
Automatic Detection and Fixing of Java XXE
Vulnerabilities Using Static Source Code Analysis

and Instance Tracking

Torstein Molland, Andreas Nesbakken Berger, and Jingyue
Li[0000−0002−7958−391X]

Norwegian University of Science and Technology
torstmol@alumni.ntnu.no, aberger@alumni.ntnu.no, jingyue.li@ntnu.no

Abstract. Web security is an important part of any web-based software
system. XML External Entity (XXE) attacks are one of web applications’
most significant security risks. A successful XXE attack can have severe
consequences like Denial-of-Service (DoS), remote code execution, and
information extraction. Many Java codes are vulnerable to XXE due to
missing the proper setting of the parser’s security attributes after initial-
izing the instance of the parser. To fix such vulnerabilities, we invented
a novel instance tracking approach to detect Java XXE vulnerabilities
and integrated the approach into a vulnerability detection plugin of In-
tegrated Development Environment (IDE). We have also implemented
auto-fixes for the identified XXE vulnerabilities by modifying the source
code’s Abstract Syntax Tree (AST). The detection and auto-fixing ap-
proaches were evaluated using typical Java code vulnerable to XXE. The
evaluation results showed that our detection approach provided 100%
precision and recall in detecting the XXE vulnerabilities and correctly
fixed 86% of the identified vulnerabilities.

Keywords: Software security · Instance tracking · Code auto-fixing ·
XML External Entity · Abstract Syntax Tree

1 Introduction

According to OWASP 2017 [20], XXE attacks [7] [19] are ranked as the fourth
most common security risk to web applications. In OWASP 2021 [22], XXE
is merged into the security misconfiguration category. XXE can be used for
information extraction, Server Side Request Forgery (SSRF), Denial-of-Service
(DoS) attack, and remote code execution. The two popular XML vulnerabilities
related to the parsing of XML documents are CWE-611 and CWE-776. CWE-
611 denotes the vulnerability that occurs when an XML document contains
external entities outside of the sphere of control, causing the software to process
the XML document to embed incorrect documents into its output [1]. CWE-
776 denotes the improper restriction of recursive entity references in Document
Type Definitions (DTD) [2]. The code below in Listing 1 shows a Java XML

2 Torstein Molland, Andreas Nesbakken Berger, and Jingyue Li

parser SAXParser (Simple API for XML parser) being instantiated with default
parameters. This parser is vulnerable to XXE.

1 InputStream is = new FileInputStream(filePath);
2 SAXParserFactory f = SAXParserFactory.newInstance();
3 SAXParser p = f.newSAXParser();
4 PrintHandler h = new PrintHandler();
5 p.parse(is, h);

Listing 1: Vulnerable code
If an XML parser is vulnerable to XXE, parsing an XML input like the one

in Listing 2 will extract information from the system parsing the XML. In the
example shown in Listing 2, the passwd file of a Unix system will be read.

1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <!DOCTYPE foo [

<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///etc/passwd" >

]>
3 <foo>&xxe;</foo>

Listing 2: Example XML input
By adding the third line in the code, as shown in Listing 3, the SAXParser

is made secure and is not vulnerable to XXE.

1 InputStream is = new FileInputStream(filePath);
2 SAXParserFactory f = SAXParserFactory.newInstance();
3 f.setFeature(XMLConstants.FEATURE_SECURE_PROCESSING, true);
4 SAXParser p = f.newSAXParser();
5 PrintHandler h = new PrintHandler();
6 p.parse(is, h);

Listing 3: Secure code
Besides being vulnerable to information leakage, the vulnerable parser shown

above is also vulnerable to DoS and remote code execution attacks. These attacks
could be performed by inputting different XML into the parser. The fixed parser
is not vulnerable to any of these attacks.

The study [19] showed that “all tested Java parsers are vulnerable to instances
of DoS, SSRF, and File System Access (FSA) except KXml which is not vulner-
able to any attack vector". This means that a developer who uses an XML parser
without changing the default settings will be vulnerable to XXE without know-
ing it. This requires the developer to manually add code lines to make the parser
secure every time to mitigate the XXE vulnerability. Jan et al. [11] studied the
presence of the Billion Laughs (BIL) and XXE attacks in 13 popular parsers.
The studied parsers were chosen because they were included in Java, Python,
PHP, Perl, and C#. They found that the parsers together had been used over
half a million times. It was concluded that “BIL and XXE attacks are successful
in many modern XML parsers. Among the ones selected for experimentation,
more than half are vulnerable." They also checked if open source systems that
used the vulnerable XML parsers DocumentBuilder and SAXParser remembered
to apply mitigation strategies to defend against these attacks, and found that

Title Suppressed Due to Excessive Length 3

98.13% of open source projects had not implemented the known mitigation and
were vulnerable to BIL or XXE attacks.

Oliveira et al. [16] extended WS-Attacker for testing the security of web
service frameworks. After evaluating Apache Axis 1 and Apache Axis 2, they
found that both Apache Axis 1 and Apache Axis 2 were vulnerable to many of
the vulnerabilities tested. An extension to the dynamic testing tool WS-attacker
for testing DoS attacks against XML parsers was created by Falkenberg et al.
[10]. In their evaluation, all the parsers were vulnerable to XXE attacks.

