
Statistics of weakly nonlinear waves on currents with strong vertical shear1

Zibo Zheng1,∗ Yan Li1,2,b, and Simen Å. Ellingsen1‡
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We investigate how the presence of a vertically sheared current affects wave statistics,7

including the probability of rogue waves, and apply it to a real-world case using measured8

spectral and shear current data from the Mouth of the Columbia River. A theory for weakly9

nonlinear waves valid to second order in wave steepness is derived, and used to analyze sta-10

tistical properties of surface waves; the theory extends the classic theory by Longuet-Higgins11

[J. Fluid Mech. 12, 3 (1962)] to allow for an arbitrary depth-dependent background flow,12

U(z), with U the horizontal velocity along the main direction of wave propagation and z the13

vertical axis. Numerical statistics are collected from a large number of realisations of ran-14

dom, irregular sea-states following a JONSWAP spectrum, on linear and exponential model15

currents of varying strengths. A number of statistical quantities are presented and compared16

to a range of theoretical expressions from the literature; in particular the distribution of wave17

surface elevation, surface maxima, and crest height; the exceedance probability including the18

probability of rogue waves; the maximum crest height among Ns waves, and the skewness19

of the surface elevation distribution. We find that compared to no-shear conditions, oppos-20

ing vertical shear (U ′(z) > 0) leads to increased wave height and increased skewness of the21

nonlinear-wave elevation distribution, while a following shear (U ′(z) < 0) has opposite ef-22

fects. With the wave spectrum and velocity profile measured in the Columbia River estuary23

by Zippel & Thomson [J. Geophys. Res: Oceans 122, 3311 (2017)] our second–order theory24

predicts that the probability of rogue waves is significantly reduced and enhanced during25

ebb and flood, respectively, adding support to the notion that shear currents need to be26

accounted for in wave modelling and prediction.27

I. INTRODUCTION28

Waves in the ocean are almost invariably affected by interaction with their surroundings,29

ambient currents in particular. While large-scale ocean currents may be approximately depth-30

independent, this is often not the case for smaller scale currents such as those driven by wind31
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shear, or currents in the near-shore environment including river deltas and tidal currents. Of par-32

ticular interests is the role of these environmental factors on the occurrence probability of extremely33

large waves [1–3], known also as rogue, giant, or freak waves, defined as waves whose amplitude34

far exceeds that of their surrounding wave field. To this end, many formation mechanisms of rogue35

waves have been proposed, including (but not limited to) dispersive focusing of linear waves36

[1], nonlinear effects such as the modulational instability [4] and quartet resonances [5] as well as37

refraction by currents [6] and bathymetry [7, 8], nonlinear interaction between surface waves and38

depth transitions [9, 10]. In this paper, our main attention is paid to the effect of a background39

depth-varying current on the statistics of weakly non-linear waves, rogue wave events in particular.40

In order to obtain a proper statistical description of rogue wave events, a theory for second-41

order interaction of waves in a random sea has been widely used in both analytical [11–18] and42

numerical studies [19, 20]. In contrast to linear waves in a random sea for which the wave elevation43

can be represented as a Gaussian random process [21], second-order nonlinear waves can lead44

to considerable deviations from Gaussian wave statistics due to the steepened crests and flattened45

troughs caused by second-order (bound) waves. To describe the altered statistics, analytical models46

for wave crest and elevation distributions have been proposed for deep-water random waves, see,47

e.g., [13, 15, 17]. These generally agree well with both laboratory and field measurements for48

narrowband and broadband wave fields (see, e.g., [17, 20, 22–24]) with moderate steepness. In49

more nonlinear sea states discrepancies arise from third and higher order nonlinear effects, e.g., the50

well-known Benjamin-Feir instability [4] and the resonant wave quartets [5]. Hence, a second-order51

theory such as the one we present herein, is limited to the cases where higher-order corrections are52

comparatively small.53

Many studies have suggested several different ways by which the probability of rogue waves54

is increased in the presence of currents with horizontal, but not vertical, spatial variation (c.f.55

[25, 26]). A current whose magnitude and direction varies slowly in space relative to the rapidly56

varying wave phase has mostly been considered as a (local) Doppler shift on the wave dispersion57

relation and as a medium of refraction in the conservation of wave action [6, 27]. Due to this,58

White & Fornberg [6] attribute the enhanced probability of larger wave events in currents to the59

local refraction by currents. Many varieties of the third-order nonlinear Schrödinger equations have60

been developed for slowly (horizontally) varying currents, see, e.g., [28–30]. An opposing current61

has been found to lead to strengthened modulational instability [7, 31] and Shrira & Slunyaev [26]62

found that trapped waves by a jet current can also lead to an enhanced formation probability of63

rogue waves while Hjelmervik and Trulsen [30] found that a wave impinging on an opposing jet64
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has increased significant wave height, but decreased kurtosis, and vice versa. .65

The aforementioned works have focused on a current whose velocity profile does not have sig-66

nificant gradients in the vertical direction. Among the studies of waves in a horizontally uniform67

and depth varying current, a majority have examined waves propagating along or against currents68

which vary linearly with depth, which in two dimensions permits the use of a velocity potential [32],69

considerably simplifying the analytical treatment [29, 33–37]. The assumption of a linearly varying70

current also results in significant simplification of the continuity and Euler momentum equations in71

three dimensions, based on which a second-order theory for three-dimensional waves was developed72

by Akselsen and Ellingsen [38]. A uniform vorticity plays a significant role in both the sideband73

instability and modulational growth rate for weakly nonlinear unidirectional Stokes waves [34, 39].74

A positive vorticity, which corresponds to a following current — i.e. U(z) > 0 and U ′(z) < 0 with75

U(z) the current oriented along the wave propagation direction, z the vertical coordinate, and a76

prime denotes the derivative — can remove the modulational instability altogether, demonstrated77

experimentally by Steer et al. [40] and Pizzo et al. [41] (the definition of positive/negative shear78

in ref. [40] is different from ours due to a different choice of the coordinate system). Francius and79

Kharif [42] have extended [34] to two-dimensional Stokes waves where new quartet and quintet80

instabilities have been discovered arising from the presence of a uniform vorticity, while Abrashkin81

and Pelinovsky [43] derived a nonlinear Schrödinger equation for arbitrary, weak vertical shear in82

a Lagrangian framework, generalized in ref. [41].83

Realistic natural currents have non-zero curvature in the depth direction which leads to ad-84

ditional effects on wave properties. A number of works, e.g., [44–48], have demonstrated the85

importance of the depth-varying curvature of a current profile in the wave action equation. Effects86

of the curvature are wavenumber- and depth-dependent, leading to considerable deviations of the87

direction and speed of the propagation of wave energy from the cases where the curvature has been88

neglected [48]. Experimental studies, e.g. [49–51], have confirmed the importance of curvature in89

wave modelling. Cummins & Swan [49] carried out an experimental study of irregular waves prop-90

agating in an arbitrarily depth varying current and the wave spectra measured showed significant91

differences from those in a uniform and magnitude-equivalent current. It was concluded by Waseda92

et al. [50] from experiments that the variability of the ambient current affected the third-order93

resonant interaction of wave quartets more than its mean profile did. In field observations, ocean94

currents are found to have considerable effect on the significant wave height [52], estimation of95

Stokes drift and particle trajectories [53], and the dissipation of waves through breaking [54].96

The objective of the paper is twofold. Firstly, we present a new framework to allow for the97



4

interaction of weakly nonlinear surface gravity waves and a vertically sheared current, generalising98

the work of Longuet-Higgins [11]. Secondly, we implement the new theory numerically to study99

how a current profile’s shear and curvature affect wave statistics, e.g., wave crest distribution and100

skewness of the surface elevation of random waves.101

We highlight that the new framework presented in this paper does not rely on assumptions102

of weak vertical shear (such as Stewart and Joy [55], Skop [56], Kirby and Chen [57], Zakharov103

and Shrira [58]) or weak curvature (or ‘near-potentiality’, e.g., Shrira [59] and Ellingsen and Li104

[60]). Although these simplifying assumption may be applicable to most realistic situations in the105

open ocean, their validity should not be taken for granted, and must be properly ascertained [60].106

