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Digital Twin Based Virtual Sensor
for Online Fatigue Damage
Monitoring in Offshore Wind
Turbine Drivetrains
In this article a virtual sensor for online load monitoring and subsequent remaining useful
life (RUL) assessment of wind turbine gearbox bearings is presented. Utilizing a Digital
Twin framework the virtual sensor combines data from readily available sensors of the con-
dition monitoring (CMS) and supervisory control and data acquisition (SCADA) system
with a physics-based gearbox model. Different state estimation methods including
Kalman filter, Least-square estimator, and a quasi-static approach are employed for
load estimation. For RUL assessment the accumulated fatigue damage is calculated with
the Palmgren–Miner model. A case study using simulation measurements from a high-fidel-
ity gearbox model is conducted to evaluate the proposed method. Estimated loads at the
considered intermediate and high-speed shaft bearings show moderate to high correlation
(R= 0.50− 0.96) to measurements, as lower frequency internal dynamics are not fully cap-
tured. The estimated fatigue damage differs by 5–15% from measurements.
[DOI: 10.1115/1.4055551]
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1 Introduction
Recent market trends show an increased shift toward offshore

wind turbine installations due to the higher energy yield and
fewer issues with land displacement and noise [1]. However, off-
shore sites face additional reliability challenges. Replacement or
repair of components is expensive and time consuming due to dif-
ficulties accessing the site and dependency on good weather condi-
tions. Thus, unscheduled down times as a result of component
failure can lead to high operational and maintenance expenditures
(O&M). For offshore wind turbines the O&M expenditures can
reach 34% of the levelized cost of energy (LCOE), twice as much
as for land-based turbines [2]. A major contributor to the O&M
expenditures is the gearbox with a failure rate of 0.1–0.15/year
and average downtimes of 6 days per failure [3,4].
Predictive maintenance strategies are proposed in the offshore

industry to increase reliability and availability, and decrease
O&M expenditures. As a subcategory of condition-based mainte-
nance (CBM) predictive maintenance depends on continuous mon-
itoring of the systems’ operational condition for the assessment of
the remaining useful life (RUL). Alerts are triggered in the case
of severe deviation of RUL to nominal life and the operator may
schedule immediate maintenance tasks in addition to regular, time-
based maintenance routines. Currently, the predictive capabilities of
condition monitoring systems (CMS) are limited. In practice, trends
of vibration-based statistical features are extrapolated to a prede-
fined failure threshold to predict the RUL, which suffers from a
high level of uncertainty [5].
Digital twin (DT) is identified as an emerging technology that

could facilitate predictive maintenance strategies [6]. DT can be
described as a virtual representation of a physical asset enabled
through real-time measurements and simulators for the purpose of

improved decision making [7]. The authors previously proposed a
Digital Twin framework, shown in Fig. 1, with the three compo-
nents Virtual model, Data, and Decision support to move toward
predictive maintenance [8].
Virtual models of wind turbines have matured in the past two

decades to a high level of fidelity. Generally a decoupled approach
is employed with aeroelastic models for global dynamics, multi-
body simulation (MBS) models for drivetrain dynamics, and
finite element (FE) models for component dynamics [9]. While
many authors associate DT with high-fidelity models, recent publi-
cations move toward reduced-order models (ROM) to meet require-
ments of computational speed for real-time monitoring tasks [8].
The DT model is updated with data such that it virtually experiences
the same environment as its physical counterpart.
Data that can be leveraged in wind turbines are sensor measure-

ments of the drivetrain CMS or the supervisory control and data
acquisition (SCADA) system. Typical signals include vibration
on the gearbox housing, electrical signatures of the generator and
shaft speeds.
Decision support is a collective term for services that the DT pro-

