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Abstract. We propose four public-key encryption schemes with tight
simulation-based selective-opening security against chosen-ciphertext at-
tacks (SIM-SO-CCA) in the random oracle model. Our schemes only
consist of small constant amounts of group elements in the ciphertext,
ignoring smaller contributions from symmetric-key encryption, namely,
they have compact ciphertexts. Furthermore, three of our schemes have
compact public keys as well.

Known (almost) tightly SIM-SO-CCA secure PKE schemes are due to
the work of Lyu et al. (PKC 2018) and Libert et al. (Crypto 2017). They
have either linear-size ciphertexts or linear-size public keys. Moreover,
they only achieve almost tightness, namely, with security loss depending
on the security parameters.
Different to them, our schemes are the first ones achieving both tight

SIM-SO-CCA security and compactness. Our schemes can be divided
into two families:
Direct Constructions. Our first three schemes are constructed directly

based on the Strong Diffie-Hellman (StDH), Computational DH
(CDH), and Decisional DH assumptions. Both their ciphertexts and
public keys are compact. Their security loss is a small constant. In-
terestingly, our CDH-based construction is the first scheme achieving
all these advantages based on a weak, search assumption.

A Generic Construction. Our last scheme is the well-known Fujisaki-
Okamoto transformation. We show that it can turn a lossy encryption
scheme into a tightly SIM-SO-CCA secure PKE. This transformation
preserves both tightness and compactness of the underlying lossy
encryption, which is in contrast to the non-tight proof of Heuer et al.
(PKC 2015).

Keywords. Selective-opening security, public-key encryption, tight secu-
rity, random oracle model.

1 Introduction

Selective-opening (SO) security is a stronger security notion for encryption
schemes. It considers encryption security in the multi-challenge setting. More
precisely, an adversary is given multiple challenge ciphertexts and it is allowed
to corrupt some of them to get the corresponding randomness. SO security
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guarantees that even with this additional capability an adversary still cannot
learn any information about the remaining ‘unopened’ messages.

The motivation of constructing SO secure encryption is that removing cryp-
tographic information is hard and expensive in practice and adversaries can hack
into a user’s computer and reveal the randomness used in generating a ciphertext.
In some scenario, it is even a requirement to reveal the randomness to publicly
verify a user’s computation.

Definitions of Selective-Opening Security. There are two types of defini-
tions for SO security, the indistinguishability-based (IND-based) ones (weak-IND-
SO and full-IND-SO) [3,8] and the simulation-based (SIM-based) one (SIM-SO)
[3]. They are not polynomial-time equivalent to each other. For SIM-SO security,
it requires that for every SO adversary its output can be efficiently simulated by a
simulator that sees only the opened messages. SIM-SO notion is the most common
one to study [28,20,25,22,29], since it does not require the message distribution to
be efficiently conditionally resamplable (cf. [3]). Moreover, previous work showed
that SIM-SO-CCA and full-IND-SO-CCA notions are the strongest SO security
[8,2,25].

Tight Reductions. When we prove the security of a cryptographic scheme Π,
we often construct a reduction to show that breaking the security of Π implies
breaking the underlying assumption Γ . For concrete security, we argue that if an
adversary A has advantage ε in breaking Π then we have another adversary B
that breaks Γ with advantage ε′ = ε/L, and the factor L is called the security
loss.

A cryptographic scheme is called tightly secure if L is a small constant,
assuming that the running time of A is approximately the same as B (up to
a constant factor). A tight reduction can give quantitatively higher guarantees
than a loose one. From a more practical perspective, a tight reduction allows
shorter key-length recommendations based on the best known attacks against
the underlying assumption. This can potentially yield more efficient schemes.
Currently, our community aims to reduce the cost for tight security and construct
efficient and tightly secure cryptographic schemes (such as the signature scheme
in [12]). Hence, it is more desirable to have an efficient and tightly secure scheme,
compared to its non-tight counterparts.

