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Abstract— Recently, hyperspectral image (HSI) classification
based on deep learning methods has attracted growing attention
and made great progress. Convolutional neural networks based
models, especially the residual networks (ResNets), have become
the architectures of choice for extracting the deep spectral-spatial
features. However, there are generally some interfering pixels in
the neighborhoods of the center pixel, which are unfavorable for
the spectral-spatial feature extraction and will lead to a restraint
classification performance. More important, the existing attention
modules are weak in highlighting the effect of the center pixel for
the spatial attention. To solve this issue, this article proposes a
novel spectral-similarity-based spatial attention module (S3AM) to
emphasize the relevant spatial areas in HSI. The S3AM adopts the
weighted Euclidean and cosine distances to measure the spectral
similarities between the center pixel and its neighborhoods. To alle-
viate the negative influence of the spectral variability, the full-band
convolutional layers are deployed to reweight the bands for the
robust spectral similarities. Both kinds of weighted spectral similar-
ities are then fused adaptively to take their relative importance into
full account. Finally, a scalable Gaussian activation function, which
can suppress the interfering pixels dynamically, is installed to trans-
form the spectral similarities into the appropriate spatial weights.
The S3AM is integrated with the ResNet to build the S3AM-Net
model, which is able to extract the discriminating spectral-spatial
features. Experimental results on four public HSI datasets demon-
strate the effectiveness of the proposed attention module and the
outstanding classification performance of the S3AM-Net model.

Index Terms—Center pixel, hyperspectral image classification,
residual network, spatial attention, spectral similarity.

I. INTRODUCTION

HYPERSPECTRAL image (HSI) is provided with ample
spectral and spatial information and such an incomparable

advantage makes the precise recognition of land-covers possible
[1]. Therefore, HSI classification, which aims at distributing
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an appropriate label for each pixel, has drawn a great many
researchers from various fields, such as agriculture [2], mineral
prospecting [3], and urban planning [4]. However, exploiting the
spectral and spatial information of HSI effectively for excellent
classification accuracy has always been a challenging problem
as the characteristics of high-dimensional and redundancy of
HSI.

In the past decade, an enormous amount of methods have been
proposed to cope with HSI classification, including traditional
methods and deep learning (DL) methods. Traditional models,
such as k-nearest neighbor [5], support vector machine [6],
random forest [7], and so on, are deemed to be the models that
can extract the shallow spectral and spatial features from HSI
merely, which results in the inferior robustness when handling
the complicated scenarios.

As the speedy advances in computing power, DL-based meth-
ods have achieved remarkable progress and have been widely
used in computer vision (CV) tasks [8], [9] and natural language
processing [10]. In the field of HSI classification, DL-based
algorithms have seized the dominant status by means of the
power of extracting the deep spectral and spatial features [11]. In
the early phase, most models finished classification with spectral
features only. For instance, stack autoencoder [12] and deep be-
lief network [13] are used to extract the compressed and invariant
spectral features from raw spectra, respectively. To take the spec-
tral dependency which is the inherent property between spectral
bands into account, recurrent neural networks [14], and long
short-term memory networks [15] were introduced to model the
correlations hidden in the adjacent bands. In addition, the graph
neural networks [16] were coalesced with the multistructure
unified embedding [17] and the sparse manifold correlation [18]
to integrate diverse characteristics and receive quality features.
However, due to the well-known issue of spectral variability,
the classification performances of these spectral feature-based
models are still unsatisfactory. Meanwhile, supplementing the
spatial features for better classification results has been an urgent
motivation.

Recently, with the inimitable advantages of local capture
and parameters sharing, convolutional neural networks (CNNs)
[19], possess the power of feature extraction and have made
tremendous progress in the field of HSI classification. On the
strength of the variability of convolutional kernels, CNN is
capable of extracting the features in different gradations [20].
The early architectures integrated one-dimensional (1-D) CNN
and 2-D CNN in parallel to extract the spectral features and
spatial features, respectively [21]. But these models fuse the
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two kinds of features at the stage of decision merely, which
fail to take the feature associations into full account. Instead of
dealing with both kinds of features separately, 3-D CNN adopts
the cubic convolutional kernels to acquire the spectral-spatial
features effectively from the HSI cube, which is composed of
the center pixel and its neighborhoods [22], [23]. Such archi-
tecture can fuse the spectral features and the spatial features at
the stage of feature extraction, which is favorable for enhanc-
ing the correlations between the spectral and spatial features.
Moreover, these benefits will be enlarged as the depth of the
network increases [24]. However, the deeper the network is, the
more possible the vanishing gradient may happen. To resolve this
issue effectively, a novel network architecture, which is named
residual network (ResNet) [25], introduced the residual blocks
containing the skip connections to deliver the gradient between
the layers directly. Such skill of the residual connection is active
in various types of architectures for HSI classification, such as
convolutional long short-term networks [26], capsule networks
[27], graph neural networks [28], and generative adversarial net-
works [29]. Therefore, a few of related research [30]–[32] reveal
that ResNet has become the popular architecture to express the
deeper spectral-spatial features.

Though the ResNets have reached acceptable performances,
there is an undeniable fact that not all of the pixels and bands in
the HSI cube contribute to the feature extraction and classifica-
tion. The pixels owning the same category as the center pixel play
a key role in enhancing the correlations of features. Thus, these
pixels together with the center pixel form the relevant spatial
area worth focusing well. The same criterion applies to the
spectral dimension. Among the hundreds of bands, only partial
salient bands are beneficial to distinguish the subtle spectral
differences that exist in all types of land covers precisely. To
accomplish the purposes, the attention mechanism, an active
technique in the fields of neural machine translation [33] and
CV [34], was applied to upgrade the capability of a network
to describe the discriminating spectral-spatial features for HSI
classification. The popular structures of the attention modules
in recent literature can be divided into three types mainly as
follows.