vides to assist the operators’ maintenance or control decisions.
Focus of this research are methods for online monitoring of loads
in drivetrain components (gears, bearings) and subsequent RUL
estimation. Direct measurements of component level loads are dif-
ficult and require custom solutions, such as bearings with integrated
strain gauges, which are generally not available for commercial
wind turbines. Hence, indirect (or inverse) methods of load estima-
tion that combine more accessible sensor measurements and a DT
model would provide a cost-effective alternative. This procedure
is often referred to as Virtual sensing, as it can be interpreted as
taking measurements in a fully synchronized virtual model. Syn-
chronization is achieved by continuously estimating the dynamic
states of the system. Different state estimation methods are
employed for this purpose, most prominently the Kalman filter
and its variations, as well as least-square estimators.
The DT and virtual sensing approach are often pursued for esti-

mating damage equivalent loads or stresses for structural health
monitoring (SHM), for example in wind turbine towers. Virtual
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sensing of tower loads based on a limited number accelerometers
and strain gauges has been demonstrated both in numerical and
experimental studies [10,11]. However, limited research has been
conducted for drivetrains with the exception of a study by
Bosmans et al., who present a virtual sensor for wind turbine plan-
etary gear loads based on strain gauge measurements and a FE
model [12]. The use case of drivetrains comes with unique chal-
lenges: The internal dynamics of drivetrains are much more
complex due to multi-body interactions and there are limitations
in the existing drivetrain sensors (SCADA, CMS) related to
signal resolution, sensor locations, and noise that make it difficult
to observe the current dynamic state.
The main contribution of this work is to apply a virtual sensing

approach that has proven to be effective in other areas to the use
case of wind turbine drivetrains and demonstrate the proof of
concept in a numerical case study. In addition, this article discusses
the challenges that are unique to drivetrains and provides some recom-
mendations on suitable sensor signals and state estimation methods.
The remainder of this paper is organized as follows. In Sec. 2, the

mathematical development of the virtual load sensor and its use case
in a wind turbine high-speed gear stage are outlined. Section 3 dis-
cusses the performance of the virtual sensor in a numerical case
study. Lastly, Sec. 4 provides some concluding remarks.

2 Methodology
The virtual load sensor is developed in a DT framework with the

three components of Data, Virtual model, and Decision support
(Fig. 1). Section 2.1 presents the high-fidelity model of a reference

wind turbine gearbox, which is linearized for integration with the
virtual sensor, as shown in Sec. 2.2. Synthetic CMS and SCADA
data are generated by means of simulation with high-fidelity
models (Sec. 2.3). Different state estimators including the Kalman
filter, Least-squares estimator, and a quasi-static approach are
used for virtual sensing of bearing loads (Sec. 2.4). Subsequently,
the accumulation of fatigue damage is tracked with the standard
Palmgren–Miner model and the bearing lifetime equation according
to ISO 281 (Sec. 2.5).

2.1 High-Fidelity Models. A reference gearbox based on the
NREL offshore 5 MW baseline wind turbine and mounted on the
floating OC3 Hywind spar structure is considered in this study
[13,14]. The reference gearbox was developed by Nejad et al.
with reference to minimal weight and following offshore wind
turbine design codes [15]. The gearbox comprises of two planetary
and one parallel gear stage totalling to a gear ratio of 1:96.354. The
main shaft support is a 4-point design with two main bearings to
minimize non-torque loads entering the gearbox. A decoupled
approach is employed, which is best practice for drivetrain simula-
tion [9]. The global response to a set of environmental conditions is
determined with the global model, which is implemented in the
aero-hydro-servo-elastic code SIMO-Riflex-AeroDyn. The internal
dynamics are then simulated with a high-fidelity gearbox model
implemented in the multi-body simulation environment
SIMPACK. External loads (torque and non-torque) are applied on
the main shaft, the nacelle movements are applied on the bed
plate and the generator torque is applied on the high-speed shaft
to control the generator speed.

