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Abstract: Hypersexuality is related to functions of personality and emotion and is a salient symptom
of bipolar I disorder especially during manic episode. However, it is uncertain whether bipolar I
disorder with (BW) and without (BO) hypersexuality exhibits different cerebral activations under
external emotion stimuli. In 54 healthy volunteers, 27 BW and 26 BO patients, we administered
the visual oddball event-related potentials (ERPs) under external emotions of Disgust, Erotica,
Fear, Happiness, Neutral, and Sadness. Participants’ concurrent states of mania, hypomania, and
depression were also evaluated. The N1 latencies under Erotica and Happiness were prolonged, and
the P3b amplitudes under Fear and Sadness were decreased in BW; the P3b amplitudes under Fear
were increased in BO. The parietal, frontal, and occipital activations were found in BW, and the frontal
and temporal activations in BO under different external emotional stimuli, respectively. Some ERP
components were correlated with the concurrent affective states in three groups of participants. The
primary perception under Erotica and Happiness, and voluntary attention under Fear and Sadness,
were impaired in BW, while the voluntary attention under Fear was impaired in BO. Our study
indicates different patterns of visual attentional deficits under different external emotions in BW
and BO.

Keywords: bipolar I disorder; electroencephalography (EEG); emotional stimuli; erotica; event-
related potentials; hypersexuality; mood disorders; personality

1. Introduction

Mood disorder is a psychiatric illness being predominated in emotional and cognitive
disturbances [1,2], and its main type is bipolar disorder, a lifelong and recurrent disease
being characterized by fluctuant mood and energy episodes of mania/hypomania and
depression [3]. Bipolar disorder affects over 1% of the globe population, with high incidence
rates of disability and suicide [4]. Its exact pathogenesis is not fully known, but nearly 70%
of it is heritable [5]. Other contributing factors to its onset might be the monoaminergic
dysregulation, inflammatory disturbance, and adverse environmental exposure [5–7]. In
clinics, the precision diagnosis and management of bipolar disorder and its subtypes
remain difficult after tremendous efforts these years, which might be due to the nonspecific
symptoms or a depressive episode at the beginning and to the substantial psychiatric and
somatic comorbidities [3,4].

For instance, the bipolar I disorder (BD I) has prominent impulsivity, irritability, and
distractibility [8], and is characterized by the recurrent mania and depression episodes [9]
which are subjected to severe dysfunctions of emotional processing and regulation [10,11].
Patients with BD I experienced great negative affectivity in their daily life [12], and showed
impairment in recognizing facial happiness and disgust [13]. Interestingly, deficits in
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cognition, attention, and executive function are prominent in BD I which share a close
relationship with the abnormal cerebral activities [14,15]. These activations might be
motivated by two neural systems of attention: one is the top-down network involving the
dorsal posterior parietal and frontal cortices, responsible for the goal-directed selection
of stimuli, the other is the bottom-up network which is mediated by temporoparietal and
ventral frontal cortices, in charge of detection for salient or unexpected stimuli [16]. The
inhibitory control deficit which might be influenced by emotional stimuli is also a core
feature of BD I [17,18], and this deficit in BD I is mainly correlated with the functional
abnormalities involved in the right inferior frontal gyrus and the right superior temporal
gyrus [19]. These neurobiological findings partly support and extend the crucial role of
prefrontal areas (especially the inferior frontal gyrus and pre-supplementary motor area)
played in the neural network of inhibitory control [20,21]. In addition to its attention and
inhibitory control, the prefrontal cortex performs a vital role in the emotional generation
and regulation, and in the neural circuitry underlying human learning regarding fear
conditioning which contributes to the understanding of psychiatric disorders [22,23].

Hypersexuality which is characterized by intense and excessive sexual cognitions,
fantasies, urges, or behaviors, is one of the best-known and influential symptoms of
BD I [24]. It is also connected closely with emotional instability and impulsivity, which are
often found in personality disorders [25,26]. Patients with Cluster B personality disorders,
for example, have some hypersexuality features [27,28], and the difficulties of emotional
regulation are suggested to be an etiological factor of hypersexuality in some psychiatric
disorders such as BD I [29,30]. However, there is no direct evidence showing the differently
emotional processes between BD I with (BW) and without (BO) hypersexuality. Considering
the core features of hypersexuality [31,32], we might speculate that BW engages in more
sexual-related or risky behaviors and experiences more negative emotions than BO.