Our Goal: Compact PKE with Tight SIM-SO-CCA Security. In this pa-
per, we are interested in efficient and tightly SIM-SO-CCA secure public-key
encryption schemes. We aim at schemes with compact ciphertexts and public
keys. Here ‘compact’ means constant-size, and SIM-SO-CCA security provides
security against chosen-ciphertext attacks in addition to the SIM-SO security.
We discuss the state of the art in approaching this goal as follows:

(Almost) Tight, yet Non-Compact Schemes. While there are compact and
tightly IND-CCA secure PKE schemes [16,18], known tightly SIM-SO-CCA PKE
schemes [27,29] are still non-compact wrt. either ciphertext size or public key
size. Moreover, the security reductions in both schemes are not fully tight, but
almost tight (in the terminology of [11]), namely, the security loss depends on
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the message bit-length that is a polynomial of the security parameter. Although
almost tightness is already interesting, our goal is to achieve security loss with
small constants, and it was unknown even with random oracles.

To provide more details, the scheme of Lyu et al. [29] is a recent PKE scheme
with tight SIM-SO-CCA security, and its ciphertexts consist of O(|m|) group ele-
ments, where |m| is the bit-length of the message. In a nutshell, their construction
is a generic construction that tightly turns a IND-CCA secure key encapsulation
mechanism (KEM) to a SIM-SO-CCA secure PKE, and their technique is to
encrypt the message “bit-by-bit”. Hence, their resulting construction does not
preserve the compactness of the underlying KEM in terms of ciphertext overhead.
Namely, even if we instantiate it with a compact KEM, it cannot give us a
compact PKE with tight SIM-SO-CCA. Furthermore, we note that this bit-wise
approach is used in many SIM-SO secure schemes [3,14,28].

While the scheme of Libert et al. [27] has compact ciphertexts, its public keys
are not compact. Besides the large public key, their encryption algorithm needs
to homomorphically evaluate the evaluation circuit of a PRF over GSW [17]
ciphertexts that encrypts a PRF key. Hence, their scheme is very impractical.
Compact, yet Non-Tight Schemes. The work of Heuer et al. [20] is an ex-
ception to the bit-wise approach. It is the first work that proves SIM-SO-CCA
security of practical PKE schemes, such as DHIES [1], OAEP [5], and Fujisaki-
Okamoto (FO) [15], in the random oracle model [4]. All these schemes have
compact ciphertexts. However, their security reduction is not tight, due to the
guessing strategy in their security proofs. For instance, their proof for the FO
transformation lose a factor ofO(µ·Qh), where µ and Qh are numbers of challenge
ciphertexts and random oracle queries, respectively.

Finally, we stress that, even though there exist compact and (almost) tightly
SIM-SO-CPA secure schemes from [3,25], it is not known how to transform them
into SIM-SO-CCA by preserving its tightness and compactness. This is the case
even in the random oracle model, given the non-tight bounds from the work of
Heuer et al. [20].

1.1 Our Contribution

We construct the first compact PKE schemes with tight SIM-SO-CCA security
in the random oracle model. More precisely, we propose four PKE schemes
following two main ideas. We highlight that our first three schemes achieve tight
SIM-SO-CCA security and compact ciphertexts and compact public keys at the
same time. Table 1 compares our schemes with other known SO secure PKE
schemes under the Diffie-Hellman assumptions.
Three Direct Constructions. Our first construction, PKEStDH, is a direct
construction of tightly SIM-SO-CCA secure PKE based on the strong Diffie-
Hellman (StDH) assumption [1]. We then use the twinning technique from [10]
to remove the decision oracle in the StDH assumption and construct our second
tight scheme (called PKETDH) based on the twin DH (TDH) assumption. The
TDH assumption is tightly implied by the standard computational DH (CDH)
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Scheme Security Ass. Loss |pk| |m| |c| − |m| RO?

