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Fenchel Duality and a Separation Theorem on

Hadamard Manifolds∗

Maurício Silva Louzeiro† Ronny Bergmann‡ Roland Herzog§

In this paper, we introduce a definition of Fenchel conjugate and Fenchel biconjugate

on Hadamard manifolds based on the tangent bundle. Our definition overcomes the in-

convenience that the conjugate depends on the choice of a certain point on the manifold,

as previous definitions required. On the other hand, this new definition still possesses

properties known to hold in the Euclidean case. It even yields a broader interpretation of

the Fenchel conjugate in the Euclidean case itself. Most prominently, our definition of the

Fenchel conjugate provides a Fenchel-Moreau Theorem for geodesically convex, proper,

lower semicontinuous functions. In addition, this framework allows us to develop a the-

ory of separation of convex sets on Hadamard manifolds, and a strict separation theorem

is obtained.
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1 Introduction

A central concept in convex analysis and related optimization algorithms is the notion of Fenchel

duality. On the other hand, separation theorems for convex sets play an important role for the char-

acterization of functions and their Fenchel conjugate. Among the vast references on these topics, we

mention Bauschke, Combettes, 2011; Ekeland, Temam, 1999; Rockafellar, 1970; 1974; Zălinescu, 2002;

Boţ, 2010; Brezis, 2011, all of which consider convex analysis and duality in vector spaces.
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The topic of optimization on Riemannian manifolds is currently receiving an increasing amount of

attention. We refer the reader to, e. g., Udrişte, 1994; Bačák, 2014; Absil, Mahony, Sepulchre, 2008;

Boumal, 2020 and Rapcsák, 1997, Ch. 6 for background material. In this context, a theory of duality

on Riemannian manifolds has recently emerged, with particular emphasis on non-smooth problems

(Bačák et al., 2016; Lellmann et al., 2013; Weinmann, Demaret, Storath, 2014) and related algorithms

(Bergmann, Persch, Steidl, 2016; Bergmann, Chan, et al., 2016; Ferreira, Louzeiro, Prudente, 2020).

To the best of our knowledge, there are up to now only two approaches to Fenchel duality on man-

ifolds: one on Hadamard manifolds due to Ahmadi Kakavandi, Amini, 2010, and one on general Rie-

mannian manifolds proposed in Bergmann, Herzog, et al., 2021. In Ahmadi Kakavandi, Amini, 2010,

the authors introduced a Fenchel conjugacy-like concept on complete CAT(0) spaces (usually called

Hadamard spaces), using a quasilinearization in terms of distances as the duality product. For this pur-

pose, a definition of >-dual and >-bidual was proposed, where > is a point in the Hadamard space. The

authors then show that this concept possesses several properties of the classical Fenchel conjugate

on vector spaces, for instance the biconjugation theorem, and a generalization of the subdifferential

characterization.

Recently, we developed in Bergmann, Herzog, et al., 2021 a theory of duality on Riemannian mani-

foldsM by localizing the Fenchel conjugate similar to Bertsekas, 1978. As it was the case for Ahmadi Kakavandi, Amini, 2010,

this concept also requires the choice of a base point< on the manifold and it uses duality on the tan-

gent space T<M. Most of the analysis in Bergmann, Herzog, et al., 2021 is based on properties of this

tangent space as a vector space, and we can generalize many properties of the<-Fenchel conjugate

to Riemannian manifolds. We finally derived a generalization of the so-called Chambolle-Pock al-

gorithm (Pock et al., 2009; Chambolle, Pock, 2011) for the minimization of 5 (?) + 6(Λ?), where 5 is

defined on M, 6 is defined on another Riemannian manifold N , and Λ : M → N . The algorithm

generalizes a concept from Valkonen, 2014 and employs a linearization of Λ at a point< as well as the

=-Fenchel conjugate for a second base point = ∈ N . The convergence results rely on the convexity of

the pull-back of 6 onto the tangent space, i. e., on the convexity of the composition 6 ◦ exp< .

In this paper we introduce a competing definition of a Fenchel conjugate onHadamardmanifolds. Our

new definition differs from the one in Bergmann, Herzog, et al., 2021 in two important ways. First, the

conjugate of a function � : M → R is defined on the entire cotangent bundle, not just on the cotangent

space at a particular base point. Second, we do not pull � back to the tangent space. We also define

the Fenchel biconjugate, which is—similar as in the competing approaches—again a function defined

on the manifold.

Our new concept of duality possesses similar properties as those proved for the <-Fenchel conju-

gate in Bergmann, Herzog, et al., 2021. These include, in particular, the characterization of the sub-

differential in terms of the Fenchel conjugate as well as the biconjucation theorem, also known as

Fenchel–Moreau Theorem. The main difference is that these results hold under more natural assump-

tions, notably geodesic convexity of the function under consideration, rather than the convexity of

its pull-back to the tangent space. We thus envision our work to give new insight into potentially

new algorithmic concepts for geodesically convex optimization problems on Riemannian manifolds,

which have numerous recent applications, e. g., in signal and image processing Fletcher, Joshi, 2007;

Bergmann, Fitschen, et al., 2018; Bergmann, Gousenbourger, 2018 and statistics and machine learn-

ing Journée et al., 2010; Wiesel, 2012; Vandereycken, 2013; Hosseini, Sra, 2015; Allen-Zhu et al., 2018;

Goyal, Shetty, 2019.
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Wewould like to emphasize that our definition of Fenchel conjugate provides a broader understanding

of the concept even for functions 5 defined on a vector space+ . While classically, the conjugate 5 ∗ is

a function defined on + ∗, we obtain here a conjugate 5 ∗ defined on the cotangent bundle + ×+ ∗, for

which 5 ∗(0, ·) agreeswith the classical definition and any section 5 ∗ (G, ·) determines all other sections

5 ∗ (H, ·); see Remark 3.4. In fact, it was one of the main conceptual difficulties to recognize that in the

case of manifolds, the conjugate function should contain information not only from a single space

of cotangent directions but rather from all cotangent spaces in order to recover the Biconjugation

Theorem 3.20 under the same, natural assumptions as in the case of vector spaces.

An additional result in this paper is a theorem regarding the separation of convex sets on Hadamard

manifolds by geodesic hyperplanes in the cotangent bundle. This generalizes a well known separation

theorem from vector spaces to Hadamard spaces.

The remainder of the paper is organized as follows. In Section 2 we recall a number of classical results

from convex analysis in Hilbert spaces. In an effort to make the paper self-contained, we also briefly

state the required concepts from differential geometry and convex analysis on Hadamard manifolds.

Section 3 is devoted to the development of the new notion of Fenchel conjugation for functions defined

on Hadamard manifolds. Leveraging the concept, we extend some classical results from convex anal-

ysis to manifolds, like the Fenchel–Moreau Theorem (also known as the Biconjugation Theorem) and

the characterization of the subdifferential in terms of the conjugate function. In Section 4, we intro-

duce a theory of separation of convex sets on Hadamard manifolds, which leads to a strict separation

theorem. Finally, we give some conclusions and further remarks on future research in Section 5.

2 Preliminaries on Convex Analysis and Differential Geometry

In this sectionwe review somewell known results from convex analysis in Hilbert spaces, which serve

as the standard for comparison for the new results to be developed in Section 3. We emphasize that

the results collected here are valid in more general contexts, but we do not strive for full generality.

We also revisit necessary concepts from differential geometry as well as the intersection of both topics,

convex analysis on Riemannian manifolds, including its subdifferential calculus.

