sigmoid function

(Han and Moraga, 1995) for neurons #1 and #3 and a normalized

version of the Gaussian function (Patel and Read, 1996) for neuron

#2. The sigmoid equation is

F sigmoid x | ω, z, h, l( ) � h

1 + e−ω x−z( ) + l, (15)

where x is the observation value from the environment, ω is the

weight that adjusts the smoothness of the interval between 0 and

FIGURE 5
Illustration of the network topology and behavior of the highest accuracy agent in the food foraging task. The one-hot encoded input sample
goes into nodes 0 and 1, the reward signal in node 2, and the penalty signal goes into node 3. Node 4 is the output for the “eat” actuator and node 5 is
the output for the “avoid” actuator.
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1, z is the shift coefficient to adjust the function on the horizontal

axis, h is the highest firing rate possible applied to an input

neuron, and l is the lowest firing rate possible. The Gaussian

function for converting observation value to firing rate is

expressed by

FGaussian x | μ, σ, h, l( ) � he
− x−μ( )2( )

2σ2 + l, (16)

where μ is the mean and σ is the standard deviation. We replace
1

σ
��
2π

√ in the original Gaussian function to h because, in this way,

we can define the highest firing rate when the observation value is

the mean. Neurons #1 and #3 use F sigmoid, while neuron #2 uses

FGaussian. The parameters and the figures with the illustration of

those equations are included in the Supplementary Material.

5 Results

The evolution of the spiking neural networks in NAGI is

evaluated with fitness score, accuracy, and end-of-sample

accuracy for the binary classification tasks, which are food

foraging and logic gate. The accuracy is measured at every

time step of the simulation. The end-of-sample accuracy

stands for the accuracy measured in the last time step of a

TABLE 4 Test simulations of the highest accuracy agent in the food foraging experiment. “Acc.” stands for accuracy and “EOS Acc.” for end-of-sample
accuracy.

Food foraging test simulations

# Acc. (%) EOS Acc. (%) Input order Environment order

1 88.0 92.6 black, white white, both, black, none

2 90.6 100 white, black white, none, both, black

3 91.3 100 black, white white, both, none, black

4 85.4 92.3 white, black white, black, both, none

5 89.5 96.3 white, black both, none, white, black

6 89.2 100.0 black, white both, white, black, none

7 87.7 92.6 black, white white, black, none, both

8 84.9 92.6 black, white black, both, white, none

9 89.8 100 black, white white, black, both, none

10 88.4 92.6 white, black black, none, white, both

Avg 88.4 95.9 n/a

FIGURE 6
Evolution history of logic gate environment showing the average, minimum and maximum per generation.
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sample. The assessment performed for the control task with cart-

pole balancing is done with the fitness score. We test the best

performing agent in a task with ten simulations where their

details are also provided.

Figure 4 shows the evolution history of the food foraging task.

The average fitness score has a slight increase, but the maximum

fitness score does not follow this trend. The accuracy and end-of-

sample accuracy have high variation with their maximum values,

but they consist of high accuracies. Moreover, some early

generations register 100% end-of-sample accuracy. The three

measurements do not improve through the generations.

However, good solutions are already found in the first

generation. Therefore, this is an easy task that requires a small

SNN. For test simulations, we select the individual with the

highest accuracy, which is found in generation number 34 and

has an accuracy of 89.8%. Its fitness score is 0.541395 and its end-

of-sample accuracy is 100%. Its topology is shown in Figure 5.

Paying attention to this topology, the hidden nodes are not

FIGURE 7
Illustration of the network topology and behavior of the highest training accuracy agent in the logic gate task. The one-hot encoded input
sample “(A)” goes into nodes 0 and 1, the one-hot encoded input sample “(B)” goes into nodes 2 and 3, the reward signal goes into node 4, and the
penalty signal into node 5. Node 6 is the output for the “0” actuator and node 7 is the output for the “1” actuator.
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needed. They form a loop that does not connect with the output

nodes. The topology summarizes in one of the one-hot encoded

input nodes (node 1) connecting to the two output nodes. Then,

the node with the penalty signal (node 3) connects only with the

node for the “eat” actuator (node 4). The behavior of the network

is illustrated in Figure 5C. The topology of the network indicates

that the two output neurons have the same data input from node

1, but the neuron for “avoid” action has a bias, which gives it a

small excitatory current. If “avoid” is the wrong action, the

penalty input signal from node 3 excites the output neuron

for the “eat” action. This is how the spiking neural network

decides the actions from “understanding” the feedback of the

environment given by the penalty input signal. The result of the

ten test simulations is presented in Table 4.

Figure 6 shows the training results of the logic gate task and it

includes the test of the maximum individual of the measurement

in every generation. The fitness score, accuracy, and end-of-

sample accuracy maintain average values with high variation.

However, the evolution of the agents in the logic gate task is

similar to the one in the food foraging. The early generations

already contain good spiking neural networks for the task. The

best-performing agent is selected from the accuracy

measurement. This individual is in generation 48 and has an

accuracy of 85.0%. Its fitness score is 0.4421625 and its end-of-

sample accuracy is 100%. The topology of this spiking neural

TABLE 5 Test simulations of the highest training accuracy agent in the logic gate experiment. “Acc.” stands for accuracy and “EOS Acc.” for end-of-
sample accuracy.

Logic gate test simulations

# Acc. (%) EOS Acc. (%) Input order (A, B) Environment order

1 89.8 100 (1, 0), (0, 0), (1, 1), (0, 1) NOR, OR, AND, NAND

2 85.2 95.2 (1, 1), (1, 0), (0, 0), (0, 1) OR, NOR, NAND, AND

3 86.0 100 (1, 0), (1, 1), (0, 1), (0, 0) NOR, OR, AND, NAND

4 85.9 95.2 (0, 0), (1, 1), (0, 1), (1, 0) NAND, AND, OR, NOR

5 79.9 85.7 (0, 0), (0, 1), (1, 0), (1, 1) NAND, AND, NOR, OR

6 88.8 100 (1, 0), (0, 0), (1, 1), (0, 1) AND, NAND, OR, NOR

7 85.1 90.5 (0, 0), (1, 1), (1, 0), (0, 1) OR, NOR, NAND, AND

8 84.8 90.5 (1, 1), (0, 1), (0, 0), (1, 0) NOR, NAND, OR, AND

9 83.7 85.7 (0, 0), (1, 0), (0, 1), (1, 1) NAND, NOR, OR, AND

10 88.5 100 (1, 1), (1, 0), (0, 0), (0, 1) NOR, AND, OR, NAND

Avg 85.7 94.2 n/a

FIGURE 8
Fitness history of cart-pole balancing environment showing
the average, minimum and maximum per generation.

TABLE 6 Test simulations of the highest fitness agent in the cart-pole
balancing experiment.

Cart-pole balancing test simulations

# Fitness # Steps 0.4 # Steps 0.6 Environment order

1 1.000 200 200 0.4, 0.6

2 1.000 200 200 0.4, 0.6

3 1.000 200 200 0.6, 0.4

4 0.943 200 177 0.4, 0.6

5 0.800 154 166 0.6, 0.4

6 0.792 179 138 0.4, 0.6

7 0.835 200 134 0.6, 0.4

8 0.845 200 138 0.4, 0.6

9 0.873 200 149 0.6, 0.4

10 0.720 88 200 0.6, 0.4

Avg 0.874 178.3 171.5 n/a
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network is shown in Figure 7. Its behavior is shown in Figure 7C.

Even though we have trained with a “confidence” factor in the

fitness function, the spike counts are still with almost the same

values. Table 5 contains the accuracy and end-of-sample

accuracy of ten test simulations, which indicates that the SNN

can be general to reproduce the behavior of logic gates without

being trained to them.

Figure 8 shows the fitness score history through the

evolution for the cart-pole balancing task. This task is the

one with the highest difficulty to find a good genome for the

adaptive spiking neural network. It can be noted that the

fitness score improves through the generations. The

maximum fitness score in a generation goes from around

0.16 in the first generation to 0.99944 in generation number

399. Such an individual is the one selected for the test

simulations. Its topology is illustrated in Figure 9 and the

spike counts of the actuators for “left” and “right” actions are

shown in Figure 9C. The spiking neural network has no

FIGURE 9
Illustration of the network topology and behavior of the highest training fitness agent in the cart-pole balancing experiment. The 3-tuple of
input nodes (0, 1, 2) gets the converted firing rate from the observation of the cart position, (3, 4, 5) from the cart velocity, (6, 7, 8) from the pole angle,
and (9, 10, 11) from the pole angular velocity. Node 12 is the output for the ‘left’ action and node 13 is the output for the “right” action.
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hidden neurons. Therefore, the SNN works as an input

selection for the output neurons. The result of the ten test

simulations is presented in Table 6. When the pole is balanced

for more than 100 iterations, the controller is considered

successful.

6 Discussion and conclusion

We successfully solved all three presented tasks with the

NAGI framework. The spiking neural networks found showed

generality to the binary classification tasks, even to unseen

conditions in the case of the emulation of logic gates. The

neuroevolution produced rather simple topologies for the

SNNs. We infer that binary classification is easy due to the

binary performance feedback. For further research, multi-class

classification is considered.

The cart-pole balancing task was successfully solved without

any hidden neurons. The conversion of one observation into

three input neurons is used to avoid the requirement of weight

fine-tuning due to small differences in firing rate and also to the

assumption that Hebbian plasticity works better with binary data

(active and inactive) (Pontes-Filho and Liwicki, 2019). With such

a conversion, the SNN became an input selection.

The topologies for the three tasks caught our attention

because almost all output excitatory neurons were anti-

Hebbian, and the two inhibitory hidden neurons in the logic

gate solution have Hebbian neuroplasticity. Our initial

hypotheses were that excitatory neurons mainly have Hebbian

learning rules, and inhibitory neurons are anti-Hebbian. That

was the reason for having different probabilities for anti-Hebbian

and Hebbian learning rules depending on the type of the

neurotransmitter when adding a new neuron through mutation.

Even though there is elitism, the performance measurements

are unstable through generations. This is a demonstration of the

randomness in the initialization of the weights, and input and

environment order. This can be perceived in the results of the ten

test simulations of the three tasks.

For future work, we plan to attempt more challenging tasks.

If there is a failure in executing the task, the constraints imposed

on NAGI can be eased. A major constraint is that one neuron has

one plasticity rule for all dendrites. Maybe its removal can

simplify issues in difficult tasks. This constraint was intended

to reduce the dimensionality of the search space in the

neuroevolution and an assumption that the dendrites in the

same neuron adapt under one learning rule. This modification is

also aligned with the work of Najarro and Risi, (2020), which has

meta-learning properties for more difficult control tasks than the

cart-pole balancing, such as top-down car racing and quadruped

walk. Another opportunity is the addition of curriculum learning

(Bengio et al., 2009; Narvekar et al., 2020) for increasing the

complexity of the task while the agent becomes better over the

generations.
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Abstract
Neural cellular automata (Neural CA) are a recent framework used to model biological phenomena emerging from multicellular
organisms. In these systems, artificial neural networks are used as update rules for cellular automata. Neural CA are end-to-end
differentiable systems where the parameters of the neural network can be learned to achieve a particular task. In this work, we
used neural CA to control a cart-pole agent. The observations of the environment are transmitted in input cells while the values of
output cells are used as a readout of the system. We trained the model using deep-Q learning where the states of the output cells
were used as the Q-value estimates to be optimized. We found that the computing abilities of the cellular automata were maintain-
ed over several hundreds of thousands of iterations, producing an emergent stable behavior in the environment it controls for
thousands of steps. Moreover, the system demonstrated life-like phenomena such as a developmental phase, regeneration after
damage, stability despite a noisy environment, and robustness to unseen disruption such as input deletion.

Key words: Neural Cellular Automata; Developmental AI; Self-Organised Control; Differentiable Self-Organisation; Reinforcement
Learning

Introduction

One of the most remarkable feats of life is the developmental pro-
cess leading to the emergent complexity of the human brain from a
single cell. The field of neurodevelopment (i.e., the development
of the nervous system) has been investigating this problem for
decades. These studies led to the discovery of the intricate mecha-
nisms by which gradients of chemicals and local cell interactions
shape the differentiation of pre-neural cells and the organization
of their connections [1]. Even after the brain is considered fully
grown, its developmental process does not stop. New neurons are
formed continuously until death, and the shape and the strength of
their connections change. Such neural plasticity is influenced by
the sensory inputs received by the individual and is considered to
be at the root of the emergence of intelligence. In addition to the
ability to cope with a changing environment, plasticity provides

remarkable robustness. For example, after a stroke, the neural net-
work reorganizes in a new architecture to preserve motor function
[2]. It can also adapt to sensory deprivation to extract the most
information from the remaining senses. This is the case in blind
individuals: the processing of auditive information can be partially
deferred to the visual cortex, improving their sound localization
abilities [3].

Neural plasticity can be considered as a part of the whole mech-
anism governing homeostasis of both shape and function. This
conceptual proximity is also justified by biological evidence such as
the discovery of the role of electrical activity during morphogen-
esis. In particular, the same ion channels are used both for local
communication between non-neuronal cells during embryogenesis
and in the neurons to carry action potentials [4]. More generally,
there seems to exist a continuum between the phenomena we usu-
ally call growing, learning, and computing. Each of these abilities
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may be considered a different aspect of the same underlying self-
organizing system.