BHY [3] IND-SO-CPA DDH 1 2|G| |G| |G| No
HJR [25] SIM-SO-CPA DDH O(`) (`+ 1)2|G| ` |G| No
LLHG [29] SIM-SO-CCA DDH O(`) 6|G| ` 3`|G| No
DHIES proved in [20] SIM-SO-CCA StDH O(µ) |G| ` |G| Yes
FO proved in [21] SIM-SO-CCA DDH O(µQh) |G| ` |G| Yes

PKEStDH (Figure 4) SIM-SO-CCA StDH 8 |G| ` 2|G| Yes
PKETDH (Figure 10) SIM-SO-CCA CDH 8 2|G| ` 2|G| Yes
PKEDDH (Figure 11) SIM-SO-CCA DDH 10 |G| ` 4|G| Yes
FO1 (in full version [7]) IND-SO-CCA DDH 2 2|G| ` |G| Yes
FO2 (Figure 16) SIM-SO-CCA DDH O(`) (`+ 1)2|G| ` |G| Yes

Table 1. Comparison of our constructions with other SO secure PKE schemes. We
ignore schemes that are non-tight and significantly less efficient than ours. |G| is the
bit-length of group G. ` is the message bit-length, which is independent of the group
size, and it can be any polynomial in the security parameter λ. µ and Qh are numbers
of challenge ciphertexts and random oracle queries, respectively. The SO security losses
of DHIES and FO can be found in [20, Theorem 6] and [21, Theorem 6].

assumption. Hence, this yields the first tightly SIM-SO-CCA secure PKE based
on such a standard search assumption.

Both schemes have very short ciphertexts and public keys. Concretely, there
are 2 group elements in the ciphertext overhead for PKEStDH and PKETDH, and 1
element for PKEStDH’s public key and 2 for PKETDH.

We also show that the decision oracle in the proof of PKEStDH can be removed
using the decisional DH assumption. However, the resulting scheme PKEDDH has
longer ciphertexts than the previous two, although it is still compact. All these
schemes have small-constant security loss and compact ciphertexts and compact
public keys.
Fourth Construction: Fujisaki-Okamoto, Revisited. Our last contribu-
tion is to prove that a lossy encryption [3] can be transformed to a PKE with
tight SO security via the well-known Fujisaki-Okamoto (FO) transformation
[15]. The transformation preserves the tightness (up to a small constant) and
compactness of the underlying lossy encryption.

Roughly speaking, a lossy encryption scheme has normal and lossy keys.
Under normal keys, the scheme behave as a normal PKE. But under lossy keys,
there exists an opener that can explain a ciphertext to any message by outputting
the suitable randomness. An opener is not necessarily efficient. Especially, if the
lossy encryption does not have an efficient opener (e.g., the BHY scheme [3]),
then we can only show tight IND-SO-CCA security of the FO transformation.
However, if the lossy encryption has an efficient opener (e.g., the HJR scheme
[25]), then it yields tight SIM-SO-CCA security of the FO transformation.

Our result implies that tight IND-SO-CCA and SIM-SO-CCA security can
be achieved from any assumption that has suitable lossy encryption. For a
fair comparison, we implement our generic construction with DDH-based lossy
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Scheme Security Ass. Bit Security |pk| |m| |c| − |m|

BHY [3] IND-SO-CPA DDH 128 64 32 32
HJR [25] SIM-SO-CPA DDH 120 2113568 32 32
LLHG [29] SIM-SO-CCA DDH 120 192 32 24576
DHIES proved in [20] SIM-SO-CCA StDH 96 32 32 64
FO proved in [21] SIM-SO-CCA CDH 64 32 32 32

PKEStDH (Figure 4) SIM-SO-CCA StDH 125 32 32 96
PKETDH (Figure 10) SIM-SO-CCA CDH 125 64 32 96
PKEDDH (Figure 11) SIM-SO-CCA DDH 124 32 32 160
FO1 (in full version [7]) IND-SO-CCA DDH 127 64 32 32
FO2 (Figure 16) SIM-SO-CCA DDH 120 2113568 32 32

Table 2. Concrete security and efficiency comparison. All schemes are instantiated
with P256, and we consider µ = 232, qH = 232, |m| = 32 bytes, and the output length
of hash is 32 bytes. We consider the concrete security loss in the “Bit Security”.

encryption schemes from [3,25]. They both have only 1 group element in the
ciphertext (cf. Table 1). Our proof for the FO transformation is compactness- and
tightness-preserving. Hence, for SIM-SO-CCA security, since the HJR scheme
has non-compact public keys, it is also the case for our scheme. Similarly, the
HJR scheme has only almost tightness, so has ours. We suppose that the size of
ciphertexts is more critical than that of public keys, since ciphertexts have to be
sent frequently over the internet for each communication, while public keys are
stored in a server and can be used for a very long time.