To our knowledge, no existing tool provides sufficient auto-detection and
auto-fix functionality for the XXE vulnerabilities. Our research motivation is to
further advance software security by improving the detection and auto-fixing of
XXE vulnerabilities. We limit our focus on detection and auto-fixing of XXE
vulnerabilities in Java code. Java is the second most popular programming lan-
guage to develop web application [4]. To detect XXE vulnerabilities in Java code,
we invented a novel detection mechanism called instance tracking. We proposed
the instance tracking approach based on two insights: 1) All Java XML parsers
are instance based [5]; 2) Most Java XML parsers are vulnerable and need to
be fixed using the known mitigation approaches, i.e., correctly setting the at-
tributes of the parser, after instance initialization [11]. Our implemented vulner-
ability auto-fixing is based on modifying the AST [3] of the source code. The
purpose of auto-fixing is to add code to set the parser’s attributes correctly after
instance initialization. To help developers detect and auto-fix the XXE vulner-
abilities in the first place, we implemented our approaches in FindSecBugs [8]
as a proof-of-concept. To evaluate our implementations, we have also extended
the test cases in the Juliet Test Suite [14] by adding more test cases to evaluate
detection and auto-fixes of XXE vulnerabilities. Our contributions are threefold:
1) A novel instance tracking detection mechanism to detect XXE vulnerabilities,
2) A novel mechanism to auto-fix XXE vulnerabilities based on modifying the
source code’s AST, 3) A novel test bed to evaluate detection and auto-fixing of
XXE vulnerabilities.

The rest of the paper is organized as follows. In Section 2, the research
design and implementation is detailed. In Section 3, we explained the test bed
and the evaluation results. In Section 4, our methods’ strengths and weaknesses
are discussed. In Section 5, the conclusion and future work are presented.

2 Research design and implementation

More than 98% of open source projects studied by Jan et al. [11] had not im-
plemented the known mitigation against XXE attacks, i.e., correctly setting
the parser’s security attributes. Although implementing the mitigation was not
tricky, many developers overlooked it. We hope IDE plugins that can help devel-
opers detect and auto-fix such vulnerabilities in the first place will significantly
reduce the number of XXE vulnerabilities in many projects. In this study, we
want to develop IDE plugins to detect and auto-fix prevalent XXE vulnerabili-

4 Torstein Molland, Andreas Nesbakken Berger, and Jingyue Li

ties, i.e., CWE-611, CWE-776, and the ones listed in [11], namely, i.e., various
vulnerabilities that can be exploited by BIL and XXE attacks.

2.1 Using instance tracking to detect XXE vulnerability

FindSecBugs already supports detecting vulnerabilities in the seven XML parsers
we focus on in this study. However, FindSecBugs’ approach is limited to pattern
matching. The pattern matching approach does not track which instance the
secure method calls, i.e., the ones to set the parser’s security attributes, have
been called on. Therefore, the pattern matching approach cannot know whether
the XXE mitigations, i.e., correctly setting the parser’s security attributes, have
been appropriately implemented.

We implemented the instance tracking approach to track secure method calls
on a particular instance. The instance tracker requires a list of initialization
instructions of the instances to track. The instance tracking approach begins
with a stack of opcodes acquired from Java bytecode using the Byte Code En-
gineering Library (BCEL). First, we identify if the opcode is an initialization
of an XML parser instance. The identification is made by matching the ini-
tialization instruction of the XML parser we focus on, e.g., DocumentBuilder.
If the opcode is instance initialization, we add the location of code the in-
stance is initialized to a list. The list contains all the XML instances which
are tracked and need to be checked as vulnerable or secure in later analysis.
If the opcode is not instance initialization, we check if the opcode matches an
invocation of a method of interest of the tracked instances. A method of in-
terest is a method that can be vulnerable if the security attributes of a cor-
responding XML parser are not set correctly before the method is called. For
example, the methods of interest for the SAXParserFactory include SAXParser-
Factory.newSAXParser, SAXParser.parse, and SAXParser.getXMLReader, and
the methods of interests for DocumentBuilderFactory include DocumentBuilder-
Factory.newDocumentBuilder and DocumentBuilder.parse. The list of methods
of interest of each XML parser is derived from the OWASP 2017 [20] and Oracle
documents. If a method of interest is found for a tracked instance, we attach
the return value of the method of interest to the tracked instance. If there are
multiple invocations of the methods of interest on the same tracked instance,
we will keep only the return value of one of them. For example, in the code
in Listing 4, documentBuilder1 and documentBuilder2 are invocation of the
DocumentBuilderFactory.newDocumentBuilder method of the same Document-
BuilderFactory instance. In such a case, we attach only documentBuilder1 to
the tracked DocumentBuilderFactory instance.

For every method of interest attached to the tracked instance, we check if
proper security attributes of the tracked XML parser instance are set. In some
cases, only a singular call is needed to set the security attributes. For example, if
the method of interest is newDocumentBuilder and it is attached to the tracked
instance DocumentBuilderFactory, we will check if the DocumentBuilderFac-
tory.setFeature method is called with correct parameter setup, i.e., XMLCon-
stants.FEATURE_SECURE_PROCESSING is set with the value “true ”, be-

Title Suppressed Due to Excessive Length 5

fore calling the DocumentBuilderFactory.newDocumentBuilder method. In some
other cases, multiple calls have to be made to set all relevant security attributes.
For example, for the XMLStreamReader parser, the setProperty method has to
be called several times to set up multiple parameters, e.g., SUPPORT_DTD
and IS_SUPPORTING_EXTERNAL_ENTITIES, to make the invocation to
its createXMLStreamReader method to be secure.