Moreover, there is evidence that the DNA does not encode precise
details of the resulting neural network. There is an information
gap between the size of the DNA and the complexity of the neural
network, generally referred to as a genomic bottleneck [5]. The
DNA only specifies the local behavior of cells through the shape
of the proteins it encodes. The neural network is then a structure
that emerges through these local interactions and yields useful
biological processing of the inputs received by the senses [6].

Despite the crucial role of growth in the emergence of intelli-
gence, modern advances in artificial neural networks mainly focus
on the handcrafted design of static maps of neural connections.
During the phase called learning—that is in fact quite far from the
biological sense of this word [5] —the connections of this architec-
ture are optimized to reduce the error on the task to solve.

Some effort has been made to include an automatic process to in-
crementally design neural network architectures. These techniques
include the use of genetic algorithms [7][8] or the introduction of a
growing phase in artificial neural networks [9] [10]. Nonetheless,
in these works, the process is a tool for navigating the topological
parameter space, rather than treating the learning as a develop-
mental problem.

The developmental problem has also been addressed as an in-
dependent task. In this case, the goal is to model the phenomena
of morphogenesis observed in living organisms. Successful ap-
proaches used cellular automata along with artificial neural net-
works implementing local rules. They were able to produce complex
patterns from localized interactions [11] [12].

More radical approaches tried to develop an artificial substrate
where life-like phenomena could emerge in an open-ended en-
vironment [13] [14]. Despite their great promise, we are still far
from recreating the whole evolution process that gives rise to intel-
ligence.

In this work, we attempt at bridging the gap between growth
and computation by using neural cellular automata (neural CA) [12].
Neural CA are spatially distributed systems composed of cells that
interact through local interaction. Their update rule consists of an
artificial neural network and thus can be optimized through clas-
sical and efficient gradient descent-based techniques. Even if the
learning process is still happening through a procedure exterior
to the system, the local rules encode both the developmental pro-
cess—the transformation from a random grid to a configuration
suitable for computation—and the information processing itself.
We found that the cells were able to transmit and combine in a
meaningful way the information from input cells to output cells
used as a readout. The system demonstrates long-term stability
and robustness to noise and damage. We illustrate these abilities
on a simple control task as a proof of concept. Despite the fact that,
in its current form, the system cannot compete with traditional
techniques in terms of learning efficiency, this approach is justified
by the future opportunities it opens. We discuss the potential future
work in the last section of the paper.

Related works

The idea that a controller can emerge from a self-organizing sys-
tem is not new. One of the most studied examples concerns the gait
transition in animals i.e. going from walking to running when the
velocity of the motion increases. The different limb coordination
strategies observed during each gait do not seem to be the result of
a control plan transmitted by the brain. Instead, this phenomenon
has been described as a phase transition in the self-organizing sys-
tem composed of the bones, nerves, and muscles used for locomo-
tion [15]. This has notably been modeled by coupled differentiable
equations describing mechanical dynamics and neural oscillators
to reproduce walking motion [16].

Other techniques such as dynamic neural fields have also been
used. Their dynamics have been theoretically described in [17]. This
enables the design of systems that exploit their emerging patterns
of activation for human-robot interaction [18].

More generally, it has been argued that there exists close prox-
imity between goal-directed behavior relying on feedback loops
where the agent tries to adjust its action to minimize the distance
to its desired state and the dynamics of self-organizing systems.
These two models could be different ways of thinking about the
same processes [19].

Goal-directed cellular automata

The artificial design of self-organizing systems has been strongly
focused on cellular automata (CA) because of their simplicity and
their general abilities. CA have been historically introduced to ad-
dress general questions about multicellularity in life: how can com-
plex shapes be created from a single cell, maintained, and then
replicated?

While the first works focused on handcrafted rules to create
self-replicating systems [20], more recent projects complexified
the rules updating the cell states. To search among the wide rule
spaces, genetic algorithms have been frequently used to find CA
that exhibited a predefined behavior. This enables the design of CA
that robustly grows a shape, in effect exhibiting homeostasis [21].
Another work was able to develop a targeted shape and maintain it
despite damage [22].

Instead of a classical look-up table, some works used update
rules implementing more complex algorithms. These types of up-
date rules were used as a generalization of evolvable circuits [23]
to design CA that performs tasks broader than the historical goal
of CA [24]. As in this case, CA have been used more generally not
only for questions related to shape but also for useful decentralized
computation [25].

To improve the search with genetic algorithms and favor evolv-
ability, some works used variable genotype size [26]. Other works
also included developmental function in the CA rules in order to
approach the fuzzy, one-to-many, function that maps a genotype
and an environment to a phenotype. This was done through the
addition of self-modifying abilities in the code of each cell, leading
to the creation of self-replicating systems [27].

Neural cellular automata

Precedent works used evolved neural networks to create CA that
grow desired shapes [11]. Then, the introduction of neural CA [12]
allowed the optimization of the neural networks used as update
rules using the language of differentiable programming instead of
genetic algorithms.

This model adds further elements to the questions for which
the CA were created. Neural CA enable the creation of self-repairing
systems that can grow complex shape from a single cell in 2D [12]
or in 3D [28], and regeneration of functional bodies such as soft
robots [29]. Beyond investigating homeostasis of shape, neural CA
have also been used for decentralized pattern recognition [30] as
well as texture synthesis [31].

Method

The pole balancing task

The cart-pole problem is a commonly used toy problem in the re-
inforcement learning community. In this environment, an agent
controls a cart-pole system. It can observe the pole angle and its
angular velocity, the cart position, and its linear velocity. Based
on these observations, the agent must decide whether to apply a
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Figure 1. The cart-pole environment. The top arrow represents the angular velocity
of the pole, the bottom arrow, the velocity of the cart.

force on the left or the right of the cart in order to maximize reward,
i.e. the time spent with the pole up and the cart in the center. The
simulation ends if the cart hits a wall or if the pole falls. We chose
this problem because of its low number of inputs and outputs that
allow the use of a small-sized grid and an easy experimentation
environment.

We used the implementation of this environment provided by
the OpenAI gym library1. We modified the reward function to favor
agents that stay in the center. This modification made the behavior
of avoiding walls emerge faster because the short-term maximiza-
tion of the reward was aligned with its long-term maximization.
We made the choice to change the reward function to speed up the
training and to provide easier experimentation and replication. The
reward given at time step t is given by the equation (1) where x is
the position of the cart, L is the length of the track. In the center
(x = 0), the agent receives 1, the maximum reward, while if it is on
the edges of the track (x± L), the agent receives 0, the minimum
reward.

rt =





cos
(
xπ
2L

)2
if t is not a final step

–100 else.
(1)

Cell state

There are 3 types of cells in a grid: the intermediate, the input, and
output cells.

The state of each cell is composed of 6 channels. The first is the
information channelwhere meaningful input and output informa-
tion transit. The third is identifying the inputs: it is equal to 1 in the
input cells, 0 elsewhere. The fourth similarly identifies the outputs.
The remaining three are hidden channels.

The state of the input cells cannot be changed, the information
channel transmits the observation from the environment, and the
other channels except the output identifier are set to 1. The values
of the information channel of the output cells are used as the output
of the system to be optimized to solve the task.

The meaning of each channel and the different types of cells are
represented in the figure 2.

Input encoding

We use redundancy in the inputs: each of the 4 physical observa-
tions of the environment is linked to 2 input cells. Because we have
4 types of observation, there are

(4
2
)

= 6 possible pairs of observa-

1 https://gym.openai.com/

tions. Once the input cells are arranged in a circle, there are 4 ∗ R
pairs of neighbors, where R is the amount of redundancy. We chose
R = 2, this way, every pair of observations is present as a pair of
neighbor input cells. This argument was introduced because we
hypothesized that the closer two input cells are, the easier it will be
to combine the information. Thus, we thought that this choice of
position could improve the opportunity for information combina-
tion. Furthermore, redundancy could also provide more robustness:
if an input cell is damaged, the information it holds is also contained
in an undamaged input cell somewhere else.

Note that the type of information contained in the input is not
directly provided. To know which observation each input cell en-
codes, the CA must rely on the spatial position of the inputs or the
value of the information channel.

The value of each observation is scaled by a constant factor be-
fore being transmitted to the input cell. The choice of the factor
corresponding to each observation was chosen to get similar ranges
of values in the information channel.

Cell position

The 8 inputs are arranged on a circle to form an octagonal shape
(dotted line) on a 32x32 grid with zeros at the boundaries as shown
in figure 3. The two output cells are offset by 2 cells from the center
of the octagon. We chose this configuration to ensure an almost
equal distribution of the distance between each input and output.
We hypothesized that the closer an input cell is to an output cell,
the more the input will influence the output. The position of the
input cell was then chosen to avoid any bias toward some inputs.

Model

Except for the design of the cell states, the neural CA architecture we
used is similar to the one described for the self-classifying MNIST
task [30]. The perception layer is composed of 20 learnable 3x3x6
filters, and the single hidden layer counts 30 units. In total, our
model has 1854 learnable parameters.

As in the original model, the update rule is stochastic: at each
step, each cell has a 0.5 probability of being updated. This choice is
made to avoid temporal synchronization that relies on a centralized
clock. The figure 4 summarizes the architecture of our model.

Training procedure

Our model can be abstracted as a black-box function that takes in-
puts (that will be fed to the information channel of input cells) and
transforms them into outputs (the information channel of output
cells). This function is differentiable with respect to its param-
eters (the neural network used as the update rule) and thus can
be optimized with classical gradient descent techniques. In this
case, we used the Adam optimizer [32] provided by the TensorFlow
library2. This choice was made as this is also the optimizer success-
fully applied to neural CA in [12] and [30]. We did not perform any
optimization of the training procedure (optimizer choice, hyperpa-
rameters, learning algorithm, etc) as this was beyond the scope of
this paper. Our main aim was to provide a proof of concept.

Algorithm

To tackle the cart-pole problem, we used Deep Q-learning [33]
where the usual artificial neural network is seamlessly replaced by
a neural CA. The deep Q-learning algorithm aims at approaching
the expected reward given a state and an action. More precisely, the

2 https://www.tensorflow.org/
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Figure 2. The role of the different channels and types of cells. Each cell is composed of a 6-dimensional vector, each dimension is called a channel. Different channels have
different behaviors: some are fixed (in red) others can change according to the update function (in black). Moreover, channels depend on the cell type. Input cells have only
constant channels except for their information channel that is defined by the observation of the environment. Excluding the identifier channels, intermediate cells are free to
evolve and can influence neighboring cells. While output cells are similar to intermediate cells, they can be identified by the output identifier channel and the value of their
information channel is used as a Q-value estimate.

Figure 3. The position of input (in red) and output cells (in yellow).

function to be learned is given by equation (2) where t is the index
of the current time-step. st is the current state and at the action to
evaluate. rt is the reward and γ is a discount factor.

Q(st, at) = E[rt+1 + γrt+2 + γ2rt+3 + ...|st, at] (2)

To keep the CA values in the information channel in a range
coherent with the other cells, we scale the outputs of the CA by a
factor of 100 to get the Q-value estimates. The reason for the scaling
is that the Q-value can be as low as -100 and as high as 1+γ+γ2 +... =

1
1–γ if the agent gets a reward of 1 for an infinite number of steps.
In practice, we used γ = 0.95 so the higher bound of the Q-value is
20. The factor 100 was chosen to bound the prediction (in the case
where they are close to the Q-value) to [–1, 0.2]: this is coherent
with the overflow loss that penalizes values outside [–5, 5], while
keeping some margin.

Loss function

The loss function for the task is the L2 loss between the output
and the target. To achieve long-term stability, we added a penalty
for cells that have channel values out of bound [-5,5]. Note that

excepted this overflow condition, the states of the intermediate
cells are not directly optimized, they are free to evolve insofar as
their influence on the outputs reduces the error. The formula used
to compute the loss is given in equation (3) where N is the size of
the grid, λ is a parameter to control the amount of overflow penalty,
and clip is a function for limiting the values to the threshold interval
[-5,5].

Loss = L2(outputs, target)+

λ

N2

N∑

i,j=1

6∑

chan=1
(clip(Gridi,j,chan, –5, 5) – Gridi,j,chan)2 (3)

Robustness

Damage

To increase the robustness of the system, we damage half of the
grids present in the pool. Damage consists of a circle of the grid
replaced by uniform random values in [-1,1], as shown in black in
figure 5. Note that damage impacts all the channels that can be
modified and that inputs are not affected by damage while outputs
are.

Noise

Before applying each update, we perturbed it with uniform noise.
Taking inspiration from what was done in [30], we used a noisy
update to favor a long-term stabilization of the cell states. In total,
the system has three layers of noise: the stochastic update where
half of the cells are randomly chosen not to be updated, the damage
of the grid, and the random perturbation of the values of the update.

Neural CA training

As introduced in [12] we used pool sampling for the states of the
neural CA during training to learn persistent behavior.

As described in the deep-Q learning algorithm, we alternate
phases where we explore the environment by letting the neural
CA controls the cart-pole agent and by taking random actions; and
training the neural CA using the target values based on the rewards
stored in the memory of the agent.

Paper C.1 Towards self-organized . . . (Variengien et al., 2021)
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Perception
20 3x3x6 learnable filters

+

Stochastic
update

Step N Step N+1
DenseDense ReLU

20 30 66

ReLU

Figure 4. The architecture of our model. Positive values are depicted in red, negative in blue. Green objects identify the learnable parameters of the model.