Throughout this paper we denote the extended line as R ≔ R ∪ {±∞}. We shall use the usual

convention −(−∞) = +∞ and −(+∞) = −∞.

2.1 Convex Analysis

In this subsection let X be a Hilbert space with inner product (· , ·) : X × X → R and duality pairing

〈· , ·〉 : X∗ × X → R. Here, X∗ denotes the dual space of X. For standard definitions like closedness,

properness, lower semicontinuity (lsc) and convexity of a function 5 : X → R, we refer the reader, e. g.,

to the textbooks Rockafellar, 1970; Bauschke, Combettes, 2011.
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Definition 2.1. The Fenchel conjugate of a function 5 : X → R is defined as the function 5 ∗ : X∗ → R

such that

5 ∗(G∗) ≔ sup
G ∈X

{
〈G∗ , G〉 − 5 (G)

}
.

We mention that some authors define equivalently 5 ∗ : X → R, replacing the duality pairing 〈G∗ , G〉

by the inner product (G∗ , G). A similar statement applies to the definition of the subdifferential in

Definition 2.3 below.

We recall some properties of the Fenchel conjugate function inHilbert spaces in the following lemma.

Lemma 2.2 (Bauschke, Combettes, 2011, Ch. 13). Let 5 , 6 : X → R be proper functions, U ∈ R, _ > 0

and I ∈ X. Then the following statements hold.

(8) 5 ∗ is convex and lsc.

(88) If 5 (G) ≤ 6(G) for all G ∈ X, then 5 ∗ (G∗) ≥ 6∗ (G∗) for all G∗ ∈ X∗.

(888) If 6(G) = 5 (G) + U for all G ∈ X, then 6∗ (G∗) = 5 ∗ (G∗) − U for all G∗ ∈ X∗.

(8E) If 6(G) = _5 (G) for all G ∈ X, then 6∗ (G∗) = _5 ∗ (G∗/_) for all G∗ ∈ X∗.

(E) If 6(G) = 5 (G + I) for all G ∈ X, then 6∗ (G∗) = 5 ∗ (G∗) − 〈G∗ , I〉 for all G∗ ∈ X∗.

(E8) The Fenchel–Young inequality holds, i. e., for all (G, G∗) ∈ X × X∗ we have

〈G∗ , G〉 ≤ 5 (G) + 5 ∗(G∗).

We now recall some results related to the definition of the subdifferential of a proper function.

Definition 2.3 (Bauschke, Combettes, 2011, Def. 16.1). Let 5 : X → R be a proper function. Its subdif-

ferential is defined as

m5 (G) ≔ {G∗ ∈ X∗ | 5 (I) ≥ 5 (G) + 〈G∗ , I − G〉 for all I ∈ X} .

Theorem 2.4 (Bauschke, Combettes, 2011, Prop. 16.9). Let 5 : X → R be a proper function and G ∈ X.

Then G∗ ∈ m5 (G) holds if and only if

5 (G) + 5 ∗(G∗) = 〈G∗ , G〉.

The Fenchel biconjugate 5 ∗∗ : X → R of a function 5 : X → R is given by

5 ∗∗ (G) = ( 5 ∗)∗ (G) = sup
G∗∈X∗

{
〈G∗ , G〉 − 5 ∗(G∗)

}
. (2.1)
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It satisfies 5 ∗∗ (G) ≤ 5 (G) for all G ∈ X; see for instance Bauschke, Combettes, 2011, Prop. 13.14.

We conclude this section with the following result known as the Fenchel–Moreau or Biconjugation

Theorem.

Theorem 2.5 (Bauschke, Combettes, 2011, Thm. 13.32). Given a proper function 5 : X → R, the equal-

ity 5 ∗∗ (G) = 5 (G) holds for all G ∈ X if and only if 5 is lsc and convex. In this case 5 ∗ is proper as

well.

2.2 Differential Geometry on Riemannian Manifolds

This section is devoted to the collection of necessary concepts from differential geometry. For details

concerning the subsequent definitions, the reader may wish to consult do Carmo, 1992; Lee, 2003;

Jost, 2017.

Suppose that M is an =-dimensional connected, smooth manifold. The tangent space at ? ∈ M is a

vector space of dimension = and it is denoted by T?M. Its dual space is denoted by T ∗
?M and it is

called the cotangent space toM at ?. The duality product between- ∈ T?M and b ∈ T ∗
?M is denoted

by 〈b , - 〉 = b (- ) ∈ R.

The disjoint union of all tangent respectively cotangent spaces, i. e.,

TM ≔

⋃

?∈M

{?} × T?M and T ∗M ≔

⋃

?∈M

{?} × T ∗
?M

is called the tangent bundle respectively the cotangent bundle of M. Both are smooth manifolds of

dimension 2=.

We suppose that M is equipped with a Riemannian metric, i. e., a smoothly varying family of inner

products on the tangent spaces T?M. The metric at ? ∈ M is denoted by (· , ·)? : T?M × T?M → R

and we write ‖·‖? for the associated norm in T?M. For simplicity we shall omit the index ? when

no ambiguity arises. The Riemannian metric furnishes a linear bijective correspondence between the

tangent and cotangent spaces via the Riesz map and its inverse, the so-called musical isomorphisms;

see Lee, 2003, Ch. 8. They are defined as

♭ : T?M ∋ - ↦→ - ♭ ∈ T ∗
?M, 〈- ♭ , . 〉 = (- , . )?, for all . ∈ T?M, (2.2)

and its inverse,

♯ : T ∗
?M ∋ b ↦→ b♯ ∈ T?M, (b♯ , . )? = 〈b , . 〉, for all . ∈ T?M. (2.3)

The ♯-isomorphism further introduces an inner product and an associated norm on the cotangent

space T ∗
?M, which we will also denote by (· , ·)? and ‖·‖? , since it is clear which inner product or

norm we refer to based on the respective arguments.

The tangent vector of a curve W : � → M defined on some open interval � ⊆ R is denoted by ¤W (C).

A curve is said to be geodesic if ∇ ¤W (C) ¤W (C) = 0 holds for all C ∈ � , where ∇ denotes the Levi-Cevita
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connection, cf. do Carmo, 1992, Ch. 2 or Lee, 2018, Thm. 4.24. As a consequence, geodesic curves have

constant speed. We say that a geodesic W : [0, 1] ⊂ R → M connects ? to @ if W (0) = ? and W (1) = @

holds. Note that a geodesic connecting ? to @ need not always exist, and if it exists, it need not be

unique. Geodesics might also be of different lengths. If a unique shortest geodesic connecting ? and

@ exists, we denote it by WN?,@. Moreover, given (?,- ) ∈ TM, we denote by W?,- : � → M, with � ⊆ R

being a suitable open interval containing 0, the geodesic starting at ? with ¤W?,- (0) = - . We denote the

subset of T?M for which these geodesics are well defined until C = 1 by G? . Recall that a Riemannian

manifold M is said to be (geodesically) complete if G? = T?M holds for some, and equivalently for

all ? ∈ M.

The Riemannian distance between ? and @ inM, defined as the infimum of the length over all piece-

wise smooth curve segments from ? to @, is denoted by 3 (?, @). The metric topology it induces agrees

with the original topology on M. By the Hopf-Rinow theorem, M is geodesically complete if and

only if it complete in the sense of metric spaces.