After all the methods of interest of the tracked instance are checked with
security attributes setup, the tracked instances without all security attributes
set correctly before the method of the interest of the instance are called will be
reported as vulnerable.
1 DocumentBuilderFactory dbFactory =

DocumentBuilderFactory.newInstance();
2 DocumentBuilder documentBuilder1 =

dbFactory.newDocumentBuilder();
3 documentBuilder1.parse(<inputFile>);
4 DocumentBuilder documentBuilder2 =

dbFactory.newDocumentBuilder();
5 Document doc = documentBuilder2.parse(<inputFile>);

Listing 4: An example code

2.2 Auto-fixing identified XXE vulnerability

We traverse and modify the code’s AST to auto-fix the instance-related vulner-
abilities. There are many different APIs and features that need to be set for
different parsers to secure. An auto-fix mechanism will help reduce the complex-
ity, time, and effort spent identifying the different parsers’ correct fixes. The
approach includes three steps.

1. Find node to insert auto-fix. In this step, we find the AST node to insert the
auto-fix by using the location of the vulnerability reported by a vulnerability
detector. First, the AST node of the vulnerable source code line is obtained.
Then, a check is made to identify if the AST node is a call of a method of
interest (e.g., SAXParser.parse, as explained in Section 2.1) or a call of the
XML parser initialization (e.g., SAXParserFactory.newInstance). If the call
is a method of interest, then the auto-fix approach attempts to traverse the
predecessors of the AST node until it finds the node where the XML parser is
initialized. The location to insert auto-fix on is the node to initialize the XML
parser. For the vulnerable parser example shown in Listing 1, the AST node
of p.parse() is found to be initialized by f.newSAXParser(), and f is found
to have been initialized by SAXParserFactory.newInstance(). The type of
the SAXParserFactory.newInstance() node is SAXParserFactory. Thus, the
node SAXParserFactory.newInstance() is the location where the auto-fix
should be inserted.

2. Prepare node for auto-fix insertion. In this step, a check is first made to
identify if there are multiple methods invoked on the AST node. If there are,
then the AST node of the initialization of the instance and the remaining
calls are split up using an auxiliary variable. For example, for SAXParser-
Factory.newInstance().newSAXParser().parse(), the fix should be inserted

6 Torstein Molland, Andreas Nesbakken Berger, and Jingyue Li

on the AST node between SAXParserFactory.newInstance() and newSAX-
Parser().parse(). Hence, the SAXParserFactory.newInstance() is first stored
in a temporary variable, e.g., f, and then the remaining calls are called on
this variable, e.g., f.newSAXParser().parse().

3. Apply auto-fix. In this step, we modify the AST by inserting the AST nodes
corresponding to the missing calls of methods to set the security attributes
correctly after the instance’s initialization. The result of this is equivalent to
inserted line 3 in the secure code example shown in Listing 3. When inserting
the missing calls to set the security attributes, we set the corresponding
security parameters’ values as specified by OWASP 2017 [20] and Oracle. The
parameters and their values after auto-fixing are shown in Table 1. For each
possible missing call to add, we pre-defined the necessary imports related
to the call. The imports are added automatically by calling the ASTUtil()
function of the FindSecBugs, after the missing call related to the imports
are inserted.

Table 1: The security parameters and their settings after auto-fixing. The func-
tions to call are either setFeature or setProperty, Value T=Ture, F=False

Parser Parameter, Value
DocumentBuilder XMLConstants.FEATURE_SECURE_PROCESSING, T

XMLStreamReader XMLInputFactory.SUPPORT_DTD, F
XMLStreamReader XMLInputFactory.IS_SUPPORTING_EXTERNAL_ENTITIES, F
XMLEventReader XMLInputFactory.SUPPORT_DTD, F
XMLEventReader XMLInputFactory.IS_SUPPORTING_EXTERNAL_ENTITIES, F

FilteredReader XMLInputFactory.SUPPORT_DTD, F
FilteredReader XMLInputFactory.IS_SUPPORTING_EXTERNAL_ENTITIES, F

SAXParser XMLConstants.FEATURE_SECURE_PROCESSING, T
XMLReader http://apache.org/xml/features/disallowdoctype-decl, T
XMLReader http://apache.org/xml/features/nonvalidating/load-external-dtd, F
XMLReader http://xml.org/sax/features/externalgeneral-entitiesG, F
XMLReader http://xml.org/sax/features/externalparameter-entities, F
Transformer XMLConstants.FEATURE_SECURE_PROCESSING, T

3 Evaluation

One challenge of implementing such a plugin is that there exists no solid test
bed that we can use to evaluate it. The flow variants from the Juliet Test Suite
could not sufficiently detect XXE vulnerabilities. The Juliet Test Suite only cov-
ers test cases with one parser wrapped in different control flows, e.g., for-loops
and if-statements. So, we implemented a test suite based on the Juliet Test Suite
for evaluating our XXE vulnerability detection and auto-fixing plugin. We first
chose 17 flow variants from Juliet Test Suite V1.3 [15] to create our test cases

Title Suppressed Due to Excessive Length 7

(so called existing Juliet Test Cases). The test cases were created for the seven
Java XML parsers, namely, DocumentBuilder,XMLStreamReader, XM-
LEventReader, FilteredReader, SAXParser, XMLReader, and Trans-
formerFactory. We implemented additional test cases (so called added test
cases) for each of the seven parsers with more complex data flows to cover the
XXE vulnerabilities listed in [11]. For each of the seven Java XML parser, we
added up to 11 test cases. These test cases included different ways of initializing
an object and invoking methods on an object instance, which may affect the
XXE vulnerability detection and auto-fix performance. Examples of our added
test cases are as follows.