Previous studies have shown that the attentional or cognitive functions of BD I are
modulated by external emotions [33,34]. Attentional bias was when an individual was
facing diversely external stimuli where the emotional stimuli received more attentional
resources than the neutral ones [35]. Processing emotional stimuli mainly consists of the
primary perception and the voluntary processing with attention and cognition deploy-
ment [36]. Moreover, attentional and cognitive deficits of external emotions in BD I patients
vary due to their concurrent mood states. Previous studies have shown that the diffi-
culties in recognizing facial fear and disgust were pronounced in BD I patients during
manic episodes [37], and those in depressive episodes poorly recognized positive facial
emotions and overidentified negative ones [38]. In manic phases, BD I patients displayed
happiness-related bias during initial orienting and threat-related bias during attentional
engagement in an eye-tracking study [39]. In an event-related potential (ERP) study, the
P3 amplitudes triggered by negative facial emotions were decreased in manic patients
compared to healthy volunteers [40], and BD I showed hyperactivation in the left insula
coupled with hypoactivation in right supramarginal gyrus and left precuneus when ex-
posed to emotionally negative images [11]. The increased activations of anterior cingulate,
dorsolateral prefrontal cortex, and amygdala to facial fear and happiness also reported in
BD I [10]. Moreover, BW and BO patients differently displayed the peripheral physiological
responses to external emotions and their transitions, for instance, erotica and sadness [41].
However, clear pictures of cerebral attentional function in BW and BO under external
emotional stimuli are still unclear.

With excellent temporal resolution, the ERPs serve as a precise index of cortical ac-
tivity and are commonly used in detecting attentional and cognitive variations of human
beings [42]. The ERP N1 and P2 components are involved with primary perception of
incoming information and early allocation of attention to stimuli [43,44], respectively. N2
reflects the involuntary identification and distinction to deviant stimuli [45]. P3 component
is involved in central resource allocation and voluntary processing of attention and working
memory; its subcomponent P3a is related to stimulus-driven attention processing, and
its P3b is associated with context updating and subsequent memory storage [46]. In the
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current study, we would like to use visual ERPs under externally emotional stimuli in BW
and BO patients. We have hypothesized that: (1) compared to BO, BW would display more
significant abnormalities in ERP components representing primary perception or involun-
tary attention under positive emotions, and in those representing voluntary attentional
processing under negative emotions; (2) both BW and BO would have different patterns of
cerebral activation under different external emotions; and (3) the ERP morphologies would
correlate with the concurrently affective states of BW and BO.

2. Materials and Methods
2.1. Participants

Altogether 107 participants were recruited from the university, community, or psychiatric
clinic: 54 healthy volunteers (21 males and 33 females; mean age: 19.56 years ± 2.00 S.D., age
range: 18–26 years); 27 BW (17 males and 10 females; mean age: 19.22 ± 1.70, age range:
18–24); and 26 BO (10 males and 16 females; mean age: 19.85 ± 1.97, age range: 18–24)
patients. Patients were diagnosed by an experienced psychiatrist (W.W.) according to DSM-
5 diagnostic criteria for BD I [1] and the proposed diagnostic criteria for hypersexuality [29],
together with the following questionnaires measuring affective states. There were no
significant differences among the three groups as to gender (χ2 = 4.79, df = 2, p = 0.091), age
(F (2, 104) = 0.70, mean square effect (MSE) = 2.59, p = 0.498), or education level (χ2 = 1.33,
df = 2, p = 0.513). Through a semi-structured clinical interview, all participants were
confirmed to be medication-free for at least one week and have no other confounding factors
including schizophrenia, personality disorder, substance abuse, head injury, or central
nervous system, and neurocognitive disorders. When necessary, two staff members were
available to assist participants in filling in the demographic information, questionnaires,
and completing the ERP tests. The study protocol was approved by a local ethics committee,
and all participants had provided their written informed consent before participating in
this study.

2.2. Questionnaires

All participants were asked to complete the three self-assessment questionnaires below
in a quiet room, using a paper-and-pencil style.

A. The Mood Disorder Questionnaire (MDQ; [47]) is an instrument with 13 dichoto-
mous items (yes/no) assessing mania/hypomania symptoms and behaviors, and two items
evaluating the frequency of those symptoms and the extent of functional impairment. The
internal reliability of the 13 dichotomous items was 0.77 in the current study.

B. The Hypomania Checklist-32 (HCL-32; [48]) comprises 32 items for detecting hypo-
manic symptoms. There are 32 dichotomous items (yes/no) regarding emotions, thoughts,
or behaviors of hypomania, and other items about the duration, impact on family, social
as well as work life, or other people’s reactions. Its internal reliability was 0.76 in the
current study.

C. The Plutchik–van Praag Depression Inventory (PVP; [49]) consists of 34 items
describing depression symptoms. Three scale points (0, 1, 2) of each item are corresponding
to increasing tendencies of depression. If participants score between 20 and 25, they are
considered to have “possible depression”, or “depression” if they score above 25. The
internal reliability of this inventory was 0.82 in the current study.

2.3. ERP Designs and Recordings
2.3.1. External Emotional Stimuli

The external emotional stimuli were composed of pictures selecting from the Interna-
tional Affective Picture System [50] and sounds from the International Affective Digital
Sounds [51] of the same domain. The six scenes of distinct emotions, namely Disgust
(picture code: 9325; sound code: 255), Erotica (4680; 205), Fear (3053; 275), Happiness
(2040; 110), Neutral (5390; 172), and Sadness (2205; 295), were presented by eevokeTM

software 3.1 (ANT Software B.V., Enschede, The Netherlands). In each emotional scene,
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a color picture was horizontally presented (768 × 512 pixels), sustaining about 19.8◦ ×
13.5◦ of visual angles. Simultaneously, a sound of 40–50 dB in intensity was delivered
through headphones.