Indeed the shear of a current can be strong in oceanic and coastal waters. For example, a wind-107

driven shear current in the top few centimetres can have very strong shear (e.g. [61, 62]) and the108

surface current typically takes values ∼ 3% of the wind speed [63]. Estuarine tidal flow has been109

found to be very strongly sheared, for instance the Mouth of the Columbia River which we use110

as example herein [54, 64]. We therefore choose to use the numerical Direct Integration Method111

(DIM) proposed by Li and Ellingsen [47] to calculate the linear wave surface and velocity fields,112

being equally applicable to any horizontally-uniform depth-dependent current profile regardless of113

its magnitude, shear, and curvature. As detailed in Li and Ellingsen [47], the computational cost114

of the DIM is comparable to that using analytical approximations which involve integration over115

the water column [55–57, 60], and unlike the aforementioned approximations, it provides an error116

estimate at little extra cost. The computer code used to generate the results presented in this117

paper is included as supplementary material online.118

This paper is laid out as follows. A second-order theory based on a perturbation expansion,119

the Direct Integration Method for linear waves [47], and double Fourier integrals for the second-120

order bound waves is presented in §II. Using the assumption of narrow-banded waves the shear121

current-modified wave statistics (e.g., skewness and the exceedance probability of wave crest) are122

derived in §III. With the numerical implementation of the theory detailed in §IV, weakly nonlinear123

waves in a random sea are examined in §V, for which the linear wave amplitude and phase used for124

random wave realisations are assumed to follow a Rayleigh distribution and a uniform distribution,125

respectively, following Tucker et al. [65].126
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II. THEORETICAL DESCRIPTION AND METHODOLOGY127

A. Problem statement128

We consider three-dimensional surface gravity waves atop a background flow in deep water.129

Incompressible and inviscid fluids are assumed and the surface tension has been neglected for130

simplicity. The background flow propagates in the horizontal plane and varies with depth (i.e.131

vertically sheared). Its 3-dimensional velocity vector is described by U∗3(z
∗) = (U∗(z∗), 0), with U∗132

the velocity vector in the horizontal plane, z∗ the upward axis, and a vanishing vertical component.133

Dimensional variables are marked with an asterisk. A Cartesian coordinate system is chosen and134

the still water surface in the absence of waves and flow is located at z∗ = 0. The surface elevation135

due to the background flow in the absence of surface waves is described by z∗ = η∗, which is136

assumed known and whose spatial and temporal variations are comparably negligible to the wave137

perturbed fields. Neglecting the influence of surface waves on the background flow field, the system138

of surface waves in a background flow can be described by the continuity and Euler momentum139

equations as follows (see, e.g., [27])140

∇∗3 ·V∗3 = 0, (1)141

∂t∗V
∗
3 + (V∗3 · ∇∗3)U∗3 + (U∗3 · ∇∗3)V∗3 +∇∗3 (P ∗/ρ+ gz∗) = − (V∗3 · ∇∗3)V∗3, (2)142

143

for −∞ < z∗ < ζ∗ + η∗. Here ∇∗3 = (∇∗, ∂z∗) denotes the gradient operator in three dimensions144

and ∇∗ = (∂x∗ , ∂y∗) the gradient in the horizontal plane; V∗3 = (u∗, w∗) denotes the velocity145

field due to surface waves in the presence of the background flow, with u∗ and w∗ the velocity146

vector in the horizontal plane and vertical component, respectively, x∗ the position vector in the147

horizontal plane, and t∗ is time; P ∗ denotes the total pressure; ρ and g denote the fluid density and148

gravitational acceleration, respectively; ζ∗(x∗, t∗) denotes the surface elevation due to additional149

surface waves in the presence of the background flow, U∗3.150

We choose the characteristic length L∗c and velocity u∗c to nondimensionalize the variables. In

all cases we consider in §IV, a wave frequency spectrum S∗(ω∗) is assumed which has a clear peak

at a frequency ω∗p. Therefore, we form the characteristic length, L∗c = g/ω∗2p , and, characteristic

velocity, u∗c = g/ω∗p using g and ω∗p for convenience while our specific choice does not affect the

generality of the theory derived in §II and III. Explicitly,

(x∗, y∗, z∗) = (x, y, z)L∗c ; t∗ =
L∗c
u∗c
t; V∗ = u∗cV; (3a)
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Here, V represents any velocity component, and we define the wave–induced nondimensional pres-151

sure as152

P = (P ∗ + ρgz∗)/(ρu∗2c ). (4)153

The dimensionless continuity and Euler momentum equations become154

∇3 ·V3 = 0; (5)155

∂tV3 + (V3 · ∇3)U3 + (U3 · ∇3)V3 +∇3P = − (V3 · ∇3)V3, (6)156
157

for −∞ < z < ζ + η.158

The governing equations (5) and (6) should be solved subject to the dynamic and kinematic159

boundary conditions at the surface, respectively,160

P − (ζ + η) = 0 and w = ∂tζ + (u + U) · ∇ζ for z = ζ + η, (7)161

and the deepwater seabed condition162

(u, w) = 0 for z → −∞. (8)163

B. Perturbation expansion and linear wave fields164

We seek the solution for unknown velocity (V) and elevation (ζ) of the boundary value problem165

described by (5) – (8) in a form of power series in wave steepness denoted by ε; i.e. a so-called166

Stokes expansion. To leading order, they are given by167

[ζ,u, w, P ] = ε[ζ(1),u(1), w(1), P (1)] + ε2[ζ(2),u(2), w(2), P (2)], (9)168

where the terms are kept up to second order in wave steepness and the superscript ‘(j)’ denotes169

the j-th order in wave steepness. Inserting the perturbed solutions (9) into the boundary value170

problem described by (5) – (8) and collecting the terms at the same order lead to the various171

boundary value problems at different orders in wave steepness.172

Linear surface elevation due to irregular surface waves can be described by173

ζ(1)(x, t) = R
[

1

4π2

∫
|ζ̂(k)|eiψ(k,x,t)dk

]
, (10)174

whereR denotes the real part, k denotes a wavenumber vector in the horizontal plane, ζ̂(k) denotes175

the linear wave elevation transformed in the Fourier k plane, ψ(k,x, t) = k · x − ω(k)t + θ(k)176
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denotes the rapidly varying phase with θ(k) the initial phase (angle) of the complex elevation177

ζ̂(k) at the origin, ω(k) denotes the angular frequency of wave k. Integration is over the whole k178

plane. Without the detailed derivations, this paper employs the Direct Integration Method (DIM)179

developed by Li and Ellingsen [47], which provides a shear-modified dispersion relation ω = ω(k).180

The dispersion relation is solved numerically together with the linear wave fields u(1), w(1), and181

P (1).182

The linear velocity and pressure in the physical plane can be obtained through an inverse Fourier183

transform as follows184 
u(1)(x, z, t)

w(1)(x, z, t)

P (1)(x, z, t)

 = R


1

4π2

∫ 
û(1)(k, z)

ŵ(1)(k, z)

P̂ (1)(k, z)

 eiψ(k,x,t)dk

 . (11)185

186

Arbitrary linear wave fields can then be constructed by adding monochromatic components187

together, in the manner of Fourier transformation. We will not consider changes in mean water188

level herein and set η = 0 henceforth.189

C. Second-order equations of motions190

Inserting the solution for unknown velocity (V) and surface elevation (ζ) in a form of power191

series given by (9) into the boundary value problem described by (5)–(8), collecting the terms at192

second order in wave steepness, and eliminating the horizontal velocity (u(2)) and pressure (P (2))193

at second order leads to the following equations194

(∂t + U · ∇)∇2
3w

(2) −U′′ · ∇w(2) = N (2)(x, z, t), (12a)195
196

for −∞ < z < ζ,

(∂t + U · ∇)2∂zw
(2) −U′ · (∂t + U · ∇)∇w(2) −∇2w(2) = F (2)(x, z, t) for z = 0, (12b)197

w(2) = 0 for z → −∞, (12c)198
199

where U′′ = ∂zzU, the forcing terms, N (2) and F (2), on the right hand side of (12a) and (12b) are

functions of linear wave fields and are given by

N (2) = ∇ ·
[
(V(1) · ∇3)u

(1)
]′
−∇2

[
(V(1) · ∇3)w

(1)
]
, (13a)

F (2) = −∇2(u(1) · ∇ζ(1))− [∇2(∂t + U · ∇)P (1)′ −∇2w(1)′]ζ − ζ(1)∇2(U′ · ∇)P (1)