The exponential map is defined as the function exp? : G? → M with exp? - ≔ W?,- (1). Note

that exp? (C- ) = W?,- (C) holds for every C ∈ [0, 1]. We further introduce the set G ′
? ⊆ T?M as

some open set such that exp? : G
′
? → exp? (G

′
?) ⊆ M is a diffeomorphism. The logarithmic map is

defined as the inverse of the exponential map, i. e., log? : exp? (G
′
?) → G ′

? ⊆ T?M.

In the particular case of aHadamard manifold, i. e., amanifold which is simply connected and complete

and whose sectional curvature is nonpositive everywhere, the geodesics connecting any two distinct

points exist and are unique; see Bačák, 2014, p. 10. In this case, the exponential and logarithmic maps

are defined globally, i. e., G? = T?M holds for all ? ∈ M. Moreover, the distance function “is at least

as convex as in the Euclidean plane” Bačák, 2014, p.6 and the squared distance function3 (·, ?)2 is even

strongly convex Bačák, 2014, Rem. 2.2.2. These properties of Hadamard manifolds make these spaces

particularly amenable for the study of convexity properties.

2.3 Convex Analysis on Hadamard Manifolds

Throughout this subsection,M is assumed to be aHadamardmanifold andwe recall the basic concepts

of convex analysis on M. The central idea is to replace straight lines in the definition of convex sets

in Hilbert spaces by geodesics.

Definition 2.6 (Sakai, 1996, Def. IV.5.9, Def. IV.5.1).

(8) A function � : M → R is proper if dom � ≔ {? ∈ M | � (?) < ∞} ≠ ∅ and � (?) > −∞ holds for

all ? ∈ M.

(88) A function � : M → R is convex if, for all ?, @ ∈ M, the composition � ◦ WN?,@ : [0, 1] ⊂ R→ R is

a convex function on [0, 1] in the classical sense.

(888) The epigraph of a function � : M → R is defined as

epi � ≔ {(?, U) ∈ M × R | � (?) ≤ U}. (2.4)
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(8E) A proper function � : M → R is called lower semicontinuous (lsc) if epi � is closed.

(E) A subset C ⊆ M is said to be convex if for any two points ?, @ ∈ C, the unique geodesic of M

connecting ? to @ lies completely in C.

An interesting observation here is, that geodesic balls around ? ∈ M of radius A ≥ 0, i.e.

B? (A ) ≔ {@ ∈ M | there exists - ∈ T?M with ‖- ‖? ≤ A such that @ = exp? - }

are convex sets.

We now recall the notion of the subdifferential of a geodesically convex function.

Definition 2.7 (Ferreira, Oliveira, 1998, Udrişte, 1994, Def. 3.4.4). The subdifferential m� at a point ? ∈

M of a proper, convex function � : M → R is given by

m� (?) ≔
{
b ∈ T ∗

?M
�� � (@) ≥ � (?) + 〈b , log? @〉 for all @ ∈ M

}
.

As was mentioned already for the Hilbert space case, the subdifferential is sometimes defined equiv-

alently as a subset of the tangent space, and the duality pairing 〈b , log? @〉 is replaced by an inner

product.

When C ⊆ M is nonempty, convex and closed, it was proved in Ferreira, Oliveira, 2002 that for each

point ? ∈ M, there is a unique point ?̂ ∈ C satisfying 3 (?, ?̂) ≤ 3 (?, @) for all @ ∈ C. In this case, ?̂ is

called the projection of ? onto C and it is denoted by projC (?). We require the following result from

Ferreira, Oliveira, 2002, Cor. 3.1.

Theorem 2.8. Suppose that C ⊆ M a nonempty, convex and closed set and ? ∈ M. Then the following

inequality holds, (
logprojC (?)

? , logprojC (?)
@
)
≤ 0 for all @ ∈ C.

Corollary 2.9. Let � : M → R be a proper lsc convex function and (?, B) ∉ epi � . Then the projection

projepi � (?, B) ≕ (?̂, B̂) exists and the following inequality holds,

(
log?̂ ? , log?̂ @

)
+ (B − B̂) (A − B̂) ≤ 0 for all (@, A ) ∈ epi � .

Proof. Since � : M → R is a proper lsc convex function, epi � ⊂ M ×R is a nonempty closed convex

set, whereM × R is equipped with the product metric. Hence, using Theorem 2.8 with C = epi � we

get the desired inequality. �

A geodesic triangle Δ(?0, ?1, ?2) of a Hadamard manifold is the set consisting of three distinct points

?0, ?1, ?2 called the vertices and three geodesicsWP?0,?1 , WP?1,?2 , WP?2,?0
. The proof of the following theorem

can be found in Ferreira, Oliveira, 2002, Thm. 2.2.
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Theorem 2.10. Suppose that Δ(?0, ?1, ?2) a geodesic triangle. Then,

32 (?8⊖1, ?8 ) − 2
(
log?8 ?8⊖1 , log?8 ?8⊕1

)
+ 32 (?8⊕1, ?8 ) ≤ 32 (?8⊖1, ?8⊕1), (2.5)

(
log?8 ?8⊖1 , log?8 ?8⊕1

)
+
(
log?8⊕1 ?8⊖1 , log?8⊕1 ?8

)
≥ 32 (?8⊕1, ?8 ), (2.6)

for 8 = 0, 1, 2, where the indices 8 ⊖ 1 and 8 ⊕ 1 are meant modulo 3.

3 Fenchel Conjugate on Hadamard Manifolds

In this section we introduce new definitions of the Fenchel conjugate and Fenchel biconjugate for ex-

tended real-valued functions defined on Hadamard manifolds. Using these definitions, we can extend

fundamental properties from the Euclidean to the Riemannian setting. In Section 3.3, we elaborate on

potential applications and provide a concrete example of the Fenchel conjugate of a function on the

manifold of symmetric, positive definite matrices.

3.1 Fenchel Conjugate

We begin with a new definition of the Fenchel conjugate function on Hadamard manifolds.

Definition 3.1. Let � : M → R. The Fenchel conjugate of � is the function � ∗ : T ∗M → R defined by

� ∗(?, b) ≔ sup
@∈M

{
〈b , log? @〉 − � (@)

}
for (?, b) ∈ T ∗M. (3.1)

As was mentioned in the introduction, this definition differs from Bergmann, Herzog, et al., 2021,

Def. 3.1 in two important ways. First, � ∗ is defined on the entire cotangent bundle, not just on the

cotangent space at a particular base point. Second, we do not pull � back to the tangent space.

Remark 3.2. Suppose that � : M → R is a proper function. Since 〈b , log? @〉 − � (@) = −∞ holds for all

@ ∉ dom � , we have

� ∗(?, b) = sup
@∈dom �

{
〈b , log? @〉 − � (@)

}
for all (?, b) ∈ T ∗M.

Remark 3.3. For each (?, b) ∈ T ∗M, � ∗(?, b) agrees with the ?-Fenchel conjugate � ∗
? (b) introduced in

Bergmann, Herzog, et al., 2021, Def. 3.1. For convenience, let us recall that � ∗
? : T

∗
?M → R is defined as

� ∗
? (b) = sup

- ∈T?M

{
〈b , - 〉 − � (exp? - )

}
for b ∈ T ∗

?M. (3.2)

The equality � ∗(?, b) = � ∗
? (b) follows immediately from the relation - = log? @ ⇔ @ = exp? - on

Hadamard manifolds.
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Remark 3.4. We also observe that in caseM is the Euclidean space R= , Definition 3.1 becomes

� ∗(?, b) = sup
@∈R=

{
〈b , @〉 − � (@)

}
− 〈b , ?〉

= � ∗(b) − 〈b , ?〉 for all (?, b) ∈ R= × R= . (3.3)

Due to Lemma 2.2 (E) this is the Fenchel conjugate of � (? + b). Similar but not identical to � ∗
? , cf. (3.2)

or Bergmann, Herzog, et al., 2021, Def. 3.1, we can recover the classical (Euclidean) case. The domain of

the Fenchel conjugate here is larger than in the Euclidean case. If we set ? = 0 in the first argument, i. e.

consider the function � ∗(0, ·) only in its second argument, then we obtain � ∗(0, ·) = � ∗
0 = � ∗.