2.3.2. ERP Paradigm

After completing the above-mentioned questionnaires, participants were led to a dimly
lit room and seated at 100 cm from a computer screen. Six successive sessions (Disgust,
Erotica, Fear, Happiness, Neutral, or Sadness) with a two-minute interval between adjacent
sessions were randomly presented for each participant. Within each session, a fixation cross
in the middle of a black background were presented for 3000 ms, followed by 150 ERP trials
(each trial lasting for 2400 ms), with an inter-trial interval of 1200~1500 ms. Within each
trial, an external emotional stimulus of either Disgust, Erotica, Fear, Happiness, Neutral,
or Sadness was shown for 2000 ms; then either a standard (a square of 40 mm × 40 mm,
lasting for 400 ms) or target (a circle of 40 mm in diameter, 400 ms) stimulus appeared in
the middle of the black background (Figure 1). In a randomized order, the standard stimuli
were delivered 120 times (80%) and the target stimuli 30 times (20%). Participants were
instructed to respond to the target stimuli actively by pressing a button with their right
index finger as soon as possible, and no reaction was needed to the standard stimuli or
emotional displays.
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Figure 1. Timeline of events in the oddball paradigm. Participants were instructed to respond to a
circle picture (target stimulus) as quickly as possible by pressing a button with their right index finger,
and to do nothing to the square picture (standard stimulus) or emotional scenes (taking Neutral as an
example). Note: +, fixation cross representing the beginning of the paradigm.

2.3.3. ERP Recording

EEG signals were recorded with 32 channel elastic electrocap (Electro-Cap Interna-
tional, Inc., Eaton, OH, USA) according to the 10–20 International System. The impedance
of each electrode was maintained below 10 kΩ, and EEG signals were amplified by a DC
amplifier (the ANT amplifier, Enschede, The Netherlands) with a sampling rate of 1024 Hz.
Bipolar recordings of the electro-ocular activity were collected by electrodes placed at the
outer canthus and supraorbitally to the right eye. Referred to the average activity of the
two mastoid electrodes (M1 and M2), potentials were analyzed offline using a band-pass of
0.01~30 Hz in ASA software 4.7.3 (ANT Software B.V., Enschede, The Netherlands). The
sampling epoch was 100 ms pre-stimulus and 600 ms post-stimulus. Any sweep in which
the EEG exceeded ±70 µv or with electro-ocular activity was excluded from averaging.

Nine electrodes in frontal, central and parietal sites, i.e., F3, Fz, F4, C3, Cz, C4, P3, Pz,
and P4 were selected, and ERP morphology determined by target stimuli were analyzed
in terms of peak latency and baseline-to-peak amplitude. Latency ranges of potentials
were 70~200 ms for N1, 150~300 ms for P2, 210~390 ms for N2, 300~500 ms for P3a, and
400~580 ms for P3b. Moreover, the reaction times and hit accuracies in response to target
stimuli were recorded.
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2.4. Statistical Analyses

One-way ANOVA was applied to the scale scores of MDQ, HCL-32, and PVP as well
as reaction times in the three groups of participants. The latencies and amplitudes of
ERP component in the three groups were analyzed by two-way ANOVA, i.e., group (3)
× electrode (9). Whenever a significant main effect was detected, the Bonferroni test was
employed as a post-hoc comparison. The p < 0.05 at no less than three coaxial electrodes
(frontal, central, posterior in lateral axis; left, midline, right in sagittal axis) were considered
to be significant and meaningful for group companions. Relationships between ERP
components and questionnaire scores were examined using the Pearson correlation test,
and only significant correlations with p < 0.01 at no less than three coaxial electrodes were
considered as stable and meaningful.

The respective 3D sources were reconstructed based on data obtained at the 32 elec-
trodes, to observe the involvement of cerebral areas corresponding to the significant differ-
ences of target stimuli under specific external emotional stimuli in the three groups. The
source reconstruction applied the SPM12 software package, running in Matlab R2014b
(Mathworks Inc., Natick, MA, USA). The figures of the averaged source map were generated
by xjView 10.0 (http://www.alivelearn.net/xjview (accessed on 18 February 2022)).

3. Results
3.1. Concurrent Affective States and Behavioral Results

The MDQ scores were significantly different among the three groups of participants
(F (2, 104) = 30.89, p < 0.001, MSE = 198.04), with BW (p < 0.001, 95% confidence interval
(CI) = 2.68~5.58) and BO (p < 0.001, 95% CI = 2.03~4.97) scored higher than controls did. The
HCL-32 scores were also significantly different among the three groups (F (2, 104) = 64.89,
p < 0.001, MSE = 521.55). The BW (p < 0.001, 95% CI = 4.95~8.20) and BO (p < 0.001, 95%
CI = 4.22~7.51) reported higher hypomania symptoms than controls did (Table 1). No
significant difference was found in PVP scores (F (2, 104) = 0.73, p = 0.486, MSE = 32.31),
reaction times (F (2, 95) = 0.50~2.13, p = 0.125~0.609, MSE = 3347.00~17,572.70), or reaction
accuracies (F (2, 95) = 0.19~2.35, p = 0.101~0.831, MSE = 9.31~109.93).