1) Self-attention (SA) module [35]. It aims at exploring
the relationship among different elements (e.g., words
of a sentence, pixels of an image) by computing the
dot-product similarity to realize the feature recalibration
[36]. In HSI classification, the SA modules were applied
to take account of the spectral interactions and the spatial
correlations to refine the features [37], [38]. Moreover, the
integration of several SA modules forms the transformer
[39], which is able to model the spectral and spatial rela-
tionships in different representation subspaces [40], [41].
However, due to the abundant spectral bands in HSI and the
massive matrix operations of SA modules, the transformer
often spends lengthy time and excessive memory.

2) Squeeze and excitation (SE) module [42]. On the basis
of a global average pooling layer and a symmetrical mul-
tilayer perceptron, the SE module can collect the global
expressive information and map them to the channel at-
tention. The SE module has made appreciable progress on

reweighting the spectral bands adaptively [43], [44]. Be-
sides, it was extended to make full use of spatial contextual
information [45], [46].

3) Convolutional block attention module (CBAM) [47]. The
CBAM is the comprehensive attention module. The chan-
nel attention, which is the extension of the SE module,
defines “what” is meaningful. The spatial attention uses
the large-scale convolution and the global pooling layers
to locate the meaningful content. With the guidance of the
CBAM, the distinctive bands as well as the useful pixels
in HSI cube were enhanced properly [48]–[50].

It is indisputable that the three kinds of attention modules
have gotten the spectral feature extraction better. However, there
is a common shortage that they are weak in emphasizing the
benefit of the center pixel to the deduction of spatial attention.
Specifically, the dot-product matrix of the SA module, the spatial
squeezing and excitation operations of the SE module, and the
large-scale convolution of the CBAM lack the special treatment
for the center pixel. This may cause spatial attention to deviate
from the relevant spatial areas, which will impair the extraction
of the discriminating features greatly and may result in wrong
predictions. Considering the different spectral characteristics
between the relevant pixels and the interfering pixels, a spectral-
similarity-based spatial attention module (S3AM) is proposed in
this article. Due to the fact that the spectral similarity depended
on a single metric tends to possess weak representation [44], the
S3AM adopts the Euclidean and cosine distances to obtain the
spectral similarity. Nevertheless, the immediate similarities of
the two original measures are often inexact due to the notorious
spectral variability. To solve this deficiency, the S3AM intro-
duces the full-band convolutional (FBC) layer in the calculation
of the original similarities to redistribute a group of proper
weights for all bands. Hence, the weighted Euclidean and cosine
distances (WED and WCD) to obtain robust spectral similarities
are constructed. Both kinds of weighted spectral similarities are
then fused adaptively to take their relative importance into full
account. Finally, a scalable Gaussian (SG) activation function,
which weakens the interfering pixels in different scenarios with a
flexible threshold, is designed to transform the weighted spectral
similarity to the optimal spatial attention mask. Experimental
results on four publicly available HSI datasets, including the
Indian Pines, Pavia University, Loukia, and XiongAn, show that
the S3AM can bring the advantage of the center pixel fully to
concentrate on the relevant spatial areas effectively to further
improve the classification performance. The main contributions
of this article are as follows.

1) A novel S3AM is proposed to capture the relevant spatial
areas effectively in the HSI cube. Specifically, the WED
and WCD submodules, which adopt the FBC layers to
relieve the adverse influence of the spectral variability,
are first applied to improve the robustness of the spectral
similarities. Both weighted spectral similarities are then
integrated adaptively to gain the representative composite
spectral similarity. Finally, an SG activation function is
designed to convert the spectral similarities to the appro-
priate spatial weights flexibly in diverse scenes. The S3AM
excels at emphasizing the spatial areas relevant intensively
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Fig. 1. Architecture of the S3AM. It contains the WED and WCD submodules,
the adaptive aggregation, and the SG activation function.

to the center pixel and preserving these crucial areas even
in a wider HSI cube.

2) An end-to-end S3AM-Net model, which contains the
S3AM and ResNet, is designed to obtain the discrimi-
nating features for HSI classification. With the support of
the functional S3AM, this model is capable of handling
the spatial features as well as the spectral-spatial features
efficiently.

The rest of this article is organized as follows. Section II
illustrates the proposed S3AM in detail. Section III presents
the experiments and analyses on four HSI datasets. Finally,
Section IV concludes this article.

II. SPECTRAL-SIMILARITY-BASED SPATIAL ATTENTION

MODULE

A. Overview of the S3AM

In an HSI cube X ∈ Rc×ω×ω×b, the relevant spatial areas are
composed of the neighborhoods that belong to the same label as
the center pixel, where c, ω , and b denote the number of channels
(i.e., filters), width, and the number of bands, separately. The rel-
evant areas deserve emphasis as the features extracted from these
areas are beneficial to improve the classification performance.
Since there are intense associations between the relevant pixels
and the center pixel in terms of spectral similarity, the S3AM is
therefore proposed to promote the center pixel to contribute more
to the capture of the relevant areas. In particular, to resolve the
inferior representational ability of a single similarity led by the
abundant spectral bands, the S3AM utilizes the WED and WCD
to measure the spectral relevance between the center pixel and
its neighborhoods.

The architecture of the S3AM is shown in Fig. 1. It consists
of the WED sub-module, the WCD submodule, the adaptive
aggregation, and the SG activation function. For an HSI cube
X, the WED and WCD submodules are in charge of computing
the weighted Euclidean and cosine spectral similarities, i.e.,
Se ∈ R1×ω×ω×1 and Sc ∈ R1×ω×ω×1, between the center pixel
and its neighborhoods at first. Both kinds of similarities behave
stronger robustness against the spectral variability due to the
operation of band reweighting. Next, to regulate the magnitudes
of the two types of spectral similarities for spatial attention
rationally, they are merged into the composite spectral similarity
S ∈ R1×ω×ω×1 by adaptive aggregation. Finally, the SG activa-
tion function weakens the interfering pixels by considering the
specifications of different scenarios and transforms the spectral
similarity S into the spatial attention mask M ∈ R1×ω×ω×1.