Figure 5. A damaged grid is shown on the information channel. The shape of the
damaged region is an irregular circle due to rasterization effects.

Environment exploration
To get a stable long-term behavior of the cart-pole agent we did
not use a fixed horizon for the environment. Instead, we use pool
sampling also for the states of the cart-pole, as done for the neural
CA grids.

The probability of taking a random action is given by the param-
eter ϵ that is decreased during the training of the agent, as in the
original deep-Q learning algorithm. The exploration of the envi-
ronment begins by sampling a grid from the grid pool, a cart-pole
state from the pool of environment states. Then we let the neural
CA, starting from the sampled grid, evolve for a random number of
steps from 50 to 60. After we choose the action that corresponds to
the greatest output of the neural CA, we obtain a new environment
state. We put the grid back in the grid pool and sample a new one.
We repeat this operation for K environment steps.

If the environment ends, we reset the environment to reach the
end of the K steps. After the K steps, the state of the cart-pole is
committed in the pool of environment states. We also randomly
replace grids by the initial state to be sure that the neural CA always
keeps the knowledge of how to start from a raw grid. The procedure
is illustrated in the figure 6 and its pseudocode can be found in the
algorithm 1.

Training
Between each exploration phase, we sample several batches of tran-
sitions (ot, at, rt, ot+1)—where ot is the observation at time t, at the
action taken, and rt the reward received—from the memory of the
agent that was stored during the exploration phases. We train the
neural CA according to the expression of the target value and the
error to optimize given by the deep-Q learning algorithm (equa-

tion (5)). Then, each transition is matched with a neural CA grid
randomly sampled among the pool of grids that we let evolve for
50 to 60 steps. We next compute the loss on the final state of the
grid, according to the formula (5) where yi is the target value for a
given transition at time j sampled from the memory of the agent,
and Q(oj, aj;θ) is the output of the neural CA for an action aj and an
observation oj. θ are the parameters of the update rule to be opti-
mized. We perform a gradient step on a batch composed of 16 such
grids. As described in [12], back-propagation through time is used
to compute the gradient of the loss with respect to the parameters of
the update rule. The pseudocode of the training phase is described
in the algorithm 2. The exploration and training procedure are used
in the algorithm 3 that describes the full optimization process of
the neural CA.

• yj =
{
rj if j is a final step
rj + γ ∗maxa′Q(oj+1, a′;θ) else.

(4)

• TaskLoss = (yj – Q(oj, aj;θ))2 (5)

The training procedure runs for around 15k gradient descent
steps and 3k environment steps. The training took between 20 min-
utes and 1 hour on a GeForce GTX 1080 Ti GPU. We used a learning
rate of 5e-3 that decays to 5e-4 and then to 5e-5 after respectively
1000 and 10000 steps. Note that the hyperparameters used in the
training were not optimized and we mainly aimed at solving the
task, not necessarily in an efficient way.

Model initialization

We found that when trained directly for the task, the model was
trapped in a local minimum where it outputted constant values,
no matter the state of the inputs. We think that this is because
there need to be iterated applications of the update rule on each of
the intermediate cells between the inputs and outputs to transmit
and modify the information. This repeated use of a neural network
makes the gradient vanish, as observed in vanilla Recurrent Neural
Networks [34].

To solve this problem, we first trained the neural CA on an easier
task: both outputs were optimized to compute the mean of the
inputs. We found that it was able to learn with a reasonably low
error after several thousand gradient descent steps.

This initialization enables the neural CA to learn to stabilize the
states of the cells, make an information link from input to output,
and a linear combination of the input values at the output cells.
This procedure is similar to what is used in curriculum learning
[35] where an easy subset of the task is learned before tackling
the whole problem. Here we did not use a sub-task as a starting
point but a different task that shared common requirements. This
initialization phase appears essential in the experiments we con-
ducted. However, we do not think that this is specific to the task
to be learned. This can be seen as a general "warm-up" phase to
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Pool of gridsPool of environment states

Pool
Sampling

Take random action 
with ε probability

Transmit the 
observations to 
the input cells

N  neural CA steps

Take the action 
corresponding to the 

greater output cell value

Environment step 1 Environment step 2 Environment step K

Pool
Committing

Pool
Sampling

Pool
Committing

Figure 6. The procedure for the exploration phase. We match cart-pole states and grids randomly sampled from two independent pools. This provides a way to simulate
long-term dynamics both for the cart-pole environment and for the neural CA. In practice, we used K=2.

learn how to connect input and output cells.
The whole training procedure can be reproduced online in a

Google Colab notebook3.

Results

From estimating Q-values to stable behavior

To get a persistent control of the cart-pole agent, we begin by trans-
mitting the observation of the current state in the input cells. We
let the neural CA evolve for a random number of steps between 50
and 60. We take the action corresponding to the maximum out-
put value and we input the new observation to the neural CA. The
grid is initialized with uniform random values and the same grid
is used during the whole simulation. After training, the cart-pole
controller with neural CA is tested for how long the pole can remain
balanced. Moreover, we verify its resistance to damage, noise, and
input deletion.

Our model was able to solve the cart-pole problem and achieve
long-term stability of both the pole balancing and of the states of
the CA. It was able to balance the pole for more than 10k simulation
steps. Detailed performance evaluation can be found in table 1.

Resulting neural CA

Beyond performance, it is interesting to visualize the activities of
the neural CA during the control of the cart-pole agent.

In figure 8, we observe that the first 50 steps lead to a precise
spatial organization of the grid and, in figure 7, this phase corre-
sponds to the stabilization of the output values. Once stabilized,
this global shape will not change during the whole run. This can
be thought as the developmental part of the neural CA. This phase
can be seen in the videos on the interactive version of this preprint
available at https://avariengien.github.io/self-organized-control/.

3 https://colab.research.google.com/github/aVariengien/self-organized-
control/blob/main/code/Towards-self-organized-control-notebook.ipynb

Then, during the remaining part of the simulation, the spatial
activity is changing in phase with the physical observations, as
shown in figure 9. This is the computing phase. Even if the two
phrases seem to exist in the different models we found, the exact
organization of the grid differs significantly, as visible in figure
10. It is exciting to see that a wide variety of shapes emerges from
optimizing for the same function!

Note that the output values are always really close to one another.
Since the pole is in a balanced state, the difference between the
expected reward after going left or right is small. Going left then
right or going right then left will not yield a great difference in total
reward.

Robustness abilities

During training, the neural CA has always at least 50 steps between
the update of the inputs, where damage can occur, and the readout
of the output values. During testing, we also experimented with
a more challenging type of damage we called uniformly distributed
damagewhere at each CA step the grid has a constant probability of
being damaged.

Because this type of damage was more difficult to cope with,
we decreased the damage frequency: on average, the CA receives
one damage every 4 input updates with uniformly distributed dam-
age and one every 2 input updates with the damage used during
training.

The performance of the neural CA with different perturbations
is summarized in the table 1. The score denotes the number of
environment steps before the pole falls, or the cart hits a wall. In
each situation, we computed the mean score on 100 independent
runs, as well as the standard deviation. To ease the analysis, we
conducted the experiments of this section only on a single model,
nonetheless, the main conclusions generalize to the other models.

Resistance to damage

We found that the neural CA was able to maintain its shape and its
function despite frequent damage. In the figure 11 we can observe

Paper C.1 Towards self-organized . . . (Variengien et al., 2021)
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Figure 7. On the left, the states of the neural CA. For the information channel, negative values are in blue, positive in red while the hidden channel is represented as RGB
values. Bottom right: the plot of the output values of the neural CA. The vertical dotted lines denote when the action that has the maximum expected reward is taken by
the cart-pole agent. Green triangle: "push left" action, orange triangle: "push right" action. Videos of the cart-pole agent and the neural CA in action are available at
https://avariengien.github.io/self-organized-control/

.

Figure 8. The state of the grid during the 50 first phase. The information channel is displayed on the top. Negative values are in blue, positive in red while the hidden channels
(on the bottom) are represented as RGB values. We observe an evolution of the grid from a disorganized state to a precise, stable pattern.

No damage Damage after input update Uniformly distributed damage

No noisy update 13273± 11905 2598.19± 2241 391.6± 283
With noisy update 1296.3± 899 739.7± 473 345.7± 214

Table 1. Performance of the cart-pole agent with several types of perturbation. The score is the number of time steps the cart-pole stays balanced
without hitting walls. The scores are averaged on 100 runs and are notedmean ± standard deviation.
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Figure 9. The state of the grid and of the environment in 3 situations, taken from the same run. The information channel is displayed on the top. Negative values are in blue,
positive in red, while the hidden channels (on the bottom) are represented as RGB values. We observe that the global pattern of the grid remains highly similar. However,
subtle variations around input cells are visible, as the ones highlighted in the circular enlargements of a grid region, on the top right of the grids.

Figure 10. The stable spatial organization of the grid for 3 independently trained neural CA. The information channel is displayed on the top. Negative values are in blue, positive
in red, while the hidden channels (on the bottom) are represented as RGB values. Their dynamics can be observed in videos available at https://avariengien.github.io/self-
organized-control/

.
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Figure 11. A slide sequence of grids during the recovery from damage. The information channel is displayed on the top. Negative values are in blue, positive in red, while the
hidden channels (on the bottom) are represented as RGB values. On the left is the state of the cart-pole during the damage and the evolution of the output values of the neural
CA. We can observe that the grid recovers its structure. Moreover, a temporary perturbation of the output value can be observed on the plot on the bottom left. Videos of the
recovery can be found at https://avariengien.github.io/self-organized-control/

.

how the grid recovers its shape after damage. Although damage can
lead to great perturbations in the output values and so to random
actions, the agent is still able to stabilize the pole for several hundred
steps.

Moreover, the neural CA was not trained to recover from uni-
formly distributed damage, this explains the greater diminution in
the average score visible in the table 1.

Resistance to noise

The amount of noise added to each update is often of the same order
as the difference between the two outputs when the pole is in a
balanced state. This is why we observe in the figure 12 the green
and orange curves are subject to stochastic variations that lead
them to cross many times between each readout. The policy that
controls the cart-pole agent is thus heavily randomized. Despite the
noisy update, the neural CA can produce a probability distribution
of actions such that a stable behavior emerges.

Resistance to input deletion

One of the particularities of this neural CA model is its flexibility.
For instance, the number of inputs and outputs can vary without
changing the architecture. We only have to replace input or output
cells with intermediate ones.

We were interested in exploring this flexibility and whether our
model showed robustness to input deletion. Because observations
from the cart-pole environment are encoded redundantly, we tested
if it was able to exploit this particularity even if it was not trained
for this.

In the table 2, we can observe the consequences of deleting each
input. We computed the mean scores on 25 independent runs for
each input deletion. Each column corresponds to one observation
type, each row corresponds to the top or the bottom input cell en-
coding this observation being deleted (see figure 3 for the position
of the input cells).

The system seems to be dependent on a few input cells that se-
riously impair performances such as the top input cell encoding
for pole angle and the ones corresponding to the angular velocity,
while others seem not to significantly affect its abilities. We hy-
pothesize that even if it has not been directly trained to be robust

Figure 12. A neural CA controls a cart-pole agent with noisy updates. On the left is
the grid of the neural CA. For the information channel, negative values are in blue,
positive in red while the hidden channel is represented as RGB values. Bottom right:
the plot of the output values of the neural CA. The vertical dotted lines denote when
the action that has the maximum expected reward is taken by the cart-pole agent.
Green triangle: "push left" action, orange triangle: "push right" action. We can
observe more crossing of the plots of the output values due to the noisy update. The
neural CA has to compensate for the random perturbation of the output values.

to input deletion, the robustness to damage and noise includes also
adaptation to unseen perturbation.

It seems that the inputs corresponding to the cart position do
not disturb the control abilities. So we experimented with how
the system will react to sensory deprivation by removing these
two input cells such that the system has no longer access to this
observation. It is still able to maintain the pole balanced for several
thousand steps (score of 3926.7 ± 2383 on 25 runs without noise
and damage). The reconfiguration of the grid can be observed in
the figure 13.

Influence field visualization

In the videos showing neural CA and the environment side to side,
we can observe that the regions around input cells are producing
a dynamic pattern in phase with the movements of the cart-pole.
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Cart position Cart velocity Pole angle Pole angular velocity

Top input deleted 814.1± 632 293.4± 144 53.6± 37 103.2± 30
Bottom input deleted 814.6± 608 168.2± 46 924.6± 601 267.2± 139

Table 2. Mean score and standard deviation of 25 independent runs after each input cell deletion. The CA were perturbed with damage after the
update (on average one every 2 cart-pole steps) and noisy update.

Figure 13. A neural CA controls a cart-pole agent with two deleted input cells. On the
left, the neural CA grid. The input cells corresponding to the cart position have been
deleted and replaced by intermediate cells. No noise nor damage was added. On the
left is the grid of the neural CA. For the information channel, negative values are in
blue, positive in red while the hidden channel is represented as RGB values. Bottom
right: the plot of the output values of the neural CA. The vertical dotted lines denote
when the action that has the maximum expected reward is taken by the cart-pole
agent. Green triangle: "push left" action, orange triangle: "push right" action.