Efficiency Comparison. In Table 2 we estimate our concrete efficiency and
compare it with other known SO secure schemes. We focus on schemes based
the Diffie-Hellman assumptions and ignore those non-tight and significantly less
efficient than ours (e.g., [23]). We estimate the efficiency of all schemes using
the same NIST P256 curve. According to the corresponding security proofs, we
consider the security level achieve by those schemes.

Our schemes significantly reduce the cost for tight SIM-SO-CCA, compared
to LLHG. Moreover, our schemes are comparable to the practical PKE schemes,
such as FO and DHIES. For instance, our FO2 has the same ciphertext size, but
it achieves a higher level of security, thanks to the tight security proof. Both
PKEStDH and PKETDH are comparable to DHIES.

Practical Relevance. When a RO-based scheme is implemented in practice,
one would instantiate the RO with a hash function, such as SHA-3. For SIM-SO-
CCA PKE schemes in the ROM (including the previous work of Heuer et al. [20]
and ours), we should be more careful and pay extra attention to the impossibility
result of Bellare et al. [2]. More precisely, it shows that if a PKE scheme is binding
then it cannot be SIM-SO secure. In a nutshell, it uses the binding property to
construct an adversary such that there is no simulator can conclude the SIM-SO
security. Hence, in the programmable ROM, the work of Heuer et al. and our
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schemes can all bypass it, since they are not binding according to the definition
in [2]. The programmability is crucial for our proofs.

However, if one simply replaces the RO with, for instance, SHA-3, the situation
becomes rather complex. For our fourth construction, it is not binding and the
security results remain, since it uses lossy encryption and it allows us to generate
encryption collisions. This is also the reason why [2] does not apply to lossy
encryption schemes. For the scheme of Heuer et al. and our first three direct
constructions, they will become binding in this case. Hence, the impossibility
result of Bellare et al. applies, and they cannot have SIM-SO-CCA security.
But the attack in [2] does not imply an adversary breaking IND-SO security,
which means the scheme of Heuer et al. and our first three direct constructions
can have IND-SO-CCA security, since SIM-SO-CCA implies IND-SO-CCA. An
alternative solution could be finding a suitable programmable hash function in
the standard model to instantiate our first three direction constructions. We
leave constructing compact and tight SIM-SO-CCA secure PKE in the standard
model as an interesting open problem.

1.2 Technical Overview

Technical Goal: Openability and Tightness. Selective-opening security
is usually difficult to achieve. This is because the simulator S has to be able
to ‘open’ any challenge ciphertext by producing the corresponding message and
randomness. An adversary can verify whether a ciphertext has been correctly
opened using the public encryption algorithm. It is not entirely trivial how to
provide this openability efficiently. During the security proof, the simulator needs
to embed a problem instance into the unopened ciphertexts, since usually it
cannot open a ciphertext with a problem instance. Even worse, achieving tightness
introduce an additional layer of complexity to the problem, namely, this opening
procedure should be done in a tight fashion.

The work of Heuer et al. provides efficient openability by reprogramming
the random oracle (RO) and guessing one unopened ciphertext. This unopened
ciphertext will be embedded a problem challenge. We recall Heuer et al.’s strategy
[20] of proving DHIES as an example to illustrate the aforementioned challenges
in achieving tight SIM-SO-CCA security. The work of Heuer et al. is also the
starting point of our work.

We consider the DHIES scheme with one-time pad as the symmetric encryp-
tion. Let G := 〈g〉 be a group with order p, and pk := gx be a public key. A
ciphertext C of DHIES has the form

C := (R := gr, d := K ⊕m,MACk(R, d)) ,

where (K, k) := H(R, pkr) and H is modeled as a RO. MACk produces a MAC
tag using k.