With the assistance of M, the HSI cube X can be refined by

X′ = M�X (1)

where X′ ∈ Rc×ω×ω×b is the refined output and “�” is the
element-wise multiplication. During the multiplication, the ele-
ments of X are copied along the axes of channel and band.

B. WED and WCD

1) Weighted Euclidean and Distance: The WED submodule
aims to obtain the robust weighted spectral similarity based on
the Euclidean distance. The Euclidean distance is the standard
metric to measure the difference of amplitude between two
spectra in Euclidean space. The smaller the distance is, the higher
the similarity is. The original formula of the Euclidean distance
S′e is defined as

S′e =

√∑N

i
(pi

c −Xi
1)

2 (2)

where pc ∈ R1×1×1×band X1 ∈ R1×1×1×b represent the center
pixel and its first neighborhood, respectively. pi

c is the ith band
of the center pixel.

However, due to the notorious spectral variability, the partial
bands of spectra often fluctuate in the wide range. Thus, the spec-
tral similarity computed by the original formula will represent
some deviations, which may amplify the similarity of intraclass
and narrow the similarity of interclass.

To resolve this problem, the WED submodule introduces
the FBC layer, which contains a convolutional kernel w ∈
R1×1×1×b with the same size as the bands of the HSI cube, to
distribute a group of apposite weights for all bands. Specifically,
for the relevant pixels, the FBC layer assigns smaller weights
for the bands behaving unstable spectral energy to promote
the cohesion of the spectral similarity. On the contrary, larger
weights are allocated to those bands for the interfering pixels.
Consequently, the WED sub-module can obtain the spectral
similarity that is stable and reliable in the scene with intense
spectral variation.

The weighted Euclidean spectral similarity S1e between the
center pixel pc and its first neighborhood X1 can be defined as

S1e =

√∑b

i
wi · (pi

c −Xi
1)

2 (3)

where wi is the ith weight of the convolutional kernel w of the
FBC layer, pi

c denotes the ith band of the center pixel, and Xi
1

denotes the ith band of the first neighborhood of the center pixel.
The architecture of the WED submodule is shown in Fig. 2.

First, the center pixel extracted from the HSI cube X is copied
ω2 times to form the center cube Xc ∈ R1×ω×ω×b. Next, the
differences,D ∈ R1×ω×ω×b, of all bands betweenXc andX are
computed by the element-wise subtraction and multiplication

D = (Xc �X)� (Xc �X). (4)

To accomplish the redistribution of the importance of all
bands, the FBC layer should be placed after the multiplication. If
the FBC layer is installed before the multiplication, the weights
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Fig. 2. Architecture of the WED submodule. Where “�” and “�” denote the
elementwise subtraction and the elementwise square root, respectively.

of the layer will be limited in the non-negative range due to the
subsequent square operation. This may inactivate some weights
and lower the efficiency of optimization. More important, an-
other benefit of installing the FBC layer after the multiplication
is that it can sum all bands automatically after the weighting
operation. This process can be described as follow:

D′ = w ∗D =

b∑
i

wi · ((Xi
c �Xi)� (Xi

c �Xi)) (5)

where D′ ∈ R1×ω×ω×1 is the summation of the weighted dif-
ference along the axis of band and “�” denotes the operation of
convolution.

Finally, by solving the square root of this summation, the
spectral similarity Se based on the WED is gained

Se =
√
D′ =

√∑b

i
wi · ((Xi

c �Xi)� (Xi
c �Xi)) . (6)

2) Weighted Cosine Distance: The WCD submodule aims
to acquire the robust weighted spectral similarity based on the
cosine distance. The cosine distance, as the core theory of
spectral angle mapping [51], is also a popular measurement to
calculate the directional similarity between two spectra. The
closer to one the distance is, the higher the similarity is. The
original formula of the cosine distance S′c between the center
pixel pc and its first neighborhood X1 is defined as

S′c = 1−
∑N

i pi
c ·Xi

1√∑N
i pi

c
2 ·

√∑N
i Xi

1
2
. (7)

Similar to the Euclidean distance, the spectral variability also
exerts the negative effects on the cosine distance. Therefore, the
FBC layer is also applied in the WCD submodule to obtain the
weighted cosine spectral similarity S1c

S1c =

∑b
i w

i · (pi
c ·Xi

1)√∑b
i w

i · pi
c
2 ·

√∑b
i w

i ·Xi
1
2
. (8)

The architecture of the WCD submodule is shown in Fig. 3.
First, the center cube Xc is constructed with the actions of ex-
tracting and copying. Unlike the Euclidean distance, the cosine
distance owns three basic summation units, as shown in (7).
Thus, the differences are computed in three routes

Dxx = X�X (9a)

Dcx = Xc �X (9b)

Fig. 3. Architecture of the WCD submodule. Where “�” denotes the elemen-
twise division.

Dcc = Xc �Xc (9c)

where the shapes of the prototypes of the three basic summation
units Dxx, Dcx, and Dcc are the same as that of the input X.