We develop a visualization tool to investigate the region of neural
CA that is influenced by a particular input. To this end, we com-
pared the evolution of the neural CA between a baseline case and
a case where a particular input was perturbed. We then computed
the relative mean of the difference for each of the cells in the grid,
according to the formula (6). This process is repeated on different
observations sampled from the environment and for several grids
to get consistent patterns.

The expression of the deviation used to quantify the influence
of a given input on the other cells is given in equation (6). The
norm is the L2 norm and is computed by treating each cell as a
6-dimensional vector. In practice, the mean was computed for 50
different observations, and for each observation, we used 4 inde-
pendent grids.

Deviation =
Mean(Norm(Gridbaseline – Gridperturbed))

Mean(Norm(Gridbaseline), Norm(Gridperturbed))
(6)

We used as a perturbation the multiplication by a random num-
ber between -1 and 1. This ensures that the input will not be out
of the range of the possible values while allowing for a sufficient
range to get interpretable visualization. We experimented with
different types of perturbation, the resulting visualizations were
similar. Each input cell is perturbed independently: its sister input
cell transmitting the same observation is not affected by the per-
turbation. The region of influence for each cell is visualized in the
figure 14 for 3 different models.

For the model 1, we can observe a localized influence of the input
cell with a tendency to be directed toward the right. We also discov-
ered that the inputs that cause the least performance loss if deleted
(see table 2) were the ones positioned on the right. We hypothesize
that the input cells on the right side of the grid had less influence on
the outputs because the CA learned a rule that can be summarized

as "propagate information toward the right". This is allowed by the
fact that information is redundant and that the majority of input
cells on the right hold the same observation as an input cell on the
left side. Because this propagation property seems also shared with
the models 2, 3 and other models we trained, we hypothesize that
the input cells placed on the left could hold the most useful com-
binations of information. Nonetheless, further experiments are
needed to characterize a global direction of propagation depending
on the position and on the nature of the input cells.

For the model 2, we observe a great amount of deviation even
without any perturbation. This makes it difficult to interpret the
results with perturbation. It seems that the influence of a given
input cannot be visible by the fact that the values of another cell are
affected, but in the way these values change.

The model 3 could be the intermediate between the two prece-
dents. It presents more deviation without perturbation, while still
exhibiting a clear increase in deviation localized around perturbed
inputs.

The conclusions that can be drawn from these visualizations are
still limited and must be taken carefully. This technique is shared
as an attempt to understand the underlying dynamics of the re-
sulting self-organizing system. We think that the development of
visualization tools could be a useful step to direct the future design
of self-organizing systems.

Discussion

In this work, we demonstrated that neural CA can be used as a differ-
entiable black-box function theoretically extending its applications
to the approximation of any functions. Here we demonstrated its
abilities in the context of Deep-Q learning. We used it to solve the
simple cart-pole problem. A direct future challenge would be to
apply it to more challenging tasks where the input and output di-
mensionality is much higher.

The computing abilities of the neural CA were maintained over
several hundreds of thousand iterations, producing an emergent
stable behavior in the environment it controls for thousands of steps.
Moreover, the system obtained demonstrated life-like phenomena
such as a developmental phase, regeneration after damage, stability
despite a noisy environment, and robustness to unseen disruption
such as input deletion. In the future, we could also experiment
with randomized input and output positions. This would add new
challenges: recognize the role of each input and output cell and then
create flexible pathways to transmit and combine information.

Even if the developmental phase and the computing phase used
the same rules, our system cannot adapt to new environments once
the training ends. Future works could explore the possibility of
adding plasticity abilities and useful memory of past events stored
in the states of the cells. This would mean that the neural CA could
recognize a particular situation, and adapt its computations ac-
cordingly. Moreover, we envision that even metaplasticity found in
biological neurons [36] could be achieved by neural CA.

Besides the biological plausibility of neural CA, their interest
also relies on the fact that they are a highly decentralized comput-
ing model. Neural CA could be executed efficiently on dedicated
hardware using locally connected microprocessors such as cellular
neural networks [37]. Other works explored exciting directions
such as framing reaction-diffusion mechanisms as neural CA [31]
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Figure 14. Visualization of the region of influence of each input cell. We plotted the decimal logarithm of the deviation between a standard input and a perturbed one. The
perturbed input cell is symbolized by a red cross, black dots identify the output cells. The natural deviation without any perturbation, due to the stochasticity of the system is
shown on the right.
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that would potentially lead to implementation using chemical com-
puting. Those reaction-diffusion systems could also be applied to
other tasks than shape homeostasis, such as control.

Beyond the dissociation of the environment and the controller,
we could imagine a neural CA that could perform both shape home-
ostasis and controls the movement of this shape at the same time.
If a suitable physical implementation is found, such works could
give rise to new robotics and artificial devices with self-organizing
abilities that are for now reserved for the living world.

Additional experiments

In addition to the cart-pole balancing problem, we explored other
tasks and different variations of the neural CA model. Here is a short
list of the other tasks we tried that relate to problems solved by bio-
logical organisms. To keep this paper short, we chose to focus on a
single task, but videos of our additional results and the code to re-
produce them can be found at https://github.com/aVariengien/self-
organized-control/tree/main/code/AdditionalExperiments.

• Exploring an environment to find a target cell: In this task, new
cells can grow only next to already living cells. Each cell has an
energy value that controls its fire rate. The goal is, starting from
a single alive cell, to find a randomly placed target while using
in total the lowest amount of energy.

• Following a gradient: This task is similar to the previous but
we provide information for the position of the output. Each
cell possesses a read-only channel that is proportional to the
distance to the target. This way, the growth can be directed
toward the target cell instead of being limited to strategies of
random exploration.

• Computing Boolean functions: We experimented with comput-
ing simple Boolean functions such as XOR or its negation, NOT
XOR. The environment includes 2 input and 1 output cells. In ad-
dition to damage and noise, the position of the input and output
cells are randomized such that to solve the task, the cells must
communicate without relying on fixed positions.
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Algorithm 1 The exploration procedure to gather experiences of
the environment and store them in the memory of the agent. NCA
is the neural CA function that updates the grids, G is the pool of
grids, S the pool of states, D the agent memory and K the number
of environment steps to explore.

1: procedure EXPLORE(NCA, G, S, D, K)
2: Sample s1 from S
3: Set the environment E to state s1 and observe o1
4: for t=1 to K do
5: Sample GridBatch from G
6: N ← RandomInt(Stepmin, Stepmax)
7: for step = 1 to N do
8: GridBatch← NCA(GridBatch, ot) ▷ NCA compute a

neural CA step on a batch of grids.
9: end for

10: for grid in GridBatch do
11: With probability d, perform damage on grid
12: end for
13: Commit GridBatch back to G
14: Sample Grid from GridBatch
15: With probability ϵ select a random action at
16: Otherwise select at = argmaxaGridxa,ya,0
17: Execute at in E and observe reward rt and observation ot+1
18: Store the transition (ot, at, rt, ot + 1) in D
19: if t+1 is terminal then
20: Set E to an initial state and observe ot+1
21: end if
22: end for
23: end procedure

Algorithm 2 The implementation of the deep-Q learning algorithm
applied to neural CA. NCA is the neural CA function that updates
the grids, G is the pool of grids, D is the agent memory and R is the
number of transitions to sample in the agent memory to train the
NCA.

1: procedure TRAIN(NCA, G, D, R)
2: Sample R transitions (otj , atj , rtj , otj+1) from D of previous

time steps t0, ..., tR–1
3: for i = 0 to RB – 1 do
4: Arrange the transitions of time steps
ti∗B, ti∗B+1, ..., t(i+1)∗B–1 in a batch Ti

5: Sample GridBatchi,GridBatch′i from G
6: Match each transition (otk , atk , rtk , otk+1) from Ti to a
Gridk in GridBatchi and to a Grid′k in GridBatch′i

7: for k=1 to B do
8: for step = 1, RandomInt(Stepmin, Stepmax) do
9: Gridk ← NCA(Gridk, otk+1) ▷ To ease

the reading of the pseudocode, NCA can also be applied
to individual grids.

10: end for

11: yk ←
{
rtk if tk is a final step
rtk + γ ∗maxaGridk,xa,ya,0 else.

12: for step = 1, RandomInt(Stepmin, Stepmax) do
13: Grid′k ← NCA(Grid′k, otk )
14: end for
15: TaskLossk ← (Grid′k,xatk

,yatk
– yk)2

16: Lossk ← TaskLossk + λ ∗ OverFlow(Grid′k)
17: end for
18: Compute the gradient Grad of∑Bk=1 Lossk with respect to

the parameters of NCA using BPTT
19: Update the parameters of NCA using Grad and a gradient-

descent based optimization
20: end for
21: end procedure

Algorithm 3 The full procedure to train a neural CA to perform a
reinforcement learning task.

1: Initialize the agent memory D empty
2: Initialize randomly the pool of grids GwithM batches of B grids
3: Initialize the pool of environment state S with L initial states
4: Initialize NCA
5: for iteration=1 to I do
6: EXPLORE(NCA,G,S, D,K)
7: TRAIN(NCA,G, D)
8: end for
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ABSTRACT

The discovery of complex multicellular organism development took millions of
years of evolution. The genome of such a multicellular organism guides the de-
velopment of its body from a single cell, including its control system. Our goal is
to imitate this natural process using a single neural cellular automaton (NCA) as
a genome for modular robotic agents. In the introduced approach, called Neural
Cellular Robot Substrate (NCRS), a single NCA guides the growth of a robot and
the cellular activity which controls the robot during deployment. In this paper,
NCRSs are trained with covariance matrix adaptation evolution strategy (CMA-
ES), and covariance matrix adaptation MAP-Elites (CMA-ME) for quality diver-
sity, which we show leads to more diverse robot morphologies with higher fitness
scores. While the NCRS can solve the easier tasks from our benchmark envi-
ronments, the success rate reduces when the difficulty of the task increases. We
discuss directions for future work that may facilitate the use of the NCRS approach
for more complex domains.

1 INTRODUCTION

Multicellular organisms are made of cells that can divide into many, which specialize in control-
ling and maintaining the body, sensing the environment, or protecting from external threats. Such
features were acquired by evolution from the first living cell. After millions of years, colonies of
unicellular organisms appeared and were essential to the development of multicellular organisms
with cellular differentiation (Niklas & Newman, 2013). Developmental biologists study that the
growth and specialization of an organism are coordinated by its genetic code (Slack & Dale, 2021).

The field of artificial life tries to create life-like computational models taking ideas from biological
life, such as decentralized and local control (Langton, 2019). One of the sub-fields of artificial life,
artificial development (Harding & Banzhaf, 2009; Doursat et al., 2013), focuses on modeling or
simulating cell division and differentiation. The techniques applied in artificial development are
often based on the indirect encoding of developmental rules (i.e. analogous to the genome of a
biological organism describing its phenotype). This type of encoding facilitates the scaling of an
organism because the information in the genome is much smaller than in the resulting phenotype.
This property is referred to as genomic bottleneck (Zador, 2019; Variengien et al., 2021), and it
implies that the genetic code of an organism compresses the information to grow and maintain its
body, and in some species even complex brains.

One of the simplest computational models of artificial life or dynamical systems is a cellular au-
tomaton (CA) (Wolfram, 2002). A CA can be described as a universe with discrete space and time,
which is governed by local rules without any central control. Such a discrete space is divided into a
regular grid of cells and can possess any number of dimensions. The most commonly studied CAs
have one or two dimensions and their most well-known versions are, respectively, elementary CA
(Wolfram, 2002) and Conway’s Game of Life (Conway et al., 1970). Both have cells with binary
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states, but other CA can have many discrete states or continuous ones. In the 1940s, the first CA
was introduced by Ulam and von Neumann (Topa, 2011). Von Neumann aimed to produce self-
replicating machines, and Ulam worked on crystal growth. In 2002, a CA with rules defined by
an artificial neural network was described (Li & Yeh, 2002). Nowadays, this type of approach is
called neural cellular automaton (NCA). In 2017, Nichele et al. (2017) presented an NCA that has
developmental features that were learned through neuroevolution using a method called composi-
tional pattern-producing network (Stanley, 2007). Recently, Mordvintsev et al. (2020) introduced a
differentiable NCA, which possesses growth and regeneration properties. In their work, an NCA is
trained through gradient descent to grow a colored image from one active “seed” cell.

In evolutionary robotics, co-evolution of morphology and control has the inherent challenge of opti-
mizing two different features in parallel (Bhatia et al., 2021). It also presents scalability issues when
it deals with modular robots (Yim et al., 2007). Our goal is to implement an approach where the op-
timization happens in just one dynamical substrate with local interactions. Here we introduce such a
system, a Neural Cellular Robot Substrate (NCRS), in which a single NCA grows the morphology
of an agent’s body and also controls how that agent interacts with its environment. The NCA has
two phases (Fig. 1). First is the developmental phase, in which the robot’s body is grown, including
where to place its sensors and actuators. In the following control phase, copies of the same NCA
are running in each cell of the agent, taking into account only local information from neighboring
cells to determine their next state. The optimization task thus entails figuring out how to transmit
information from the robot’s sensors to its actuators to perform the task at hand.

We also introduce a virtual environment with three benchmark tasks for evaluating the NCRS’ capac-
ity of designing a robot and then controlling it. Two benchmarks consist in growing and controlling
a robot to approach a light source (Fig. 1b and Fig. 2a). The third task challenges the robot to carry
a ball to a target area. In this benchmark, a second type of rudimentary eye is added, so the robot
can differentiate the ball and the target area (Fig. 2b).