Fig. 1 Digital twin framework with three components of Data, Virtual model, and Decision support used
in this study for online fatigue damage monitoring
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2.2 Linearized Model. In the following section the high-
fidelity drivetrain model is linearized and brought into state-space
form, which is required for the state estimation algorithm discussed
in Sec. 2.4. This study focuses on the bearing loads at the high-
speed gear stage. Hence, the system boundaries are set around the
gear stage as depicted in Fig. 2 containing two moving rigid
bodies, namely, the intermediate and the high-speed shaft (IMS,
HSS). The shafts are coupled with an elastic gear contact formula-
tion and connected to the gearbox housing with spring–dampers
representing roller bearings. The dynamics of such a gear stage
system can be expressed with the following equations of motion
[16] (Eq. (1)):

M ¨̃x + [Cm + Cb] ˙̃x + [Km +Kb]x̃ = fex (1)

Six degrees-of-freedom (DOF) are assumed for each gear shaft,
hence the state vector x̃ ∈ R12×1 contains a total of 12 lateral and
angular displacements. M denotes the diagonal mass matrix com-
prised of inertia terms. The stiffness and damping matrices
contain terms from the elastic couplings of bearings (Cb, Kb) and
gear meshing (Cm, Km). The detailed matrix composition is given
in Ref. [16]. External forces and moments crossing the system
boundary at the generator and rotor side shaft interfaces are repre-
sented by fex∈R12×1. The equations of motion are first linearized
and then transformed into a set of first-order differential equations,
the so-called state-space representation (Eq. (2)). In this step the
time-variant mesh stiffness is reduced to a constant value Cm,
hence the linearized model is unable to reproduce periodic excita-
tion at the gear meshing frequency.

ẋ = Ax + Bu + w (2)

The new state vector x of the state-space model is a stack of body-
fixed displacements and velocities (Eq. (3)), while the external
forces fex are split into known input variables u (Eq. (4)) and
unknown disturbance forces regarded as process noise w
(Eq. (5)). Of the 12 external force terms only the generator torque
is considered available from SCADA measurements and thus a
known input variable, while the remaining non-torque loads are
modeled as white gaussian noise with covariance Q. The system
matrix A (Eq. (6)) describes the dynamic state-transition and is

obtained by rearranging mass, stiffness, and damping matrices
[17]. The control matrix B (Eq. (7)) represents the influence of
input variables on the dynamic states.

x: = [x̃ ˙̃x]T ∈ R24×1 (3)

u = [0 0 · · · TGen · · · 0 0]T ∈ R12×1 (4)

w ∼ N (0, Q) ∈ R12×1 (5)

A = 012×12 I12×12

M−1[Cm + Cb] M−1[Km +Kb]

[ ]
∈ R24×24 (6)

B = 012×12 M−1
[ ]T∈ R24×12 (7)

The output variables y (Eq. (9)) are measurements of virtual accel-
erometers placed at the shaft bearings in axial and radial direction
(Fig. 2) that represent CMS vibration sensors. These are analo-
gously related to the state and input variables through a linear
model (Eq. (8)), where C denotes the observation matrix and D
the feedthrough matrix. The exact matrix composition cannot be
shown, as these are generated numerically by SIMPACK’s lineari-
zation solvers.

y = Cx + Du + v (8)

The output is corrupted with measurement noise v (Eq. (10)), which
is modeled as white gaussian noise with covariance R. In this case
study measurement noise is added to the (exact) simulation mea-
surements in postprocessing

y: = [y1 y2 y3 y4]T ∈ R8×1 (9)

v ∼ N (0, R) ∈ R8×1 (10)

In order to obtain the desired bearing loads f the general state-
space model is augmented with an algebraic equation, which
relates bearing loads to system states with the matrix K
(Eq. (11)). Since the bearings are considered as spring–damper ele-
ments in the drivetrain model, this relationship is linear. The matrix
K contains terms of bearing stiffness Kb and damping Cb and is
generated numerically by SIMPACK.

f =Kx (11)

The continuous state-space model is discretized in time, where n
indicates the time-step

xn+1 = Adxn + Bdun + wn (12)

yn = Cxn + Dun + vn (13)

fn =Kxn (14)

The matrices C, D, K of the discrete model remain unchanged, as
they only appear in algebraic equations, whereas Ad, Bd can be
derived as follows [17]:

Ad = exp(AΔt) (15)

Bd = A−1(Ad − I24×24)B (16)

The matricesA, B, C, D, K are calculated with SIMPACK’s built-in
linearization solvers and integrated in the virtual load sensor in
MATLAB.