Following the analysis in the previous section, the FBC layer
is installed after the three elementwise multiplications. In partic-
ular, Dxx, Dcx, and Dcc share the identical FBC layer, which
not only remains the consistency of the weight of each band but
also decreases the number of parameters. The three weighting
processes can be described as

D′
xx = w ∗ Dxx =

b∑
i

wi · (Xi �Xi) (10a)

D′
cx = w ∗ Dcx =

b∑
i

wi · (Xi
c �Xi) (10b)

D′
cc = w ∗ Dcc =

b∑
i

wi · (Xi
c �Xi

c) (10c)

where D′
xx ∈ R1×ω×ω×1, D′

cx ∈ R1×ω×ω×1, and D′
cc ∈

R1×ω×ω×1 are the three basic summation units.
Finally, to get the spectral similarity Sc based on the WCD,

D′
cx is divided by the product of the square roots of D′

xx and
D′

cc

Sc =
D′

cx√
D′

cc �
√

D′
xx

=

∑b
i w

i · (Xi
c �Xi)√∑b

i w
i · (Xi

c �Xi
c)�

√∑b
i w

i · (Xi �Xi)
. (11)

C. Adaptive Aggregation

The WED tends to reflect the differences in terms of the
amplitudes of both spectra, whereas the WCD mainly reveals the
discrepancy of the angles between two spectra. The two kinds
of spectral similarities generally make unequal contributions
for judging whether two spectra belonged to the same label
indeed [52]. To take fully advantage of the two kinds of spectral
similarities, the adaptive aggregation, which equips a learnable
contribution coefficient α, is built to integrate Se and Sc to the
composite spectral similarity S

S = α · Se ⊕ (1− α) · (1− Sc) (12)
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Fig. 4. SG activation function. Where s and w indicate the spectral similarity
and spatial weight, respectively.

where “�” denotes the elementwise addition. The values of
Sc are subtracted by one to ensure that the monotonicity of
similarity with respect to distance between Sc and Se is equal.

During the training procedure, the value of α gets gradually
close to the optimal value. The contributions of the spectral
similarities based on the WED and the WCD are represented
as α and (1− α), separately. With this configuration, the rel-
ative importance of Se and Sc is adjusted rationally and the
representative composite spectral similarity S is attained.

D. SG Activation Function

In the composite spectral similarity S, the similarities of the
pixels in the relevant areas are little. In particular, the similarity
of the center pixel is equal to zero. On the contrary, the similari-
ties of the interfering pixels are great. In addition, the threshold
used to distinguish the interfering pixels is usually not fixed
in different scenes [52]. Therefore, to transform the spectral
similarity into the proper spatial attention mask, an activation
function with the following properties is demanded.

1) The smaller the spectral similarity is, the bigger the spatial
weight is, and vice versa.

2) The pixels with the zero spectral similarity, e.g., the center
pixel, should be assigned the max spatial weight, i.e., one.

3) The capability of this activation function to suppress the
interfering pixels should be stable even in various scenes.

To satisfy the three criteria, the SG activation function is
designed. Mathematically, it is written as

M = e−β·S2

(13)

where β is the learnable scaling parameter and M is the spatial
attention mask. The range of the values in M is [0, 1].

As shown in Fig. 4, the SG activation function remains the
monotonicity and the range of the original Gaussian function.
With the help of this specific, the relevant pixels, which own
the little similarities are assigned the greater spatial weights
whereas the interfering pixels are allocated the smaller spatial
weights. The spatial weight of the center pixel is equal to one,
which ensures the vital status of it in the relevant spatial areas.
More important, the response of the SG activation function is
mutable under the influence of the learnable scaling parameter
β. The bigger the value of β is, the steeper the curves, the
more interfering pixels are weakened. This means that the SG
activation function can suppress the interfering pixels in M
dynamically even in different scenes. Therefore, the relevant
spatial areas in HSI cube X can be emphasized effectively.

Fig. 5. S3AM-Net model. The S3AM is embedded between the HSI cube and
the 3-D ResNet. Where “�” denotes the elementwise addition.

E. Instantiation

In this article, 3-D ResNet, which introduce the resid-
ual blocks to relieve the vanishing gradients, is adopted as
the baseline. By integrating it with the proposed S3AM, the
S3AM-Net model is able to enhance the relevant areas to improve
the distinction of the spectral-spatial features for classification.
The overview of the S3AM-Net model is shown in the upper
part of Fig. 5. Considering the characteristic of the S3AM, it is
embedded between the inputX and the 3-D ResNet. This ensures
the spectral similarities computed from the original HSI cube
have higher credibility. Effects of different embedding strategies
will be presented in Section III-C-(5).

As shown in the lower part of Fig. 5, the input and output are
the refined HSI cube X′ and the discriminating spectral-spatial
features F ∈ R32×ω′×ω′×b/8, respectively. Where ω′ denotes the
width of the output of the last residual block. The 3-D ResNet
contains three residual blocks. In each residual block, two 3-D
convolutional layers, which are equipped with the kernels of
3×3×7 and the rectified linear unit [53] activation function,
aim to extract the nonlinear spectral-spatial features. Before the
output of each residual block, a residual connection is applied to
realize the immediate mapping of gradients via a convolutional
layer of 1×1×1. The numbers of the kernels k in the three
residual blocks are set to {8, 16, 32}, respectively. Following the
former two residual blocks, the max-pooling layers are utilized
to compress the dominant features, while the average pooling
(AP) layer is used after the last residual block to reserve more se-
mantic features [24]. The pooling sizes and strides of all pooling
layers are set to 1×1×2. Finally, a fully connected layer predicts
the most possible label y′ ∈ R1×C , where C is the number of
categories.

III. EXPERIMENTS AND ANALYSES

In this section, four public HSI datasets as well as the im-
plementation details are first described. The ablation studies,
classification experiments, parameter analysis, and attention
visualization are then presented to demonstrate the structural
rationality and effectiveness of the S3AM-Net model.
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Fig. 6. FC images and GT maps. (a) and (b) Indian Pines. (c) and (d) Pavia
University. (e) and (g) Loukia. (f) and (h) XiongAn.

A. Datasets and Evaluation Metrics

Indian Pines: This dataset was collected by the airborne visi-
ble/infrared imaging spectrometer sensor over Indian Pines test
site in Northwestern Indiana in 1992 [54]. It contains 145×145
pixels and 200 valid spectral bands.

Pavia University: This dataset was collected by the reflective
optics spectrometer imaging system sensor over during a flight
campaign over Pavia, North Italy in 2002 [54]. It contains
610×340 pixels and 103 valid spectral bands.