The main contribution of this work is the introduction of a single neural cellular automaton that
first grows an agent’s body and then controls it during deployment. While the solved bench-
mark domains are relatively simple, the unified substrate for both body and brain opens up
interesting future research directions, such as opportunities for open-ended evolution (Stanley,
2019). The source code of this project is available at https://github.com/sidneyp/
neural-cellular-robot-substrate.

Figure 1: Neural Cellular Robot Substrate (NCRS). In the developmental phase (a), the robot is
grown from an initial starting seed, guided by a neural cellular automaton (c). Once grown, the same
neural cellular automaton determines how the signals propagate through the robot’s morphology
during the control phase (b).
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(a) Light chasing with obstacle task (b) Carrying ball to target
task

Figure 2: Extensions from the light chasing task. (a) It depicts the original size of the playing field,
which is 60.

2 RELATED WORK

The co-design of robot bodies and brains has been an active area of research for decades (Medvet
et al., 2021; Sims, 1994; Komosiński & Ulatowski, 1999; Veenstra & Glette, 2020; Gupta et al.,
2021). Brain and body co-design stands for producing a control policy and a morphology for a
robotic system. For example, in the work of Lipson & Pollack (2000) the same genome directly
encodes the robot’s body and the artificial neural network for control. A method that uses genetic
regulatory networks to define separately a body and an artificial neural network was introduced by
Bongard & Pfeifer (2003) and named artificial ontogeny. The evolved robots are able to locomote
and push blocks in noisy environments. More recent work by Bhatia et al. (2021) presents several
virtual environments and also an algorithm for brain and body co-design with separated descrip-
tion methods for the morphology and control. In comparison with NCRS, our co-design algorithm
consists of only one neural cellular automaton.

The work on NCAs by Mordvintsev et al. (2020) is one of the first examples of self-organizing
and self-repair systems that use differentiable models as rules for cellular automata. Before that,
NCA models were typically optimized with genetic algorithms (Nichele et al., 2017). After the
work on growing NCA, other neural CAs were introduced, including methods optimized without
differentiable programming. There exist other generative methods for growing 3D artifacts and
functional machines (Sudhakaran et al., 2021), for developing soft robots (Horibe et al., 2021).
Moreover, an NCA was used as a decentralized classifier of handwritten digits (Randazzo et al.,
2020).

The developmental phase of our approach is similar to the generative method with NCA for level
design trained with CMA-ME in the work of Earle et al. (2021). Morphology design is also present
in other works (Hejna III et al., 2021; Talamini et al., 2021; Kriegman et al., 2018; Brodbeck et al.,
2015). The control phase is based on the NCA for controlling a cart-pole agent introduced by
Variengien et al. (2021), but their NCA is trained using a reinforcement learning algorithm named
deep-Q learning and the communication between NCA and environment happens in predefined cells.
Our approach, NCRS, unifies these two methods by having two phases. The first phase is generative,
and the second one is an agent’s policy.

3 APPROACH: A UNIFIED SUBSTRATE

The modular robots grown by the NCA consist of different types of cells such as sensors, actuators,
and connecting tissue. After growth, the robot is deployed in its particular environment. Importantly,
in our approach, the same NCA controls both the growth of the modular robot (Fig. 1a) and the robot
itself (Fig. 1b). Therefore, it is a unified substrate for body-brain co-design and is called Neural
Cellular Robot Substrate (NCRS). The architecture of NCRS is illustrated in Fig. 1c. When the
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(a) Final time-step of developmental phase (b) Final time-step of control phase

Figure 3: Channels of the neural cellular automaton in different stages.

growth process is finished, the channels responsible to define the body modules reflect the robot’s
morphology, then the NCA can observe and act in the environment using the cells assigned to the
specific types of modules, which are sensors, wheels, and tissue.

The state of a cell is updated considering the eight surrounding neighbors and itself, then it forms a
3×3 neighborhood. The values of the nine cells with all the n channels are processed by a trainable
convolutional layer with 30 filters of size 3 × 3 × n. Followed by a dense layer of 30 neurons and
another one with n neurons for the n channels of the neural CA. After all cells have been computed,
the result of this process is added to the previous state of the neural CA, and then it is clipped to the
range of [−5, 5]. This update is only valid for the cells that are considered “alive”, which are the
ones that have their value in the body channel greater than 0.1 and their neighbors. This architecture
is very similar to the ones in self-classifying MNIST (Randazzo et al., 2020) and in self-organized
control of a cart-pole agent (Variengien et al., 2021).

The channels have specific roles in the neural CA, as shown in Fig. 3. The number of channels
n differs because of the different number of sensors in the types of benchmark tasks. The body
channel is the one that indicates that there is a body part in that cell if its value is greater than
0.1. The neighbors of a body part are allowed to update their states because they are considered
“growing”. The next channel has fixed values and works as a control flag. When the neural CA is
in the developmental phase, all cells in this channel are set to zero. When it is in the control phase,
they are set to one. The following channels are responsible to define the type of the body part. The
channel with the highest value is the one that specifies the body part. In the case of a tie, the first
channel is selected. The order of those channels is: body/brain tissue, light/ball sensor, target area
sensor (if needed), and wheel. In this way, it can define a robot as depicted in Fig. 1a. Then, there
are the hidden channels to support the computation in the neural CA. For all benchmark types, the
neural CA contains six hidden channels. Finally, the input/output channel, which is the one that
receives the values from the sensors and gives the values to the actuators (wheels).

The initial state of the neural CA is a “seed”. The middle cell of the grid has the state set as one
in the body channel, and the rest is zero. After a few time-steps in the developmental phase, all
channels are updated except the control flag channel. This phase lasts for ten time-steps. The end
of the developmental phase is represented in Fig. 3a. After development, the control phase starts. In
this phase, the benchmark environment initializes with the developed robot body. For advancing one
time-step in the environment, the NCA takes two time-steps for defining an action after receiving
observations from the sensors. The body and body parts channels become fixed and their values
are defined by the robot body. This is used to support the neural CA by identifying the cells with
body modules, such as tissues, sensors, and actuators. The cell is assigned the value one to the
body channel if there is a body part and to the specific body parts channel. Fig. 3b shows this
assignment for the identification of body parts during the control phase. The robot designed by this
NCA is depicted in Fig. 4a. At the start of the control phase, the cellular activity of the hidden and
input/output channels is set to zero. In the input/output channel, only the input cells are fixed and
their values come from the sensors.
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In our neural CA, there is no noise. Even all “alive” cells are updated every time-step. This is done
because the stochastic update or any other type of noise would affect the development of the robot
body. After the developmental phase, the same model could produce different types of robot body.

For our experiments, the neural cellular automaton has a grid of size 5 × 5. Therefore, it generates
a body for an agent with the same size. Since this is a neural CA, the grid size does not affect the
number of trainable parameters. The light chasing and light chasing with obstacle environments
require just the light sensor. Therefore, the robot can have tissue, light sensor and wheel. A wheel’s
orientation is always vertical during the initialization of the benchmark environment. The wheel
rotates upwards and downwards relative to the initial angle of the robot. The maximum speeds for
each of those directions are, respectively, +1 and -1. This takes three body part channels. With one
body, one control flag, six hidden, and one input/output channels, the total number of channels is 12.
In this way, the number of trainable parameters is 4,572. In the carrying ball to target environment,
the robot needs one additional sensor. Therefore, it adds one more channel. It results in a neural CA
with 4,873 trainable parameters.

4 BENCHMARK ENVIRONMENTS

To test the capacity of controlling the developed robot, we implemented three benchmark envi-
ronments, which are: light chasing (LC), light chasing with obstacle (LCO), and carrying ball to
target (CBT). They are environments where a modular robot equipped with simple light sensors and
wheels can be evaluated. In those environments, we decided that the size of the playing field and the
distance between the objects are affected by the maximum size that the robot can have. Thus, the
larger the robot can be, the bigger the playing field. In our experiments, we use a robot and a neural
cellular automaton grid with size 5 × 5. Because the possible maximum size of the robot is 5, we
chose the size of the playing field to be 60.

The fitness score is calculated using the average score of 12 runs where the location of the agent,
light, ball, and target can differ for each run. The light or ball has some predefined regions to be
initially placed.

The benchmark environments are based on the implementation of the top-down racing environment
in Open AI gym (Brockman et al., 2016). We use the pybox2d, which is a 2D physics library in
Python.

4.1 LIGHT CHASING

The light chasing (LC) environment is shown in Fig. 1b. The goal of the agent is to be closer to the
light during the entire simulation. The agent starts in the middle of the playing field. One light is
randomly placed around the region of one of the four corners of the playing field. The fitness score
is calculated by the average distance between the center of the robot and the center of the light over
all simulation time-steps, and a successful run means that this distance reached less than 10 times
the module size. The activity s of the agent’s light sensors is calculated as:

s = e−distance/playfield, (1)

where the distance between the objects is normalized by the size of the playing field playfield,
which is 60. The values of the sensor activity or fitness score are between 0 and 1, where 1 means
no distance. The values exponentially decay to 0 with an increase in distance.

4.2 LIGHT CHASING WITH OBSTACLE

The light chasing with obstacle (LCO) environment is a more difficult version of the light chasing
one (Fig. 2a). The robot does not have sensors to detect the obstacle, thus its morphology plays a
bigger role in this benchmark. The passage width is calculated by the possible maximum size of
the robot. If the robot can have up to 5× 5 body parts, then the passage width would be the size of
three body parts. The robot is randomly initialized at the bottom of the playing field. An obstacle is
procedurally generated with a target passage width and wall roughness. The obstacle has the shape
of a funnel because there are no sensors to it, then this helps the robot to reach the passage depending
on its body. The passage is randomly located on the horizontal axis and fixed on the vertical axis.
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The light is at the top and after the obstacle. The initial light location has four predefined regions
on the horizontal axis, which are left, center-left, center-right and right. The fitness and success
definition are the same as the light chasing task.

4.3 CARRYING BALL TO TARGET AREA

Among the three benchmark environments, the task to carry a ball to a target area is the most difficult
one (Fig. 2b). For the control phase, the robot needs to move towards the ball, and then move to the
target area without losing the ball during the transport. For the developmental phase, the body of the
robot needs to be adequate to push or kick the ball to the target area, and properly placing the sensors
of each type, so it can successfully locate ball and target area. The agent is located at the bottom
in a random horizontal location. The ball is located in the middle of the vertical axis of the playing
field, but it has the same four predefined regions as the light chasing with obstacle environment. The
target is located at the top and its location on the horizontal axis is randomly defined. Besides the
sensor for the ball (or light for the other two environments), there is a new sensor type that calculates
the distance to the center of the target area (following equation 1).

The fitness score of this environment is the average of the distance between robot and ball, and the
distance between the ball and the center of the target area. Since they are distances used to calculate
the fitness score, they are normalized using equation 1. The definition of success in this task means
carrying the ball to the target, so it can have a distance less than ten times the module size of the
robot.

5 TRAINING METHODS

We have chosen to use some derivative-free optimization methods because NCRS needs some ad-
justments for using deep reinforcement learning because of the variable number of inputs and outputs
(Variengien et al., 2021). They are the covariance matrix adaptation evolution strategy (CMA-ES)
(Hansen & Ostermeier, 1996) and covariance matrix adaptation MAP-Elites (CMA-ME) (Fontaine
et al., 2020). The latter is used to add quality diversity to the former, broadening the exploration
of robot designs. For both training methods, we use the library CMA-ES/pycma (Hansen et al.,
2019). There are two training methods and three benchmark tasks. This gives a total of six different
combinations. Because of the computational demands, each of these combinations was trained only
once.

The training process is performed entirely on a CPU. To speed up evaluation times, robots with a
design that would not work properly in the environment are not simulated. For the two light chasing
environments, robots must have at least one light sensor and two actuators. For the carrying ball to
target, they must have one sensor of each type and two actuators. The fitness scores of the failed
designs are calculated according to the number of correct parts they have. For each correct body
part, the fitness score increases by 0.01.

To compare the quality diversity of CMA-ES and CMA-ME, we use the percentage of cells or
feature configurations filled, and QD-score. They measure quality and diversity of the elites (Pugh
et al., 2016). The QD-score is calculated by summing the fitness score of all elites and dividing it by
the total number of possible feature configurations. Moreover, CMA-ES and CMA-ME have their
elites stored, even though CMA-ES does not use elites during training.

5.1 COVARIANCE MATRIX ADAPTATION EVOLUTION STRATEGY

CMA-ES is one of the most effective derivative-free numerical optimization methods for continuous
domains (Fontaine et al., 2020). CMA-ES runs 20,000 generations for all environments. The initial
mean is 0.0 for all dimensions, and the initial coordinate-wise standard deviation (step size) is 0.01.
The population size or the number of solutions acquired to update the covariance matrix is 112. This
number was selected by the number of available threads in the machine used to train, which contains
56 threads at 2.70GHz.
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Table 1: Best fitness score after training in the tasks of light chasing (LC), light chasing with obstacle
(LCO) and carrying ball to target (CBT)

CMA-ES CMA-ME
LC 0.58274 0.61481

LCO 0.49295 0.47723
CBT 0.48445 0.47884

5.2 COVARIANCE MATRIX ADAPTATION MAP-ELITES

CMA-ME is a variant of CMA-ES with the added benefit of quality diversity from MAP-Elites
(Mouret & Clune, 2015). The changes to CMA-ES are that there are emitters of CMA-ES being
trained in a cycle. Additionally, a feature map stores one elite for each possible feature configuration.
Because there are invalid body designs, they do not produce an elite. When there is a successful robot
design, the number of sensors, actuators, and body parts are used as features. If there are no elites or
the current solution is better than the actual elite stored in the feature map, then the current solution
is assigned to its feature configuration.