Table 1. Mental health symptoms, reaction times, and response accuracies to target stimuli
(mean ± SD) in the healthy volunteers (Controls, n = 54), bipolar I disorder patients with (BW,
n = 27) and without (BO, n = 26) hypersexuality.

Controls BW BO

MDQ 5.61 ± 3.19 9.74 ± 1.70 a 9.12 ± 1.45 a
HCL-32 15.91 ± 3.42 22.48 ± 2.47 a 21.77 ± 1.53 a

PVP 13.30 ± 6.62 11.52 ± 7.12 12.08 ± 6.26
Reaction time (ms)

under Disgust 489.45 ± 85.85 501.94 ± 57.37 517.96 ± 104.08
under Erotica 516.68 ± 99.59 541.12 ± 69.88 536.45 ± 117.45

under Fear 496.19 ± 83.93 536.20 ± 88.27 531.39 ± 105.95
under Happiness 489.81 ± 82.42 516.56 ± 60.61 513.74 ± 100.08

under Neutral 489.06 ± 84.97 532.34 ± 83.78 512.94 ± 112.24
under Sadness 498.96 ± 88.48 513.14 ± 66.33 539.83 ± 111.03

Response accuracy (%)
under Disgust 94.18 ± 7.00 97.04 ± 2.97 93.61 ± 7.67
under Erotica 97.23 ± 5.62 94.32± 12.67 97.22 ± 5.70

under Fear 97.59 ± 5.93 97.04 ± 6.36 96.53 ± 9.55
under Happiness 95.46 ± 13.05 96.42 ± 8.16 99.17 ± 2.25

under Neutral 98.30 ± 3.60 96.05 ± 7.90 98.75 ± 2.37
under Sadness 98.08 ± 4.95 95.06 ± 11.82 97.36 ± 3.68

Notes: a, p < 0.05 versus controls; MDQ, The Mood Disorder Questionnaire; HCL-32, The Hypomania Checklist-32;
PVP, The Plutchik–van Praag Depression Inventory.

http://www.alivelearn.net/xjview
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3.2. ERP Components

The ERP components N1, P2, N2, P3a, and P3b under differently external emotions
were collected in three groups of participants. For the sake of brevity, only data showing
significant differences between groups were reported here, all other data are available upon
request. There were significant differences on N1 latencies under Erotica (group effect,
F (2, 104) = 7.18, p = 0.001, MSE = 31,764.79; electrode effect, F (8, 832) = 13.59, p < 0.001,
MSE = 2638.88; group × electrode effect, F (16, 832) = 1.04, p = 0.410, MSE = 202.12) and
Happiness (group effect, F (2, 103) = 3.96, p = 0.022, MSE = 15,955.06; electrode effect,
F (8, 824) = 6.51, p < 0.001, MSE = 1514.16; group × electrode effect, F (16, 824) = 0.92,
p = 0.548, MSE = 213.52) among the three groups of participants. N1 latencies under
Erotica at frontal and central electrodes were prolonged in BW compared to those in
BO (p = 0.002~0.042) and controls (p = 0.000~0.036), at left electrodes were prolonged
in BW (p = 0.002~0.045) compared to those in BO, and at middle electrodes were pro-
longed in BW (p = 0.000~0.008) compared to those in controls. N1 latencies under Hap-
piness at frontal electrodes were prolonged in BW (p = 0.000~0.045) compared to those
in controls. The P3b amplitudes under Fear (group effect, F (2, 103) = 7.94, p = 0.001,
MSE = 929.93; electrode effect, F (8, 824) = 11.10, p < 0.001, MSE = 29.75; group × electrode
effect, F (16, 824) = 1.61, p = 0.060, MSE = 4.32) and Sadness (group effect, F (2, 103) = 3.73,
p = 0.027, MSE = 478.13; electrode effect, F (8, 824) = 9.22, p < 0.001, MSE = 32.51; group ×
electrode effect, F (16, 824) = 1.33, p = 0.171, MSE = 4.69) in three groups were also statis-
tically different: P3b amplitudes under Fear at all nine electrodes (p = 0.001~0.011) and
under Sadness at middle electrodes in BW (p = 0.005~0.048) were decreased than those in
BO, and P3b amplitudes under Fear at all nine electrodes in BO (p = 0.001~0.025) were
increased than those in controls (Table 2). The P2 latencies under Sadness (group effect,
F (2, 103) = 4.04, p = 0.020, MSE = 24,782.99; electrode effect, F (8, 824) = 4.37, p < 0.001,
MSE = 1627.81; group × electrode effect, F (16, 824) = 1.34, p = 0.165, MSE = 499.23) and P3b
amplitudes under Erotica (group effect, F (2, 104) = 3.13, p = 0.048, MSE = 265.95; electrode
effect, F (8, 832) = 5.26, p < 0.001, MSE = 14.26; group × electrode effect, F (16, 832) = 0.927,
p = 0.538, MSE = 2.51) were also statistically different among three groups of participants.
However, the post-hoc comparisons did not detect any meaningfully between-group differ-
ences. As an example, the grand averages of ERPs under external Erotica at nine electrodes
in three groups were presented in Figure 2. The differences of N1 latencies under Erotica
and Happiness, and P3b amplitudes under Fear and Sadness at Cz in three groups were
illustrated in Figure 3.