– Six test cases (Test case 1 to Test case 6) with variations of class field and
method variable were added. In the test case example in Listing 5, SAX-
Parser p and SAXParserFactory f are either a class field or a method vari-
able:
1 // Test case 1
2 InputStream is = new FileInputStream(filePath);
3 // Factory initialized into method variable
4 SAXParserFactory f = SAXParserFactory.newInstance();
5 // parser initialized into class field
6 p = f.newSAXParser();
7 PrintHandler h = new PrintHandler();
8 p.parse(is, h);

Listing 5: An example of test cases 1 to 6
– Four test cases (Test case 7 to Test case 10) with multiple parsers that were

made secure and insecure in the same method were added. In the test case
example in Listing 6, SAXParser p1 is vulnerable. SAXParser p2 is secure,
since the factory f has been made secure prior to initializing SAXParser p2 :
1 // Test case 7
2 InputStream is = new FileInputStream(filePath);
3 SAXParserFactory f = SAXParserFactory.newInstance();
4 SAXParser p1 = f.newSAXParser();
5 PrintHandler h1 = new PrintHandler();
6 p1.parse(is, h1); // Insecure
7 f.setFeature(XMLConstants.FEATURE_SECURE_PROCESSING,

true);
8 SAXParser p2 = f.newSAXParser();
9 PrintHandler h2 = new PrintHandler();
10 p2.parse(is, h2); // Secure

Listing 6: An example of test cases 7 to 10
– One test case (Test case 11) where an XML parser and an object with the

same secure method as the XML parser were added. In the test case shown in
Listing 7, the setFeature() method should be called on the factory. However,
the setFeature() method is called on an irrelevant object.
1 // Test case 11
2 Bar b = new Bar();
3 // Calls the setFeature method with correct parameters
4 // but on the wrong object
5 b.setFeature(XMLConstants.FEATURE_SECURE_PROCESSING,

true);
6 InputStream is = new FileInputStream(filePath);
7 SAXParserFactory f = SAXParserFactory.newInstance();
8 SAXParser p = f.newSAXParser();
9 PrintHandler h = new PrintHandler();
10 p.parse(is, h); // Insecure

8 Torstein Molland, Andreas Nesbakken Berger, and Jingyue Li

Listing 7: Test cases 11

Some test cases do not apply to a particular XML parser. For example, test
cases that test if the detector can detect multiple uses of the same parser are not
applicable to test the detection performance of the XMLStreamReader parser.
This is because XMLStreamReader uses an iterator to parse the XML [9]. When
the iterator reaches the end of the XML document, it cannot be reset. This
means that to parse an XML document multiple times, the old parser instance
cannot be used, and a new parser needs to be created. Test cases that test if
the detector can correctly identify secure instances from vulnerable instances
created using the same factory cannot test the detection performance on the
XMLReader parser. It is because an XMLReader parser is initialized directly
without first initializing a factory [6]. Each added test case had only one method
but could include multiple instances of parsers and other objects. This means
that each test case may include more than one XXE vulnerability to be detected
and fixed. The number of vulnerabilities of each test case for the seven parsers
is shown in Table 2.

Table 2: Number of XXE vulnerabilities in each added test case
Parser 1 2 3 4 5 6 7 8 9 10 11 Sum
DocumentBuilder 1 1 1 1 1 1 1 2 2 4 1 16
XMLStreamReader 1 1 1 1 1 1 1 2 0 0 1 10
XMLEventReader 1 1 1 1 1 1 1 2 0 0 1 10
FilteredReader 1 1 1 1 1 1 1 2 0 0 1 10
SAXParser 1 1 1 1 1 1 1 2 2 4 1 16
XMLReader 0 0 0 1 0 1 1 2 2 4 1 12
Transformer 2 2 2 2 2 2 2 4 4 8 2 32

We have also implemented test cases for checking if the code is still vulnerable
to XXE after auto-fix. An example test case is shown in Listing 8.

1 @Test
2 public void vulnerable() {
3 Boolean vulnerable = true;
4 try {
5 CWE611_XML_External_Entities__SAXParser_01 parser

= new CWE611_XML_External_Entities__SAXParser_01();
6 String res = parser.bad("bad.xml");
7
8 if(res.equals("vulnerable")) {
9 vulnerable = true;
10 } else {
11 vulnerable = false;
12 }
13
14 } catch (SAXParseException e) {
15 vulnerable = false;
16 }catch (Throwable e) {
17 e.printStackTrace();
18 }

Title Suppressed Due to Excessive Length 9

19 assertFalse(vulnerable,
20 "Parser should not be vulnerable to XXE");
21 }

Listing 8: Test case after auto-fix
To verify if the vulnerability has been fixed, the test attempts to parse an

XML file, i.e., the bad.xml file, with external entities referring to another file.
The path the external entitiy refers to here is file.txt, as shown in Listing 9.

