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Abstract: We propose optimized deep learning (DL) models for automatic analysis of udder con-
formation traits of cattle. One of the traits is represented by supernumerary teats that is in excess
of the normal number of teats. Supernumerary teats are the most common congenital heritable in
cattle. Therefore, the major advantage of our proposed method is its capability to automatically select
the relevant images and thereafter perform supernumerary teat classification when limited data are
available. For this purpose, we perform experimental analysis on the image dataset that we collected
using a handheld device consisting of a combined depth and RGB camera. To disclose the underlying
characteristics of our data, we consider the uniform manifold approximation and projection (UMAP)
technique. Furthermore, for comprehensive evaluation, we explore the impact of different data
augmentation techniques on the performances of DL models. We also explore the impact of only
RGB data and the combination of RGB and depth data on the performances of the DL models. For
this purpose, we integrate the three channels of RGB data with the depth channel to generate four
channels of data. We present the results of all the models in terms of four performance metrics, namely
accuracy, F-score, precision, and sensitivity. The experimental results reveal that a higher level of
data augmentation techniques improves the performances of the DL models by approximately 10%.
Our proposed method also outperforms the reference methods recently introduced in the literature.

Keywords: dairy industry; udder classification; supernumerary teats; udder conformation traits;
milk production; deep learning models; neural networks; cattle images

MSC: 68T01

1. Introduction

The dairy industry is contributing substantially to meet the accelerating food demand
of the world. For instance, dairy products are consumed by 80% of the population of the
world [1]. To offer dairy products to a steady growing world population without increasing
the land use connected to feed, the efficiency of dairy cows should be improved. Breeding
organizations use genetic selection for increasing milk yield, decreasing the need for feed
and improving the longevity of cows for enhancing resource efficiency. The cow’s udder
conformation plays an important role for the longevity of dairy cows. A robust, easy-to-
milk long-lasting udder is preferred, and breeding organizations put a lot of emphasis on
such traits in the breeding goals [2–4]. The udder of a cow characterized by good udder
conformation is consistent in size and capacity relative to the cow’s age and number of
lactations. Good udder conformation is also represented by teats which are appropriate
in number, size, length, and squarely placed under the quarter and perpendicular to the
ground. For example, supernumerary teats are in excess of the normal number of teats.
They are not capable of producing milk. In fact, they represent a typical congenital abnor-
mality [5]. We depict both udders characterized by good conformation and supernumerary
teats in Figure 1.

Mathematics 2022, 10, 3097. https://doi.org/10.3390/math10173097 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10173097
https://doi.org/10.3390/math10173097
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math10173097
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10173097?type=check_update&version=1


Mathematics 2022, 10, 3097 2 of 19

Figure 1. Udder conformation and supernumerary teats examples. The first column shows an
udder characterized by good conformation. The second column shows an udder representing a
supernumerary teat, and the last column shows an udder representing two supernumerary teats
annotated with green circles.

In the dairy industry, the traits related to udder conformation are scored manually
by a trained technician. Most traits are scored on a linear discrete scale ranging from
1 to 9, where 1 and 9 correspond to the most extreme cases [6]. However, early life
measurements may not reflect the same quality later in life. Therefore, scoring udder
conformation repeatedly on a cow might give a better and more objective reflection of the
true udder conformation [7]. To study changes of udder conformation over long period of
time, repeated observations are required, which is a costly and time consuming process.
Developing a more automatic data collection and analysis method for such traits would
directly increase the prediction, contribute to genetic gain, and reduce the associated cost.
To meet these challenges, dairy industries can collect data related to udders using sensors
and cameras. The data can be analyzed by deep neural networks (DNNs) to automate
the decision-making processes. DNNs are trainable multi-layer models consisting of
multiple feature-extraction phases, succeeded by a fully connected classification stage.
Recently, DNNs have presented encouraging performance in many applications, including
behavior recognition of pigs and cattle [8], analysis of animal migration patterns [9], and
modeling animal biodiversity [10]. These approaches have been depicted to have promising
generalization capabilities when properly trained on available data. This evolution has
therefore led to a notion that DNNs could lead to better performance regarding the analysis
of udder conformation and the related traits.