2.3 Sensor Data. In this numerical study simulation measure-
ments from high-fidelity models are used to evaluate the proposed

Fig. 2 System boundaries and variable definition of linearized
model
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load estimation method. A reference load case at rated wind speed
of 12 m/s (load case EC4, spar in [9]) is selected, since conditions
near rated wind speeds are shown to induce the most severe drive-
train loads and have the highest contribution to long-term fatigue
damage [18]. Six simulations each with a duration of 3800 s are
conducted to comply with IEC 61400 guidelines [19]. The first
200 s are disregarded to avoid simulation start-up effects and the
simulation time-step is set to 1 ms to capture high-frequency gear
meshing dynamics. From the simulation results the generator
torque, shaft vibration, and bearing loads are of interest. The gener-
ator torque and the shaft vibration are used to generate synthetic
SCADA and CMS data as input for the load estimation method.
Vibration signals are measured by virtual acceleration sensors
mounted on the intermediate (IMS) and high-speed shaft (HSS)
with a sampling frequency of 1 kHz. To capture yaw and pitch
movements each shaft is equipped with two virtual sensors measur-
ing axial and radial acceleration. White gaussian measurement noise
v ∼ N (0, R) is added to all acceleration measurements in postpro-
cessing, where the covariance R is chosen, so that the
signal-to-noise-ratio (SNR) is equal to 10 for all measurement
signals. Additionally, the radial and axial loads at the IMS and
HSS-bearings are extracted from simulation measurements for com-
parison with the estimated loads (see Table 1).

2.4 Virtual Load Sensor. The load estimation is intended to
be used for online monitoring applications and is thus conducted
in the time domain for each time-step n. Three different state estima-
tors with different levels of fidelity and requirements to measure-
ment inputs are studied, Kalman filter, Least Squares, and
Quasi-static. In each case, the system states x̂n are estimated first.
Subsequently, the bearing loads are determined, as these are linearly
dependent on the system states

f̂n =Kx̂n (17)

2.4.1 Kalman Filter. The first load estimation method is based
on Kalman filtering, which has been widely studied [10,20–24]. The
Kalman filter produces state estimates x̂ of a system, which is gov-
erned by stochastic, linear state equations as formulated in Eqs. (12)
and (13) [25]. The optimal state estimates are determined by mini-
mizing the estimate covariance, given by P̂ = cov(x − x̂), which is a
measure of the estimation accuracy. The algorithm involves a
two-step process for each time-step. In the prediction step the a
prioristate estimates x̂n|n−1 are predicted with the physical model
taking into account state estimates of the previous time-step
x̂n−1|n−1 and known input variables un. The disturbance forces
and moments w on the system are not included in the prediction
step, as they are regarded as process noise. The a priori estimated
covariance P̂n−1|n−1 is also predicted based on previous knowledge
and the known process noise covariance Q

x̂n|n−1 = Adx̂n−1|n−1 + Bdun−1 (18)

P̂n|n−1 = Adx̂n−1|n−1AT
d +Q (19)

In the second step the a priori state estimates are updated with mea-
surements yn resulting in the a posteriori state estimates xn|n

Mn = P̂ n|n−1CT(CP̂n|n−1CT + R)−1 (20)

x̂ n|n = x̂ n|n−1 +Mn(yn − Cx̂n|n−1−Dun) (21)

P̂ n|n = (I −MnC)P̂ n|n−1 (22)

The measurement update is weighted with the Kalman gain Mn,
which relates the confidence in state predictions of the physical
model to the confidence in the measurement. With a high confidence
in the physical model (P̂ n|n−1 → 0) the Kalman gain approaches
zero; hence, the measurements update is given a low weight. On
the other hand, with a high confidence in the measurements (R→
0) the Kalman gain approaches C−1. In this case the measurements
have a higher significance compared to state predictions.