1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///some/path/file.txt" >
]>

6 <foo>&xxe;</foo>

Listing 9: An XML with external entities
The content of the file file.txt is a string “vulnerable”. If the test returns

the contents of the file, i.e., file.txt, the external entity is referring to, which
indicates that the parser is still vulnerable to XXE. If the parser throws a specific
exception, e.g., SAXParserException, when trying to read file.txt, then it shows
that the parser is secure. Since the external entity called should not be parsed,
the test case parsing it should raise an exception. Therefore, the tests validating
the security of the test cases also check for raised exceptions to see if the parser
is configured correctly. In addition, the test cases check if the fixes preserved the
original functionality of the code before fixing, i.e., the auto-fixes do not bring
negative impacts. To verify if the code’s functionality is preserved after the fix,
we run a test parse on an XML file without external entities. After auto-fixing,
the XML file should be parsed correctly without returning any exceptions. If
the XML file’s content is returned, it shows that the test case’s functionality is
preserved after the auto-fix. After running all the test cases, the output is a list
showing the functions that are broken and the functions that are still vulnerable
to XXE after the auto-fix is applied. This data can then be used to calculate the
number of successful, missed, and incorrect fixes.

We evaluated how well FindSecBugs detects these vulnerabilities before and
after using the instance tracking approach. The tests are based on the existing
Juliet test cases and our added test cases. FindSecBugs using existing Juliet
test cases return 100% precision and recall before and after implementing the
instance tracking approach. The true positives (TP), false positives (FP), false
negatives (FN), precision, and recall of test FindSecBugs on our added test cases
before implementing the instance tracking approach are shown in Table 3. The
precisions of the detection results of FindSecBugs XXE detectors on these added
test cases are still high. However, the high number of false negatives shows that
the detectors failed to detect a lot of vulnerabilities. All of the detectors were
able to handle added test cases 1 to 6, which tested different ways of initializing
the parser but fell through on added test cases 7 to 11. The reason for the false
negatives in added test cases 7 to 11 is that the existing FindSecBugs XXE
detectors do not keep track of which instance the secure method calls have been

10 Torstein Molland, Andreas Nesbakken Berger, and Jingyue Li

called on. The pseudocode of the FindSecBugs XXE detector is shown in Listing
10 and illustrates that it overlooks the insecure use of multiple parsers within the
same method. The FindSecBugs XXE detectors will try to identify the secure
call, i.e., the calls to set the security attributes of a parser. Once the secure call
is found, the parser will be set as secure. Without tracking all the instances,
FindSecBugs XXE detectors will miss other insecure instances.

1 for each opcode in method do
2 if name of opcode equals name of parse method
3 for each method call in method_callgraph do
4 if the method name equals name of a secure call
5 check parameters of method to see if

the parameter values are correct
6 end if
7 end for
8 end if
9 end for
10 if not all secure calls are found
11 report vulnerability
12 end if

Listing 10: FindSecBugs XXE detector pseudocode

Table 3: Summary of evaluating FindSecBugs using the added test cases before
implementing the instance tracking approach

Parser TP FP FN Precision Recall
DocumentBuilder 6 0 10 100% 38%
XMLStreamReader 6 0 4 100% 60%
XMLEventReader 6 0 4 100% 60%
FilteredReader 6 0 4 100% 60%
SAXParser 6 0 10 100% 38%
XMLReader 2 0 10 100% 17%
Transformer 20 0 12 100% 63%
Sum 52 0 54 100% 48%

A summary of the evaluation of FindSecBugs after using the instance tracking
approach on the added test cases is shown in Table 4. The instance tracking-
based vulnerability detectors identified all XXE vulnerabilities in the added test
cases without reporting any false positives. The instance tracking-based detec-
tors were also evaluated on the existing Juliet test cases. The results illustrate
that the instance tracking-based detectors are still able to identify all the XXE
vulnerabilities there without reporting any false positives.

The results of evaluating the performance of FindSecBugs XXE detectors
before and after using the instance tracking approach show that the overhead
introduced by the instance tracking is 0.25s to check through all our test cases
included XXE vulnerabilities. To run through all other Juliet test cases, which
has more than five millions line of code (LOC), the overhead introduced by the
instance tracking is only 20 seconds. The execution time was measured on a PC
with 16Gb of memory and a 3.9GHz CPU using Windows 10 Pro.

Title Suppressed Due to Excessive Length 11

Table 4: Summary of evaluating FindSecBugs using the added test cases after
implementing the instance tracking approach

Parser TP FP FN Precision Recall
DocumentBuilder 16 0 0 100% 100%
XMLStreamReader 10 0 0 100% 100%
XMLEventReader 10 0 0 100% 100%
FilteredReader 10 0 0 100% 100%
SAXParser 16 0 0 100% 100%
XMLReader 12 0 0 100% 100%
Transformer 32 0 0 100% 100%
Sum 106 0 0 100% 100%

A summary of the evaluation of the auto-fix on the added test cases created
is shown in Table 5. There is a high number of successful fixes for all the parsers.
There were no missed fixes. The incorrect fixes are due to the auto-fix not remov-
ing or modifying code that makes a factory explicitly vulnerable. A simplified
example of such a case is shown in Listing 11. The fix is inserted on the second
line, making the factory secure, which in turn makes parser p1 secure. However,
line 4 makes the factory insecure again, which in turn makes parser p2 insecure.
If line 4 is manually removed by a developer, then the fix inserted on line 2 will
make parsers p1 and p2 secure.