Example 3.5. Let ? ∈ M be arbitrary but fixed and let � : M → R be defined by � (@) = 3 (?, @). Due

to the fact that 3 (?, @) = ‖log? @‖ holds, we obtain from Definition 3.1 the following representation of � ∗:

� ∗(?, b) = sup
@∈M

{
〈b , log? @〉 − ‖log? @‖

}
for (?, b) ∈ T ∗M. (3.4)

For every b ∈ T ∗
?M with ‖b ‖ ≤ 1, the following inequalities hold:

0 = 〈b , log? ?〉 − ‖log? ?‖ ≤ sup
@∈M

{
〈b , log? @〉 − ‖log? @‖

}

≤ sup
@∈M

{
‖b ‖‖log? @‖ − ‖log? @‖

}
≤ 0.

Hence, (3.4) implies � ∗(?, b) = 0 whenever ‖b ‖ ≤ 1. On the other hand, if ‖b ‖ > 1 holds, then

� ∗(?, b) = sup
@∈M

{
〈b , log? @〉 − ‖log? @‖

}

= sup
- ∈T?M

{
〈b , - 〉 − ‖- ‖

}
≥ sup

_>0

{
〈b , _ b♯〉 − ‖_ b♯‖

}

= sup
_>0

{
_ (‖b ‖2 − ‖b ‖)

}
= +∞.

Therefore, the Fenchel conjugate � ∗ : T ∗M → R of � = 3 (?, ·) is given by

� ∗(?, b) =

{
0 if ‖b ‖ ≤ 1,

+∞ if ‖b ‖ > 1.

Example 3.6. Let ? ∈ M be arbitrary but fixed and let � : M → R be defined by � (@) =
1
2
32 (?, @).

Then we have

� ∗(?, b) = sup
@∈M

{
〈b , log? @〉 −

1

2
‖log? @‖

2
}

= sup
- ∈T?M

{
〈b , - 〉 −

1

2
‖- ‖2

}
=

1

2
‖b ‖2.

In particular, we obtain � ∗(?, b) = � ∗(?,−b) for all (?, b) ∈ T ∗M. In addition, the following property

holds:

� ∗
(
?, [log? @]

♭ )
=

1

2
‖[log? @]

♭ ‖2 =
1

2
32 (?, @) = � (@) for all @ ∈ M.
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In comparison with the classical conjugate on R= , it appears unusual that � ∗ from Definition 3.1 de-

pends on two arguments, ? and b . One might expect there to be some redundancy in the definition.

Indeed, this redundancy has already been observed in (3.3) for the Euclidean setting. We now explore

it in the Riemannian case.

To this end, we consider the following equivalence relation on the cotangent bundle T ∗M:

(?, b) ∼ (? ′, b ′) if and only if 〈b , log? @〉 = 〈b ′ , log?′ @〉 holds for all @ ∈ M. (3.5)

The equivalence class of (?, b) ∈ T ∗M, denoted by [(?, b)], is

[(?, b)] = {(? ′, b ′) ∈ T ∗M | 〈b , log? @〉 = 〈b ′ , log?′ @〉 for all @ ∈ M}. (3.6)

Note that � ∗(? ′, b ′) = � ∗(?, b) holds for all (? ′, b ′) ∈ [(?, b)]. Observe as well that when M is the

Euclidean space R= , the equivalence class of (?, b) ∈ T ∗M becomes

[(?, b)] = {(? ′, b ′) ∈ R= × R= | 〈b , @ − ?〉 = 〈b ′ , @ − ? ′〉 for all @ ∈ R=}

= {(? ′, b ′) ∈ R= × R= | 〈b − b ′ , @〉 = 〈b , ?〉 − 〈b ′ , ? ′〉 for all @ ∈ R=}

= {(? ′, b ′) ∈ R= × R= | b ′ = b, 〈b ′ , ? ′〉 = 〈b , ?〉}

= {(? ′, b) ∈ R= × R= | 〈b , ? ′〉 = 〈b , ?〉},

which describes a hyperplane in R= when b ≠ 0. The following example illustrates that the equiva-

lence class defined in (3.6) is, in general, not a singleton even in non-Euclidean manifolds.

Example 3.7. We denote by M = P(=) the cone of real, symmetric positive definite matrices of size

=×=. Its tangent space (at any point) can be identified with S(=), the space of symmetric =×=-matrices.

The manifold M is endowed with the affine invariant Riemannian metric, which at � ∈ P(=) is given

by

(- , . )� ≔ trace(-�−1.�−1) for -,. ∈ T�M. (3.7)

M is a Hadamard manifold; see for instance Lang, 1999, Ch. XII, Thm. 1.2, p. 325. When we identify the

cotangent space with S(=) via the duality 〈b , . 〉 ≔ trace(b . ), then the ’flat’ isomorphism ♭ at � is

given by

- ♭
= �−1-�−1 (3.8)

since 〈- ♭ , . 〉 = trace(- ♭. ) = trace(�−1-�−1. ) = trace(-�−1.�−1) = (- , . )� holds for all . ∈ S(=).

The logarithmic map log� : M → T�M is given by

log� � = �1/2 Log
(
�−1/2��−1/2

)
�1/2 for �, � ∈ M, (3.9)

where ·1/2 and Log denote the matrix square root and matrix logarithm of symmetric positive definite

matrices, respectively. We refer the reader, for instance, to Higham, 2008, Thms. 1.29 and 1.31.

Suppose that � ∈ P(=) is arbitrary but fixed and consider the particular cotangent vector �♭
= �−1 ∈

S(=). Using (3.9), we evaluate
〈
�♭ , log� �

〉
= trace

(
�−1�1/2 Log

(
�−1/2��−1/2) �1/2)

= trace Log
(
�−1/2��−1/2

)

= trace Log�−1/2 + trace Log� + trace Log�−1/2

= trace Log� − trace Log�
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for any � ∈ P(=). Here we also used that trace Log(��) = trace Log� + trace Log� holds for positive

definite matrices � and � as well as Log�−1
= − Log� .

Now choose any orthogonal matrix + and set �̂ ≔ + �+ −1. Then the same reasoning as above shows

〈
�̂♭ , log

�̂
�
〉
= trace Log� − trace Log �̂ = trace Log� − trace Log�.

The second equality follows from the fact that � and �̂ have the same eigenvalues and thus the same is

true for Log� and Log �̂.

We conclude that (�,�♭) and (�̂, �̂♭) belong to the same equivalence class w.r.t. the relation (3.5). There-

fore, the equivalence classes (3.6) are not, in general, singletons.

The following results establishes a propertywhich relates the Fenchel conjugate evaluated in elements

of T ∗M whose base points are not necessarily the same.

Proposition 3.8. Let � : M → R and ?, ? ′ ∈ M. Then the following inequality holds:

� ∗
(
?, [log? ?