Table 2. N1 latencies (mean ± S.D.) under Erotica and Happiness and P3b amplitudes under Fear
and Sadness in the healthy volunteers (Controls, n = 54), bipolar I disorder patients with (BW, n = 27)
and without (BO, n = 26) hypersexuality.

Controls BW BO 95% CI
Control-BW Control-BO BW-BO

N1 latency (ms)
Erotica F3 115.59 ± 21.74 136.36 ± 30.50 a 115.50 ± 21.89 b −34.69~−6.86 −14.00~14.18 4.65~37.09

Fz 112.60 ± 20.29 131.84 ± 30.09 a 113.54 ± 24.65 b −33.08~−5.40 −14.95~13.08 2.17~34.43
F4 117.02 ± 22.49 135.10 ± 30.48 a 118.09 ± 22.52 b −32.27~−3.89 −15.44~13.30 0.47~33.55
C3 116.00 ± 23.88 138.71 ± 30.39 a 113.81 ± 24.16 b −37.46~−7.96 −12.74~17.14 7.71~42.11
Cz 114.34 ± 22.00 136.76 ± 28.96 a 113.24 ± 22.21 b −36.17~−8.67 −12.83~15.02 7.49~39.55
C4 123.33 ± 25.81 139.69 ± 29.40 a 119.06 ± 27.50 b −31.94~−0.79 −11.51~20.04 2.47~38.78
P3 130.15 ± 30.46 142.80 ± 28.71 123.08 ± 26.04 b −29.30~3.99 −9.79~23.92 0.32~39.12
Pz 120.43 ± 27.84 139.87 ± 27.90 a 124.81 ± 23.13 −34.81~−4.07 −19.94~11.19 −2.86~32.98
P4 130.85 ± 26.04 144.32 ± 25.28 130.14 ± 25.51 −28.22~1.28 −14.23~15.65 −3.02~31.37

Happiness F3 122.07 ± 19.91 138.39 ± 26.40 a 130.26 ± 25.47 −29.54~−3.10 −21.76~5.37 −7.44~23.69
Fz 120.88 ± 19.58 134.63 ± 29.30 a 127.06 ± 24.80 −27.29~−0.21 −20.08~7.71 −8.38~23.51
F4 119.95 ± 21.91 142.48 ± 23.73 a 131.20 ± 26.77 −36.05~−8.99 −25.13~2.64 −4.66~27.20
C3 120.50 ± 23.36 133.54 ± 28.15 130.97 ± 27.00 −27.68~1.59 −25.49~4.55 −14.66~19.81
Cz 120.64 ± 21.22 132.53 ± 29.17 126.51 ± 25.52 −25.78~2.01 −20.13~8.39 −10.35~22.38
C4 121.49 ± 23.75 137.56 ± 28.23 a 134.01 ± 23.30 −30.32~−1.81 −27.15~2.11 −13.25~20.33
P3 129.27 ± 27.59 140.09 ± 34.08 132.84 ± 25.38 −27.40~5.75 −20.59~13.44 −12.27~26.76
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Table 2. Cont.

Controls BW BO 95% CI
Control-BW Control-BO BW-BO

Pz 127.82 ± 24.53 135.67 ± 32.15 131.79 ± 25.11 −23.22~7.51 −19.73~11.80 −14.20~21.98
P4 134.24 ± 30.23 145.19 ± 30.88 140.30 ± 23.59 −27.58~5.69 −23.13~11.01 −14.70~24.47

P3b amplitude (µv)
Fear F3 2.30 ± 2.66 1.90 ± 2.80 4.55 ± 4.53 a,b −1.45~2.25 −4.15~−0.35 −4.83~−0.47

Fz 2.69 ± 3.08 1.47 ± 4.14 5.55 ± 5.24 a,b −1.04~3.49 −5.18~−0.54 −6.75~−1.42
F4 2.68 ± 2.66 1.93 ± 2.55 5.06 ± 4.88 a,b −1.14~2.64 −4.32~−0.45 −5.36~−0.91
C3 3.10 ± 3.39 2.51 ± 3.49 6.17 ± 5.04 a,b −1.62~2.81 −5.34~−0.80 −6.27~−1.05
Cz 3.78 ± 4.07 2.60 ± 3.50 7.14 ± 6.25 a,b −1.43~3.79 −6.05~−0.69 −7.62~−1.47
C4 3.31 ± 3.22 2.50 ± 3.11 5.69 ±4.88 a,b −1.28~2.91 −4.52~−0.22 −5.65~−0.72
P3 2.07 ± 3.69 1.72 ± 3.06 5.65 ± 5.62 a,b −1.20~2.69 −5.99~−1.17 −6.69~−1.17
Pz 2.55 ± 4.04 1.97 ± 4.59 6.55 ± 6.42 a,b −2.19~3.35 −6.84~−1.16 −7.84~−1.32
P4 1.92 ± 3.26 1.43 ± 2.88 4.85 ± 4.73 a,b −1.56~2.54 −5.04~−0.83 −5.84~−1.01