1 SAXParserFactory f = SAXParserFactory.newInstance();
2 f.setFeature(XMLConstants.FEATURE_SECURE_PROCESSING, true);
3 SAXParser p1 = f.newSAXParser();
4 f.setFeature(XMLConstants.FEATURE_SECURE_PROCESSING, false);
5 SAXParser p2 = f.newSAXParser();

Listing 11: Example of code fixed incorrectly
The instance tracking-based detectors will keep reporting these parsers as

vulnerable and notify the developer that they need to remove the insecure code
for the auto-fixes to be effective. Technically, our auto-fixing approach can be
slightly updated to remove the insecure code, e.g., the fourth line in Listing 11.
Concerning the strategy of auto-fixing, we chose to be conservative. Adding the
code to set the security attributes is always safe and makes the system more
secure. Deleting or changing the security attributes setup without developer’s
consensus can mess up the code. A future improvement could be to give the
developer the recommendation to remove the vulnerable code, i.e., the fourth line
in Listing 11, as a complement to the auto-fix. However, as part of our current
auto-fixing solution evaluations, these fixes were still regarded as incorrect fixes.

The auto-fixes were also evaluated on existing Juliet test cases. The results
of this evaluation are shown in Table 6, and illustrate that the auto-fixes could
fix all the vulnerabilities in these test cases without missed or incorrect fixes.

The result of the auto-fixes’ performance for XXE vulnerabilities show that
auto-fixing close to 30 vulnerabilities takes around a second for each parser.

12 Torstein Molland, Andreas Nesbakken Berger, and Jingyue Li

Table 5: Summary of the successful fixes, missed fixes, and incorrect fixes after
evaluating the auto-fixes on the added test cases

Parser Successful Missed Incorrect
DocumentBuilder 14 0 2
XMLStreamReader 9 0 1
XMLEventReader 9 0 1
FilteredReader 7 0 3
SAXParser 14 0 2
XMLReader 10 0 2
Transformer 28 0 4
Sum 91 0 15

Table 6: Summary of the successful fixes, missed fixes, and incorrect fixes after
evaluating the auto-fixes on the existing Juliet test cases

Parser Successful Missed Incorrect
DocumentBuilder 17 0 0
XMLStreamReader 17 0 0
XMLEventReader 17 0 0
FilteredReader 17 0 0
SAXParser 17 0 0
XMLReader 17 0 0
Transformer 34 0 0
Sum 136 0 0

4 Discussion

This section will discuss the strengths and weaknesses of our approach and com-
pare it with related work.

4.1 Pros and cons of our XXE vulnerability detector

All the existing Juliet test cases and the added test cases in our study are han-
dled by instance tracking. The instance tracking approach handles parameters,
secure and insecure method calls, and singular and multiple calls to determine
if a parser is secure. The sequence of the calls on the instance is kept track of,
which means that the approach can identify when an instance is vulnerable and
secure. Because it keeps track of the calls performed on different instances, it can
also know which parsers within a method are vulnerable and secure. Compared
with existing Java XXE vulnerability detectors, e.g., those implemented in Find-
SecBugs, the instance tracking approach can handle more complex control and
data flow variants in addition to the simplest forms of Java XXE vulnerabilities
with no false positives. Another strength of the instance tracking we imple-
mented for XXE is that it is generalizable to other vulnerabilities with insecure

Title Suppressed Due to Excessive Length 13

instances, such as insecure cookies. In Java, cookies are not set as secure by de-
fault [21]. After creating a cookie, the method setSecure(true) needs to be called
on the cookie instance to make it secure. Therefore, the cookie can be viewed
as a vulnerable instance if it misses the setSecure call. Such a vulnerability can
be detected and auto-fixed by the instance tracking approach presented in this
paper. Other instance-based vulnerabilities, e.g., missing httpOnly attributes,
can also be handled by the instance tracking approach due to this being an
instance-based vulnerability. In this study, we demonstrated the instance track-
ing approach using FindSecBugs. We can also implement the instance tracking
approach based on other Java program analysis frameworks, e.g., Soot [12]. The
instance tracking approach can detect the most popular Java XXE vulnerabil-
ities identified by Jan et al. [11], which cover 98.13% of their studies on open
source projects.

A weakness of the instance tracking-based detection is that it takes longer
to run than the existing XXE detectors. However, our evaluation results show
that the overhead is trivial.

4.2 Pros and cons of our XXE vulnerability auto-fixing tool

Existing auto-fixing tools provide unspecific auto-fix suggestions and list all the
available auto-fixes. ASIDE [23] and ESVD [18] use ESAPI to provide their auto-
fixes. However, neither of them presents the auto-fixes applicable to a certain
vulnerability but instead lists all the auto-fixes ESAPI supports, making it diffi-
cult for developers to know which auto-fix to apply. Our auto-fix tool allows bulk
auto-fixes of Java XXE vulnerabilities. When fixing source code using ASTs, de-
velopers are assured that the code change will not break the code’s semantics.
This means that the fix will not leave any incorrect tokens such as curly braces
or commas. Our implementation of the auto-fix approach has been done in a
generalizable manner. Thus, several missing functions and security feature setup
shown in Table 1 can be added.

Our auto-fixes are backward compatible with the existing XXE vulnerability
detectors in FindSecBugs, which means that they can be applied using the ex-
isting detectors and the instance tracking-based detectors we have implemented.
The issue of making our tool backward compatible with FindSecBugs is that
FindSecBugs reports a vulnerability where it can be exploited, not where the
fix should be inserted. These two locations may differ. For the example shown
in Listing 1, the vulnerability is reported on line 5 on the SAXParser instance,
but the fix is inserted on line 3 on the SAXParserFactory instance. Thus, our
auto-fix tool has to traverse the AST to find the location of the instance to insert
the fix.