2.4.2 Quasi-Static Approach. The quasi-static (QS) method
employs a low-fidelity approach, where the bearing loads are con-
sidered stationary, reactionary forces proportional to the drivetrain
torque. This approach is used in a similar fashion for the calculation
of gear contact forces in [18]. Contrary to the Kalman filter, the QS
state estimates are solely based on the physical model (Eq. (12)) and
do not take into account vibration measurements (Eq. (13)). Addi-
tionally, the assumption is made that the drivetrain is in quasi-static
equilibrium and that internal dynamics are negligible. In the case
quasi-static of equilibrium, where xn+1 − xn = 0, the physical
model (Eq. (12)) reduces to

0 = (Ad − I)xn + Bdun + wn (23)

Consequently, the state estimates can directly be determined from
the input variable (generator torque) by disregarding the process
noise

x̂QS,n = −(Ad − I)−1Bdun (24)

2.4.3 Least-Squares Approach. A least-squares approach to
inverse state and load estimation is applied in [17,26,27]. This
approach can be thought of as an asymptotic version of the
Kalman filter with high confidence in the measurements and low
confidence in the physical model. In this case only the observation
model (Eq. (13)) of the state-space model is considered

yn = Cxn + Dun + vn (25)

The state estimates are found by minimizing the least-squares error
function

x̂ LS,n = argmin
xn

(yn − Cxn − Dun)T(yn − Cxn − Dun) (26)

The solution of the least-squares problem in closed form is given
with the Moore–Penrose pseudoinverse C+

x̂ LS,n = C+(yn − Dun) (27)

2.5 Fatigue Damage Model. The Palmgren–Miner linear
damage hypothesis [18] is assumed for the calculation of the
fatigue damage, where ni denotes the experienced stress cycles,
Ni the number of cycles until failure, and i indicates the stress range

D =
∑
i

ni
Ni

(28)

For calculation of Ni the nominal bearing life equation according to
ISO 281 [28] with the basic dynamic load rating C and the equiva-
lent bearing load P is used

Ni =
C

P

( )10
3 (29)

P is a linear combination of the axial and radial load with the factors
X and Y, which are bearing specific values taken from the

Table 1 Environmental conditions of numerical case study
adopted from Nejad et al. (EC4, spar) [9]

Wave height Hs (m) 5.0
Wave period Tp (s) 12.0
Wind speed U (m/s) 12.0
Turbulence intensity I (—) 0.15
Simulation seeds 6
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manufacturer’s data

P = X · Fax + Y · Frad (30)

The stress cycles ni are counted with the load duration distribution
(LDD) method according to IEC 61400-4 [19]. The LDD method is
applicable for rotating machinery components under slowly varying
loads that experience cyclic loading due to entering and exiting the
load zone each rotation. One stress cycle is counted for each rotation
with a stress range equal to the current load.
The remaining useful life can be estimated by monitoring the

accumulated fatigue damage D(t) over time and observing the
damage reserves. By definition, the end of the component’s
nominal design life tnom is reached at D= 1 [18]. Hence, the RUL
is retrieved as follows:

RUL(t) = [1 − D(t)]tnom (31)

3 Discussion
The virtual load sensor using the state estimators Kalman filter

(KF), Least-Square (LS), and Quasi-Static (QS) presented in
Sec. 2.4 are evaluated in a case study. Radial loads at the IMS and
HSS bearings estimated with the virtual sensor are compared to
simulation measurements obtained from the high-fidelity drivetrain
model outlined in Sec. 2.3. First, the correlation of estimated and
measured loads is analyzed in the time and frequency domain. Sec-
ondly, the error in calculated fatigue damage is discussed.