We use a slightly modified version of the CMA-ME with improvement emitters (Fontaine et al.,
2020). We only restart an emitter when the number of elites is greater than the number of emitters
and it is stuck for more than 500 generations. Being stuck means that the emitter could not find a
better elite or an elite could not be placed into an empty feature configuration in the map. When an
emitter restarts, the mean used to initialize the CMA-ES is a random elite in the map.

CMA-ME is executed for 60,000 generations for all environments, except the light chasing environ-
ment with 67,446 generations because we forced it to stop a longer training and its best fitness score
was already better than the one trained with CMA-ES. The initial mean and the initial coordinate-
wise standard deviation are the same as CMA-ES for all emitters. The population size is 128 because
the CMA-ME training was executed in a computer with 128 threads at 2.9GHz.

6 RESULTS

The training process took around 2.5 days for optimizing the NCA with CMA-ES. The evolution
with CMA-ME took around 5.5 days. It is important to note that they do not have the same machine
configuration, population size, and maximum number of generations.

Fig. 4 shows all robot designs with the best fitness scores in regards to their training method and task.
Almost all robots for the LC and CBT tasks fill the entire 5×5 grid of cells. Those environments do
not have any environmental constraints (any obstacle) for the robot size. Therefore, we infer that the
full grid of modules is easier to design and there are more computational resources for controlling the
robot. Their fitness scores are shown in Table 1. The results indicate that CMA-ES and CMA-ME
can reach almost the same fitness scores after training. However, CMA-ME has fewer generations
for the 15 emitters (4,000 generations per emitter). It is possible that if we run 20,000 generations
per emitter, CMA-ME could reach a better final performance than CMA-ES and with more diversity.
The history of the maximum fitness score per generation is depicted in Fig. 5.

(a) CMA-ES -
LC

(b) CMA-ES -
LCO

(c) CMA-ES -
CBT

(d) CMA-ME -
LC

(e) CMA-ME -
LCO

(f) CMA-ME -
CBT

Figure 4: Robot designs with best fitness scores for the tasks of light chasing (LC), light chasing
with obstacle (LCO) and carrying ball to target (CBT).
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The elites were saved for both CMA-ES and CMA-ME, then we can compare their quality diversity.
In Table 2, the number of cells filled and QD-scores of all six methods and tasks combinations are
presented. It is noticeable that CMA-ME provides much more quality diversity because of its bigger
number of feature configurations and its QD-score. We can visualize it in Fig. 6. This shows a small
part of the elites produced for the light chasing tasks with CMA-ES and CMA-ME. Nevertheless, it
confirms those two quality diversity measurements because more cells are filled, and there are more
cells with higher fitness scores.

For testing the success of our six trained models, we run 100 times the simulation and the percentage
of success is presented in Table 3. We can visualize some examples of those simulations in Fig. 7.
The trained model with CMA-ES for the light chasing task got 92% of success rate with 0.58274
fitness score while the one trained with CMA-ME had 75% of success and 0.61481 of fitness score.
This means that a higher fitness score does not indicate a more successful model for reaching the
light. This can be observed in Fig. 7a-d for CMA-ES, and Fig. 7e-h for CMA-ME. We can see in
Fig. 7g that the light is at the top-right corner and the robot goes to the top-left corner. This explains
the 75% success rate of this NCRS because the light is at the top-right corner in 25 out of the 100
simulations. This model learned to move faster to the light in the other three corners, but it misses
the one in the top-right corner. For the light chasing with obstacle task, the reason for the higher
success rate of CMA-ES robot is that it is much thinner than the CMA-ME robot. Therefore, it is
easier to pass through the passage. If we define success in LCO by passing the center of the body
through the passage, then CMA-ES and CMA-ME had a success rate, respectively, of 77% and
45%. The NCRS did not learn to move to the light after passing through the obstacle. It just moves
forward. Because of the difficulty of this task, we can consider the results for LCO were partially
successful in general and successful in body design. Fig. 7i-l and Fig. 7m-p show that. The task of
carrying a ball to a target had no successful trained model. The robots for both training methods just
move forward and, by chance, it moves the ball to target. This can be seen in Fig. 7q-t and Fig. 7u-x.

Fig. 3 shows how the channels progress through time. The hidden channels are predominantly
different in their behavior for the developmental and control phases. We infer this is mainly due
to the control flag channel which regulates these two phases. We can observe the different patterns
that emerged in their final time-steps. From the initial “seed” state to the state in Fig. 3a, we can
see how the NCA behaves during 10 time-steps of the developmental phase. In Fig 3b, we can see
the end of the control phase during its 200 time-steps (100 time-steps in the environment). We can
still understand its behavior because the hidden and input/output channels were set to zero at the
beginning of the control phase, and the body, control flag, tissue, sensor, and actuator channels were
fixed according to the morphology of the robot.

7 DISCUSSION AND CONCLUSION

Body-brain co-evolution is a challenging task (Bhatia et al., 2021). In this work, we developed three
benchmark tasks for robot co-design and introduced a novel method by having a unified substrate
as a genome with its own rules. This substrate is a single neural cellular automaton that works
to develop and control a modular robot. This novelty opens up several possibilities in open-ended
evolution (Stanley, 2019), especially because body and brain can co-evolve to the limits of the
capacity of the artificial neural network. Because it defines the local rules in the CA, NCRS has the
advantage of scalability. We also infer that curriculum learning will be important for complexifying
the evolving robot (Bengio et al., 2009). For example, the number of body parts and dimensions
can increase over time with the progress of the generations. Evolution in multi-agent environments
may also be applied, such as in PolyWorld (Yaeger et al., 1994). We can also try to remove the two
separated phases into one. Thus, we can observe how development and control can emerge and the
performance the modular robots can have.

The presented results were successful for the LC task, but our trained models presented some failures
when increasing the difficulty of the tasks. This may be addressed by adjusting the fitness score to
reflect the success conditions, as well as by applying curriculum learning (Bengio et al., 2009).
In future works, we plan to apply our method in the Evolution Gym (Bhatia et al., 2021), or in a
modified version of VoxCraft (Liu et al., 2020) for 3D soft robots. Moreover, we aim at training and
testing our approach for self-repair and robustness to noise.
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A APPENDIX

(a) Light chasing (b) Light chasing with obstacle (c) Carrying ball to target

Figure 5: Maximum fitness score through generations.

Table 2: Elites stored during training for the light chasing (LC), light chasing with obstacle (LCO)
and carrying ball to target (CBT)

CMA-ES CMA-ME
Cells filled QD-score Cells filled QD-score

LC 67.58% 0.29530 89.57% 0.40152
LCO 17.88% 0.06069 61.80% 0.19841
CBT 58.10% 0.22957 93.82% 0.37996

Table 3: Testing success percentage over 100 runs for the tasks of light chasing (LC), light chasing
with obstacle (LCO) and carrying ball to target (CBT)

CMA-ES CMA-ME
LC 92% 75%

LCO 20% 8%
CBT 1% 2%
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Figure 6: Selected elites trained in the light chasing environment. Those modules were selected
because they are the most different between CMA-ES and CMA-ME. Axes and subplots indicate
the number of components.
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(a) CMA-ES -
LC #1

(b) CMA-ES -
LC #2

(c) CMA-ES -
LC #3

(d) CMA-ES -
LC #4

(e) CMA-ME -
LC #1

(f) CMA-ME -
LC #2

(g) CMA-ME -
LC #3

(h) CMA-ME -
LC #4

(i) CMA-ES -
LCO #1

(j) CMA-ES -
LCO #2

(k) CMA-ES -
LCO #3

(l) CMA-ES -
LCO #4

(m) CMA-ME -
LCO #1

(n) CMA-ME -
LCO #2

(o) CMA-ME -
LCO #3

(p) CMA-ME -
LCO #4

(q) CMA-ES -
CBT #1

(r) CMA-ES -
CBT #2

(s) CMA-ES -
CBT #3

(t) CMA-ES -
CBT #4

(u) CMA-ME -
CBT #1

(v) CMA-ME -
CBT #2

(w) CMA-ME -
CBT #3

(x) CMA-ME -
CBT #4

Figure 7: Last time-step where the robot is fully visible of the best NCRS trained with CMA-ES
and CMA-ME in the environments for light chasing (LC), light chasing with obstacle (LCO) and
carrying ball to target (CBT).

13
165





Paper C.3

Collective control of modular soft
robots via embodied spiking
neural cellular automata
(Nadizar et al., 2022)

Author(s):
Giorgia Nadizar, Eric Medvet, Stefano Nichele and Sidney Pontes-Filho

Published at workshop:
From Cells to Societies: Collective Learning Across Scales at Tenth Interna-
tional Conference on Learning Representations (ICLR 2022)

Copyright:
© The Author(s) 2022, under the license CC© Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

N
ad

iz
ar

et
al

.(
20

22
)

P
ap

er
C

.3

167



P
ap

er
C

.3
N

ad
iz

ar
et

al
.(

20
22

)



ar
X

iv
:2

20
4.

02
09

9v
1 

 [
cs

.R
O

] 
 5

 A
pr

 2
02

2

From Cells to Societies: Collective Learning Across Scales - ICLR 2022 Workshop

COLLECTIVE CONTROL OF MODULAR SOFT ROBOTS
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ABSTRACT

Voxel-based Soft Robots (VSRs) are a form of modular soft robots, composed of
several deformable cubes, i.e., voxels. Each VSR is thus an ensemble of simple
agents, namely the voxels, which must cooperate to give rise to the overall VSR
behavior. Within this paradigm, collective intelligence plays a key role in enabling
the emerge of coordination, as each voxel is independently controlled, exploiting
only the local sensory information together with some knowledge passed from its
direct neighbors (distributed or collective control). In this work, we propose a
novel form of collective control, influenced by Neural Cellular Automata (NCA)
and based on the bio-inspired Spiking Neural Networks: the embodied Spiking
NCA (SNCA). We experiment with different variants of SNCA, and find them to
be competitive with the state-of-the-art distributed controllers for the task of lo-
comotion. In addition, our findings show significant improvement with respect to
the baseline in terms of adaptability to unforeseen environmental changes, which
could be a determining factor for physical practicability of VSRs.

1 INTRODUCTION AND RELATED WORKS

Biological organisms are intrinsically modular at different scales (Lorenz et al., 2011). The col-
lective self-organization at the cellular level results in the emergence of complex bodies and brains
without any form of centralized control. Such modularity allows for mechanisms of local interaction
which, in turn, result in collective learning and adaptation.

In the artificial domain, modular robotics (Alattas et al., 2019) provides a framework for the inves-
tigations of biologically-inspired principles of collective control through distributed coordination
of the agents composing the robot (Cheney et al., 2014). In addition, modular robots allow for a
high degree of reconfiguration and self-assembly (Pathak et al., 2019), as well as fault tolerance and
modules reusability. However, in order to exploit such opportunities, there is the need for modular
distributed controllers, possibly embedded in each module. Therefore, the overall behavior of the
robot is the result of the collective interplay of distributed sensing, local communication, and ac-
tuation of interacting body modules. In addition, identical modules would facilitate the reusability
of the parts and robustness in case of damage (Huang et al., 2020). In this work, we focus on a
specific type of modular robots, namely Voxel-based Soft Robots (VSRs) (Hiller & Lipson, 2012).
Since VSRs are robots made of interconnected soft blocks (voxels), each module may be considered
an agent in a collective. As such, mechanisms of collective intelligence are desired. While such
mechanisms of collective intelligence are rather popular in the context of swarm robotics (Hamann,
2018), e.g., via self-assembly of thousands of robots through local interactions (Rubenstein et al.,
2014), they are less explored in the context of modular robotics.

One paradigm of distributed neural control through local interactions of identical cells is Neu-
ral Cellular Automata (NCA) (Li & Yeh, 2002; Nichele et al., 2017; Mordvintsev et al., 2020). In
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case of robots composed of identical modules, each NCA cell can be embodied in a robot mod-
ule. Such approach would in theory facilitate a physical realization as no global wiring nor cen-
tralized control would be needed. NCA have been successfully used to grow and replicate CA
shapes and structures with neuroevolution (Nichele et al., 2017) and with differentiable learning
(Mordvintsev et al., 2020), to produce self-organising textures (Niklasson et al., 2021), to grow 3D
artifacts (Sudhakaran et al., 2021), for regenerating soft robots (Horibe et al., 2021), and for control-
ling reinforcement learning agents (Variengien et al., 2021).