In this paper, we propose optimized DNNs for the classification of udder\non-udder
images and supernumerary teats. Our proposed DNNs architectures could also be used to
classify whether a cow has supernumerary teats or not. The classification based on cow
imaging is a very challenging problem because, in addition to the udder characteristics,
the analysis is sensitive to deformations due to image capture conditions. We propose
two main approaches when considering DNNs. Firstly, we develop two customized DNN
architectures characterized by a few layers to perform the classification. This approach
provides high flexibility in terms of modeling. Secondly, we explore two existing DNN
architectures, namely the VGG16 model [11] and the wide residual network (WideRes-
Net) [12]. This approach reduces the time to develop new architectures. The VGG16 model
and the WideResNet model are well-known networks used for many applications. To
perform the classification using different DNNs, we collected both RGB and depth data. We
used the data both separately and jointly. In fact, fusing depth information with RGB data
for image-based udder classification can help to increase the performance. We investigate
the optimal manner to perform this data fusion considering different DNNs architectures.
We carried out comprehensive experiments to determine the impact of considering data sep-
arately and jointly. We also investigate the impact of image variations on the performances
of DL models in terms of different data augmentation techniques. We experimentally
highlight the behavior and characteristics of DL models by taking into account the data



Mathematics 2022, 10, 3097 3 of 19

augmentation techniques including blurring, flipping, rotation, brightness, and contrast.
The main contributions of this paper are:

• To the best of our knowledge, we are the first to propose optimized DL models for
udder\non-udder and supernumerary teat classification. We also investigate famous
DL methods in conjunction with our proposed method.

• We collect and present our own dataset that can be used to analyze udder conformation
and udder traits of cows. Our new dataset will open a new research direction since no
such dataset is available publicly.

• We present comprehensive experiments to evaluate the impact of depth information
and different data augmentation techniques on the performances of the DL models.

• We present detailed experiments from many aspects and comparisons with famous
DL methods and other reference methods.

The rest of the paper is organized as follows. In Section 2, an overview of related work
is presented. The details about our proposed and existing DL models are presented in
Section 3. Experimental results on our collected dataset are shown in Section 4. We present
the discussion in Section 5 and conclusions in Section 6.

2. Related Works

We divide the literature into two categories: classic methods and DL-based meth-
ods. This classification is motivated by the fact that classic methods are related to cattle
traits in general. However, DL-based methods, recently published, are mostly related to
cattle health.

In the first category, Kappes et al. [13] used multivariate analysis to investigate the
functional traits including lameness score, udder cleanliness score, and udder depth. The
purpose was to understand the connection between functional traits and milk production.
However, they did not take into account the genetic parameters and the breeding values
that represent an estimate of an animal’s genetic merit for a particular trait. To address
this issue, De et al. [14] used Bayesian inference to estimate breeding values considering
two-trait analyses, and Carvalho et al. [15] estimated genetic parameters of different confor-
mation and management traits. Furthermore, Shorten [16] discovered that the milk yield is
strongly associated with udder traits. Therefore, the author modeled 3D images using a
machine learning approach to determine individual cow milk yield and the lactation milk
yield. The udder volume before milking, udder volume after milking, and the difference
in udder volume before and after milking were estimated. It was found that the machine
learning method could potentially be used for on-farm prediction of milk performance and
udder traits from dairy cows. Understanding milk production yield and cattle longevity
from pedigree is a complex process. Therefore, researchers also studied candidate genes
and genetic basis in cattle. For example, Jiang et al. [17] and Colinet et al. [18] introduced
a Bayesian approach to identify candidate genes for production, reproduction, and con-
formation traits. Their approach improved the understanding of the genetic basis of cattle
complex traits. Stefani et al. [19] used a probabilistic approach to consider udder, feet, and
leg traits for genetic gains. They estimated the heritabilities of the udder, feet, and leg traits.
They found the possibility to promote early genetic gains in the longevity of animals by
choosing slightly correlated traits to achieve a reasonable set of feet and legs, as well as
well-positioned teats of medium length. Poppe et al. [7] investigated changes in udder
conformation genetically and phenotypically within and between parities. They estimated
genetic correlations between automatic milking systems (AMS)-based udder conformation
traits and classifier-based udder conformation traits, longevity, and udder health. Their
work concluded that udder conformation hardly transforms genetically between parities
and is greatly repeatable within parities.

In the second category of DL-based methods, the literature is mostly related to cattle
health management. The use of DL-based methods in different domains is very wide.
For example, Manzo and Pellino [20] explored pretrained DL models for cloud image
description and classification. Shanthamalluet al. [21] presented different DL applications.
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Regarding cattle, Porter et al. [22] explored a DL framework to monitor teat tissues which
is a challenging problem for udder health management in dairy cows. They found that
their method can be exploited to evaluate teat-end condition in a systematic and proper
manner. However, they did not take into account the mastitis disease which is a significant
economic and health problem in dairy farms. To address this challenge, Ebrahimi et al. [23]
investigated a method for early sub-clinical mastitis detection. They exploited DL-based
methods to identify the patterns of risk factors of mastitis. They evaluated the method on a
large dataset of milk recordings to decode important models for the detection of sub-clinical
mastitis. To further improve the detection speed and achieve automatic recognition of
dairy cow mastitis, Xudong et al. [24] used a DL network based on the bilateral filtering
enhancement of thermal images. To identify mastitis in the early stage, Fadul et al. [25]
used different machine learning techniques to develop predictive and prescriptive decision
support tools to identify cows positive for clinical mastitis during their first lactation. They
found that two different methods working concomitantly, one for predicting the imminent
risk and the other one for the overall risk during the first lactation, could help in the short-
term, mid-term, and long-term decision-making process. Cattle health management can be
further improved by considering heritability that measures the strength of the relationship
between performance and breeding value. For this purpose, Nye et al. [26] used a composite
DL-based method to extract phenotypic information for morphological features to evaluate
conformation characteristics. They used pedigree and image information to estimate high
heritabilities considering useful biological data.