3.1 Estimated Loads. For a qualitative assessment the time
series of measured and estimated radial loads in the IMS-A and
HSS-A bearings is shown in Figs. 3 and 4. The measured loads f
can be characterized as highly dynamic with lower frequency
dynamic components (<10 Hz) as a result of slowly changing envi-
ronmental conditions, as well as higher frequency dynamics
(>100 Hz) induced by internal gearbox excitations such as gear

meshing. The load estimates of the QS method f̂ QS are sufficient
to capture the long-term trend of bearing loads, but unable to repro-
duce any high-frequency internal dynamics seen at a time scale of
1 s. However, a slight bias at the HSS-A is observed, which
could potentially be due to non-torque loads at the high-speed
gear stage, which the torque-proportional QS does not take into
account. The LS method produces load estimates f̂LS with high-
frequency oscillations of similar amplitudes to measured loads,
however at the IMS-A there appear to be several outliers, which sig-
nificantly overestimate measured loads. In the low-frequency range,
the LS method is not able to fully capture the internal gearbox
dynamics. This is especially noticeable at the IMS-A, where the
measured loads have a high-energy frequency component of
about 5 Hz. The KF load estimates f̂KF are smoother and do not
suffer from extreme outliers. Similar to the LS method high-
frequency oscillations are captured well, while some lower fre-
quency components are not reflected.
For the analysis of the behavior in the frequency domain the power

spectral densities (PSD) of measured and estimated bearing loads are
calculated, as shown in Figs. 5 and 6. The measured load spectrum
shows several lower-frequency peaks (<10 Hz) and higher-frequency
peaks at 80 Hz for IMS-A and at 464.2 Hz for HSS-A. The higher
frequency peaks coincide with the gear meshing frequencies of the
parallel and second planetary gear stage, respectively. The lower fre-
quency peaks are not fully identified as of now.
The QS method matches the measured load spectrum of HSS-A

reasonably well with the exception of the high-frequency range with
the gear meshing peak, which is underestimated significantly. In the
low frequency range the peaks at 4.75 Hz, 9.47 Hz, and 14.22 Hz
are matched. These likely correspond to pure torsional oscillations
of the HSS, which directly translate to oscillations in the generator
torque. The dynamics of the IMS are not represented well with the
QS method, as the QS load spectrum shows significantly lower
energy in all frequencies.
In addition to the torsional oscillation peaks both the LS and KF

method are able to match the gear meshing peaks. In the high-

Fig. 3 Long-term and short-term time series of measured loads f and estimated loads f̂ at IMS-A bearing
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Fig. 4 Long-term and short-term time series of measured loads f and estimated loads f̂ at HSS-A
bearing

Fig. 5 Frequency spectrum of measured and estimated radial loads at IMS-A bearing for full time series (3600 s)
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frequency range the LS method leads to a significant overestimation
due to a high confidence in noisy measurements. The KF load esti-
mates achieve a higher correlation by weighing the measurement
update according to the measurement noise covariance R and thus
filtering outliers. In the lower frequency range some peaks at
1.83 Hz, 2.91 Hz, and 6.58 Hz, which are more pronounced at the
IMS-A, are missed by both the LS and KF methods.
The missed lower-frequency peaks likely relate to radial distur-

bance forces fdis on the IMS, as the spectrum of measured distur-
bance forces suggests. The measured disturbance forces are
extracted from the high-fidelity drive train simulations as connec-
tion forces of the second planetary gear stage to the IMS and
show several low-frequency components of higher energy. The
load estimation methods are unable to take these into account via
state predictions since the disturbance forces are assumed as
white gaussian process noise in the underlying physical model. Fur-
thermore, it is challenging to consider low-frequency disturbance
force excitations via vibration measurements, because these cause

relatively low acceleration responses with a low signal-to-noise
ratio.
For a quantitative assessment of the load correlation, the Pearson

correlation coefficient is calculated for the complete time series of
3600 s, as shown in Table 2. The correlation of IMS loads is
quite poor, as the studied methods are unable to reproduce afore-
mentioned low-frequency load components. The KF is the best per-
forming method, resulting in correlation values of 0.50–0.61. At the
HSS, the QS method is sufficient to estimate bearing loads with
high correlation (R > 0.8), as internal dynamics have less signifi-
cance here. The LS and KF method do not lead to significant
improvements at the HSS.