+ (∂t + U · ∇)∇ · [(V(1) · ∇3)u
(1)], (13b)
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with notation (· · · )′ ≡ ∂z(· · · ). Inserting the linear solution from (11), the forcing term is then

N (2) = R
[

1

16π4

∫∫
N̂ (2)(k1,k2,x, z, t)dk1dk2

]
, (14a)

F (2) = R
[

1

16π4

∫∫
F̂ (2)(k1,k2,x, z, t)dk1dk2

]
, (14b)

where k1 and k2 denote the wave vector of two different linear wave trains; the forcing terms in the

Fourier space are decomposed into the two types of second–order wave interactions as (see, e.g.,

[11, 66])

N̂ (2) = N̂ (2)
+ (k1,k2, z)e

i(ψ1+ψ2) + N̂ (2)
− (k1,k2, z)e

i(ψ1−ψ2), (14c)

F̂ (2) = F̂ (2)
+ (k1,k2, z)e

i(ψ1+ψ2) + F̂ (2)
− (k1,k2, z)e

i(ψ1−ψ2), (14d)

where the subscripts ‘+’ or ‘-’ denote the components for the superharmonics and subharmonics,200

respectively; the wave phases are denoted with shorthand: ψj = ψ(kj ,x, t); and the lengthy201

expressions of N̂± and F̂± are given in Appendix B.202

With the linear velocity fields solved for by using the DIM [47], the second-order equations203

(12a)– (12c) for the vertical velocity w(2) can be solved numerically in Fourier space. Due to the204

interaction of different wave components and the main harmonic components of the forcing terms205

(i.e. N (2) and F (2)) in the Fourier plane, the second-order vertical velocity206

w(2)(x, z, t) = R
[

1

16π4

∫∫
ŵ(2)(k1,k2,x, z, t)dk1dk2

]
. (15)207

We can also decompose ŵ(2) in terms corresponding to the two types of second–order wave inter-208

actions as209

ŵ(2)(k1,k2, z,x, t) = ŵ
(2)
+ (k1,k2, z)e

i(ψ1+ψ2) + ŵ
(2)
− (k1,k2, z)e

i(ψ1−ψ2), (16)210

Each component on the right hand side of (16) for ŵ(2) can be solved for numerically from the211

boundary value problem as follows212

ŵ
(2)′′
± −

(
|k±|2 +

k± ·U′′

k± ·U− ω±

)
ŵ

(2)
± =

N̂ (2)
±

k± ·U− ω±
, (17a)213

214

for −∞ < z < 0, where k± = k1 ± k2, ω± = ω(k1)± ω(k2), and boundary conditions215

−(k± ·U− ω±)2∂zŵ
(2)
± +

[
k± ·U′(k± ·U− ω±) + |k±|2

]
ŵ

(2)
± = F̂ (2)

± (k±, z) for z = η, (17b)216

ŵ
(2)
± = 0 for z → −∞. (17c)217

218

In our problem setting the waves obtained from the second-order boundary value problem (17a,b,c)219

are bound since they do not satisfy the linear dispersion relation and can only propagate together220
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with their linear free contents. Moreover, with the linear free waves obtained, the second-order221

ordinary equation (17a) with two boundary conditions (17b,c) can be solved for numerically with222

a finite difference method where a central Euler approximation to the second-order derivative,223

ŵ
(2)′′
± , was used in this paper. Especially for directionally spread irregular waves in a random224

sea, we remark that the numerical estimation of double Fourier integrals in a form as (14a,b) is225

computationally expensive for statistical analysis. Nevertheless, the framework developed here can226

be easily reformulated such that a pseudo-spectral method for the second-order interaction of waves227

in a vertically sheared current can be used, following papers, e.g., [67] and [68] for a high-order228

spectral method and [69] for a semianalytical approach. In doing so, it allows for reducing the229

computational operations of O(N2
g ) to O(NgInNg), with Ng the total number of discrete points230

chosen for the grid of a computational domain.231

The second-order wave surface elevation ζ(2) can be obtained from the following kinematic

boundary condition

(∂t + U · ∇)ζ(2) = w(2) + ζ(1)w(1)′ − 1

2
U′ · ∇

(
ζ(1)
)2 − u(1) · ∇ζ(1), (18)

which leads to the surface elevation ζ(2) given by

ζ(2)(x, t) = R
[

1

16π2

∫∫
ζ̂(2)(k1,k2; x, t)dk1dk2

]
with (19a)

ζ̂(2) = ζ̂
(2)
+ (k1,k2)e

i(ψ1+ψ2) + ζ̂
(2)
− (k1,k2)e

i(ψ1−ψ2), (19b)

where the elevation ζ̂
(2)
± is obtained from (18) in the Fourier plane through substituting the vertical232

velocity w(2) and the linear wave fields u(1) and ζ(1). It’s noteworthy that for k1 = k2 the super-233

harmonics (ζ̂
(2)
+ ) reduce to the well-known second-order Stokes waves. The sub-harmonics (ζ̂

(2)
− )234

become a constant, which refers to a mean water level and is ignored in our experiment.235

D. Notation in the frequency domain236

The theory in §II so far was formulated in reciprocal horizontal (k) space. Often it is more237

convenient in practice to use a frequency domain formulation, for instance when working with238

power spectra, from time series from wave buoys, say. In the presence of a vertically sheared239

current the dispersion relation ω = ω(k) is anisotropic in any reference system, i.e., ω is always240

a function of the direction of k, not only its modulus. This introduces subtleties in interpreting241

nondirectional wave frequency data in the presence of a sheared current as wavelength cannot be242
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inferred from frequency alone. We herein work in two dimensions, i.e., waves propagating with243

known direction either along or against the current, thus eschewing this potential complication.244

The linear and quadratic-order elevations are denoted245

ζ(1)(x, t) = R
(∫

a(ω)eiψdω

)
, (20a)246

ζ(2)(x, t) = R
{∫∫

a1a2

[
Â+

12e
i(ψ1+ψ2) + Â−12e

i(ψ1−ψ2)
]

dω1dω2

}
. (20b)247

248

where a(ω) denotes the linear (real) amplitude of a wave with frequency ω and complex phase249

ψ(ω) = k ·x−ωt+ θ(ω), where we solve the dispersion relation ω = ω(k) for the wave vector with250

a given frequency using the DIM method as noted. The following notations are used: an = a(ωn),251

ψn = ψ(ωn), Â±12 = Â±(ω1, ω2) with252

Â±(ω1, ω2) =
|ζ̂(2)± (ω1, ω2)|

a1a2
, (20c)253

254

where ζ̂
(2)
± was given by (19b) with the difference that it is expressed here in the frequency domain255

instead.256

III. WAVES OF A NARROW BANDWIDTH257

In this section we present the skewness and probability density function of the surface displace-258

ment and wave crests in the special case where the bandwidth of the wave spectrum is narrow.259

We now use the frequency-domain formulation of §II D. Consider an ensemble of waves described260

in the form (20) where the amplitude a(ω) becomes an independent random variable denoted by261

ã(ω) which follows a Rayleigh distribution based on a spectrum S(ω) and where the phase θ be-262

comes another independent random variable, θ̃, which is uniformly distributed in the range [0, 2π〉.263

Therefore, ζ(x, t)→ ζ̃(ã(ω), θ̃(ω)). The j-th spectral moment mj is defined as264

mj =

∫
ωjS(ω)dω; j ∈ {0, 1, 2, ...}. (21)265

266

Assuming zero mean water level as before, the standard deviation, σ, and skewness, λ3, of the267

surface elevation are268

σ =

√
〈ζ̃2〉 and λ3 = 〈ζ̃3〉/σ3, (22a,b)269

where 〈...〉 denotes the expectation value of random variables. Assuming the energy spectrum S(ω)270

to have a narrow bandwidth (ν =
√

1−m2
2/(m0m4) � 1), we follow the detailed derivations of271

Fedele and Tayfun [23] using the elevations (20a,b), and obtain to O(ε)272

σ2 = m0 and λ3 = 6σÂ+
mm, (23a,b)273
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where Â+
mm = Â(ωm, ωm) denotes the second-order superharmonic amplitude of the spectral mean274

wave, with ωm the spectral mean frequency given by275

ωm = m1/m0. (24)276
277

The skewness given by (23b) agrees with Fedele and Tayfun [23], Srokosz and Longuet-Higgins278