Our literature review reveals that the previous research is either focused on different
cattle traits using classic methods or cattle health considering DL-based methods. Moreover,
the literature is very limited in the case of DL methods. Therefore, there is a research gap to
understand and explore cattle udder conformation traits. Our work falls into the second
category of DL-based methods. Therefore, our work also contributes toward the expansion
of DL-based methods for conformation traits in cattle.

3. Materials and Methods

We note that limited research has been carried out to explore DL-based methods for
predicting conformation traits in dairy cattle. Here, we propose two approaches to explore
DL-based methods. In the first approach, we develop two custom DL networks that are
flexible in term of modifying their depths and other hyperparameters. The first network,
depicted in Figure 2, consists of three convolutional layers, three maxpooling layers, and
two fully connected layers. The second network, depicted in Figure 3, consists of four
convolutional layers, four maxpooling layers, and two fully connected layers. Considering
the convolutional layers, our networks extract convolutional features from the input by
exploiting square filters to produce feature maps. Each filter is represented by different
weight parameters which are learned during the training stage. Maximum pooling is
an operation to find the largest value in each patch of each feature map. This operation
underlines the most present feature in the patch. In fact, features tend to capture the
spatial presence of various patterns in the stack of the feature map. The input to the
fully connected layer is the output from the final convolutional and maxpooling layers
representing high-level features. To illustrate the operation of a convolutional layer using
filters, it is formulated in Equation (1).

Conv(o[l−1], S[n])x,y = Ω[l](
η
[l−1]
H

∑
i=1

η
[l−1]
W

∑
j=1

η
[l−1]
C

∑
s=1

Sn
i,j,so[l−1]

x+i−1,y+j−1,s + b[l]n )dimen(Conv(o[l−1], S[n])) = (η
[l]]
H , η

[l]
W) (1)

where o[l−1] represents the output from the previous convolutional layer (l − 1) which is
input for the current layer l. S[n] shows the number of filters to be applied to the input. The
dimension of the input in terms of height, width, and number of channels is represented
by η

[l−1]
H , η

[l−1]
W , and η

[l−1]
C , respectively. The rectified linear activation function is shown
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as Ω[l]. Therefore, the output o[l] from layer l and its dimension by applying filters S[n] is
formulated as in Equation (2),

o[l] = Ω[l](Con(o[l−1], S(1))), Ω[l](Con(o[l−1], S(2))), Ω[l](Con(o[l−1], Sn[l]
C ))dimen(Conv(o[l]) = (η

[l]]
H , η

[l]
W , η

[l]
C ) (2)

Figure 2. Our proposed network 1. We depict a convolutional neural network (CNN) in terms of
input, convolutional, maxpooling, fully-connected, and softmax layers. The types of layers are the
same both in our proposed and existing convolutional neural networks. We also provide information
related to the kernel size, padding, and subsampling.

Figure 3. Our proposed network 2. We depict a convolutional neural network (CNN) in terms of
input, convolutional, maxpooling, fully-connected, and softmax layers. The types of layers are the
same both in our proposed and existing convolutional neural networks. We also provide information
related to the kernel size, padding, and subsampling.

A maxpooling layer downsizes the features of the input. Therefore, the output from
the layers and its dimension are formulated as,

Maxpool(o[l−1])x,y,z = Θ[l]((o[l−1]
x+i−1,y+j−1,z)(i,j)∈[1,2,..., f [l] ])dimen(o[l]) = (η

[l]
H , η

[l]
W , η

[l]
C ) (3)
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where Θ[l] represents the maxpooling operation, and f [l] denotes the size of the maxpooling
filter. Before applying the operation of a fully connected layer, the output from the previous
layer is transformed into a one-dimensional vector. The output from a fully connected layer
considering jth node of the lth is formulated as,

z[i]j =
ni−1

∑
l=1

wi
j,lo

i−1
l + bi

j (4)

where oi−1
l represents the input from a previous convolutional or maxpooling layer, and

wi
j,l and bi

j depict the weight and bias parameters. Secondly, we consider the existing
DL networks, the VGG16 model [11] and the Wide-ResNet-28 model [12], due to their
success in many other applications. The VGG16 model is a convolution neural network
(CNN). This model consists of convolution layers of 3 × 3 filter with a stride equal to 1.
The first two convolutional layers have 64 channels. The model uses the same padding
and maxpooling layer of 2 × 2 filter of stride equal to 2. The next two convolutional
layers are represented by 256 filters. Subsequently, three fully connected layers follow
the convolution and maxpooling layers. The last layer represents the softmax layer. An
objective function is used to optimize the VGG16 model training process. The objective
function is formulated as,