′]♭
)
≥ � ∗

(
? ′, [− log?′ ?]

♭ ) + 32 (?, ? ′).

Proof. Consider the geodesic triangle Δ(?, ? ′, @) with some @ ∈ M. Using (2.2) and (2.6) with ?8 = ? ′,

?8⊕1 = ? and ?8⊖1 = @ we can say that

〈[log? ?
′]♭ , log? @〉 + 〈[log?′ ?]

♭ , log?′ @〉 = (log? ?
′ , log? @) + (log?′ ? , log?′ @) ≥ 32 (?, ? ′).

Hence, we obtain

〈[log? ?
′]♭ , log? @〉 − � (@) ≥ 32 (?, ? ′) + 〈[− log?′ ?]

♭ , log?′ @〉 − � (@),

Taking the supremum with respect to @ on both sides, we conclude the proof. �

We now establish a result regarding the properness of the conjugate function, thereby generalizing a

result from Bergmann, Herzog, et al., 2021, Lem. 3.4.

Proposition 3.9. Let � : M → R. If � ∗ : T ∗M → R is proper, then � is also proper.

Proof. Since � ∗ is proper by assumption we have dom � ∗
≠ ∅. Choose some (?, b) ∈ dom � ∗. Using

Definition 3.1 we can say that

+∞ > � ∗(?, b) ≥ 〈b , log? @〉 − � (@) for all @ ∈ M.

Since −(−∞) = +∞, we have that � (@) ≠ −∞ for all @ ∈ M. Now, we will show that dom � ≠ ∅.

Suppose, by contraposition, that � (@) = +∞ for all @ ∈ M. This would imply that 〈b , log? @〉 − � (@) =

−∞ for all @ ∈ M and, consequently, � ∗(?, b) = −∞, which contradicts the fact (?, b) ∈ dom � ∗.

Therefore, dom � ≠ ∅ and proof is complete. �
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Due to the relationship between Definition 3.1 and Bergmann, Herzog, et al., 2021, Def. 3.1 mentioned

in Remark 3.3, the proof of the following result follows directly from Lem. 3.7. and Prop. 3.9 of

Bergmann, Herzog, et al., 2021. Its proof will therefore be omitted.

Proposition 3.10. Let �,� : M → R be two proper functions and suppose that U ∈ R and _ > 0. Then

the following statements hold.

(8) If � (@) ≤ � (@) for all @ ∈ M, then � ∗(?, b) ≥ �∗ (?, b) for all (?, b) ∈ T ∗M.

(88) If � (@) = � (@) + U for all @ ∈ M, then�∗ (?, b) = � ∗(?, b) − U for all (?, b) ∈ T ∗M.

(888) If � (@) = _� (@) for all @ ∈ M, then�∗ (?, b) = _� ∗(?,
b
_
) for all (?, b) ∈ T ∗M.

(8E) The Fenchel–Young inequality holds, i. e., for all (?, b) ∈ T ∗M we have

� (@) + � ∗(?, b) ≥ 〈b , log? @〉 for all @ ∈ M.

Now we present a result that shows the partial convexity of the Fenchel conjugate w.r.t. the second

argument.

Proposition 3.11. Let � : M → R be any function and ? ∈ M. Then the function � ∗(?, ·) : T ∗
?M → R

is convex.

Proof. We can infer from Definition 3.1 that

� ∗(?, b) = sup
@∈M

{
〈b , log? @〉 − � (@)

}
for b ∈ T ∗

?M

is the supremum over a family of affine functions in b on the vector space T ∗
?M. Its convexity w.r.t. b

is therefore a standard result. �

Remark 3.12. Let ? ∈ M and suppose that � ∗(?, ·) : T ∗
? M → R is proper. The subdifferential of � ∗(?, ·)

at b ∈ T ∗
?M, denoted by m2�

∗(?, b), is the set

m2�
∗(?, b) =

{
- ∈ T?M

�� � ∗(?, b ′) ≥ � ∗(?, b) + 〈b ′ − b , - 〉 for all b ′ ∈ T ∗M
}
.

In the following statement we give a characterization of this subdifferential in terms of the conjugate

function. This result is a generalization of Theorem 2.4 to the Riemannian context.

Theorem 3.13. Let � : M → R be a proper convex function. Then b ∈ m� (?) holds if and only if

� ∗(?, b) = −� (?).
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Proof. First we consider the case ? ∈ dom � . Suppose that b ∈ m� (?). Hence, using Definition 2.7 we

have

〈b , log? @〉 − � (@) ≤ −� (?) for all @ ∈ M.

Taking the supremum with respect to @ and considering Definition 3.1 we obtain

� ∗(?, b) = sup
@∈M

{
〈b , log? @〉 − � (@)

}
≤ −� (?)

holds. On the other hand, using Definition 3.1 it is easy to see that

� ∗(?, b) = sup
@∈M

{
〈b , log? @〉 − � (@)

}
≥ 〈b , log? ?〉 − � (?) = −� (?).

Thus, � ∗(?, b) = −� (?) follows.

For the converse, suppose that b ∈ T ∗
?M is chosen such that � ∗(?, b) = −� (?) holds. Hence, using

Definition 3.1 we have

−� (?) = � ∗(?, b) ≥ 〈b , log? @〉 − � (@) for all @ ∈ M.

Therefore, it follows from Definition 2.7 that b ∈ m� (?) holds.

When ? ∉ dom � , then � (?) = ∞ and therefore m� (?) = ∅ since � is proper. Suppose that there exists

b ∈ T ∗
?M such that � ∗(?, b) = −� (?) holds. Proceeding as above this entails −� (?) = � ∗(?, b) ≥

〈b , log? @〉 − � (@) for all @ ∈ M and therefore b ∈ m� (?), which is a contradiction. This concludes the

proof. �

Remark 3.14. In case M = R
=, Theorem 3.13 reads: b ∈ m� (?) if and only if

−� (?) = � ∗(?, b) = � ∗(0, b) − 〈b , ?〉,

where the last equality follows from (3.3). Since � ∗(0, b) coincides with the classical definition of the

Fenchel conjugate of � , we can indeed conclude that Theorem 3.13 generalizes Theorem 2.4 with X = R
=

to the Riemannian case.

The following result shows that, under certain conditions, a function � : M → R is bounded from

below by a particular continuous function. This function depends on the metric of M and, in the

Euclidean case, it is an affine function. A version of this result in Euclidean spaces, whose proof we

are following, can be found in Zălinescu, 2002, Thm. 2.2.6.

Lemma 3.15. Let � : M → R be a proper lsc convex function and ? ∈ dom � . Then there exist@ ∈ dom � ,

U ∈ R and _ > 0 such that

_ (log@ ? , log@ @
′) − � (@′) ≤ U for all @′ ∈ dom � .
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Proof. First take B < � (?), i. e., (?, B) ∉ epi � . Since � is a proper lsc convex function, applying

Corollary 2.9 we conclude that there exist (?̂, B̂) ∈ epi � such that

(log?̂ ? , log?̂ @
′) + (B − B̂) (A − B̂) ≤ 0 for all (@′, A ) ∈ epi � . (3.10)

Taking (@′, A ) = (?, � (?) + =), = ∈ N, we get

(log?̂ ? , log?̂ ?) + (B − B̂) (� (?) + = − B̂) ≤ 0 for all = ∈ N. (3.11)

From this B−B̂ ≠ 0 follows, since otherwisewe would have B = B̂ and, by (3.11), ? = ?̂ follows. Therefore

we would have (?, B) = (?̂, B̂), contradicting the fact (?, B) ∉ epi � . On the other hand, considering

(3.11) with B − B̂ > 0 and = sufficiently large, we obtain another contradiction. Therefore, we conclude

B − B̂ < 0. Dividing (3.10) by B̂ − B > 0, we have

1

B̂ − B
(log?̂ ? , log?̂ @

′) − A ≤ −B̂ for all (@′, A ) ∈ epi � .