[70] and Li et al. [10] for waves in the absence of a shear current, which is clear when noting that279

the superharmonic amplitude Â+
mm can be written as km/2 ≡ ω2

m/(2g) in the case for second-280

order deepwater Stokes waves (see, e.g., [11]). It is different from Fedele and Tayfun [23] to the281

extent that it does not account for the effect of bandwidth as it is not so straightforward due to282

a shear current. Nevertheless, it allows us to take into account the effect of a shear current to283

some extent. Especially, if all linear waves follow the same power energy spectrum with a narrow284

bandwidth, i.e., mj are identical for all cases, the spectral mean given by (24) is identical regardless285

of a shear current. A shear current affects the skewness given by (23b) through the second-order286

superharmonic amplitude of the spectral mean wave, compared with the cases in the absence.287

Following Longuet-Higgins [12], we obtain that the normalized surface displacements follow the288

distribution289

pζ(ζ̃) =
1√
2π

e−ζ̃
2/2

[
1 +

λ3
6
ζ̃(ζ̃2 − 3)

]
. (25)290

For linear waves, where λ3 = 0, expression (25) becomes a Gaussian distribution. Different from291

Longuet-Higgins [12], the probability density function given by (25) can account for the effect of a292

shear current due to that the skewness λ3 is modified according to (23b) which considers the effect293

of a shear current.294

Similarly, following Forristall [17], the ‘exceedance probability’, i.e., the probability that a ran-295

domly chosen wave crest Xc exceeds the value ζ̃c, is found as296

P (Xc > ζ̃c) = exp

− 1

8(Â+
mmσ)2

√1 +
16ζ̃c
Hs

Â+
mmσ − 1

2 , (26)297

where Hs is the significant wave height. The exceedance probability given by (26) agrees with298

(2.12) by Li et al. [10] with the same chosen notations whereas the main difference lies in that the299

effect of a shear current enters here via the superharmonic amplitude of the spectral mean wave,300

Â+
mm. In the limit of infinitesimal wave, i.e., m0 → 0+, the exceedance probability of wave crest301

becomes302

P (Xc > ζ̃c) = exp

(
−8

ζ̃2c
H2
s

)
, (27)303

304
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which is the Rayleigh distribution as expected. For second-order deepwater Stokes waves in the305

absence of a shear current which admits Â+
mm = km/2 ≡ ω2

m/(2g), the exceedance probability given306

by (26) is identical to eq.(4) in Forristall [17]. We will refer repeatedly to (25) and (26) in section307

V B.308

IV. NUMERICAL SETUP309

In our simulations, we generate two-dimensional (long-crested or uni-directional) waves from310

realistic spectra. Doing so implies that the possible triad resonant interactions in three dimensions311

considered in previous papers, e.g., [38, 58, 71] are assumed negligible in the simulations. We312

choose the characteristic velocity, u∗c = g/ω∗p, as defined in §II A. Here, ω∗p is the peak frequency of313

the spectrum; although ωp = 1 by definition, we find it instructive to retain it in some equations314

below.315

We begin by defining the terms following and opposing shear for two-dimensional flow, i.e.,316

where all waves propagate parallel or antiparallel to the mean current. We will assume that waves317

travel along the positive x axis. We then define318

• Following shear: U ′(z) < 0; • Opposing shear: U ′(z) > 0.319

Following (opposing) shear corresponds to the situation where the flow increases (decreases) in the320

direction of propagation with increasing depth.321

Note carefully the distinction between following (opposing) shear and following (opposing) cur-322

rent. When seen in an Earth–fixed reference system, currents in nature are often strongest near323

the surface and decrease to zero at larger depths, such as in the Columbia River Mouth current we324

regard in section V E. In such a case a “following surface current” U(z) > 0 would correspond to325

opposing shear and vice versa. For clarity of comparison between cases we shall work in a surface-326

following frame and, therefore, assume U(0) = 0, in which case following shear implies positive327

U(z) for a monotonically varying U . Doing so allows us to focus only on the effects due to the328

profile shear and curvature of a current.329

A. Realisation of random seas states for linear waves330

We follow Tayfun [13] and Tucker et al. [65] for the realisation of random sea states, which331

assumes Rayleigh distributed amplitude of linear waves and uniformly distributed wave phases332

in the range of [0, 2π〉. The energy spectrum we choose for computation is JONSWAP spectrum333
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[72] with a peak enhancement (or peakedness) parameter of γ = 3.3 and moderately narrow334

bandwidth[73, 74], which is shown in figure 1(a).335

The JONSWAP spectrum is given by (recall that ωp = 1)336

SJ(ω) =
α̃J
ω5

exp
[
−1.25ω−4

]
γb(ω), (28)337

where the peak enhancement factor γ appears with an exponent338

b(ω) = exp

[
−(ω − 1)2

2σ2J

]
, (29)339

and340

σJ =


0.07, ω ≤ 1

0.09, ω > 1.

(30)341

The parameter α̃J is chosen such that the JONSWAP spectrum is fixed for all numerical cases,342

i.e., independent of a current profile. The frequency is truncated at 0.01ωp and 2.6ωp. The343

bandwidth parameter is defined as344

ν =

√
1− m2

2

m0m4
(31)345

and here ν = 0.5284. For another widely used bandwidth parameter νL =
√
m0m2/m2

1 − 1 pro-346

posed by Longuet-Higgins [75], the value becomes 0.2689. We choose bulk steepness ε = 1
2Hs =347

0.14 in all cases. As noted, the peak frequency (ωp = 1), significant wave height (Hs), and the348

moments (mj) of the JONSWAP spectrum are fixed for all cases, regardless of the profile of a349

shear current. However, the spectrum peak wavenumber kp ≡ k(ωp) = k(1) 6= 1 in the presence of350

a current, since the linear dispersion relation k(ω) depends on U(z), as explained in §II and §III.351

Once the input spectrum is determined, the amplitudes ai of a total of Ns linear elementary352

waves are generated with a prescribed significant wave height, with353

Ns∑
i=1

ã2i
2

=

∫
ω
S(ω)dω and ζ(1)(x, t) =

Ns∑
i=1

ãi cos(kix− ωit+ θ̃i), (32)354

where the energy spectrum is discretised with unequal frequency intervals and an identical area of355

Ns energy bins (i.e., constant S(ωi)dωi). For a train of random waves, we assume the amplitude356

ãi follows a Rayleigh distribution and the phase θ̃ a uniform distribution in the range [0, 2π〉357

similar to §III and Tayfun [15]. The wave numbers ki are found numerically from ωi using the358

DIM algorithm as described. We especially computed the temporal evolution of the linear surface359
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elevation at x = 0 and then, the second-order correction of the wave surface are calculated from360

(19a) and (19b).361

We also make a flow diagram of numerical implementations, which is shown in Appendix A. In362

our simulations, 128 elementary waves are generated from the relevant input wave spectra and ran363

from 0 ≤t≤ 5638. 2000 realizations were simulated to assure that the skewness of the wave surface364

elevation was converged.365

B. Current profiles and cases considered366

We consider three different current profiles with different parameters, which are typical of the367

open ocean, including an exponential profile, a linearly sheared current, and one that was measured368

at the mouth of Columbia River from Zippel & Thomson [54], as shown in figure 1(b) and (c).369

1. Model profiles370

The exponential and linear profile of shear current are parameterized as371

Uexp(z) = β[exp(αz)− 1]ex and Ulin = Szex, (33a,b)372

respectively, where ex is a unit vector along the positive x axis, the subscripts ‘exp’ and ‘L’373

denote the exponential and linear profile, respectively, α (α > 0), β, and S are dimensionless374

parameters that define the magnitude and shear strength of a current profile relative to the peak375

wave parameters. Note that we choose a reference system following the free surface so that U(0) =376

0. This eschews arbitrary Doppler shift terms which would clutter the formalism, reduces the377

number of free parameters, and makes results from different profiles immediately comparable. The378

choice also emphasizes that it is the shear U ′(z) and curvature U ′′(z) which cause statistics to be379

altered, not the strength of the current itself. The surface shear is obtained from (33)380