As explained in Section 2.2, our AST-based auto-fix approach does not fix
parsers that have been made explicitly vulnerable through calls to insecure meth-
ods because of choice of being conservative when auto-fixing code. The insecure
method calls need to be manually removed by a developer for the fixes to be
effective.

14 Torstein Molland, Andreas Nesbakken Berger, and Jingyue Li

4.3 Pros and cons of our test bed

Compared with existing test beds, e.g., Juliet Test Suite [15], WebGoat [17],
and ManyBugs [13], our test bed allows researchers to quickly and easily make
a thorough evaluation of their XXE detectors and auto-fixing tool. The test bed
also has more robust testing of intraprocedural data flows than the Juliet Test
Suite. Ideally, we shall use a large Java application to evaluate our approach and
tool. However, to our knowledge, no existing Java applications cover all the test
cases we have added in our test bed. It means that the Java application may not
bring better insights on the precision and recall of the tool.

Our implementation of the instance-based vulnerability detection and auto-
fixing was based on FindSecBugs and the Eclipse IDE and its APIs. This could
mean that the results discovered for adding auto-fixes to Eclipse-based on Find-
SecBugs might not be applicable for other analysis tools and other IDEs. We
used generalized approaches such as modifying an AST and using data flow
analysis, which can possibly be generalized to other IDEs.

5 Conclusion and Future Work

Studies show that Java XXE vulnerabilities are prevalent, and many of the vul-
nerabilities are caused by missing proper security attributes setting after instance
initialization. This study proposed a novel instance tracking-based approach to
enhance the existing Java XXE vulnerability detectors. We also proposed a novel
auto-fix approach based on AST for fixing the identified Java XXE vulnerabili-
ties. Our detection and auto-fixing methods are implemented as extensions of an
existing IDE plugin, i.e., FindSecBugs. We evaluated our proposed approaches
using a test bed, including instance-related vulnerabilities derived from several
XXE CWEs. Our results show that instance tracking performed significantly
better than FindSecBugs with high precision and recall values. The auto-fixes
were able to fix many vulnerabilities successfully. The performance impact of
instance tracking was also evaluated and shown to be negligible.

Our future work is to add support for more parsers to the test bed, detec-
tors, and auto-fixes. Currently, FindSecBugs reports a vulnerability where it
can be exploited, not where the fix should be inserted. An empirical study will
be conducted to figure out where developers want the bug to be reported by
the detectors. The study will give interesting results to help make the vulner-
ability detectors and auto-fixing tools more user-friendly. In addition, we will
pilot the IDE plugins in an experimental or industrial setting to study whether
IDE plugins implemented in this study help developers detect and auto-fix such
vulnerabilities in the first place.

Bibliography

[1] Cwe-611: Improper restriction of xml external entity reference (2019),
https://cwe.mitre.org/data/definitions/611.html, accessed Jun 01,
2020

[2] Cwe-776: Improper restriction of recursive entity references in dtds (’xml
entity expansion’) (2019), https://cwe.mitre.org/data/definitions/
776.html, accessed Jun 01, 2020

[3] Ast (2020), https://en.wikipedia.org/wiki/Abstract_syntax_tree,
accessed 21 Oct, 2020

[4] Java for web app. development (2020), https://spectrum.ieee.org/
computing/software/the-top-programming-languages-2019, accessed
21 Oct, 2020

[5] Java xml parser (2020), https://docs.oracle.com/en/java/javase/
13/docs/api/java.xml/javax/xml/parsers/package-summary.html,
accessed 21 Oct, 2020

[6] XMLReaderFactory (Java SE 13 & JDK 13) (2020), https:
//docs.oracle.com/en/java/javase/13/docs/api/java.xml/org/
xml/sax/helpers/XMLReaderFactory.html, accessed May 25, 2020

[7] Xxeattack (2020), https://owasp.org/www-community/
vulnerabilities/XML_External_Entity_(XXE)_Processing, accessed
21 Oct, 2020

[8] Arteau, P.: Find Security Bugs (2019), https://find-sec-bugs.github.
io/, accessed September 22, 2019

[9] Corporation, O.: XMLStreamReader (Java SE 13 & JDK 13) (2020),
https://docs.oracle.com/en/java/javase/13/docs/api/java.xml/
javax/xml/stream/XMLStreamReader.html, accessed May 28, 2020

[10] Falkenberg, A., Mainka, C., Somorovsky, J., Schwenk, J.: A new approach
towards dos penetration testing on web services. In: 2013 IEEE 20th Inter-
national Conference on Web Services. pp. 491–498 (2013)

[11] Jan, S., Nguyen, C.D., Briand, L.: Known xml vulnerabilities are still a
threat to popular parsers and open source systems. In: 2015 IEEE Interna-
tional Conference on Software Quality, Reliability and Security. pp. 233–241
(Aug 2015). https://doi.org/10.1109/QRS.2015.42

[12] Lam, P., Bodden, E., Lhoták, O., Hendren, L.: The soot framework for java
program analysis: a retrospective

[13] Le Goues, C., Holtschulte, N., Smith, E.K., Brun, Y., Devanbu, P., Forrest,
S., Weimer, W.: The manybugs and introclass benchmarks for automated
repair of c programs. IEEE Transactions on Software Engineering 41(12),
1236–1256 (Dec 2015). https://doi.org/10.1109/TSE.2015.2454513