J(w, b) =
1
m

m

∑
g=1

∆(ow,b
g , og) (5)

where ∆ represents the cost function, m represents the training samples, and ow,b
g and og

show the output from the final layer and the actual label of a training sample, respectively.
We use a cross-entropy loss function to optimize the classification models. The cross-entropy
loss function for binary classification is formulated as,

∆ = −[oglog(ow,b
g )] + [(1− og)log(1− ow,b

g )] (6)

We also explore wide residual network (WideResNet) [12] which is an improved
version of the residual network. It is found that increasing the depth of the residual network
does not improve the performance. The WideResNet network is motivated by the fact
that the widening of ResNet blocks provides a more consolidated approach of enhancing
the performance of deep residual architectures compared to increasing their depth. This
approach presents substantial performance improvement over [27]. The WideResNet model
can produce more representative features from input samples compared to traditional CNN
methods. The WideResNet model is based on the idea of skip connection. To illustrate
this idea, we consider the stacking of convolution layers, which generally develop CNN,
allows a deep model to learn from the features at the lower level in a hierarchical setup.
Nevertheless, a given layer is considered to only connect with its two adjacent layers. The
information flow from previous layers might be lost during the process of backpropagation
to update the weights. Therefore, this process is not very effective. The skip connections
sustain a low number of parameters and hold the feature information across all layers. The
input of a given layer might be an aggregation of previous layers. This process consolidates
the gradient flow efficiently since it exploits a superhighway and the skip connections
in the gradient backpropagation algorithm. It is also investigated in the literature [28]
that the shallow networks can entail substantially more parameters than deeper networks.
Therefore, the researchers of the residual networks transformed them into thinner networks
to train deeper networks. As the gradient parameters propagate through the deeper
architecture, there is nothing to push them to flow through the residual block. Hence,
it can avoid learning anything during training. It is feasible that there are either only
limited blocks that encode informative representations or several blocks provide shallow
information with insignificant contribution to the final output. Based on these observations,
the WideResNet network is built on top of the work in [27] to address the aforementioned
limitations. We explore the WideResNet network, namely WRN-28-2, due to its widespread
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adoption and availability. This is the network with depth 28 and width 2, including batch
normalization [29] and leaky ReLU nonlinearities [30]. As can be seen in Figure 4, the depth
equal to 28 represents the total number of layers in the network, and the width equal to 2
represents the widening factor (multiplies the number of features in convolutional layers).

Figure 4. WideResNet has a depth and width. The depth represents the total number of layers in the
network, and the width represents the widening factor.

4. Results

In this section, we provide the details of the dataset and its characteristics, experimental
results we obtain on the dataset, and discussion about the analysis.

4.1. Dataset and Its Characteristics

We captured the cattle images using a handheld device consisting of an Intel RealSense
D415 camera connected with a tablet and external batteries integrated in the handle of the
stick holding the camera and the tablet (see Figure 5). We installed a customized software
for capturing the cattle images. We placed the camera on the floor underneath the cow
udder, taking the photo vertically upwards as shown in Figure 5. We collected the images
in different housing systems, tied-stalls, loose housing systems, and the milking parlor.
Before capturing an image, we specified the ID of the animal and number of hours since
milking. We collected both RGB and depth images of 1400 dairy cattle. However, we
dropped a large number of images due to poor quality in terms of severe blurring, partial
visibility of the udder, and no visibility of udder due to cattle movement. We depict four
sample images in Figure 6 representing udders of different cows. The first row shows the
original RGB images, and the bottom row shows the corresponding depth images. We
also depict four sample images in Figure 7 representing supernumerary teats. We show
udders in the first two columns of the first row representing more than four teats. In the
last two columns of the first row, we show udders representing four teats. The bottom row
shows the corresponding depth images. We provide details of the dataset in Table 1 for
both udder and supernumerary teats images. It is worth noting that the total number of
images remains the same as shown in Table 1 when we integrate RGB channels with the
depth channel. Therefore, we create four channel images representing both the depth and
RGB information. For experimental analysis, we use 80% of the images for training and
20% for validation.
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Figure 5. Data collection at cattle farm. Øyvind Nordbø (co-author) is collecting cattle images with a
handheld device by placing it on the floor underneath the cow udder.

Figure 6. Udder images of cattles. The first row shows the RGB images. The bottom row shows the
same images captured with the depth camera.