U′exp(0) = αβex and U′lin(0) = Sex, (34a,b)381

which denote the profile shear of an exponential and linearly sheared current at still water surface,382

respectively.383

Recall that following (opposing) shear correspond to U ′(z) < 0 (> 0). We wish our model384

current to have strong, but not unreasonable vertical shear. To determine how strongly the current385

shear affects the dispersion of a wave of wave number k∗ or frequency ω∗ (whichever is known),386
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FIG. 1. (a): JONSWAP power energy spectrum of linear waves with nondimensional peak frequency ωp = 1

and bulk steepness ε = 0.14; (b) examples of linear and exponential (‘Exp.’) shear profiles where both

opposing (‘Opp.’) and following (‘F.’) shear are shown; (c) two tidal current profiles from ref. Zippel and

Thomson [54] mearured at the mouth of Columbia river (‘CR’), during ebb tide (following shear, ‘F.’), and

flood (mostly opposing shear, ‘Opp.’), respectively. Note that in an Earth-fixed coordinate system (see

Fig. 3 of [54]) these correspond to opposing and following surface currents, respectively. Dashed lines are

extrapolations from z = 1.35 m to the surface; (d) wave–averaged shear |δ(k)| for the two profiles in panel

c; (e) extract of the time series of wave surface elevation for illustration, here without current.

the proper parameter to consider is the wave–weighted depth-averaged shear [60], respectively387

δ =
1

c∗0

∫ 0

−∞
U∗′(z∗)e2k

∗z∗dz∗ =
√
k

∫ 0

−∞
U ′(z)e2kzdz (35)388

nondimensionlized as explained in Section II A, and c∗0 =
√
g/k∗. Inserting U ′(z) = αβ exp(2αz)389
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gives390

|δ| = |αβ|
√
k

α+ 2k
, (36)391

whose maximum value is found at k = α/2 and in either case, |δ|max = |αβ|/
√

8. In the following392

sections we use α = 2.5 and |β| ≤ 0.3 giving |δ|max . 0.17.393

2. Profile from the Mouth of Columbia River394

The profiles of tidal currents in the Mouth of the Columbia River have been used as a test-case395

in a wide array of studies of wave-shear current interactions (e.g. [46, 47, 54, 76–80]) due to the396

availability of high quality current profile measurements [54, 64] and strong vertical shear. Herein397

we use the profiles measured by Zippel and Thomson [54] using an acoustic Doppler current profiler398

(ADCP) mounted on a drifter. The currents were measured between 1.35 m and 25 m depth,399

but we require profiles ranging all the way to the undisturbed surface level. What the profile400

might look like in the top 1.35 m is not obvious; the shear strength can drop sharply closer to the401

surface [81], but could also increase all the way to the top centimetres [62]. We use a polynomial402

extrapolation as shown in figure 1c; we show in appendix D that two other common approaches403

produce no discernable difference in the resulting skewness. The current profiles reported in Zippel404

and Thomson [54] and shown in figure Fig. 8a are fitted with a 7th order polynomial to the405

surface. The wave-averaged dimensionless shear δ of Eq. (35) for the two profiles in Fig. 1c are406

seen in Fig. 1d, peaking near 0.095 for the following current.407

Note that the currents taken from Zippel and Thomson [54] are not extreme for the location —408

the shear current used in e.g. Li et al. [82] taken from the measurements during the RISE project409

[64] peaks at a value δ ≈ 0.19, more than our strongest exponential model current. For comparison410

with the results of Zippel and Thomson [54] for ebb and flow respectively, we choose the more411

conservative profiles in the latter.412

We remark that Zakharov and Shrira [58] proposed a set of analytical theory for second-order413

wave-shear current problem with the assumptions U ′ < 0 and Umax/c� 1. Here, Umax and c refer414

to the maximum velocity of shear current and phase velocity of surface wave, respectively. From415

Fig.1c the parameter Umax/c of Columbia River current for peak wave could reach 0.2. Hence, the416

theory by Zakharov and Shrira [58] is not expected to be quantitatively accurate for the Columbia417

River current cases considered herein.418
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V. RESULTS419

We present second order statistical quantities for waves on model shear currents, generalising420

a number of classical results. The example for time series of wave surface elevation is shown in421

Fig. 1(e). All the statistical quantities are based on very long time series.422

A. The distribution of wave surface elevation423
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FIG. 2. Probability density function (PDF) of wave surface elevation for a moderately narrowband Gaussian

input spectrum assuming the exponential current profile (33a) with β the magnitude of the shear at a still

water surface. Numerical results for β = −0.3 (following shear, ‘F. shear’) and β = 0.3 (opposing shear:

‘Opp. shear’) are compared to (a) the linear prediction and the case without current, and (b) the narrow-

band (N.B.) theory based on (25).

In this section we examine the effects of sub-surface shear on the distribution of surface424

elevation to second order in steepness. We compare the case of no current to cases with following425

and opposing shear. We also show comparisons of the same case with shear between the broadband426
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and narrow-band theory presented in §II and §III, respectively. A moderately narrowband spectrum427

is considered, with the linear wave field amplitudes chosen from a Gaussian distribution with zero428

mean and variance σ2.429

Fig.2 plots the numerically calculated PDFs of wave surface elevation in the presence of a430

model current (equation (33)a) varying exponentially with depth, comparing our numerical results431

based on the broad-band theory presented in §II, together with different theoretical predictions: a432

Gaussian distribution, and theoretical predictions based on a narrow-band assumption presented433

in §III. We firstly discuss the results shown by Fig.(2a). When both second-order corrections434

and shear are omitted, the numerically calculated PDF (diamond symbols) should coincide with435

the Gaussian input distribution (zero mean, variance σ2) which indeed it does, as expected. The436

probability of amplitudes greater than about two standard deviations from the mean are decreased437

for negative values (deep troughs) and increased for positive (high crests), conforming with the438

known properties of second-order Stokes waves: the wave crests get higher and wave troughs get439

flatter.440

The presence of opposing shear U ′(z) > 0 enhances the wave crests and flatten the wave441

troughs compared to no current, while following shear current has the opposite effects. The effect442

on second–order statistics from the shear is considerable in the range of larger wave crests (> 2σ)443

but modest for wave troughs (negative elevation) in this case.444

A comparison of the probability density function of surface elevation for the cases in the presence445

of shear is shown in Fig.(2b) comparing the numerical results based on the full theory of §II and446

the narrow-band approximation in §III. It is seen that the narrow-band assumption agrees with447

the broad-band theory up to three and two standard deviations for the cases with following (‘F.448

shear’) and opposing shear (‘Opp. shear’), respectively; for following shear the approximation449

would be good enough for most practical purposes, except extreme statistics. The narrow-band450

approximation underestimates the probability of the most extreme events in both cases, but to451

very varying degrees as the figure shows.452

B. The distribution of wave maxima and crest height453

The crest height is conventionally defined as the highest surface elevation reached inside discrete454

time intervals. Within each time interval, the surface elevation is above the mean–surface level,455

ζ > 0, i.e., delimited by consecutive zero crossings ζ(t) = 0 so that ζ ′(t) > 0 (< 0) at the beginning456

(end). This contrasts, in general, with a surface elevation maxima ζm, which is any point where457
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ζ ′(t) = 0 and ζ ′′(t) < 0. Surface elevation maxima can be negative for a broad-band spectrum,458

whereas for a sufficiently narrow spectrum, the two are positive and coincide: every maximum459

is also a wave crest.460

As discussed by Goda [83, Chapter 2], when the spectrum is not narrow there is no universal461

and unique definition of wave height in a time series. The most common definition based on462

zero-crossings described above is theoretically somewhat unsatisfactory in a broadband setting;463

a more theoretically coherent method proposed by Janssen [5, 84] based on the envelope of ζ is464

also in use [85]. For theoretical derivations the envelope procedure becomes more cumbersome for465

weakly non-linear waves, requiring expressions for third and fourth statistical moments, needed to466

adequately describe a generic wave distribution. In the following we use the customary definition467

using zero-crossing, as described above, bearing in mind that the identification of individual waves,468

and hence its distribution of maxima, will carry some dependence on the spectral shape which469

vanishes in the narrow-band limit.470

For a narrow frequency spectrum according to linear theory, the dimensionless wave crest heights471

ζ̃c, normalised by significant wave height Hs, is distributed according to the Rayleigh probability472

function as given by (27). It is difficult, however, to determine theoretically the probability dis-473

tribution of crest heights if the waves have a broad frequency spectrum. Hence, Cartwright and474