Loukia: This dataset was gathered by the Hyperion sensor
mounted on the Earth Observing-1 satellite. It is one of the
HyRANK benchmark datasets, which have been developed in
the framework of the ISPRS Scientific Initiatives in 2018 [55].
It contains 945×249 pixels and 176 valid spectral bands.

XiongAn: This dataset was acquired by the visible and near-
infrared imaging spectrometer designed by Shanghai Institute
of Technical Physics, Chinese Academy of Sciences in Xiongan
New Area in 2017 [56]. It contains 400×220 pixels and 250
valid spectral bands.

The false-color (FC) images and ground-truth (GT) maps
of the four datasets are shown in Fig. 6. As shown in Tables
I–IV, {5%, 5%, 90%}, {2%, 5%, 93%}, {5%, 5%, 90%}, and
{1%, 5%, 94%} of the samples from each category of the four
datasets are selected randomly as the training, validation, and
test sets, respectively. The training set is used for training the
proposed model and the comparison methods. The validation
set is used for evaluating the fitting states of models during
training procedures merely. The test set is used for verifying
the classification performance of the models.

In this article, the overall accuracy (OA), average accuracy
(AA), and kappa coefficient (κ) are employed to quantify the
classification performances of the S3AM-Net model on the three
datasets. The higher the scores of the three metrics, the better
performance the model receives. To alleviate the influence of the
random initialized parameters, all experiments are performed ten
times and the average results are reported.

TABLE I
SAMPLES OF THE INDIAN PINES DATASET

TABLE II
SAMPLES OF THE PAVIA UNIVERSITY DATASET

TABLE III
SAMPLES OF THE LOUKIA DATASET

TABLE IV
SAMPLES OF THE XIONGAN DATASET
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B. Implementation Details

In the preprocessing and initialization phases, the values of
each dataset are normalized into the range from 0 to 1. The
normal distribution with unit mean and 0.1 standard deviation
are utilized to initialize the FBC layers in the WED and WCD
submodules. The contribution coefficient α of the adaptive ag-
gregation is initialized to 0.5 and the scaling parameter β of
the SG activation function is set to 1.0 at first. During the back
propagation, the ranges of the values of α and β are [0, 1].
Besides, the Xavier normal distribution [57] is used to initialize
all layers of baseline. The batch size bs is set to 32 and the total
number of training iteration is 200.

During the training procedure, the errorL between the true la-
bels Y ∈ Rbs×C and the predicted labels Y′ ∈ Rbs×C in a mini
batch are assessed by the famous cross-entropy loss function

L = − 1

bs

bs∑
i = 1

C∑
j = 1

Yi, jlog(Y
′
i, j). (14)

While training the model, the RMSprop [58] optimizer is
adopted to optimize the whole network, where the values of
(learning rate, beta1, beta2) are set to (0.001, 0.9, 0.999).

All experiments are performed on a computer with an AMD
Ryzen 3600 at 4.07 GHz × 6 with 32-GB RAM and an NVIDIA
GeForce GTX 1080Ti graphical processing unit with 12-GB
RAM. The operating system is the Ubuntu 16.01. The DL
framework is the Keras 2.3.1.

C. Ablation Studies

1) Different Measures of the Spectral Similarities: In this
section, to demonstrate the advantage of the combination of the
WCD and WED, different measures of the spectral similarities
are installed into the S3AM. Besides the adopted WED and
WCD, other three measures including the weighted Manhattan
distance (WMD), the weighted Chebyshev distance (WCheD),
and the weighted Tonimoto coefficient distance (WTD). The
spectral similarities, S1m, S1che, and S1t , between the center pixel
and its first neighborhood using the three distances are as follow:

S1m =

b∑
i

wi · ∣∣pi
c −Xi

1

∣∣ (15)

S1che = max(wi · ∣∣pi
c −Xi

1

∣∣ ) (16)

S1t =

∑b
i w

i · (pi
c ·Xi

1)√∑b
i w

i · pi
c
2+

√∑b
i w

i ·Xi
1
2−∑b

i w
i · (pi

c ·Xi
1)

.

(17)

The OAs of the proposed model using the five measures on
four datasets are reported in Table V. The numbers presented
in bold-type denote the best results. From the upper half of the
table, the WED and WCD win the top two OAs on four datasets.
The WCheD receives the worst performances, which are lower
than those of the baseline. It is because the WCheD chooses
the max discrepancy of certain band immediately as the spectral
similarity, which is likely to lose the important information hid
in other bands. The WMD takes the summation of the absolute

TABLE V
OAS (%) OF THE S3AM-NET MODEL USING DIFFERENT MEASURES

(COMBINATIONS) OF THE SPECTRAL SIMILARITY

TABLE VI
OAS (%) OF THE S3AM-NET MODELS WITH OR WITHOUT (W/O) THE FBC

LAYERS ON FOUR DATASETS

differences in all bands. The stability of it to handle the bands
express large disparity is weaker than WED, so the OAs of it are
lower. The WTD, which is the extension of the WCD, obtains
the spectral similarity via the intersection and distribution of the
spectra. But there are still visible gaps between the performances
of the WTD and WCD. It may be the redundant bands that the
computation of spectral similarity has a little deviation.

Therefore, the WED and WCD, which achieve the top two
ranks on four datasets, are integrated with other two measures,
WMD and WTD, to explore the optimal combination of the
spectral similarity, separately. As for the WCheD, it is not con-
sidered to conduct this study due to its lowest accuracy. From the
lower half of Table V, there is an additional promotion for each
combination comparing with the cases using single measure.
More inspiring, the combination “WED + WCD” reaches the
highest OAs on three datasets.