[14] NIST: Juliet test suite v1.2 for java user guide (2012), https:
//samate.nist.gov/SRD/resources/Juliet_Test_Suite_v1.2_for_
Java_-_User_Guide.pdf, accessed May 12, 2019

https://cwe.mitre.org/data/definitions/611.html
https://cwe.mitre.org/data/definitions/776.html
https://cwe.mitre.org/data/definitions/776.html
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://spectrum.ieee.org/computing/software/the-top-programming-languages-2019
https://spectrum.ieee.org/computing/software/the-top-programming-languages-2019
https://docs.oracle.com/en/java/javase/13/docs/api/java.xml/javax/xml/parsers/package-summary.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.xml/javax/xml/parsers/package-summary.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.xml/org/xml/sax/helpers/XMLReaderFactory.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.xml/org/xml/sax/helpers/XMLReaderFactory.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.xml/org/xml/sax/helpers/XMLReaderFactory.html
https://owasp.org/www-community/vulnerabilities/XML_External_Entity_(XXE)_Processing
https://owasp.org/www-community/vulnerabilities/XML_External_Entity_(XXE)_Processing
https://find-sec-bugs.github.io/
https://find-sec-bugs.github.io/
https://docs.oracle.com/en/java/javase/13/docs/api/java.xml/javax/xml/stream/XMLStreamReader.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.xml/javax/xml/stream/XMLStreamReader.html
https://doi.org/10.1109/QRS.2015.42
https://doi.org/10.1109/QRS.2015.42
https://doi.org/10.1109/TSE.2015.2454513
https://doi.org/10.1109/TSE.2015.2454513
https://samate.nist.gov/SRD/resources/Juliet_Test_Suite_v1.2_for_Java_-_User_Guide.pdf
https://samate.nist.gov/SRD/resources/Juliet_Test_Suite_v1.2_for_Java_-_User_Guide.pdf
https://samate.nist.gov/SRD/resources/Juliet_Test_Suite_v1.2_for_Java_-_User_Guide.pdf

16 Torstein Molland, Andreas Nesbakken Berger, and Jingyue Li

[15] NIST: Test suites (2017), https://samate.nist.gov/SRD/testsuite.
php, accessed October 29, 2019

[16] Oliveira, R.A., Laranjeiro, N., Vieira, M.: Wsfaggressor: An extensible web
service framework attacking tool. In: Proceedings of the Industrial Track
of the 13th ACM/IFIP/USENIX International Middleware Conference.
MIDDLEWARE ’12, Association for Computing Machinery, New York,
NY, USA (2012). https://doi.org/10.1145/2405146.2405148, https:
//doi.org/10.1145/2405146.2405148

[17] OWASP: Webgoat project (2019), https://www2.owasp.org/
www-project-webgoat/, accessed December 4, 2019

[18] Sampaio, L., Garcia, A.: Exploring context-sensitive data flow analy-
sis for early vulnerability detection. Journal of Systems and Software
113, 337–361 (2016). https://doi.org/https://doi.org/10.1016/j.
jss.2015.12.021, http://www.sciencedirect.com/science/article/
pii/S0164121215002873

[19] Späth, C., Mainka, C., Mladenov, V., Schwenk, J.: Sok: Xml parser vulner-
abilities. In: WOOT (2016)

[20] The OWASP Foundation: Owasp top 10 - 2017 (2017), https://owasp.
org/www-pdf-archive/OWASP_Top_10-2017_%28en%29.pdf.pdf, accessed
January 21st, 2019

[21] The OWASP Foundation: Secure Cookie Flag (2020), https://owasp.org/
www-community/controls/SecureFlag, accessed Jun 01, 2020

[22] The OWASP Foundation: Owasp top 10 - 2021 (2021), https://owasp.
org/www-project-top-ten/, accessed August 29, 2021

[23] Xie, J., Chu, B., Lipford, H.R., Melton, J.T.: ASIDE: IDE support for web
application security. In: ACM International Conference Proceeding Series.
pp. 267–276 (2011). https://doi.org/10.1145/2076732.2076770

https://samate.nist.gov/SRD/testsuite.php
https://samate.nist.gov/SRD/testsuite.php
https://doi.org/10.1145/2405146.2405148
https://doi.org/10.1145/2405146.2405148
https://doi.org/10.1145/2405146.2405148
https://doi.org/10.1145/2405146.2405148
https://www2.owasp.org/www-project-webgoat/
https://www2.owasp.org/www-project-webgoat/
https://doi.org/https://doi.org/10.1016/j.jss.2015.12.021
https://doi.org/https://doi.org/10.1016/j.jss.2015.12.021
https://doi.org/https://doi.org/10.1016/j.jss.2015.12.021
https://doi.org/https://doi.org/10.1016/j.jss.2015.12.021
http://www.sciencedirect.com/science/article/pii/S0164121215002873
http://www.sciencedirect.com/science/article/pii/S0164121215002873
https://owasp.org/www-pdf-archive/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://owasp.org/www-pdf-archive/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://owasp.org/www-community/controls/SecureFlag
https://owasp.org/www-community/controls/SecureFlag
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://doi.org/10.1145/2076732.2076770
https://doi.org/10.1145/2076732.2076770

	Automatic Detection and Fixing of Java XXE Vulnerabilities Using Static Source Code Analysis and Instance Tracking