3.2 Fatigue Damage. Shown in Table 3 are the relative fatigue
damage errors (D̂ − D)/D̂ for the IMS and HSS bearings. The QS
method results in low errors of 5–15% across all bearings in the
considered load case. The results of the higher fidelity methods

Fig. 6 Frequency spectrum of measured and estimated radial loads at HSS-A bearing for full time series (3600 s)

Table 2 Correlation of estimated loads

QS LS KF

IMS-A 0.36 0.48 0.50
IMS-B 0.43 0.37 0.58
IMS-C 0.42 0.35 0.61
HSS-A 0.96 0.95 0.96
HSS-B 0.82 0.83 0.85
HSS-C 0.84 0.84 0.83

Table 3 Fatigue damage error

QS (%) LS (%) KF (%)

IMS-A 11.8 11.6 12.3
IMS-B 5.7 0.8 3.8
IMS-C −9.4 −13.6 −11.1
HSS-A −5.2 −6.1 −5.9
HSS-B 10.7 8.3 8.5
HSS-C 15.2 11.2 11.4
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LS and KF differ only marginally from those of the QS method
despite considering internal dynamics and providing load estimates
of higher correlation. The error can be slightly reduced at the bear-
ings IMS-B and HSS-B,C, however at the bearings IMS-C and
HSS-A a slightly higher error is calculated. These results suggest
that for the considered load case and drive train design, the
fatigue damage at the IMS and HSS bearings is mainly dependent
on the drive train torque and effects of internal gearbox dynamics
are negligible. This becomes more clear when looking at the
bearing stress cycles, which are not only a function of the load oscil-
lations depicted in Fig. 3 but also of the rotational speed [18]. A
rotating bearing experiences cyclic loading due to entering and
exiting its load zone. This is reflected in the use of the stress
cycle counting method LDD as opposed to the rainflow counting
(RFC) method, which is commonly used for structural elements.
The LDD method counts one stress cycle per revolution with a
stress range equal to the current radial load. Thus, the quasi-static
reactionary forces to the drive train torque cause major stress
ranges and contribute significantly to the bearing fatigue, whereas
the load variations from internal dynamics cause comparatively
small stress ranges. In the studied load case at rated wind speed
under normal operational conditions, the QS method would be suf-
ficient to monitor fatigue damage with high accuracy and computa-
tional speed. However, it is uncertain how the QS method would
perform in load cases with greater internal dynamics, such as an
emergency stop or gear faults. Further studies are planned to
address this topic.

4 Conclusion
In this article a novel approach for the estimation of wind turbine

gearbox loads with the purpose of online fatigue damage monitor-
ing was presented. The proposed method employs a Digital Twin
framework and aims at continuous estimation of the dynamic
states based on CMS vibration data and generator torque measure-
ments from the SCADA data. The proposed method was evaluated
in a load case at rated wind speed under normal operational condi-
tions. With a quasi-static approach, which assumes proportionality
to the drive train torque, the overall level of bearing loads was esti-
mated with high accuracy, however the dynamic behavior was not
reflected well. The quasi-static method was sufficient to estimate
fatigue damage with an error of 5–15% across all bearings. The
Kalman filter approach produced the highest correlation of
bearing loads ranging from 0.5 to 0.96 and was able to capture high-
frequency dynamics accurately, but missed several low-frequency
components. These are caused by disturbance forces on the IMS,
which are not reflected in the underlying physical model and are
not available through measurements. Despite considering internal
dynamics, the KF method did not result in significant improvements
with reference to fatigue damage. It appears that in this load case the
stress cycles caused by internal dynamics are insignificant relative
to torque induced stress cycles. The least-squares estimator per-
formed worse than the Kalman filter, as it is more sensitive to mea-
surement noise. Further studies are planned to extend this work to
different load cases or fault cases, assess the sensitivity to measure-
ment noise and model uncertainties and quantify computational
costs.
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