Sadness F3 3.90 ± 4.10 3.04 ± 2.76 5.25± 3.95 −1.30~3.02 −3.56~0.87 −4.75~0.34
Fz 4.21 ± 4.73 2.62 ± 2.29 5.50 ± 4.65 b −0.84~4.01 −3.78~1.20 −5.73~−0.02
F4 3.87 ± 4.15 2.87 ± 2.13 5.71 ± 4.25 b −1.17~3.16 −4.06~0.38 −5.38~−0.29
C3 4.60 ± 4.78 3.23 ± 2.63 6.33 ± 4.04 b −1.02~3.75 −4.18~0.72 −5.91~−0.29
Cz 5.34 ± 5.63 3.57 ± 2.51 7.28 ± 5.05 b −1.03~4.57 −4.81~0.94 −7.01~−0.41
C4 4.31 ± 4.82 3.60 ± 3.16 5.51 ± 5.43 −1.94~3.36 −3.92~1.52 −5.03~1.21
P3 3.33 ± 4.13 2.43 ± 2.94 5.36 ± 4.49 b −1.38~3.16 −4.37~0.30 −5.60~−0.25
Pz 3.55 ± 4.36 2.72 ± 2.89 6.56 ± 5.17 a,b −1.61~3.27 −5.51~−0.50 −6.71~−0.96
P4 2.95 ± 4.02 2.52 ± 2.75 4.57 ± 3.92 −1.70~2.56 −3.81~0.57 −4.56~0.46

Notes: a, p < 0.05 versus controls; b, p < 0.05 versus BW; 95% CI, 95% confidence interval.
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3.3. Source Reconstructions

After significant differences on N1 latencies and P3b amplitudes under different
external emotions were found, we located the possible neural sources for these components
by performing 3D source reconstruction in 70–200 ms and 400–580 ms time-windows in
three groups, respectively. In controls, the bilateral supramarginal gyri under Erotica and
right inferior temporal gyrus under Happiness were mainly activated in N1 time windows.
During P3b time window, the right inferior occipital gyrus under Fear and bilateral medial
frontal gyri were activated. In BW, enhanced processing of left postcentral gyrus, right
supramarginal gyrus, and bilateral inferior frontal gyri were found during Erotica and
Happiness in N1 time window, and of bilateral lingual gyri as well as left medial frontal
gyrus during Fear and Sadness in P3b time window. In BO, the bilateral medial frontal gyri
and right inferior temporal gyrus were processed under Erotica in N1 time window and
Fear in P3b time window, while the left superior/inferior frontal gyri were involved with
Happiness during N1 time window and Sadness during P3b time window (Table 3). As
an example, the 3D source reconstruction of N1 to Erotica in three groups was shown in
Figure 4

Table 3. Putative N1 and P3b generators in the N1 and P3b time windows in healthy volunteers
(Controls, n = 54), bipolar I disorder patients with (BW, n = 27) and without (BO, n = 26) hypersexuality.

Component Group Source Region

Erotica under N1 (70~200 ms) Controls supramarginal gyri (B) (Parietal Lobe) *
lingual gyri (B) (Occipital Lobe)

inferior frontal gyrus (L) (Frontal Lobe)
BW postcentral gyrus (L) (Parietal Lobe) *

supramarginal gyrus (R) (Parietal Lobe)
inferior frontal gyrus (R) (Frontal Lobe)

BO medial frontal gyri (B) (Frontal Lobe) *
inferior temporal gyrus (R) (Temporal Lobe)

Happiness under N1 (70~200 ms) Controls inferior temporal gyrus (R) (Temporal Lobe) *
BW inferior frontal gyri (B) (Frontal Lobe) *
BO superior frontal gyrus (L) (Frontal Lobe) *

Fear under P3b (400~580 ms) Controls inferior occipital gyrus (R) (Occipital Lobe) *
BW lingual gyri (B) (Occipital Lobe) *
BO medial frontal gyri (B) (Frontal Lobe) *

inferior temporal gyrus (R) (Temporal Lobe)
Sadness under P3b (400~580 ms) Controls medial frontal gyri (B) (Frontal Lobe) *

inferior frontal gyrus (L) (Frontal Lobe)
inferior temporal gyrus (R) (Temporal Lobe)

superior frontal gyrus (R) (Frontal Lobe)
BW medial frontal gyrus (L) (Frontal Lobe) *
BO inferior frontal gyrus (L) (Frontal Lobe) *