2) Role of the FBC Layer

As the essential parts of the WED and WCD submodules, the
FBC layer aims to redistribute a special weight for each band.
Thus, the weighted spectral similarities behave good robustness
in the scenes with intense spectral variability. To prove this role,
the FBC layers in the WED and WCD submodules are removed
during the training procedure, which means the weights of all
bands are equal.

As shown in Table VI, once the FBC layer is installed, the
promotions of the OAs of the S3AM-Net model on the four data
sets are no less than 1.6%, 1.0%, 1.1%, and 1.5%, respectively.
These discrepancies, which cannot be ignored, show that the
band reweighting operation of the FBC layer can weaken the
negative effects of the spectral variability to improve the classi-
fication performance.

3) Impact of the Adaptive Aggregation: The adaptive aggre-
gation is designed to adjust the relative magnitude of the WED
and WCD submodules via the contribution coefficient α.
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TABLE VII
OAS (%) OF THE TWO SCHEMES ON FOUR DATA SETS AND THE OPTIMAL

CONTRIBUTION COEFFICIENTS OF THE SCHEME “ADAPTIVE”

TABLE VIII
OAS (%)THE S3AM-NET MODELS WITH THE GAUSSIAN OR SG ACTIVATION

FUNCTIONS ON FOUR DATA SETS AND THE OPTIMAL SCALING PARAMETERS

For the sake of interpreting the necessity, two kind of schemes
using the equal and adaptive aggregations are carried out.

The comparison of the two schemes on four datasets is shown
in Table VII. When the equal aggregation is utilized, the value
of the contribution coefficient α is fixed as 0.5, which causes the
equal contribution between the WED and WCD submodules.
Consequently, the OAs of this scheme decline a little on three
datasets comparing with the scheme “adaptive”. The optimal
contribution coefficients of the scheme “adaptive” are shown in
the last column of Table VII. From these optimized values, the
WCD submodule makes more contributions for the classification
on the Indian Pines, Loukia, and XiongAn datasets while the
WED submodule is valued on the Pavia University dataset.
The similar conclusion can be discovered from comparison of
the third and fourth rows in Table V. These results reveal that the
adaptive aggregation can regulate the relative importance of the
WED and WCD submodules for better performance in different
scenarios.

4) Impact of the SG Activation Function: The SG activation
function takes charge of the conversion from the composite
spectral similarity S to the spatial attention mask M. With the
assistance of its learnable scaling parameter β, the interfering
pixels can be well restrained even though in diverse scenes. To
exploring the influence of this parameter on the classification
performance, besides the SG activation function, the original
Gaussian activation function is also introduced for comparison.

The OAs of the two schemes on four datasets are shown in
the second and third rows of Table VIII. It can be observed that
the OAs of the model using the SG activation function gains the
slight increase comparing with the model with the Gaussian
activation function. This is because the scaling parameter β
enables the SG activation function represents the flexible at-
titudes to suppress the interfering pixels as precisely as possible
in different scenarios. Moreover, from the last row of Table VIII,
the optimal values of the scaling parameters of the Indian Pines,
Pavia University and XiongAn datasets are larger than that of
the Loukia data set, which shows the thresholds used to weaken
the interfering pixels of the Indian Pines, Pavia University, and
XiongAn datasets are higher. It is the SG activation function that
notices these essential specifics for upgrading the classification
accuracy.

TABLE IX
OAS (%) OF THE BASELINE AND FOUR NETWORKS WITH DIFFERENT

INTEGRATION STRATEGIES ON FOUR DATASETS

5) Integration Strategies of the S3AM: The purpose of the
S3AM is to extract the relevant spatial areas in HSI cube. There
are many ways to integrate the S3AM with the baseline, i.e.,
3-D ResNet. To seek the best solution, four networks built with
various integration strategies are analyzed as follows.

1) Net_1: Embedding the S3AM into the residual blocks of
the baseline (Before each residual connection).

2) Net_2: Embedding the S3AM between the residual blocks.
3) Net_3: Embedding the S3AM after the baseline.
4) Net_4: the S3AM-Net model.
As shown in Table IX, Net_4 outperforms other three net-

works along with the baseline on four datasets slightly. The
OAs of the baseline, which does not introduce the S3AM are
tolerable. Net_1 aims to adjust the deep features extracted by
the convolutional layers inside the residual blocks while Net_2
oversees refining the deep residual features extracted by the
residual blocks. However, the OAs of Net_2 are higher than
those of Net_1, which may because the residual features create
a shortcut path between the HSI cube and the S3AM to preserve
the effect of spatial attention masks. Net_3 places the S3AM
after the baseline to refine the spectral-spatial features with
the spatial attention mask. But OAs of it on four datasets are
unsatisfactory comparing with the other networks apart from the
baseline. This gap indicates that executing the refinement in the
final stage of feature extraction may not be the optimal option.
By embedding the S3AM between the input and the baseline,
Net_4 can generate the more expressive spatial attention mask
from HSI cube directly. Therefore, the network extracts the
discriminating spectral-spatial features from the relevant areas
for the superior classification accuracy.

D. Comparison With the State-of-the-Arts

To verify the effectiveness of the proposed S3AM-Net model,
the 2- and 3-D ResNets, seven attention-based methods, in-
cluding spectral spatial self-attention network (SSSAN) [38],
spectral former (patchwise) (SFP) [40], spectral spatial feature
tokenization transformer (SSFTT) [41], compact band weight-
ing module (CBW) [43], densely connected multiscale attention
network (DMSAN) [46], double-branch multiattention network
(DBMA) [48], and residual spectral spatial attention network
(RSSAN) [49], as well as the 2-D version of the proposed
model, are reimplemented for comparison. For each method,
the architecture from the original article is adopted. During
the training, validation, and testing procedures, all methods
share the same training, validation, and testing sets listed in
Tables I–IV.
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TABLE X
CLASSIFICATION RESULTS (%) FOR THE INDIAN PINES TESTING SET USING 5% OF THE AVAILABLE LABELED DATA