Figure 7. Supernumerary teat images. The first row shows the original images where the first two
images belong to the first class (udder representing more than four teats), and the second two images
belong to the second class (udder representing four teats). The bottom row shows the same images
captured with the depth camera.
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Table 1. Dataset details. We provide the details of our dataset for both udder images and supernu-
merary images. The number of images are represented in terms of RGB images. We consider 80% of
the images for training and 20% for validation. The number of images remains the same when we
fuse the depth channel with the RGB channels.

Device Location Data Udder and
Non-Udder Images

Supernumerary
Images

Intel RealSense
D415 camera

Tied-stalls
Milking parlor

Training 232 380

Validation 62 96

It is worth exploring the underlying characteristics of our dataset. For this purpose, we
explore uniform manifold approximation and projection (UMAP) [31] which is a novel non-
linear dimensionality reduction technique for data visualisation. We are considering UMAP
instead of PCA (principal component analysis) because PCA is significantly impacted by
the outliers available in the data. Moreover, PCA is a linear projection, and it cannot capture
non-linear dependencies. The UMAP technique preserves the global structure of the data
for better representation by locating important patterns in the high-dimensional space and
transforming them in the lower-dimensional space. The UMAP technique considers the
notion that the distances among data samples vary across the manifold. That is, the space
itself is warping: stretching or shrinking. We present the algorithm for the UMAP technique
in Figure 8. We explore the UMAP technique to visualize the underlying structures of both
the udder\non-udder images and the supernumerary teats images. The UMAP projection
of the udder dataset is presented in Figure 9. As can be seen, the udder\non-udder images
are easily distinguishable. This is also evident from the physical layout of the images (in
Figure 6). We depict the UMAP projection of the supernumerary teats images in Figure 10.
The underlying patterns in the images from both classes of the supernumerary dataset
are very similar; therefore, the separability is very challenging. These analyses show that
the classification of the supernumerary dataset would be difficult in comparison to the
classification of the udder dataset.

Figure 8. The UMAP algorithm [32]. The algorithm shows two major steps, namely learning the
manifold structure and finding a low-dimensional representation.
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Figure 9. The Umap projection of the udder dataset. The three axes in the diagram represent
the transformation of data from higher dimensions to lower UMAP dimensions. The underlying
structures of udder\non-udder images show that they are easily separable.

Figure 10. The Umap projection of the supernumerary teats dataset. The three axes in the diagram
represent the transformation of data from higher dimensions to lower UMAP dimensions. The un-
derlying structures of the supernumerary teats images show that images from both classes represent
very similar patterns.
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4.2. Experimental Results

We implemented our proposed method in a Python (version 3.8) programming envi-
ronment using the Pytorch framework and the Numpy library. We performed coding and
experiments on a personal computer consisting of an Intel(R) Core(TM) i7-10750H CPU
@ 2.60 GHz 2.59 GHz and equipped with NVIDIA GeForce RTX 2080 Super with Max-Q
design and with the configuration of Cuda toolkit 11 on a Windows 10 Pro operating system.

We do not have large data to train different DL networks. Therefore, in the first
part of the experimental analysis, we consider the impact of different data augmentation
techniques on the performances of our proposed network 1, our proposed custom network
2, the VGG16 model, and the WideResNet model for all of our classification tasks. We
consider and explore different data augmentation techniques to produce modified ver-
sions of images in our dataset to increase its size. These techniques help to cope with
data scarcity and insufficient data diversity. Bringing variations in the dataset improve
the training process of the deep neural networks. We consider four different levels of
augmentation in our experimental analysis, namely brightness and contrast, Gaussian
blurring, horizontal–vertical flipping and rotation, and combining all these augmentations.
We call the combination of these augmentations a full augmentation. The contrast isolates
intensity levels between the dark and bright regions of an image. Brightness represents
the specified magnitude of intensity level in an image. Both contrast and brightness are
affected by each other. Therefore, we consider both in the first level. In the second level, we
consider Gaussian blur which randomly blurs the image using a Gaussian distribution. In
the third level, we consider horizontal–vertical flipping and rotation. In the fourth level,
we use all the augmentation techniques namely brightness and contrast, Gaussian blurring,
horizontal–vertical flipping, and rotation.

We present the results in terms of different performance metrics: accuracy, f-score,
precision, and sensitivity as shown in the equations below. Accuracy is the fraction of
predictions a model got right. Accuracy represents the ratio of the number of correct
predictions to the total number of predictions. F-score represents harmonic mean for
measuring a model’s performance considering the analysis of binary classification. These
metrics help determine the robustness of a machine learning model.