Notes: *, source regions of peak intensity under different emotional stimuli in three groups; L, only the left side
was activated; R, only the right side was activated; B, bilateral sides were activated.
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red arrowheads and blue cross hairs indicate source regions of peak intensity in the three groups 
were the right supramarginal gyrus, left postcentral gyrus, and right medial frontal gyrus, respec-
tively. Notes: SMG (B), bilateral supramarginal gyri; LG (B), bilateral lingual gyri; IFG (L), left infe-
rior frontal gyrus; PCG (L), left postcentral gyrus, SMG (R), right supramarginal gyri; IFG (R), right 
inferior frontal gyrus; MFG (B): bilateral medial frontal gyri; ITG (R), right inferior temporal gyrus. 
The bar in each panel on the right side indicates the intensity of cerebral activities, with white as the 
highest and black the lowest. 
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In controls, the N1 amplitudes under Sadness in frontal electrodes were positively 

correlated with MDQ (n = 54, r = 0.38~0.39, p = 0.003~0.005). In BW, the P3a amplitudes 
under Erotica in all nine electrodes except for C3 were positively correlated with PVP (n 
= 27, r = 0.50~0.60, p = 0.001~0.008). In BO, the N1 amplitudes under Fear in right electrodes 
were negatively correlated with HCL-32 (n = 25, r = −0.53~−0.58, p = 0.002~0.007). No other 
meaningful relationship between ERP components and affective states was found in any 
given group. Taking an example, the correlation between P3a amplitude (Cz) under Erot-
ica and the PVP score in BW was displayed in Figure 5. 

Figure 4. Source map of N1 (time window: 70~200 ms) to the target stimuli under Erotica in healthy
volunteers (A), bipolar I disorder patients with (B) and without (C) hypersexuality (generated by
xjView 10.0 (http://www.alivelearn.net/xjview (accessed on 18 February 2022)). Left panels show
sources overlaid on a glass brain; Right panels show sources overlaid on a T1 template brain. The red
arrowheads and blue cross hairs indicate source regions of peak intensity in the three groups were the
right supramarginal gyrus, left postcentral gyrus, and right medial frontal gyrus, respectively. Notes:
SMG (B), bilateral supramarginal gyri; LG (B), bilateral lingual gyri; IFG (L), left inferior frontal gyrus;
PCG (L), left postcentral gyrus, SMG (R), right supramarginal gyri; IFG (R), right inferior frontal
gyrus; MFG (B): bilateral medial frontal gyri; ITG (R), right inferior temporal gyrus. The bar in each
panel on the right side indicates the intensity of cerebral activities, with white as the highest and
black the lowest.

http://www.alivelearn.net/xjview
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3.4. Relationships between ERPs and Concurrent Affective States

In controls, the N1 amplitudes under Sadness in frontal electrodes were positively
correlated with MDQ (n = 54, r = 0.38~0.39, p = 0.003~0.005). In BW, the P3a amplitudes un-
der Erotica in all nine electrodes except for C3 were positively correlated with PVP (n = 27,
r = 0.50~0.60, p = 0.001~0.008). In BO, the N1 amplitudes under Fear in right electrodes
were negatively correlated with HCL-32 (n = 25, r = −0.53~−0.58, p = 0.002~0.007). No
other meaningful relationship between ERP components and affective states was found in
any given group. Taking an example, the correlation between P3a amplitude (Cz) under
Erotica and the PVP score in BW was displayed in Figure 5.
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4. Discussion

To the best of our knowledge, this is the first study examining visual ERPs under
external emotions in BW and BO. Confirming our hypotheses, we found higher MDQ and
HCL-32 scores in both BW and BO than those in controls, which is in accordance with former
studies showing that BD I exhibit high levels of manic or hypomanic symptoms [41,52]. N1
latencies under Erotica and Happiness were prolonged in BW when compared to BO or
healthy controls. P3b amplitudes were decreased under Fear and Sadness in BW compared
to those in BO, and were increased in BO under Fear compared to controls. Abnormal
activation of the cerebral areas especially frontal regions was detected corresponding to N1
and P3b components under different external emotions. Moreover, the concurrent affective
states were correlated with ERPs in three groups.

In healthy controls, processing in Erotica and Happiness during N1 time window
were mainly activated the bilateral supramarginal gyri and right inferior temporal gyrus,
respectively. This might be supported by the connection of temporo-parietal lobe under
positive emotion [53]. The right inferior occipital gyrus and bilateral medial frontal gyri
were activated in Fear and Sadness during P3b time window, which was consistent with
the previous studies showing that the neural activations of negative emotion were in
right occipital gyrus, right amygdala, and bilateral frontal regions [54,55]. The correlation
between mania and the elementary encoding of Sadness might be explained by the fact
that the manic patients reported attenuated subjective sensation of facial sadness [56].