Longuet-Higgins [86] made a compromise by calculating the distribution of surface elevation max-475

ima denoted by ζm, adapting the theory of Rice [87] from in electrical signal processing to an ocean476

waves setting. Their result based on linear theory for a broadband spectrum is477

p(ξ) =
1√
2π
ν exp

(
− ξ2

2ν2

)
+
ξ
√

1− ν2
2

exp

(
−1

2
ξ2
)[

1 + erf

(
ξ
√

1− ν2√
2ν

)]
, (37)478

479

where ξ = ζm/σ denotes the normalised maxima, the bandwidth parameter ν is defined in (31),480

mj is the j-th moment of the energy spectrum given by (21), and erf is the error function.481

Fig. 3 shows the PDF of the surface elevation maxima for linear and nonlinear results. We482

also plot the theoretical estimates with (37), which is given by solid line in the figure. When483

nonlinear effects and shear are both omitted, the numerically calculated PDF (diamond symbols)484

should coincide with equation (37), which indeed it does as the figure shows. The second-order485

results show increased probability of large wave maxima in all cases. Notice that negative-valued486

surface maxima occurs for a broadband spectrum, corresponding to nonzero p(ξ) for ξ < 0. The487

probability of a negative maxima increases monotonically with bandwidth parameter ν.488

The most prominent nonlinear effect in Fig. 3 is for opposing shear, where probability for large489

maxima above approximately two standard deviations is enhanced in our simulation, whereas490
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FIG. 3. Probability density function of the dimensionless maxima (ξ = ζm/σ) of the wave elevation. The

theoretical estimates (‘Theory’) are based on (37) and the other cases shown are the same as Fig.2a.

maxima below this threshold are made less probable. The current with following shear has the491

opposite influence. This phenomenon is consistent with the PDF of wave surface elevation studied492

in §V A.493

There exists a few commonly used expressions for crest height distribution obtained by empirical494

fitting, theoretical considerations or parameterization [17, 23, 88–92]. One example we use in this495

section is the distribution derived by Tayfun [14] for a narrow-band spectrum, which corresponds to496

our narrow-band equation (26) in the limiting case of no current, i.e., k∗m → k∗m0 = ω∗2m /g (shear-free497

dispersion relation in nondimensional units). To the best of our knowledge, theoretical expressions498

for wave crest distribution with a broad-band frequency spectrum have not been reported.499

Fig. 4 shows the numerical PDF and exceedance probability of the scaled crest height compared500

to the Rayleigh and Tayfun distributions. Notice in Fig. (4a) that for very low crests ζ̃c . 0.1Hs501

the probability density of wave crest height deviates noticeably from the Rayleigh curve, consistent502

with Fig. 3. The reason is that finite bandwidth allows negative maxima (hence a finite probability503

density at zero crest height), whereas the narrow-band Rayleigh distribution only allows positive504

maxima. The physical significance of this difference is perhaps not so high being primarily a result505

of the definition of a crest, referring somewhat arbitrarily to the mean water level. The tail of our506

numerical results without shear still agrees well with those produced by the Rayleigh distribution507

[23], perhaps surprising in light of the linear theory for broadband waves due to Cartwright and508

Longuet-Higgins [86]. This can be explained by noting that in the context of their theory our509

spectrum is still relatively narrow, since the bandwidth parameter ν ≈ 0.53 as defined in Eq. (31)510

is considerably smaller than unity.511
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FIG. 4. Numerically calculated probability density function (panel (a)) and exceedance probability (panels

(b,c,d)) for wave crests. An exponential shear profile, Eq. (33a), was assumed. (a) Linear waves based on

numerical simulations and the Rayleigh probability density function; (b,c) nonlinear wave fields for varying

shear strength; (d) the broad-band and narrow-band results for cases with shear based on the theory in §II

and §III, respectively. We used (26) with β = 0 for the Tayfun distribution. (e) Occurrence probability of

rogue wave for all the exponential shear cases in panel c.

It can be observed in Fig. 4b and 4c that, when nonlinear second–order corrections are ac-512

counted for, the tail of the simulated curve for the case with no shear clearly exceeds the Rayleigh513

distribution values, yet remain lower than the Tayfun distribution curve. This observation was also514

made by Fedele & Tayfun [23] who considered broadband waves without current; They showed that515
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in that case the Tayfun distribution is an upper bound for the wave crest distribution to second516

order in steepness.517

With the additional presence of a shear current and broader spectrum, crest distributions can518

clearly exceed that of Tayfun. The numerical results show substantial differences between the three519

currents considered, consistent with the general trend observed before: opposing shear makes high520

crests more probable and vice versa. The gray dashed vertical line in Fig. 4 refers to the conventional521

criterion for rogue waves, which is ζ̃c/Hs = 1.25 [93]. Compared with the no-shear current case,522

the opposing shear current leads to significant enhancement in the occurrence probability of rogue523

wave, as shown in Fig. 4e. The presence of following shear current has the opposite influence.524

The exceedance probability increases monotonously as a function of the shear strength β, which is525

shown in Figure (4b,c).526

We note in passing, however, that whereas the probability of unusually high (rogue) waves is527

decreased on following shear, the significant wave height itself will often be increased. A typical528

situation where this occurs is when the shear current, measured in a land-fixed reference system,529

has its greatest velocity at the surface. In this case the current itself is opposing in an earth-530

fixed frame of reference, so waves generated elsewhere will steepen as they encounter the current.531

Thus the expectation in many real scenarios would be that following shear makes for rougher seas532

overall, whereas with opposing shear, while calmer on the whole, have an increased probability of533

surprisingly high crests. This point was discussed in depth by Hjelmervik & Trulsen [30].534

Fig. 4d compares the exceedance probability of wave crest between the narrow-band predictions535

and numerical results for the cases with a shear current, the former of which are obtained by using536

(26). We observe that the narrow-band assumption leads to a small and large overestimate of537

the occurrence probability of wave crest for the case with a following and opposing shear current,538

respectively. The differences for the following current are nearly negligible, as being consistent539

with Fig.2b, but are much more pronounced for the opposing shear case. Fig. 4d suggests aligned540

conclusion with Fedele and Tayfun [23] in which it is stated that the narrow-band assumption541

would produce an upper bound of the exceedance probability of wave crest as aforementioned.542

Since the effect of current shear on waves depend on both the shift in wavelength as reflected from543

the linear dispersion relation as well as the amplitude of the second-order superharmonic bound544

waves, the overall effect of current on waves of a broad-band spectrum will in general differ in a545

non-trivial way from that only on the amplitude of the spectral mean wave, Â+
mm. As a result, the546

assumption of narrow bandwidth seems to lead to larger overestimate for opposing shear compared547

to the case of a following shear.548
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FIG. 5. The average of crest height of scenes containing the largest N waves. In the figure, the theoretical

predictions (the black solid line) are based on (38) for linear waves.

C. The distribution of maximum wave crest549

Consider next the distribution of the height of the highest wave crest among a randomly chosen550

sequence of N consecutive waves, where a ‘wave’ in this context is a time interval wherein the551

surface elevation contains one maximum and one minimum. A long time ago Longuet-Higgins [94]552

derived an expression for maximum wave crest distribution based on linear waves with a narrow553

band frequency spectrum. Cartwright and Longuet-Higgins [86] extended the theory to allow for a554

broadband spectrum, still in the linear wave regime. More recently, the Gumbel distribution was555

used to solve this problem up to second order [74, 92, 95]; for a linear narrow-band process, the556

expressions in these references are the same. In this section we use the expression from Cartwright557

and Longuet-Higgins [86] for comparison:558

ζmax

σ
=

√
2 ln

[
(1− ν2)

1
2N
]

+ γE/

√
2 ln

[
(1− ν2)

1
2N
]
, (38)559

where ζmax is the maximum crest height from a continuous wave train, γE ≈ 0.5772 is Euler’s560

constant.561562

Fig. 5 gives the comparison of largest crest height between our numerical results and equation563