Accuracy =
Numbero f correctpredictions
Totalnumbero f predictions

=
TP + TN

TP + FP + TN + FN
(7)

F− score =
2TP

2TP + FP + FN
(8)

Precision =
TP

TP + FP
(9)

Sensitivity =
TP

TP + FN
(10)

For udder\non-udder classification, we present the results in terms of accuracy for
all the four networks in Figure 11. As can be seen, our proposed network 1, our proposed
network 2, the VGG16 model, and the WideResNet model present higher accuracies in cases
of horizontal–vertical flipping and rotation, and full augmentation techniques (brightness
and contrast, Gaussian blurring, horizontal–vertical flipping, and rotation). The proposed
network 1 and the proposed network 2 present 97% accuracy in the case of both horizontal–
vertical flipping and rotation, and full augmentation. The VGG16 model presents 100%
accuracy in the case of horizontal–vertical flipping and rotation and 96% accuracy in case
of full augmentation. If we consider both horizontal–vertical flipping and rotation and full
augmentation, our proposed method presents competitive results. We can also infer that
the consolidated or intense augmentations present better results.
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Figure 11. Udder classification using RGB image data. Considering different augmentation tech-
niques, we present the results obtained from our proposed custom network 1, our proposed custom
network 2, the VGG16 model [11], and the WideResNet model [12].

For udder\non-udder classification, we also consider both RGB and depth images. We
present the results in terms of accuracy for all the four networks in Figure 12. In this case,
we combine the depth channel with the three RGB channels to produce four channels of
data. As can be seen, also in this case, our proposed network 1 and our proposed network
2 present competitive results in comparison with the VGG16 model and the WideResNet
model. The accuracies are higher in cases of horizontal–vertical flipping and rotation and
full augmentation techniques. Our proposed network 1, our proposed network 2, the
VGG16 model, and the WideResNet present 94%, 97%, 97%, and 97% accuracies in the case
of full augmentation. If we consider both horizontal–vertical flipping and rotation and full
augmentation, our proposed method presents competitive accuracies. Moreover, combining
both RGB and depth data, we can infer that the consolidated or intense augmentations
present better results.
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Figure 12. Udder classification using RGB and depth image data. Considering different augmentation
techniques, we present the results obtained from our proposed network 1, our proposed network 2,
the VGG16 model [11], and the WideResNet model [12].

For supernumerary teat classification, we present the results in term of accuracy for
all four networks in Figure 13. As can be seen, our proposed method (custom network 1)
presents higher accuracies when we use the augmentation techniques, i.e., horizontal–
vertical flipping and rotation and full augmentation techniques (brightness and contrast,
Gaussian blurring, horizontal–vertical flipping and rotation). The performance of our
proposed method (custom network 1) is comparatively higher than other networks in the
case of supernumerary teat classification since the data is limited. Therefore, the smaller
network performs better. It is also worth noting that supernumerary teat classification
is a more difficult task compared to udder\non-udder classification. Therefore, we have
comparatively lower accuracies for all the networks. These results are aligned with analysis
we performed with the UMAP technique, where we found that the separability of the
images in the supernumerary dataset is more difficult. For supernumerary teat classification,
we also consider both RGB and depth images. We present the results in term of accuracy
for all four networks in Figure 14. As can be seen, also in this case, our proposed method
(custom network 1 and custom network 2) presents higher accuracies in the case of full
augmentation techniques. By taking into account all these results, we infer that more
augmentations present better results for both RGB and depth data.
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Figure 13. Supernumerary teat classification using RGB data. The results are presented in term of
accuracy for our proposed custom network 1, our proposed custom network 2, the VGG16 model [11],
and the WideResNet model [12].

Figure 14. Supernumerary classification using RGB and depth image data. The results are presented
in term of accuracy for our proposed network 1, our proposed network 2, the VGG16 model [11], and
the WideResNet model [12].
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In the second part of the experimental analysis, we consider the impact of RGB data
and RGB data combined with the depth data on the performances of our proposed method
(custom network 1 and custom network 2), the VGG16 model, and the WideResNet model
for udder\non-udder image classification. We report the results in terms of F-score in
Table 2. We also report the results in terms of precision and sensitivity in Table 3. As can be
seen, our proposed method (custom network 1 and custom network 2) presents competitive
performances in the case of RGB data. The performance in the case of combining the depth
information with the RGB data is also competitive.

Table 2. F-scores for udder\non-udder classification. The results are presented for our proposed
network 1, our proposed network 2, the VGG16 model [11], and the WideResNet model [12].

Models RGB Images RGB and Depth Images

Bright- Gauss. Hor-Ver Full Bright- Gauss. Hor-Ver Full
Contrast Blur Rot. Aug. Contrast Blur Rot. Aug.

Proposed
CNet1 0.92 0.95 0.97 0.97 0.80 0.90 0.95 0.94

Proposed
CNet2 0.94 0.93 0.95 0.97 0.93 0.92 0.95 0.97

VGG16 [11] 0.98 0.97 1.00 0.96 0.93 0.97 0.89 0.97

WideResNet [12] 0.94 0.95 0.95 0.96 0.93 0.97 0.95 0.97

Table 3. Precision and sensitivity for udder\non-udder classification. The results are presented for
our proposed network 1, our proposed network 2, the VGG16 model [11], and the WideResNet
model [12].