In BW, N1 latencies under Erotica and Happiness were prolonged. Since N1 reflects
the primary processing of incoming information [44], the prolonged N1 latencies under
Erotica and Happiness implied a delayed processing of positive emotions. Hypersexual
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individuals exhibited fewer positive emotions and displayed a paucity of happiness [57],
which might influence the recognition of happiness stimuli. The differences of N1 latencies
under Erotica between BW and BO might be due to the compulsive use of sexual materials
in BW [31], thus leading to a decrease of emotional sensitivity to erotica. On the other hand,
the hypersexual behaviors were associated with negative emotions [57], and the impaired
recognition of unpleasant emotions in BD I [13,37] might result in the delayed perception
of Erotica in BW in the current study. Through source analyses, we also found different
parts of the brain activated under external erotica and happiness in BW. The literature
shows that the postcentral gyrus plays a critical role in processing sensory information and
regulation of emotion [58], and the supramarginal gyrus is a part of the ventral attention
network [59] associated with overcoming emotional egocentric biases [60]. The inferior
frontal gyrus is activated during attentional control and emotional perception [61,62]. In
addition to encoding the primary perception of stimuli, the activations of these regions
might imply that Erotica rather than Happiness induces the activation of somatosensory
areas in BW. The finding that negative and distressing emotions triggered excessive sexual
behaviors [63] helps explain the positive correlation between PVP and P3a amplitudes
under Erotica in our BW patients.

In BO, P3b amplitudes under Fear were increased, suggesting the heightened volun-
tary attention to the negative emotions in these patients, which might be due to difficulties
of ignoring the threating stimuli during attentional engagement [64]. The decreased P3b
amplitudes in BW rather than in BO under Fear and Sadness might be explained by the
following documentation. Hypersexuality is a typical symptom of mania episode [24],
patients with mania displayed an impaired recognition of facial fear and sadness [56,65],
and displayed the emotional dysfunction manifested in hypersexuality [26]. These abnor-
malities might lead to insufficient voluntary attention and evaluation to Fear and Sadness
in BW. On the other hand, the neural regions activated during Fear were diverse in BW
and BO during P3b time window. Indeed, bilateral lingual gyri associated with visual
memory and stimuli perception [66] were activated in BW. Interestingly, bilateral medial
frontal gyri which play a critical role in executive function, decision making, and cognitive
control of emotion [67,68], and right inferior temporal gyrus, which correlates with object
recognition [69], were mainly activated in BO. Moreover, the N1 amplitudes under Fear in
right electrodes were negatively correlated with HCL-32 in BO. In clinics, individuals with
hypomania show elevated mood, increased energy or activity, flights of ideas, and racing
thought [9], which might facilitate the primary recognition of fearful or threating scenes
in BO.

Similar to our present findings, Sagar et al. [10] showed that BD I had similar activated
brain regions under fearful and happy stimuli. More specifically, we discovered that even
during different time windows, activations of prefrontal cortex were altered in BW and BO
under both Happiness and Sadness. Indeed, the activation of prefrontal cortex is critical in
the emotional regulation [23]. In our BO, there were more activations of bilateral medial
frontal gyri and right inferior temporal gyrus under both Erotica and Fear, which might
imply that the primary perception under Erotica and the voluntary attention under Fear
were more contrasted to distinguish BW and BO than those under Happiness and Sadness.

Considering the disruption of cognitive and cerebral processing under external emo-
tions in BW and BO, the non-invasive brain stimulation might be considered as an effective
approach to enhance neurocognition and regulate behaviors of the two BD I subtypes
through applying to the specific brain areas, such as the prefrontal cortex which ties closely
with cognition and emotional regulation [70]. Indeed, this stimulation method has been
adopted in the management of psychiatric and neurological diseases [70,71], in improve-
ment of emotion recognition [72], and in modulation of memory, particularly fear-related
ones [73,74]. For the current challenges of precision diagnosis and management, this stimu-
lation method within brain functional regions is potentially applicable in the individualized
treatment of psychiatric problems including bipolar disorder.
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5. Limitations and Future Directions

Nonetheless our study suffers from several design limitations. Firstly, our participants
were all young adults, whether the results can be generalized to other age groups remains
to be seen. Secondly, we only enrolled BW and BO patients, recruiting other groups
such as major depression or personality disorder might add more confirmation to our
current findings. Thirdly, we did not include other external emotions such as surprise,
anger, or contempt, which might also display their emotional effects on the attentional
process. Fourthly, we failed to measure personality traits in our participants, since BD I and
hypersexuality might be related to either normal or disordered personality traits. Fifthly, we
did not follow up to the eventual therapies of our patients, which might affect their sexuality
in a far-reaching way. Nevertheless, we have demonstrated that BW had delayed primary
perception under Erotica and Happiness and decreased voluntary attention under Fear and
Sadness, and demonstrated differences between BW and BO on attentional function under
Erotica and Fear. Thus, our study might provide hints of different emotional processes of
and the clinical intervention for the two subtypes of bipolar I disorder.

6. Conclusions

We have found that BW and BO demonstrated different cerebral processing and
activations under external emotions, especially Erotica and Fear. Our study thus indicates
different patterns of visual attentional deficits and emotional processes and provides a
basis for developing emotional intervention therapy and applying the non-invasive brain
stimulation to brain areas including prefrontal cortex in the two bipolar I disorder subtypes.
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