(38). Each point is obtained as follows: a time series containing 2× 106 waves is divided into 160564

segments. From each segment a sequence of N consecutive waves is chosen randomly from which565

the highest crest is found, then the average is taken over all the highest crests and plotted in the566

figure. Fig. 5a shows that, once again, our simulated results of linear wave fields fit well with the567

theoretical solution.568
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Compared with linear results, second order correction makes a considerable contribution to569

largest crest heights. The largest crest heights rise by around 10% to 20%. A similar phenomenon570

was observed by Socquet-Juglard et al. [74], who used a narrow-band frequency spectrum and571

found the largest crest heights of nonlinear wave field increased by about 20% compared with572

linear wave fields. Moreover, it is clear that the additional presence of sub-surface shear also has573

notable influence on largest crest heights. The opposing and following shear current increase or574

decrease the largest crest heights by about 18% or 8%, respectively for the case with β = 0.3 and575

β = −0.3, compared with the case with no shear current. Note that the comment at the end of the576

previous section still applies: the current will often change a free wave surface in such a way that577

in absolute terms, the crest heights are actually increased by opposing shear, which is a following578

current in the earth-fixed frame of reference, and vice versa.579

D. Skewness580

In this section, we discuss the influence of a shear current on skewness, which is a measure of581

the lack of symmetry. Unlike skewness, kurtosis is not expected to be well approximated by582

second-order theory, and therefore not included in this paper.583

Skewness of second-order waves can be expressed as a function of wave steepness, which is584

given by equation (23) in the limiting case of a narrow-band wave spectrum. The skewness should585

generally depend on both the bandwidth parameter (ν) and spectrum shape, as has been shown586

by Srokosz and Longuet-Higgins [70].587

We consider two types of shear currents, as given in equations (33a,b). From the point of view588

of the waves, which can “feel” the current only down to about half a wavelength’s depth, the589

significant difference is that a linear current has the same shear at all depths, affecting the wave590

dispersion for all wavelengths, whereas the exponential profile is felt strongly by the short waves591

with k & αkp,0 and hardly at all for long waves k � αkp,0.592

Fig. 6a and 6b show the skewness of linear and exponential shear current cases, respectively,593

calculated according to its definition given by (22b). The theoretical narrow–band predictions594

in solid blue lines are based on (23b) with the assumption of narrow-band waves in both the595

absence (i.e. S = 0 and β = 0 in Fig. 6a and 6b, respectively) and presence of a shear current.596

For both linear shear and exponential shear cases the skewness increases monotonically with S597

and β, respectively. In the range of shear strengths examined in Fig. 6, the skewness always598

remains positive. The strongest shear current enhances the skewness by about 86% compared599
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following shear opposing shear

Simulations

Theory 
(narrow-band)

following shear opposing shear

FIG. 6. Skewness of the wave surface elevation for the cases with a linear shear current (a) and exponential

shear current (b). The narrow-band theoretical predictions in solid black lines are based on (23b). The

dashed line is the no-shear case, for reference.

FIG. 7. Power energy spectrum for the Columbia River wave data.

with the cases in the absence of a shear current. The narrow-band assumption for the cases with600

an exponential shear current always leads to an overestimate of the skewness, compared with the601

numerical simulations due to the theory in §II applicable to arbitrary bandwidth. In contrast, it602

may lead to underestimated values for the linear shear and following current cases in the regime603

where S ≤ −0.2. The inaccuracy induced by the narrow-band assumption is obvious, which604

may arise from that the JONSWAP spectrum chosen is not very narrow and that the strong profile605

shear can lead to a considerable change in the wavelength of all waves prescribed on the JONSWAP606

spectrum.607
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FIG. 8. Skewness of wave surface elevation with Columbia River current and wave spectrum data (a)

Considered current profiles, reproduced with kind permission from figure 3 of [54] with the same colour

coding, shifted to the surface level and with surface current subtracted. (b) Numerically obtained skewness

for the measured wave spectrum of ref. [54] on the currents in panel (a), with corresponding color coding;

the ascissa is the shear-shifted peak wave number with kp = 1 corresponding to zero shear (open circle).

E. The Mouth of the Columbia River608

As a real–life example we consider the real measured data described in Section IV B 2 to demon-609

strate and quantify the significant misprediction of wave statistics that would result from neglecting610

the current’s vertical shear. The currents considered, adapted from figure 3 of Zippel & Thomson611

[54] are shown in Fig. 8a, using the same color coding as in said figure. The surface current was612

subtracted and the profiles extended to the surface as explained in section IV B 2. As input wave613

spectrum we fit a JONSWAP spectrum with bandwidth parameter ν = 0.6618 to a representative614

example among the manywave spectra measured by Zippel and Thomson [54], shown in figure 7.615

The fit is not excellent, but sufficient to provide a representative example.616

Figure 1d shows the weak-shear parameter δ(ω) when ω is the given parameter; we argue in617

appendix E that the appropriate value in this case is δω(ω) = 2δ(ω2/g) where δ(k) is defined in618

(35).619

1. Skewness620

The skewness of simulated results with Columbia River current data are given in Fig. 8b, where621

kp is the dimensionless peak wavenumber which depends on the shear current as aforementioned.622

We chose to use kp as a representation of the shear strength as it expresses the amount by which623

the shear changes the wavelength of the wave with peak frequency.624
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FIG. 9. Exceedance probability of simulated results with the current measured by Zippel & Thomson [54]

in the Columbia River (CR) shown in Fig. 1c, equal to the strongest currents in either direction in Fig. 8a.

The profiles of the following and opposing CR-current are shown in Figure 1c.

Failure to take into account the presence of shear causes overprediction of skewness by ≈ 24%625

or underprediction by ≈ 13% during ebb and flood, respectively, as is shown in Fig. 8. Absolute626

numbers provided by a second-order theory like ours carry significant uncertainty, particularly627

when the spectrum is not narrow, but show a clear and consistent trend. Held together with628

Zippel & Thomson’s conclusion that wave steepness can be mispridicted by ±20% in these waters629

in the same conditions if shear is not accounted for [54], there is compelling evidence that shear630

can be highly significant to the estimation of wave statistics from measured spectra.631

2. Rogue wave probability632

We also carried out simulations with data from Columbia River (CR) using both the wave633

spectrum and shear profiles measured in this location by Zippel and Thomson [54]. As usual,634

rogue wave probability is defined as the probability of crests exceeding 1.25Hs.635

As observed for the model currents in Figure 4, opposing shear enhances the crest heights of636

large waves while following shear weakens them, leading to increased and decreased exceedance637

probability, respectively. The rogue wave probability on opposing shear (i.e., a following surface638

current during ebb) is increased by 36% while on following shear (opposing surface current, during639

flow) it is decreased by 45%; from 1.12×10−4 to 6.20×10−5 and 1.52×10−4, respectively. Given640

that our theory is second order only, these numbers are not quantitatively accurate, but show641

clearly that shear currents must be accounted for in prediction and modelling of extreme waves.642

Note carefully that the rogue wave probability is the probability of surprisingly high waves, as643
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discussed by Hjelmervik and Trulsen [30]. Although rogue waves are more than twice as probable on644

the wave–following flow current than the wave–opposing ebb current, the significant wave height645

itself is typically much greater in the former case (more than twice as high in the conditions646

measured in [54], for instance), making for rougher conditions overall. The effect of shear is to647

reduce the prevalence of very large waves during ebb, a beneficial effect with respect to sealoads648

and maritime safety.649

VI. CONCLUSIONS650

In this paper, we develop the second-order (deterministic) theory using perturbation expansion,651

which is extended from Longuet-Higgins [11] to allow for a depth-dependent background flow whose652

profile shear can be strong. The new theory can be used to investigate the wave-current interaction653

and applicable to waves of an arbitrary bandwidth. The linear wave field is solved with the DIM654

method proposed by Li & Ellingsen [47]. We derived a boundary value problem for the second-655

order waves, which can be solved numerically. With the additional assumption of narrow-band656

waves, a second-order accurate statistical model is derived for the skewness, probability density657

function of surface elevation, and the probability distribution of wave crest, which have accounted658

for the presence of a depth-dependent background flow.659

We carried out numerical simulations for the analysis of wave statistics and examined effects660

of a shear current. We used a JONSWAP spectrum and several different shear currents as input661

to generate linear random waves. The second-order waves are solved for numerically based our662

newly derived theory. The measured wave spectrum and currents from Columbia River by Zippel663