Since (@′, � (@′)) ∈ epi � for all @′ ∈ dom � , it follows that

1

B̂ − B
(log?̂ ? , log?̂ @

′) − � (@′) ≤ −B̂ for all @′ ∈ dom � .

To finalize the proof choose @ = ?̂ , U = −B̂ and _ = 1/(B̂ − B). �

The following result shows that our definition of Fenchel conjugate on M allows us to obtain an

extension of the second part of Theorem 2.5 to the Riemannian context.

Theorem 3.16. Let � : M → R be a proper lsc convex function. Then � ∗ is proper.

Proof. Fix (?, b) ∈ T ∗M and choose some ? ′ ∈ dom � . Using Remark 3.2, we have

� ∗(?, b) = sup
@∈dom �

{
〈b , log? @〉 − � (@)

}
≥ 〈b , log? ?

′〉 − � (? ′) > −∞.

On the other hand, Lemma 3.15 guarantees that there are @ ∈ dom � , U ∈ R and _ > 0 such that

_ (log@ ?
′ , log@ @

′) − � (@′) ≤ U for all @′ ∈ dom � .

Using (2.2) and taking the supremum with respect to @′, we can conclude that � ∗
(
@, [_ log@ ?

′]♭
)
≤

U < +∞ holds. This shows dom � ∗
≠ ∅, which completes the proof. �

3.2 Fenchel Biconjugate

We now define the Fenchel biconjugate on Hadamard manifolds.

Definition 3.17. Let � : M → R. The Fenchel biconjugate of � is the function � ∗∗ : M → R defined by

� ∗∗(?) ≔ sup
(@,b) ∈T∗M

{
〈b , log@ ?〉 − � ∗(@, b)

}
for ? ∈ M.
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Similarly as it was the case for � ∗, our definition differs from our previous definition of the biconjugate

in Bergmann, Herzog, et al., 2021, Def. 3.5. In particular, � ∗∗ does not depend on a base point. The

following remark shows that the above definition is a natural extension of (2.1) to the Riemannian

context.

Remark 3.18. Let � : R= → R. The Definition 3.17 with M equal to the Euclidean space R= becomes

� ∗∗ (?) = sup
(@,b) ∈R=×R=

{
〈b , ? − @〉 − � ∗(@, b)

}
for ? ∈ R= .

Since Remark 3.4, Equation (3.3) states that � ∗(@, b) = � ∗(0, b) − 〈b , @〉 for all (@, b) ∈ R= ×R=, it follows

that

� ∗∗(?) = sup
b ∈R=

{
〈b , ?〉 − � ∗(0, b)

}
for ? ∈ R= .

Taking into account that � ∗(0, b) coincides with the classical definition of Fenchel conjugate on R=, we

can conclude that Definition 3.17 generalizes the classical definition of the Fenchel biconjugate from the

Euclidean space to Hadamard manifolds.

The Fenchel biconjugate function is always a lower bound on the original function, as the following

result states, which generalizes Bauschke, Combettes, 2011, Prop. 13.14.

Proposition 3.19. Let � : M → R. Then � ∗∗ (?) ≤ � (?) holds for all ? ∈ M.

Proof. Applying Definition 3.17 and Definition 3.1, we have

� ∗∗(?) = sup
(@,b) ∈T∗M

{
〈b , log@ ?〉 − � ∗(@, b)

}
,

= sup
(@,b) ∈T∗M

{
〈b , log@ ?〉 − sup

@′∈M

{
〈b , log@ @

′〉 − � (@′)
}}
,

= sup
(@,b) ∈T∗M

{
〈b , log@ ?〉 + inf

@′∈M

{
−〈b , log@ @

′〉 + � (@′)
}}
,

≤ sup
(@,b) ∈T∗M

{
〈b , log@ ?〉 − 〈b , log@ ?〉 + � (?)

}
,

= � (?) for any ? ∈ M.

�

The following result is a version of the famous Fenchel–Moreau theorem in the Riemannian case,

compare Theorem 2.5.

Theorem 3.20. Let � : M → R be a proper lsc convex function. Then � ∗∗
= � holds.

Proof. The proof generally follows along the lines of the analog result in vector spaces; see, e. g.,

Bauschke, Combettes, 2011, Thm. 13.32 and Zălinescu, 2002, Thm. 2.3.3. However, it is worth pointing
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out that even in the case vector space setting, our definition of the Fenchel conjugate � ∗(?, b) is more

general due to the extra argument ? (replacing 0), and therefore the proof requires adaption. This is

all the more true for the Hadamard manifold setting, where some additional algebraic manipulations

need to be rewritten, and terms need to be grouped differently. We therefore consider it justified to

provide the generalized proof here. For the interested reader we point out where adaptations were

necessary compared to the proof in Zălinescu, 2002, Thm. 2.3.3.

Let ? ∈ M be arbitrary. Choose some B ∈ R such that B < � (?) holds, i. e., (?, B) ∉ epi � . Since � is

a proper lsc convex function, we can apply Corollary 2.9 to conclude that there exists (?̂, B̂) ∈ epi �

such that

(log?̂ ? , log?̂ @) + (B − B̂) (A − B̂) ≤ 0 for all (@, A ) ∈ epi � . (3.12)

The inequality above is a rearrangement of eq.(2.32) in Zălinescu, 2002. Considering (3.12) with

(@, A ) = (?̂, � (?̂) + =), = ∈ N, we obtain (B − B̂) (� (?̂) + = − B̂) ≤ 0 for all = ∈ N. Since ?̂ ∈ dom �

holds, the assumption B− B̂ > 0 yields a contradiction for = sufficiently large. Therefore, we must have

B − B̂ ≤ 0. With this in mind, we will prove B ≤ � ∗∗(?).

First, let us assume B − B̂ < 0. Dividing (3.12) by B̂ − B > 0 we get

1

B̂ − B
(log?̂ ? , log?̂ ?

′) − A ≤ −B̂ < −B for all (? ′, A ) ∈ epi � .

Using (2.2) and the expression above with ? ′ ∈ dom � and A = � (? ′), we have

〈[(log?̂ ?)/(B̂ − B)]♭ , log?̂ ?
′〉 − � (? ′)

=
1

B̂ − B
(log?̂ ? , log?̂ ?

′) − � (? ′) < −B for all ? ′ ∈ dom � .

This inequality is a rearrangement of the inequality in line 13 in the proof by Zălinescu, 2002. Taking

the supremumwith respect to? ′ ∈ dom � and considering Remark 3.2, it follows that � ∗
(
?̂, [(log?̂ ?)/(B̂−

B)]♭
)

≤ −B. Taking into account that 〈[(log?̂ ?)/(B̂ − B)]♭ , log?̂ ?〉 ≥ 0, the last inequality and

Definition 3.17 yield

B ≤ 〈[(log?̂ ?)/(B̂ − B)]♭ , log?̂ ?〉 − � ∗
(
?̂, [(log?̂ ?)/(B̂ − B)]♭

)
≤ � ∗∗(?).