Models RGB Images RGB and Depth Images

Bright- Gauss. Hor-Ver Full Bright- Gauss. Hor-Ver Full
Contrast Blur Rot. Aug. Contrast Blur Rot. Aug.

Proposed 0.92 0.95 0.96 0.96 0.80 0.90 0.95 0.94
CNet1 0.91 0.94 0.97 0.97 0.80 0.90 0.95 0.93

Proposed 0.93 0.93 0.95 0.96 0.93 0.93 0.95 0.97
CNet2 0.93 0.93 0.95 0.96 0.94 0.91 0.94 0.96

VGG16 [11] 0.98 0.97 1.00 0.96 0.93 0.97 0.91 0.96
0.98 0.96 1.00 0.96 0.93 0.96 0.87 0.96

WideResNet [12] 0.93 0.95 0.95 0.96 0.93 0.96 0.96 0.96
0.93 0.95 0.95 0.96 0.94 0.97 0.94 0.96

To better understand the usage of both the RGB data and depth data combined with
the RGB data, we also present the results in terms of F-score, precision and sensitivity for
supernumerary teat classification. We present the F-scores for the same DL-based networks
in Table 4. We present the precision and sensitivity in Table 5. We analyze the results by
focusing on our proposed method that represents the smaller networks, namely network
1 and network 2. We consider smaller networks since we have seen that they perform
better due to limited availability of data for supernumerary teat classification. In this case,
we also analyze the results for only horizontal–vertical flipping and rotation and for full
augmentation. Higher F-scores are highlighted in bold. Our proposed method (customer
network 1) presents the highest F-score equal to 70% in the case of full augmentation. As
can be seen in Table 5, the combination of RGB data with depth information also presents
better performances mostly in the case of supernumerary teat classification which is a
difficult task compared to udder\non-udder classification. In fact, the consolidation of
input information by combining depth data with the RGB data is an important aspect,
especially when we have a challenging problem such as supernumerary teat classification.
Therefore, we present a consolidation framework characterized by hybrid input from both
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the RGB and the depth camera. Depth data improves the input by adding significant
variations to data to improve the training process.

Table 4. F-scores for supernumerary teat classification. The results are presented for our proposed net-
work 1, our proposed network 2, the VGG16 model [11], and the WideResNet model [12] considering
both RGB data and depth data.

Models RGB Images RGB and Depth Images

Bright- Gauss. Hor-Ver Full Bright- Gauss. Hor-Ver Full
Contrast Blur Rot. Aug. Contrast Blur Rot. Aug.

Proposed CNet1 0.65 0.57 0.68 0.70 0.57 0.55 0.64 0.71

Proposed CNet2 0.65 0.61 0.66 0.61 0.66 0.58 0.61 0.68

VGG16 [11] 0.61 0.61 0.69 0.69 0.59 0.56 0.67 0.64

WideResNet [12] 0.62 0.54 0.67 0.67 0.57 0.58 0.68 0.65

Table 5. Precision and sensitivity for supernumerary teat classification. The results are presented
for our proposed network 1, our proposed network 2, the VGG16 model [11], and the WideResNet
model [12].

Models RGB Images RGB and Depth Images

Bright- Gauss. Hor-Ver Full Bright- Gauss. Hor-Ver Full
Contrast Blur Rot. Aug. Contrast Blur Rot. Aug.

Proposed 0.79 0.60 0.68 0.70 0.62 0.55 0.65 0.72
CNet1 0.55 0.54 0.67 0.69 0.52 0.54 0.63 0.68

Proposed 0.72 0.63 0.67 0.63 0.71 0.59 0.61 0.68
CNet2 0.60 0.57 0.64 0.58 0.61 0.57 0.60 0.67

VGG16 [11] 0.61 0.61 0.72 0.69 0.59 0.57 0.67 0.63
0.60 0.61 0.67 0.68 0.59 0.55 0.66 0.63

WideResNet [12] 0.62 0.55 0.67 0.68 0.58 0.58 0.68 0.67
0.62 0.53 0.67 0.67 0.55 0.58 0.68 0.62