TABLE XI
CLASSIFICATION RESULTS (%) FOR THE PAVIA UNIVERSITY TESTING SET USING 2% OF THE AVAILABLE LABELED DATA

1) Quantitative Comparisons: The quantitative evaluations,
including the recall of each category, OA, AA, and κ, of each
method on the Indian Pines, Pavia University, Loukia, and
XiongAn test sets are reported in Tables X–XIII. From these
results, the following conclusions can be drawn. First, the 2-
and 3-D ResNets, as the methods without adopting any attention
module, gain the tolerable classification results. After the S3AM
are integrated with them, the classification performances of the
2- and 3-D S3AM-Net models all gain appreciable promotion.
Second, among the attention-based methods, DBMA achieves
the highest classification performances on the Pavia University
dataset while SFP is the most excellent model for another three
datasets. SFP uses the transformers to yield the groupwise spec-
tral embedding for extracting the local spectral sequence fea-
tures. DBMA combines the CBAM with the densely connected
network. Both are helpful to enhance the useful spectral-spatial
features. SSSAN employs the spectral and spatial SA modules
to refine the bands and pixels, which causes the slight lower
performances than DBMA. This indicates the CBAM possesses
stronger ability to reweight features than the SA module to
some extent. SSFTT utilizes the transformers to model the
high-level semantic features and receives the commendable
classification performances closed to those of SFP. CBW applies

the SE module to generate the spectral attention mask for band
selection merely, which causes its OAs lower than those of
3-D ResNet on the last three datasets (marked with rectangles
in Tables XI–XIII). Similarly, DMSAN, which extends the
SE module to spectral and spatial dimensions, acquires the
unsatisfied classification performance on the Indian Pines and
Loukia datasets (marked with rectangles in Tables X and XII).
Both classification results of CBW and DMSAN reveal that
the SE module may behaves inferior capability for capturing
the relevant areas comparing with the SA module and CBAM.
RSSAN, which integrates the CBAM and 2-D residual blocks,
gains the mediocre accuracy. In particular, the OA of RSSAN on
the Pavia University dataset is less than that of ResNet (marked
with rectangles in Table XI). The most likely reason is that the
2-D residual blocks of RSSAN cause the loss of the spectral
information, which is important for HSI classification. Last but
not least, though the proposed S3AM-Net model introduces the
spatial attention merely, the number of the highest recall and
the OA, AA, and κ of it on four datasets still reaches the best
standard. Different from other types of attention modules, the
special generation solution of the S3AM takes the center pixel
into fully account, which enables it to weaken the interfering
pixels and infer the relevant spatial areas effectively. Therefore,
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TABLE XII
CLASSIFICATION RESULTS (%) FOR THE LOUKIA TESTING SET USING 5% OF THE AVAILABLE LABELED DATA

TABLE XIII
CLASSIFICATION RESULTS (%) FOR THE XIONGAN TESTING SET USING 1% OF THE AVAILABLE LABELED DATA

the S3AM-Net model obtains the preferable classification per-
formances.

2) Qualitative Comparison: The qualitative evaluations of
different methods on four datasets are shown in Figs. 7–10.
After installing the S3AM, the proposed model corrects many
misclassified pixels which are predicted by 2-D ResNet. Com-
paring with other methods, the proposed 3-D S3AM-Net model
gains the more accurate and smoother classification maps. For
instance, almost all pixels of the categories of the “Grass-
pasture-mowed” and “Oats” (C7 and C9) of the Indian Pines
dataset are recognized accurately. Most pixels of the categories
of the “Bare Soil” and “Bitumen” (C6 and C7, marked with
white ellipses) of the Pavia University dataset are recognized
by the proposed 3-D S3AM-Net model correctly, which are
close to the corresponding GT map. For the categories “Dense
urban fabric” and “Sparsely vegetated area” (C1 and C11) of the
Loukia dataset, the proposed model receives the better results.
Similarly, the regions of the categories “Chinese scholartree”
and “Peach” (C1 and C8) in the right part of Fig. 10(j) are purer
than those of most other methods. In summary, benefits from the
particular S3AM, the proposed model elevates the classification
accuracy on four datasets, especially in the boundaries between
different land-covers.

3) Time Consumption: The training time has an inextrica-
ble link with the complexity of the network and the size of

the training data. The testing time is the intuitive metric of
the real-time of algorithm in real application. To evaluate the
efficiency of the proposed S3AM-Net model, the training and
testing times of it and other compared methods on four datasets
are presented in Table XIV. From this table, it is obvious that
the 2-D ResNet spends the least time on accomplishing the
training and testing procedures. As the 2-D CNN based models,
the time consumptions of CBW, RSSAN, and 2-D S3AM-Net
models are less than other methods evidently. Among the 3-D
CNN based models, three models based on the SA modules,
i.e., SSSAN, SFP, and SSFTT, cost considerable much time
to finish the optimization and testing since their SA modules
which generally possess a great amount of matrix operations
for attention generation. By contrast, the proposed S3AM-Net
model introduces few parameters to produce the spatial attention
mask, which ensures its higher efficiency.

E. Analysis of the Width of HSI Cube

It is well known that the width of the HSI cube has an
important effect on the classification performance. As shown
in Fig. 11, the larger the width is, the higher is the OA. When
the width is set to 3, the OAs on four datasets all keep the
lowest level. The OAs reach the highest level and maintain
stable when the widths are set to 11, 5, 7, and 5 for the four



5994 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 7. Classification maps of different methods on the Indian Pines data set. Where “Cn” represents the nth category. (a) GT. (b) ResNet (2-D | 3-D). (c) SSSAN.
(d) SFP. (e) SSFTT. (f) CBW. (g) DMSAN. (h) DBMA. (i) RSSAN. (j) S3AM-Net (2-D | 3-D).