The previous inequality corresponds to a manipulation of line 15 in Zălinescu, 2002. Now, let us prove

that B ≤ � ∗∗ (?) also holds when we assume B − B̂ = 0. In this case, (3.12) becomes

(log?̂ ? , log?̂ @) ≤ 0 for all @ ∈ dom � . (3.13)

The previous inequality parallels the one in line 17 in Zălinescu, 2002. Using Lemma 3.15 for ?̂ ∈

dom � , there exist @′ ∈ dom � , U ∈ R and _ > 0 such that

_ (log@′ ?̂ , log@′ @) − � (@) ≤ U for all @ ∈ dom � .

On the other hand, it is easy to see that (3.13) is equivalent to the inequality

_ (log?̂ @
′ , log?̂ @) + _ (f log?̂ ? − log?̂ @

′ , log?̂ @) ≤ 0 for all @ ∈ dom �, f > 0.

Adding the last two inequalities we get

_ (log@′ ?̂ , log@′ @) + _ (log?̂ @
′ , log?̂ @)

+ _ (f log?̂ ? − log?̂ @
′ , log?̂ @) − � (@) ≤ U for all @ ∈ dom �, f > 0. (3.14)
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Using (2.6) for the geodesic triangleΔ(?̂, @′, @) for@ ∈ M, we can conclude that 0 ≤ (log@′ ?̂ , log@′ @)+

(log?̂ @
′ , log?̂ @) holds for all @ ∈ dom � . Thus, (3.14) yields

_ (f log?̂ ? − log?̂ @
′ , log?̂ @) − � (@) ≤ U for all @ ∈ dom �, f > 0.

The inequality above is an adaptation of line 19 in the proof by Zălinescu, 2002. Considering (2.2) and

taking the supremum over @ ∈ M, we get � ∗
(
?̂, [_ (f log?̂ ? − log?̂ @

′)]♭
)
≤ U for all f > 0. Therefore,

_ f 32 (?, ?̂) − _ (log?̂ @
′ , log?̂ ?) − U

= (_ (f log?̂ ? − log?̂ @
′) , log?̂ ?) − U

= 〈[_ (f log?̂ ? − log?̂ @
′)]♭ , log?̂ ?〉 − U

≤ 〈[_ (f log?̂ ? − log?̂ @
′)]♭ , log?̂ ?〉 − � ∗

(
?̂, [_ (f log?̂ ? − log?̂ @

′)]♭
)

≤ sup
(@,b) ∈T∗M

{
〈b , log@ ?〉 − � ∗(@, b)

}
= � ∗∗(?),

for all f > 0. The above chain of inequalites represent an adaptation of lines 21–23 in Zălinescu, 2002.

As we are analyzing the case B − B̂ = 0, we can conclude that ? ≠ ?̂ must hold, otherwise we would

have (?, B) = (?̂, B̂), contradicting the fact (?, B) ∉ epi � . Thus, taking f sufficiently large, we get

� ∗∗(?) = +∞ and thus B ≤ � ∗∗(?) holds in this case as well.

We have thus proved B ≤ � ∗∗ (?) in all cases. Since B < � (?) was arbitrary, we get � (?) ≤ � ∗∗ (?). The

conclusion of the proof now follows from Proposition 3.19. �

3.3 Potential Application and Example

In this section we briefly touch upon a potential application of the theory of Fenchel duality. Al-

though this is not explored further in the present paper, we mention that duality is a core concept

that many solution algorithms for convex minimization problems are based on. Specifically, suppose

that � : M → R and � : M → R are proper, lsc and convex functions. It follows from Theorem 3.20

and Definition 3.17 that the minimization problem

Minimize � (?) +� (?), ? ∈ M

has the following saddle-point formulation:

Minimize sup
(@,b) ∈T∗M

{
〈b , log@ ?〉 +� (?) − � ∗(@, b)

}
, ? ∈ M.

This formulation is the starting point for primal-dual algorithms, whose development on Hadamard

manifolds is a topic for further research. In any case, the evaluation of the conjugate � ∗ of � will be

a requirement for the application of any such algorithm to a particular problem.

Therefore, we develop in this section a concrete example for the conjugate of a function. M will be

the manifold P(=) of real, symmetric, positive definite = ×=-matrices; see Example 3.7. The function

under consideration is

� (�) ≔ 0 ln det(�) (3.15)
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for some 0 ∈ R. This function appears in optimization problems from different fields. We men-

tion operator scaling, see Allen-Zhu et al., 2018, eq.(1.1), as well as optimal experimental design, see

Pronzato, Pázman, 2013, eq.(5.8), as two examples. It also appears in minimum-volume covering prob-

lems, which have broad connections to many other fields; see Todd, 2016, Ch. 1.4.

We will denote the identity matrix = × = by id, and we will use the following property:

trace(Log(�)) = ln det(�) for all � ∈ P(=). (3.16)

We recall that the map Log on the left-hand side of the above equality is the matrix logarithm, while

ln on the right side is the natural logarithm of positive real numbers. The matrix exponential will be

denoted by Exp.

Example 3.21. Consider the function � : M → R from (3.15)with some 0 ∈ R. The manifoldM = P(=)

is endowed with the Riemannian metric from Example 3.7. Using (3.7)–(3.9), we evaluate

〈- ♭ , log� �〉 = trace
(
-�−1 [�1/2 Log

(
�−1/2��−1/2

)
�1/2]�−1

)

= trace
(
-�−1/2 Log

(
�−1/2��−1/2

)
�−1/2

)

= trace
(
�−1/2-�−1/2 Log

(
�−1/2��−1/2

) )

for any �, � ∈ M and - ∈ T�M. Using Definition 3.1 and the expression above, and performing the

change of variable � = �−1/2��−1/2, we get

� ∗(�,- ♭) = sup
�∈M

{
〈- ♭ , log� �〉 − � (�)

}

= sup
�∈M

{
trace

(
�−1/2-�−1/2 Log

(
�−1/2��−1/2

) )
− 0 ln det(�)

}

= sup
�∈M

{
trace

(
�−1/2-�−1/2 Log(�)

)
− 0 ln det(�1/2� �1/2)

}

= sup
�∈M

{
trace

(
�−1/2-�−1/2 Log(�)

)
− 0 ln det(�) − 0 ln det(�)

}

for any� ∈ M and - ∈ T�M. Applying now (3.16) and the linearity of trace and rearranging terms, we

can obtain

� ∗(�,- ♭) = sup
�∈M

{
trace

(
�−1/2-�−1/2 Log(�)

)
− 0 trace(Log(�)) − 0 ln(det(�))

}

= sup
�∈M

{
trace

(
�−1/2-�−1/2 Log(�)

)
− trace(0 Log(�))

}
− 0 ln(det(�))

= sup
�∈M

{
trace

(
�−1/2-�−1/2 Log(�) − 0 Log(�)

)}
− 0 ln(det(�))

= sup
�∈M

{
trace

( (
�−1/2-�−1/2 − 0 id

)
Log(�)

)}
− 0 ln(det(�)).