In this work, we introduce a novel embodied NCA model based on more biologically plausible
Spiking Neural Network (SNN) controllers. We name it embodied Spiking Neural Cellular Au-
tomata (SNCA). SNNs incorporate neuronal and synaptic states in their neuron models, as well as
the concept of time. SNCA open up several opportunities in the domain of modular robotics, such as
mechanisms of homeostatic adaptation and local learning rules, e.g., spike-timing-dependent plas-
ticity. In addition, nearby modules communicate natively through spikes which are not generated at
every clock-cycle but only when the internal neural membrane potential reaches a specific thresh-
old, which in turn changes the membrane potential of the post-synaptic neuron, either within the
same robotic module or in a nearby module in case of modular robots. The advent of neuromorphic
hardware, which natively supports SNNs execution and learning, may provide orders of magni-
tude improvement in energy consumption as compared to traditional neural networks (Blouw et al.,
2019). Low energy consumption is considered to be an enabling factor for the physical realization
of self-organizing VSRs.

This work is organized as follows: in Section 2 we introduce VSRs, their morphology, and the
proposed NCA-based controllers. In Section 3 we describe SNNs and SNCA. In Section 4 we
present the experimental results and discuss the insights they provide. Finally, in Section 5 we draw
the conclusions.

2 COLLECTIVE CONTROL OF VOXEL-BASED SOFT ROBOTS

Voxel-Based Soft Robots (Hiller & Lipson, 2012) are a kind of modular soft robots, composed of
several elastically deformable cubes (voxels). In this work, we experiment with a 2D version of
VSRs, simulated in discrete time and continuous space (Medvet et al., 2020b). The way in which
VSRs achieve movement is a direct consequence of the unique combination of softness and modu-
larity. The global behavior derives from the collective and synergistic contraction and expansion of
individual voxels, similarly to what happens in biological muscles. Because of modularity, a VSR
can be considered as an ensemble of simple sub-agents, the voxels, which are physically joined to
obtain a greater structure, and whose individual behaviors influence eachother and concur to the
emergence of coordination. Therefore, to characterize a VSR we need to specify how the voxels are
assembled and what are their properties (morphology), and how the voxels compute their control
signals and communicate with one another (controller).

2.1 VSR MORPHOLOGY: ASSEMBLING INDIVIDUAL VOXELS

The morphology of a VSR specifies how individual voxels are assembled, their sensory equipment,
and their physical properties. A VSR can be represented as a 2D grid of voxels, describing their
spatial organization and assembly. Adjacent voxels in the grid are rigidly linked: not only does this
allow to assemble a robot out of primitive modules, but it also forces mutual physical interactions
resulting in an overall complex dynamics. In addition, each voxel can be equipped with sensors
to enable proprioception and awareness of the surroundings. For each voxel, we use three types
of sensors: (a) area sensors, perceiving the ratio between the current area of the voxel and its rest
area, (b) touch sensors, sensing if the voxel is in contact with the ground or with another body,
and (c) velocity sensors, which perceive the velocity of the center of mass of the voxel along the x-
and y-axes. We normalize sensor readings to be defined in [0, 1]4.

Concerning physical properties, we model voxels as compounds of spring-damper systems, masses,
and distance constrains (Medvet et al., 2020c), whose parameters can be changed to alter features
like elasticity or actuation power. Each voxel changes volume (actually area, in the 2D case) over
time, due to passive interactions with other bodies and the active application of a control signal.
The latter is computed at each simulation time step and is defined in [−1, 1], where −1 corresponds
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to maximum requested expansion and 1 corresponds to maximum requested contraction. In the
employed model (Medvet et al., 2020b), contraction and expansion correspond to linear variations
of the rest-length of the spring-damper system, proportional to the control signal received.

2.2 VSR CONTROLLER: THE EMBODIED NEURAL CELLULAR AUTOMATA PARADIGM

A VSR controller derives from the ensemble of individual voxels controllers. However, achieving
coordination while keeping the intelligent control of each voxel fully independent of the others is
a difficult task. In fact, most studies involving VSRs either rely on independent, yet not intelli-
gent, controllers based on trivial sinusoidal functions (Hiller & Lipson, 2012; Corucci et al., 2018;
Kriegman et al., 2018), or sacrifice modularity and deploy a central neural controller that has access
to all voxels (Talamini et al., 2019; Ferigo et al., 2021; Nadizar et al., 2021; 2022). To solve this
issue, Medvet et al. (2020a) introduced the concept of distributed neural controllers, which exploit
message passing between neighbors to allow the emerge of coordination thanks to collective intelli-
gence. Here, we follow along the same direction, combining the key ideas of modularity and collec-
tive intelligence, with an approach based on Neural Cellular Automata (NCA) techniques (Li & Yeh,
2002; Nichele et al., 2017; Mordvintsev et al., 2020), in which the lookup table of each Cellular Au-
tomaton (CA) cell is replaced by an Artificial Neural Network (ANN). More in detail, we consider
each voxel as a single embodied NCA cell (from now on, simply referred to as NCA), which has
access to the local sensor readings and to some information coming from the neighbors, to compute
the local actuation value and the messages directed towards adjacent voxels. Our approach, anyhow,
has a substantial difference with the standard NCA architectures: namely, it is strongly bound to the
VSR morphology employed, as we only instantiate NCA cells in correspondence to the voxels.

Formally, at every time step k, each NCA takes as input a vectorx(k) =
[
r(k) i

(k)
↑ i(k)← i

(k)
↓ i(k)→

]
and

produces as output a vector y(k) = ANNθ

(
x(k)

)
=
[
a(k) o

(k)
↑ o(k)

← o
(k)
↓ o(k)

→
]

where r(k) ∈ R4 is

the local sensor reading, i(k)↑ , i(k)← , i
(k)
↓ , i(k)→ , each defined in Rnc , are values coming from adjacent

voxels (from above, left, below, right, respectively, and set to 0 ∈ Rnc if no voxel is present in the
corresponding direction), a(k) is the actuation value, o(k)

↑ ,o(k)
← ,o

(k)
↓ ,o(k)

→ , each defined in Rnc , are
values directed to adjacent voxels (to above, left, below, right, respectively), and θ are the parameters
of the ANN constituting the NCA. Values output by a NCA at time k are used by an adjacent NCA
at time k+1, e.g., given a NCA a that outputs o(k)

a,→, the NCA b at its right will have i(k+1)
b,← = o

(k)
a,→.

We experiment with three ways of instantiating the general scheme described above, non-uniform
directional (�UD), uniform directional (UD), and uniform non-directional (U�D), which differ in the
homogeneity of the individual cells (uniform vs. non-uniform) and in the information passed be-
tween voxels (directional vs. non-directional). The first two schemes are inspired by already existing
forms of distributed controllers (Medvet et al., 2020a) and we consider them as baselines, whereas
the U�D-NCA is novel.

The most evident, yet conceptually simple, difference lies in the uniformity: in�U-NCA, cells have
a different ANN in each voxel (each with parameters θi), whereas in U-NCA all cells ANNs share
the same parameters θ. Therefore, it follows that, for a given ANN architecture, the amount of
parameters of�U-NCA is nvoxels times the amount of parameters of U-NCA.

The second distinguishing element is directionality. In�D-NCA, cells send the same output to all
the adjacent cells, i.e., o(k)

↑ = o(k)
← = o

(k)
↓ = o(k)

→ = o(k) and y(k) =
[
a(k) o(k)

]
, whereas in D-

NCA, cells send, in general, different outputs. The D-NCA hence corresponds to the one originally
proposed by Medvet et al. (2020a). Contrarily,�D-NCA are more adherent to the original concept of
NCA as o(k) can be interpreted as the current state of the cell.

The proposed types of NCA controllers can be employed with any type of ANN, either fully-
connected feed-forward NNs, i.e., multi-layer perceptrons (MLP), or more biologically plausible
NNs, such as the SNNs described in the following section.

3
171



From Cells to Societies: Collective Learning Across Scales - ICLR 2022 Workshop

3 SPIKING NEURAL NETWORKS AS ROBOTIC CONTROLLERS

Spiking Neural Networks (SNNs) are a type of ANNs in which biological resemblance plays a
fundamental role (Gerstner & Kistler, 2002). Often referred to as the third generation of ANNs
(Maass, 1997), SNNs are characterized by a more biologically and neuroscientifically faithful neural
model than classical ANNs.

The key element of SNNs is the modeling of the evolution over time of the membrane potential of
neurons. Modifications of such potential are caused by incoming neural stimuli, which can either be
excitatory (increasing the potential) or inhibitory (decreasing it). Neural stimuli occur in the form of
spikes over time, which can propagate along synapses in order to reach different neurons of the SNN,
enabling information passing within the network. The generation of said spikes is called firing, and
arises whenever the membrane potential of a neuron exceeds a given threshold. Despite the binary
nature of spikes, the intensity of any stimulus received by a neuron is modulated by the strength of
the synapse connecting the firing neuron (pre-synaptic neuron) and the neuron receiving the spike
(post-synaptic neuron). Not unlike classical MLPs, synapses are modeled as weighted connections,
where the weights play the main role in determining the behavior of the ANN, and can be subject to
task-oriented optimization.

What is indeed essentially different between MLPs and SNNs, is the way information is encoded,
which is a direct consequence of the peculiarities of the two models. In particular, in MLPs there
is no notion of time, and information is encoded in the form of real values traveling along the
synapses. Conversely, SNNs are bound to the concept of time to compute the evolution of the neural
membranes and for the propagation of spikes in the network. Within this framework, information is
embedded in the time distribution of spikes. Hence, additional tools are required to interpret spike
trains as real values and vice versa.

Given their high biological resemblance, SNNs are extremely promising robotic controllers. In fact,
faithfully mimicking the functioning of the nervous systems of living organisms could be an enabling
factor for bringing the desirable traits of biological organisms to artificial agents, e.g., autonomy or
adaptability. Moreover, the possibility of deploying SNNs on highly energy efficient neuromorphic
hardware (Li et al., 2014) is an additional profitable feature, which could be of paramount impor-
tance with reference to energy constraints.

3.1 DISCRETE TIME LEAKY INTEGRATE AND FIRE MODEL

Several spiking neuron models have been proposed (Izhikevich, 2004), which, despite differing in
terms of biological plausibility and computational costs, all share the main concepts derived from
neuroscience. Among them, we employ the computationally efficient Leaky Integrate and Fire (LIF)
model, simulated in discrete time. The LIF model represents the neural membrane as a capacitor,
whose potential can be increased or decreased by inputs (excitatory or inhibitory), and exponentially
decays with time. At each neural simulation time step h, the membrane potential v(h)

j of a LIF
neuron j is updated as:

v
(h)
j = v

(h−1)
j +

n∑

i=1

wi,js
(h)
i − ∆thλvv

(h−1), (1)

with wi,j ∈ R being the synaptic weight of the i-to-j synapse, n being the number of incoming
synapses, s(h)

i ∈ {0, 1} carrying pre-synaptic neuron spike, and ∆th = 1/fh being the neural
simulation time resolution. After the update, and if the membrane potential v(h)

j exceeds a threshold

ϑ
(h)
j , the neuron j outputs a spike, i.e., s(h)

j = 1, and the membrane potential is reset to its resting

value vrest, otherwise s(h)
j = 0.

We enhance the LIF model introducing the biological concept of homeostatic plasticity. Home-
ostasis is a self regulatory mechanism present at various sites of living organisms, which
aims at re-establishing equilibrium in contrast to strong stimuli that could unbalance a system
(Turrigiano & Nelson, 2004). In our case, homeostasis operates as a firing rate regulator, acting
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on the threshold ϑ(h)
j of neurons, to prevent excessive or too scarce activity:

ϑ
(h)
j = min

(
ϑ

(h−1)
j ,

n∑

i=1

wi,j

)
+ ψ

(h)
j , (2)

with ψ(h)
j being a parameter updated as:

ψ
(h)
j =

{
ψ

(h−1)
j + ψinc if s(h−1)

j = 1

ψ
(h−1)
j − ψ

(h−1)
j λψ∆th otherwise.

(3)

3.2 THE LIF MODEL INSIDE NCA

We employ the LIF model described above within the ANN for the NCA in our robots. We simulate
both the robot mechanical models and the LIF SNNs in discrete time: however, we update the
simulation of the LIF SNNs with a greater frequency. Namely, we update the mechanical model
with a frequency fk = 60Hz (the default value of the 2D-VSR-Sim by Medvet et al. (2020b)) and
the SNNs with a frequency fh = 16fk ≈ 1 kHz (as suggested by Izhikevich (2004)).

In practice, at each k, we build a spike train
(
s(16k), . . . , s(16k+15)

)
∈ {0, 1}16 to be fed to the

SNNs from each element of the sensor reading r(k) and we compute the actuation value a(k) con-
sidering the spikes emitted by the corresponding SNN output neuron up to h = 16k. Concerning
the information traveling between pairs of SNNs, we simply copy the spike trains with a delay of
16 time steps in the SNN simulation, i.e., one time step in the robot simulation, consistently with
the description given in Section 2.2. For performing the sensor reading and actuation value conver-
sions, we take inspiration from rate coding (Bouvier et al., 2019), where real values are mapped to
a frequencies, which are then used to generate spike trains (Wang et al., 2008).