& Thomson [54] were also used in our simulations.664

For linear wave fields the probability distribution of wave surface elevation and wave maxima665

and average maximum wave crest all satisfy theoretical expressions well as expected. The nonlinear666

wave fields show similar properties compared with well-known second-order Stokes waves. The wave667

crests are higher and troughs are flatter than linear wave fields. As a result, the positive tails of668

the probability density function for wave surface elevation and wave maxima from nonlinear wave669

fields are longer than linear wave fields while the negative tails of surface elevation are shorter.670

Also, the largest wave crests in nonlinear wave fields are substantially greater. We found that671

the opposing shear currents can strengthen such ‘nonlinear properties’ while the following shear672

currents can weaken them.673

We also found that the additional assumption of narrow-band waves leads to in general neg-674
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ligible and pronounced differences for the following- and opposing-shear case, respectively, when675

comparing the second-order statistical model with the more general deterministic theory which is676

applicable to waves with an arbitrary bandwidth.677
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Appendix A: Flow diagram of numerical implementations688

A flow diagram of the numerical implementation used to generate statistics is shown in Figure689

10.690

Appendix B: The forcing terms of the Rayleigh equation691

With the linear wave fields given by (11a,b,c), the nonlinear forcing terms in (14c) are expressed692

as693

N̂ (2)
± =[k± · ∂zNh,± + k2±NRz,+] cosψ±, (B1a)694

F̂ (2)
± =[k2±NF1,± −NF2,± +NF3,±+ −NF4,± − (U · k± − ω±)k± ·Nh,+] sinψ±, (B1b)695

696

with ψ± = ψ1 ± ψ2, Nh,i = [NRx,i, NRy,i],697 
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(1)
2 − v̂

(1)′
2 ŵ

(1)
1 )

kx1ŵ
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FIG. 10. Numerical procedures of the simulation.
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(1)′
2 ) (B3c)703

NF4± =1
2(k2

1k1 ·U′P̂ (1)
1 ζ̂

(1)
2 ± k2

2k2 ·U′P̂ (1)
2 ζ̂

(1)
1 ) (B3d)704

705

where k1 = [k1x, k1y] and k2 = [k2x, k2y]706
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Appendix C: Analytical solution for linearly sheared current707

We assume the shear profile is given by U = (S0z, 0). The linear solution can be easily solved,708

which is expressed as [32, 38]709

ŵ(1)(k, z) =ŵ
(1)
0 (k)ekz (C1a)710

û(1)(k, z) =i
k2U′ + [(U · k− ω)k − kxS0]k

(U · k− ω)k2
ŵ

(1)
0 ekz (C1b)711

P̂ (1)(k, z) =− i
(U · k− ω)k − kxS0

k2
ŵ

(1)
0 ekz (C1c)712

ŵ
(1)
0 (k) =− iζ̂(1)(k)ω (C1d)713

714

where k = (kx, ky), k =
√
k2x + k2y and the subscript ‘0’ denotes the evaluation at a undisturbed715

surface z = 0. The dispersion relation for linear waves in a linearly sheared current is given by716

[32, 38]717

ω = −S0kx
2k
±
√
k +

S2
0k

2
x

4k2
, (C2)718

where ’+’ and ’−’ denotes the waves propagating ’downstream’ and ’upstream’ relative to the719

current, respectively.720

Substituting the linear solution into the forcing terms of second-order equations (17), we obtain721

an inhomogeneous boundary value problem for the second-order vertical velocity w(2). The general722

solution to this boundary value problem in the Fourier space should admit the form723

ŵ
(2)
± (k1,k2, z) = B1±(k1,k2)e

k±z + ŵcross(k1,k2, z), (C3)724

where the deepwater boundary condition was used, the first term on the right hand side of the725

equation is due to the forcing at a still water surface and the homogeneous Rayleigh equation, and726

ŵcrossis a particular solution of the inhomogeneous Rayleigh equation given by [38]727

ŵcross(k1,k2, z) =− i

2k±

ŵ
(1)
0,1ŵ

(1)
0,2

k±xS0

k1xk2y − k1yk2x
k1k2

e(k1+k2)z
3∑

i,j=1

[
±bij

(ξi − z)j−1
728

×Ẽj [k±(ξi − z)]
]
, (C4)729

730

with ŵ
(1)
0,j = ŵ

(1)
0 (kj) for j = 1 and j = 2,731

bij =
3∑

m=j

−aim
(ξi − ξ3)m−j+1

, i = 1, 2; b31 = −b11 − b21; b32 = b33 = 0, (C5a)732

ξ1 =
ω1

k1xS0
, ξ2 =

ω2

k2xS0
, ξ3 =

ω±
kxS0

, (C5b)733

Ẽj(µ) = eµµj−1
∫ ∞
µ

e−τ

τ j
dτ. (C5c)734

735
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Assuming ξ1 6= ξ2, the coefficients in (C5) are expressed as736

ai1 =(−1)i
[
k1k2 − k1 · k2 −

k1 + k2
ξ1 − ξ2

k1xk2y − k1yk2x
k1k2

tan θm

]
tan θi (C6a)737

ai2 =(−1)i
1

ki

[
k1k2 − k1 · k2 −

ki
ξ1 − ξ2

k1xk2y − k1yk2x
k1k2

tan θm

]
tan θi (C6b)738

ai3 =(−1)i
km
ki

tan θi, (C6c)739

740

where i,m ∈ {1, 2} so that i 6= m and tan θi = kiy/kix. The undetermined coefficients B1± is741

solved by inserting (C3) into the combined boundary condition (17b). Then, the surface elevation742

is obtained from (19).743

Appendix D: Effects of current continuation on skewness744

We here compare three alternative, physically reasonable ways in which profiles measured using745

ADCP can be extended from the shallowest measurement point — z = −1.35 m for the Columbia746

River measurements we use [64] — up to the surface. These are: extrapolation using a polynomial747

fit, shifting the profile upwards so that the shallowest measurement point is set to surface level748

(used, inter alia, in refs. [82, 96]), and the highly conservative approach of continuing the current749

profile to the surface with zero shear. These are referred as extended profile, shifted profile and750

zero surface shear profile, respectively and are shown in figure 11a.751

We compare wave skewness in these three case, the results are given in Fig. 11. Again, the kp in752

Fig.11b is the dimensionless peak wavenumber as in Fig. 8, where kp = 1 corresponds to the case753

without shear current whereas the modifications to the dispersion relation due to shear shifts the754

value. Values kp > 1 correspond to adverse shear and vice versa. A plot of the calculated skewness755

for the different cases shows that the difference in skewness is hardly discernable.756757

Appendix E: Dimensionless weak–shear parameter for given ω758

Let the depth-averaged shear be small, of order a small parameter δ � 1. Assuming the wave759

number k given, Stewart and Joy [55] derived the approximate dispersion relation ω(k) which may760

be written [60]761

ω∗(k∗) ≈
√
gk∗[1− δ(k∗)] +O(δ2), (E1)762

with the small-shear parameter δ(k∗) defined in (35). It was shown [60] that a sufficient criterion763

for the Stewart & Joy approximation to be good is that δω � 1.764
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FIG. 11. Skewness of wave surface elevation for different profiles. (a) Comparison of shear profiles

with three approaches. (b) Numerically obtained skewness, ‘o’: extended profiles, ‘*’: shifted profiles, ‘+’:

zero surface shear profiles. Case chosen is same with Fig. 8 except that two strongest opposing shears are

excluded here.

Conversely (i.e., for given ω∗) the presence of shear modifies k slightly, and we write765

k∗ = k∗0[1 + δω(ω∗)] +O(δ2ω) (E2)766

with k∗0 = (ω∗)2/g, and clearly δω ∼ δ. We seek to find δω. Inserting (E2) into (E1) via (35) and

noting that
√
gk∗0 = ω∗,

ω∗ =ω∗
√

1 + δω[1− δ(k∗0)] +O(δ2)

=ω∗[1 + 1
2δω − δ(k

∗
0)] +O(δ2). (E3)

Internal consistency thus demands767

δω(ω∗) = 2δ(k∗0). (E4)768
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[60] S. Å. Ellingsen and Y. Li, Approximate dispersion relations for waves on arbitrary shear flows, J.886

Geophys. Res.: Oceans 122, 9889 (2017).887



37

[61] N. J. Laxague, B. K. Haus, D. G. Ortiz-Suslow, C. J. Smith, G. Novelli, H. Dai, T. Özgökmen, and888
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