Fig. 8. Classification maps of different methods on the Pavia University dataset. (a) GT. (b) ResNet (2-D | 3-D). (c) SSSAN. (d) SFP. (e) SSFTT. (f) CBW. (g)
DMSAN. (h) DBMA. (i) RSSAN. (j) S3AM-Net (2-D | 3-D).

TABLE XIV
TRAINING/TESTING TIMES (SECONDS) OF DIFFERENT METHODS ON FOUR DATASETS

datasets, respectively. Even though the HSI cube with larger
width may introduce more interfering pixels, the proposed
S3AM-Net model still obtains the growing OAs. This is because
of the characteristic of the S3AM to extract the spatial attention
using the spectral similarities between the center pixel and its
neighborhoods, which implies that the relevant spatial areas are
still well preserved even in wider HSI cubes.

F. Analysis of the Training Samples Proportion

The influence of the training samples proportion on the clas-
sification performance also cannot be neglected. As shown in
Fig. 12, there are limited samples for some categories of the
Indian Pines and Loukia dataset, the OAs are lower when the
training proportion is less than 5%. On the contrary, the issue of
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Fig. 9. Classification maps of different methods on the Loukia dataset. (a) GT. (b) ResNet (2-D | 3-D). (c) SSSAN. (d) SFP. (e) SSFTT. (f) CBW. (g) DMSAN.
(h) DBMA. (i) RSSAN. (j) S3AM-Net (2-D | 3-D).

Fig. 10. Classification maps of different methods on the XiongAn dataset. (a) GT. (b) ResNet (2-D | 3-D). (c) SSSAN. (d) SFP. (e) SSFTT. (f) CBW. (g) DMSAN.
(h) DBMA. (i) RSSAN. (j) S3AM-Net (2-D | 3-D).

Fig. 11. OAs (%) of the proposed model using different widths on four
datasets. Where the solid data markers mean the optimal configurations.

the limited samples is relieved in other two datasets. Hence, the
OAs of them have attained the accuracy of no less than 95% and
85% when there are one percent samples for training merely.
To acquire better classification performances and expend less
training time, the points where the curves tend to be steady,
i.e., 5%, 2%, 5%, and 1%, are selected as the training samples
proportions of the Indian Pines, Pavia University, Loukia, and
XiongAn datasets, respectively.

Fig. 12. OAs (%) of the proposed model with different training samples
proportions on four datasets.

G. Comparison Between Different Attention Modules

In this part, so as to interpret the validity of the S3AM, it is
replaced with other three kinds of common attention modules,
including the SA module [35], the SE module [42], and the
CBAM [47], to construct the SA-Net, SE-Net, and CBAM-Net
models. From Table XV, it can be observed that the OAs of
other three kinds of attention networks on four datasets are lower
than those of the proposed S3AM-Net model. The SA module
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Fig. 13. Visualization of the spatial attention masks generated by the proposed
S3AM and other three kinds of attention modules. The relevant spatial areas are
marked with red solid polygons. Where P indicates the softmax score of each
network for the corresponding category.

TABLE XV
OAS (%) OF THE DIFFERENT ATTENTION NETWORKS ON FOUR DATASETS

explores the correlation between pixels. The SE module adopts
the spatial gather and excitation to model the dependency ex-
isting in different pixels. The CBAM employs the large-scale
convolution to describe the meaningful spatial positions. How-
ever, owing to the deficiency of the special operation for the
center pixel, the procedures of the three attention modules may
be affected by the interfering pixels. Therefore, they are weak
in locating the relevant pixels, which are advantageous to clas-
sification exactly. Extraordinarily, the S3AM infers the relevant
areas via the spectral similarities between the center pixel and its
neighborhoods, which facilitates the representation of the pivotal
features thereby ensuring better classification performances.

H. Attention Visualization

To clearly illustrate the advantage of the proposed S3AM
comparing with other attention modules, including the SA
module [38], the SE module [46], and the CBAM [49], their
spatial attention masks extracted from several testing samples
are visualized in Fig. 13. It shows the FC image, the GT map,
and the spatial attention masks of each sample. From this figure,
it can be observed that the spatial attention masks generated
by the S3AM can assign the highest spatial weights to the
center pixels and describe the relevant spatial areas, which are
marked in the corresponding GT maps more exactly. This leads

to the high softmax scores P predicted by the S3AM-Net model.
In contrast, other attention modules, which extract the spatial
attention via the dot-product operations, the feature squeezing
and excitation, and the large-scale convolution, tend to mistake
the interfering pixels for the relevant pixels or even suppress
the center pixels. This may cause incorrect predictions with
low softmax score P (marked in red). Therefore, the S3AM
does better in enhancing the relevant areas and improving the
extraction of the discriminating spectral-spatial features.

IV. CONCLUSION

In this article, a novel S3AM is proposed to emphasize the
center pixel and capture the relevant spatial areas, which are ben-
eficial to the classification. The S3AM is composed of the WED
submodule, the WCD submodule, the adaptive aggregation,
and the SG activation function. First, the WED and WCD are
exploited to obtain robust spectral similarities between the center
pixel and its neighborhoods. In particular, they all employ the
FBC layers to recalibrate each band to weaken the influence of
the spectral variability. Next, the adaptive aggregation fuses the
two kinds of spectral similarities into a comprehensive spectral
similarity by considering their relative importance. Finally, the
SG activation function, which can weaken the interfering pixels
according to the specificity of different scenes, takes charge of
converting the spectral similarity into the proper spatial weights.
The S3AM is good at emphasizing the spatial areas relevant to
the center pixel and maintaining these areas even in wider HSI
cubes. As a flexible component, the S3AM is integrated with the
3-D ResNet to build the S3AM-Net model, which can extract the
discriminating spectral-spatial features from the relevant spatial
areas of HSI cubes. Experimental results on four public datasets
demonstrate the rationality and effectiveness of the S3AM and
the superior classification performances of the S3AM-Net model
compared with other state-of-the-arts.
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