The above calculation implies � ∗(�,- ♭) = −0 ln det(�) whenever �−1/2-�−1/2
= 0 id, i. e., - = 0�. On

the other hand, whenever - ≠ 0�, then choosing � = Exp
(
_ (�−1/2-�−1/2 − 0 id)

)
for sufficiently large
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_ > 0 implies

� ∗(�,- ♭)

≥ sup
_>0

{
trace

( (
�−1/2-�−1/2 − 0 id

)
Log

[
Exp

(
_ (�−1/2-�−1/2 − 0 id)

) ] )}

− 0 ln det(�)

≥ sup
_>0

{
_ trace

( (
�−1/2-�−1/2 − 0 id

)2)}
− 0 ln det(�)

= sup
_>0

{
_ ‖�−1/2-�−1/2 − 0 id‖2�

}
− 0 ln det(�)

= ∞.

Here ‖·‖� denots the Frobenius norm. Overall, we conclude

� ∗(�,- ♭) =

{
−0 ln det(�) if - = 0�,

+∞ if - ≠ 0�.

For comparison, we mention that the Fenchel conjugate of � is different when we employ the classical

conjugation concept from the ambient vector space S(=) of symmetric (= × =)-matrices, endowed

with the Frobenius inner product. In this case, � ∗(�) = ln det(−�)−1 − = = − ln det(−�) − = holds

for � ∈ −P(=) and � ∗(�) = ∞ otherwise. We refer the reader, e. g., to Boyd, Vandenberghe, 2004,

Ex. 3.23.

4 Separation of Convex Sets on Hadamard Manifolds

Throughout this section, we develop a partial theory of separation of convex sets on a Hadamard

manifoldM by affine hypersurfaces. To see this theory on normed vector space, we refer the reader,

e. g., to Brezis, 2011, Ch. 1. We begin by introducing a concept that generalizes the definition of an

affine hyperplane to the Riemannian context.

Definition 4.1. An affine hypersurface ofM is a set H ⊂ M of the form

H = H(?, b, U) ≔ {@ ∈ M | 〈b , log? @〉 = U},

where (?, b) ∈ T ∗M and U ∈ R are given with b ≠ 0.

Remark 4.2. Unlike in the Euclidean case, the affine hypersurface H = H(?, b, U) is in general not

totally geodesic, i. e., there might exist@, @′ ∈ H such that the unique geodesic segmentWO@,@′ inM does not

lie inH . This is due to the fact thatH is constructed via a hyperplane in the tangent space T?M, which

only assures that all geodesic segments WN@,? are in H if U = 0. Otherwise, the only guarantee we have is

that the connecting line C log? @ + (1− C) log? @
′ ∈ T?M, C ∈ R, satisfies 〈b , C log? @ + (1− C) log? @

′〉 = U

and hence 2 (C) = exp?
(
C log? @ + (1 − C) log? @

′
)
∈ H . But this curve 2 (C) is not necessarily a geodesic.
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Remark 4.3. Consider the equivalence relation ∼ defined in (3.5). Note thatH(?, b, U) = H(? ′, b ′, U)

holds for all (? ′, b ′) ∼ (?, b).

Definition 4.4. Let A and B be two subsets ofM. We say that the hypersurface H(?, b, U) separates

A and B if

〈b , log? @〉 ≤ U ≤ 〈b , log? @
′〉 holds for all @ ∈ A, @′ ∈ B. (4.1)

We say that H(?, b, U) strictly separatesA and B when both inequalities above are strict.

Geometrically speaking, (4.1) means thatA lies in one of the “half-manifolds” determined byH , and

B lies in the other.

Let A be a subset of M. It is well known that the function q : M → R defined by

q (?) = 3 (?,A) ≔ inf
@∈A

3 (?, @) (4.2)

is continuous on M. This property will be used in the proof of the following result, which extends

the classical strict separation theorem to the Riemannian setting.

Theorem 4.5. Let A ⊂ M and B ⊂ M be two nonempty convex subsets such that A ∩ B = ∅, A is

closed and B is compact. Then there exists a hypersurface which strictly separates A and B.

Proof. Throughout the proof, points in B will be marked by a prime. Since q defined as in (4.2)

is continuous and B is compact, the problem of minimizing q over B possesses at least one global

solution. We denote one such solution by @̂′ ∈ B, i. e., 3 (@̂′,A) ≤ 3 (@,A) holds for all @ ∈ B.

As A is convex and closed, the projection map projA : M → A is well defined. Hence, setting

@̂ ≔ projA (@̂′), we have

3 (@′, @̂) ≥ 3 (@′,A) ≥ min
@′∈B

3 (@′,A) = q (@̂′) = 3 (@̂′,A)

= 3 (@̂′, projA(@̂′)) = 3 (@̂′, @̂) for all @′ ∈ B,

which means that @̂′ = projB (@̂). Taking into account A ∩ B = ∅ we deduce @̂ ≠ @̂′.

Let us define ? to be the midpoint of the geodesic segment connecting @̂ to @̂′. Then it is easy to see

that we have

3 (@̂, ?) = 3 (@̂′, ?) =
1

2
3 (@̂, @̂′) > 0. (4.3)

Next we prove projA (?) = @̂ and projB (?) = @̂′. Suppose by contradiction that projA (?) ≠ @̂ and con-

sider the geodesic triangle Δ(@̂, ?, projA (?)). Since log@̂ ? =
1
2 log@̂ @̂

′ and @̂ = projA (@̂′), Theorem 2.8

guarantees

(log@̂ ? , log@̂ @) =
1

2
(log@̂ @̂

′ , log@̂ @) ≤ 0 for all @ ∈ A, (4.4)

(logprojA (?) ? , logprojA (?) @) ≤ 0 for all @ ∈ A. (4.5)
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Taking (4.4) with @ = projA (?) and (4.5) with @ = @̂ we get

(log@̂ ? , log@̂ projA (?)) + (logprojA (?) ? , logprojA (?) @̂) ≤ 0,

which contradicts (2.6) for Δ(@̂, ?, projA (?)). Thus, we can conclude that projA (?) = @̂ holds. Acting

analogously with the geodesic triangle Δ(@̂′, ?, projB (?)), we can also conclude that projB (?) = @̂′.

Consider the geodesic triangleΔ(@̂, ?, @),@ ∈ A. Since projA (?) = @̂, Theorem 2.8 and (2.6) guarantee

that
−(log@̂ ? , log@̂ @) ≥ 0 for all @ ∈ A,

(log@̂ ? , log@̂ @) + (log? @̂ , log? @) ≥ 32 (?, @̂) for all @ ∈ A.

Adding the two inequalities above and using (4.3) we can deduce that

(log? @̂ , log? @) ≥ 32 (?, @̂) > 0 for all @ ∈ A. (4.6)

Similarly, considering the geodesic triangleΔ(@̃′, ?, @′),@′ ∈ B, and taking into account that projB (?) =

@̂′, we can also say that

(log? @̂
′ , log? @

′) ≥ 32 (?, @̂′) > 0 for all @′ ∈ B.

Since log? @̂
′
= − log? @̂, the last inequality implies (log? @̂ , log? @

′) < 0 for all @′ ∈ B. Hence,

using (4.6) and (2.2) we can conclude that the hypersurface H
(
?, [log? @̂]

♭, 0
)
strictly separates A

and B. �

5 Conclusions

In this paperwe introduced a newdefinition of the Fenchel conjugate for functions defined onHadamard

manifolds. In contrast to previous definitions, it is independent of the choice of a base point. Our con-

cept generalizes the Fenchel conjugate in the Euclidean case, and essential properties carry over. As

a next step we plan to investigate how to leverage the new concept algorithmically. Moreover, we

expect that a weaker version of the separation theorem can be shown, which merely requiresA and

B to be convex and closed.
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