For udder\non-udder and supernumerary teat classification, we present additional ex-
perimentation results in comparison with the state-of-the-art methods, namely: DeepHolis-
tic [33], DeepPropagate [34], MatchAnchoring [35], DeepLabel [36], and TempLearn [37].
Method [33] leverages unlabeled data to mitigate the reliance on the samples. They combine
elements of the famous models to introduce a new technique. They guess the low-entropy
labels for data-augmented unlabeled samples. Method [34] investigates the manifold as-
sumption that similar samples should obtain the same prediction. They used a transductive
label propagation technique to produce predictions on the data and use these predictions
to produce pseudo-labels. Method [35] considers distribution alignment and augmentation
anchoring. The distribution alignment supports the marginal distribution of predictions
to be near to the marginal distribution of ground-truth samples. The methods provide
informative versions of an input into the model and support each output to be close to the
prediction for a weak version of the same input. The method [36] learns data characteristics
from a limited number of samples by exploring the underlying properties. Method [37]
exploits the temporal dynamics and inherent multimodal attributes in the data samples.
They use the temporal gradient as an additional modality for more attentive feature extrac-
tion. They extract the fine-grained representations from the temporal gradient and impose
consistency across different modalities. The results in comparison with these methods are
presented in Table 6 considering the performance metrics: F-score, precision, and sensi-
tivity. In Table 6, the third and the fifth columns show the F-scores for udder\non-udder
and supernumerary teat classification. The fourth and the last columns show precision
and sensitivity results. Our proposed method outperformed all other methods for both
udder\non-udder and supernumerary teat classification. For udder\non-udder classifica-
tion, higher results are obtained. However, the results are lower for the supernumerary teat
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classification since it is a difficult task. It is also worth noting that the results of the methods
are not stable since the labeling lacks the informative and unique samples of the data.

Table 6. For udder\non-udder and supernumerary teat classification, we present additional results
in comparison with the VGG16 model [11], the WideResNet model [12], and the state-of-the-art
methods ,namely: DeepHolistic [33],DeepPropagate [34], MatchAnchoring [35], DeepLabel [36], and
TempLearn [37]. The third and the fifth columns show the F-scores for udder\non-udder and super-
numerary teat classification. The fourth and the last columns show precision and sensitivity results.

Year Models
Udder\ Udder\ Supernum. Supernum.

Non-Udder Non-Udder Teat Teat
F-Scores Prec-Sensi F-Scores Prec-Sensi

Our Proposed 0.97 0.96–0.97 0.71 0.71–0.69method CNet1

Our Proposed 0.97 0.96–0.97 0.61 0.63–0.58method CNet2

2014 VGG16 [11] 0.96 0.96–0.96 0.69 0.71–0.65

2018 WideResNet [12] 0.96 0.95–0.97 0.67 0.68–0.66

2019 DeepHolistic [33] 0.85 0.84–0.86 0.56 0.52–0.60

2019 DeepPropagate [34] 0.93 0.95–91 0.59 0.60–0.58

2019 MatchAnchoring [35] 0.91 0.92–91 0.63 0.63–0.63

2021 DeepLabel [36] 0.93 0.95–0.91 0.59 0.62–0.57

2022 TempLearn [37] 0.87 0.86–0.89 0.55 0.54–0.55

5. Discussion

We have seen that the performance of the DL models improves with data augmentation
techniques. In fact, the data augmentation techniques integrate data with more variations
which help the models to better learn during the training stage. We have also seen that the
integration of depth information with the RGB information did not improve the results
significantly. The reasons are many. Firstly, the results for udder\non-udder classification
are significantly high without considering the depth information. Therefore, there is not
enough space for the depth information to further improve the results. Secondly, the depth
information are more susceptible to distance from the camera. In the current settings,
the distance information is not very relevant for udder\non-udder image classification
and supernumerary teats classification. Furthermore, the supernumerary teats are small
and mostly on the back side of the udder. Therefore, when we were capturing the depth
images, the visibility of the supernumerary teats were poor due to a curved udder where
the reflecting light from the udder surface is not homogeneous. The supernumerary teats
were also dirty due to mud in some cases where the depth images cannot contribute to
performance. The depth information consolidate the DL models since overfitting is still a
challenge. Considering the limitations, our proposed method does not detect and classify
other cattle traits. Our method should be tuned to generalize well for other cattle traits.

6. Conclusions

In this paper, we presented two important classification tasks, namely udder\non-
udder classification and supernumerary teat classification. For this purpose, we proposed
two DL-based networks: custom network 1 and custom network 2. We also explore
the VGG16 model and the WideResNet model. We evaluated the performance of these
networks using the dataset we collected. We analyzed the variations in the performances of
the deep networks by considering different data augmentation techniques. We discovered
that a higher level of augmentations generally improves the results of the networks. We
also analyzed the variations in their performances by taking into account both the RGB
data and depth data. We explored that the addition of the depth information could improve
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the results for a challenging classification task, especially when limited data is available to
train the models. We also performed a comparison with the reference methods.

In our future work, we would extend our work to classify other traits of cows. Most of
the other traits are measured on a scale from 1–9. Therefore, we would consider them as
regression problems. We would also explore the impact of augmentation techniques and
depth information for other traits. For other traits, for example, teat length and udder depth,
the depth images may contribute significantly to the performance of DL-based models.
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