For spike trains to be fed to input neurons corresponding to sensor readings, we set:

s(h) =

{
1 if ∃n ∈ N s.t. h = hlast + n

⌊
fh
f(k)

⌋

0 otherwise,
(4)

where hlast is the time step of the last spike to the neuron (initially set to 0) and f (k) = r(k)(fmax −
fmin) + fmin, r(k) ∈ [0, 1] being the element of the sensor reading. That is, we first linearly scale
the scalar input to a frequency f (k) ∈ [fmin, fmax] and then we emit spikes at frequency f (k), i.e.,
one spike each

⌊
fh
f(k)

⌋
time steps of the SNN simulation. We set fmin = 5 Hz and fmax = 50Hz

for biological plausibility: hence, with the maximum scalar input r(k) = 1, we emit one spike
each 1 kHz

50 Hz = 20 time steps, whereas with the minimum input r(k) = 0, we emit one spike each
1 kHz
5 Hz = 200 time steps.

For the actuation value, we set:

a(k) = 2


 1

fmax

fh
nw

k∑

k′=k−nw+1

16k′+15∑

h=16k′

s(h)


− 1. (5)

That is, we count the spikes in the last nw robot simulation time steps, we linearly scale this value
to [0, 1] considering the maximum possible frequency fmax, and then we linearly scale to [−1, 1].
The reason why we consider nw robot simulation time steps, instead of just the current one, is to
have a better resolution of the actuation value and, hence, a smoother control. After preliminary
experimentation, we set nw = 5.

4 EXPERIMENTS AND RESULTS

We performed an extensive experimental campaign to investigate how coordination can emerge from
different forms of collective control. We aimed at evaluating if we could improve the baselines of
distributed control for VSRs (Medvet et al., 2020a) with our novel contribution, the U�D-SNCA.
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Therefore, we addressed the following research question: “are U�D-SNCA superior with reference
to the baselines of distributed control?”. To determine the effectiveness of a collective controller, we
deployed it onto a VSR, and optimized its parameters using as quality measure the velocity achieved
by the robot performing locomotion on a flat terrain. In addition, we also assessed the controllers
adaptability, by measuring the VSR velocity, after the optimization, on a set of unseen terrains, i.e.,
terrains not used to optimize the controller parameters. With the extent of obtaining more general
results, we experimented with three different morphologies.

4.1 U�D-SNCA VS. BASELINE EMBODIED NCA

In order to provide an answer to the posed research question, we started by optimizing the parameters
of three variants of NCA for each of the three considered morphologies, for a total of nine VSRs
optimizations.

Concerning the NCA, we took into consideration the UD- and�UD-NCA as baselines, and we com-
pared them against the U�D-SNCA. We used a MLP with tanh as activation function for both base-
line NCA, while we equipped the SNCA with a fully-connected feed-forward SNN based on the
LIF neural model augmented with homeostasis, with the following parameters: vrest = 0 mV,
λv = 0.01 s−1, ϑ(0) = 1mV, ψ(0) = 0 mV, ψinc = 0.2mV, λψ = 0.01 s−1. For both ANNs,
we used 1 hidden layer, setting its size equal to the size of the input layer. We set nc = 1 for both
UD- and�UD-NCA, and nc = 4 for the U�D-SNCA, in order to make the sizes of the ANNs output
layers equal. Our choice of NCA hyper-parameters was driven by some exploratory experiments and
by previous work involving SNNs (Pontes-Filho & Nichele, 2019) and NCA (Nichele et al., 2017;
Mordvintsev et al., 2020).

Regarding the morphologies, we experimented with 3 VSRs, a biped , a comb , and a worm
. We chose these morphologies to test the NCA controllers versatility, because they resemble

different forms of living organisms, which take advantage of their diverse body shapes to achieve
diversified gaits. We relied on 2D-VSR-Sim (Medvet et al., 2020c) for the VSRs simulation, leaving
all parameters to their default values. We made the code for the experiments publicly available at
https://github.com/giorgia-nadizar/VSRCollectiveControlViaSNCA.

To optimize the NCA parameters, we resorted to evolutionary algorithms (EAs) as they can easily
overcome the struggles posed by the non-differentiability in SNNs. In addition, EAs are well suited
for ill-posed problems with many local optima, which makes them particularly appropriate for op-
timizing the parameters of robotic controllers. In this study, we used a simple form of evolutionary
strategy (ES). At first, the population is initialized with npop individuals, i.e., numerical vectors θ,
all generated by assigning to each element of the vector a randomly sampled value from a uniform
distribution over the interval [−1, 1]. Subsequently, ngen evolutionary iterations are performed, until
reaching a total of nevals fitness evaluations. On every iteration, the fittest quarter of the population
is chosen to generate npop − 1 children, each obtained by adding values sampled from a normal
distribution N(0, σ) to each element of the element-wise mean µ of all parents. The generated off-
spring, together with the fittest individual of the previous generation, end up forming the population
of the next generation, which maintains the fixed size npop. We used the following ES parameters:
npop = 36, nevals = 30 000, and σ = 0.35. We verified that evolution was in general capable
of converging to a solution with the chosen values, despite the different sizes of the search spaces
corresponding to each NCA configuration.

We optimized VSRs for the task of locomotion on a flat terrain, the goal being traveling as fast as
possible along the positive x-axis. We assessed the performance of a VSR by measuring its average
velocity vx along the x-axis during a simulation of 30 s. We discarded the first 5 s of each simulation
to exclude the initial transitory from the velocity measurements. We used vx as fitness measure for
selecting the best individuals in the ES. For each of the 9 VSRs resulting from the combination of
3 NCA and 3 morphologies, we performed 10 independent evolutionary optimizations, i.e., with
different random seeds, for a total of 90 runs.

Besides testing the VSR effectiveness upon parameters optimization, i.e., at the end of evolution, we
also appraised their adaptability. We define a VSR controller as adaptable, if it is able to achieve
good performance in locomotion in spite of environmental changes. To evaluate this in practice, we
took each optimized VSR and re-assessed it on a set of unseen terrains, i.e., terrains which none
of its ancestors ever experienced locomotion on. In particular, we experimented with the following
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Figure 1: Box plots of the velocities vx achieved by the best individuals at the end of evolution and
upon re-assessment on unseen terrains for different VSR morphologies (plot columns) and embodied
NCA controllers (color). Above pairs of boxes we report the p-values resulting from Mann-Whitney
U tests with the null hypothesis of equality of the means.

terrains: (a) hilly with 6 combinations of heights and distances between hills, (b) steppy with 6
combinations of steps heights and widths, (c) downhill with 2 different inclinations, and (d) uphill
with 2 different inclinations. As a result, we re-assessed each individual on a total of 16 different
terrains; we define its adaptability as the average of the vx on those terrains (each computed in a 30 s
simulation, discarding the initial 5 s).

The results of our experimental evaluation are summarized in Figure 1. More in detail, for each of the
considered VSR morphologies and NCA variants, we display the distribution of velocities achieved
at the end of evolution by the best individuals, and their performance in terms of adaptability, i.e.,
the distribution of their average velocity on unseen terrains. In addition, above pairs of box plots, we
report the p-values resulting from a two-sided Mann Whitney U statistical test; we consider, unless
otherwise specified, α = 0.05 as confidence level.

From Figure 1, we observe that for the biped and the comb morphologies, U�D-SNCA are always
significantly better than the baseline in terms of adaptability, and they are significantly better at the
end of evolution in all but one case. However, the outcomes seem to be exactly opposite for the
worm morphology, making it difficult to provide a general answer to the posed research question.

To further investigate on this apparent contradiction, we exam-
ined the behavior of a few evolved VSRs (videos are available at
https://giorgia-nadizar.github.io/VSRCollectiveControlViaSNCA/)
and found the reason behind the failure of the SNCA to be glaring for the worm morphology. In
particular, we noticed that the NCA based on MLPs trigger a high frequency dynamics, resulting in
a vibrating behavior, which for SNCA is prevented by homeostasis and nw = 5 when converting
spikes to actuation values. However, for the worm morphology, vibration appears to be the only
effective gait, as these VSRs are not able to properly bend, having only one row of voxels at
disposal. Conversely, the biped and comb morphologies have more complex structures, which allow
the discovery of a wider range of efficacious gaits. In fact, when we inspected the behaviors of these
two families of VSRs, we could notice a broader variety of gaits, with some tendencies to vibration
among those controlled by MLP-based NCA. Avoiding vibrating behaviors, which have been
shown to be a strong attractor in evolution (Medvet et al., 2021), is of paramount importance, as this
type of movement severely hinders adaptability, and constitutes an insurmountable barrier for the
physical practicability of VSRs, i.e., a form of reality gap (van Diggelen et al., 2021; Salvato et al.,
2021). Even though it is possible to explicitly discourage vibrating behaviors, e.g., decreasing the
actuation frequency, having a controller which avoids them by design is an undeniably significant
accomplishment.
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4.2 STRENGTHS OF THE UNIFORM NON-DIRECTIONAL SNCA

From the experimental outcomes, however, another question arises: “what are the reasons behind
the success of the U�D-SNCA?”. Namely, does the improvement lay in the non-directionality of the
NCA or in the SNN employed?

To address the newly emerged points, we deepened our analysis with a supplementary experimental
campaign, encompassing new combinations of NCA architectures, neural models, and morpholo-
gies, for a total of 12 additional VSRs to be optimized. Regarding the morphologies, we experi-
mented with the biped and the comb, discarding the worm for the reasons highlighted in Section 4.1.
For what concerns the controllers, we extended the previous experiments by evaluating all missing
combinations of NCA architecture and neural models. Among the latters, we also included a SNN
composed of LIF neurons for which we disabled homeostasis, keeping the value of the threshold
fixed throughout the simulation to its initial value ϑ(h)

i = ϑ
(0)
i = 1mV. For each of the 12 new

VSRs we repeated the experimental pipeline of Section 4.1.

We display the results, together with the outcomes of the previous experiments, in Table 1. Each
cell of the table reports the median of the velocities achieved by VSRs at the end of evolution and
upon re-assessment, grouped by morphology; each row corresponds to a NCA architecture, whereas
we put neural models on the columns. We color cells proportionally to the median of velocities in
order to better convey the information.

End of evolution Re-assessment

Biped Comb Biped Comb

S-H S M S-H S M S-H S M S-H S M

UD 6.5 5.5 8.0 3.8 5.9 3.8 3.7 2.3 2.2 2.6 3.8 1.4

�UD 10.2 7.0 7.9 5.8 2.8 3.4 5.5 2.9 3.4 3.5 1.4 1.2
U�D 13.1 13.0 9.3 7.5 5.9 8.5 5.5 5.5 2.2 5.1 3.9 4.7

Table 1: Medians of velocities vx achieved by the best individuals at the end of evolution and upon
re-assessment on unseen terrains for different morphologies. We put different NCA architectures on
each row, and ANN models on the columns (M stands for MLP, S for SNN without homeostasis,
S-H for SNN with homeostasis). Cells are colored proportionally to vx.

From examining Table 1, we can investigate on the importance of the two aforementioned factors.
First, to weigh the impact of the NCA architecture, we compare the medians of different rows for
each column of the table. We observe that U�D-NCA are not worse than both D-NCA in all but
one case, and they always equal or outperform D-NCA if combined with SNNs. We speculate this
descends from the fact that, especially in absence of agent specialization, i.e., in the case of U-NCA,
it is easier for the prototype individual to learn to pass a single message to all its clone neighbors
and correctly interpret the information received. In addition, we highlight that U�D-NCA are less
prone to triggering vibrating dynamics by design, and are thus more successful in combination with
SNNs, which display and take advantage of the same trait.

Concerning the importance of the neural model, we note that SNNs, either with or without home-
ostasis, surpass MLPs in 10 out of 12 cases. To better appraise the influence of homeostasis in SNNs,
we need to narrow our focus to the re-assessment results, where this neural model leads to neatly
superior outcomes in all but one case, confirming its fundamental role in self-regulation and adapta-
tion. Moreover, we can re-state that SNNs seem to be more naturally suited for being combined with
U�D-NCA, as both tend to move away from high frequency non-adaptable behaviors. Therefore, we
can conclude that the superiority of our contribution lies in the successful combination of the novel
U�D-NCA architecture with SNNs with homeostasis.

5 CONCLUDING REMARKS

We explored the paradigm of collective control of Voxel-based Soft Robots (VSRs), a form of sim-
ulated modular soft robots, appraising the emergence of coordination from the synergistic actuation

8

Paper C.3 Collective control of . . . (Nadizar et al., 2022)

176



From Cells to Societies: Collective Learning Across Scales - ICLR 2022 Workshop

of individual agents, i.e., the voxels constituting the VSR. Taking inspiration from NCA, a form
of distributed neural control, and from state-of-the-art forms of embodied control of VSRs, we in-
troduced the novel concept of embodied Spiking Neural Cellular Automata (SNCA), in which we
used Spiking Neural Networks (SNNs) as elementary units. To evaluate the performance of the
proposed SNCA as a robotic controller, we compared it against the state-of-the-art embodied con-
trollers, optimizing the controller parameters of three different VSRs for the task of locomotion. Our
experimental results show that the SNCA is not only competitive with the pre-existing controllers,
but it also leads to significantly more adaptable agents, outperforming their rivals when faced with
unforeseen circumstances. Moreover, we highlight a trend towards less reality-gap prone behaviors
in VSRs controlled by SNCA, which paves the way for the physical practicability of such robots.

We believe our contribution can be considered as a starting point for several additional analyses,
spanning across diverse research directions. Concerning SNNs, we plan to experiment with neu-
roplasticity in the form of unsupervised learning, to the extent of achieving greater generality and
increased robustness of controllers (Qiu et al., 2020). In addition, we will address the problem of
collective control with a cooperative coevolution strategy aimed at optimizing an ensemble of het-
erogeneous SNCA controllers (Potter & Jong, 2000).
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