To prove its SIM-SO-CCA security, we use the strong Diffie-Hellman (StDH)
assumption which states that given a StDH instance (X = gx, Y ) and oracle
access to dhpX , it is hard to compute Y x. Here, dhpX(Ŷ , Ẑ) outputs the Boolean
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value of Ẑ = Ŷ x. The reduction for SIM-SO-CCA security of DHIES firstly define
pk := X and guesses the i∗-th ciphertext will not be opened (i∗ $← [µ]). Then Y
is embeded into Ci∗ by Ri∗ := Y . By using the dhpX oracle and the RO patching
technique [20], the reduction simulates the whole security game without knowing
the secret x. We can prove that the adversary cannot get any information about
(Ki∗ , ki∗) = H(Y, Y x) unless it computes Y x, which breaks the StDH assumption.
Thus, di∗ is uniformly random and independent of Ri∗ .

Unfortunately, since the above strategy needs to guess i∗, it requires a loss of
µ, and the resulting security is non-tight and depends on the number of challenge
ciphertext. One may consider using the random self-reducibility of StDH and
embedding a randomized instance into challenge ciphertext Ci as Ri := Y · gsi

where si $← Zp (for all i ∈ [µ]). However, after doing so, one cannot open any
ciphertext, since the discrete logarithm of Y is unknown. This is why the guessing
approach is required.
Our Solution I: DHIES with Double Randomness. Our first solution is
a direct improvement on the DHIES scheme by doubling the randomness R in
the ciphertext. We only give some rough idea here and refer Section 3 for more
details.

More precisely, we modify the generation of ciphertexts in DHIES: Instead
of sampling a single r, we firstly choose a random bit b $← {0, 1}, and then we
choose rb $← Zp and R1−b

$← G (without knowing R1−b’s discrete logarithm).
Our modified DHIES scheme has ciphertexts with form:

C = (R0, R1, d = K ⊕m, h(k,R0, R1, d)) ,

where (K, k) := H(b, R0, R1, pkrb), H is a RO, and h is a collision-resistant hash
function. We note that sampling a random group element without knowing its
discrete logarithm can be done in many widely-used groups like a subgroup of
Z∗q where q is a safe prime and prime-order elliptic curves.

After the modification, a ciphertext can have two valid randomness, namely,
(b, rb, R1−b) and (1− b, r1−b, Rb), in the view of an adversary, by carefully pro-
gramming the RO H. Based on this, our simulator can embed the StDH instances
to all challenge ciphertexts and open any ciphertext.
Our Solution II: Lossy Encryption. The idea of having multiple valid ran-
domness can be implemented by a lossy encryption, since under its lossy keys
a ciphertext can be explained to different messages. Based on this, we use the
lossy encryption as a tool to revise the security proof for the Fujisaki-Okamoto
transformation and give a tight proof for its SIM-SO-CCA security. Another
view of our second solution is that we transform the lossy-encryption-based
SIM-SO-CPA secure PKE to a SIM-SO-CCA secure one, tightly.
Open Problems. We leave constructing (almost) tightly SIM-SO-CCA secure
PKE with compact ciphertexts and compact public keys in the standard model
as an interesting open problem. Moreover, our direction constructions are based
on the Diffie-Hellman assumptions. We will study how to extend them in the
post-quantum setting (for instance, with lattices).
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2 Preliminaries

Let n be an integer. [n] denotes the set {1, ..., n}. Let A be an algorithm. If A is
probabilistic, then y $← A(x) means that the variable y is assigned to the output
of A on input x. If A is deterministic, then we write y := A(x). We write AO to
indicate that A has classical access to oracle O. A ⇒ out denotes the event that
A outputs out. Unless we state it explicitly, all our algorithm are probabilistic
polynomial-time (PPT). Throughout this paper, λ is the security parameter. The
terms such as ‘PPT’ and ‘negligible’ are defined wrt λ.
Games. We use the code-based games [6] to define and prove security. We
implicitly assume that Boolean flags are initialized to false, numerical types are
initialized to 0, sets are initialized to ∅, while strings are initialized to the empty
string ε. Pr[GA ⇒ 1] denotes the probability that the final output GA of game G
running an adversary A is 1. Let Ev be an (classical and well-defined) event. We
write Pr[Ev : G] to denote the probability that Ev occurs during the game G.
Random Oracle. We use lazy sampling to simulate random oracles in this
paper. Let X and Y be two finite sets and H : X → Y be a random oracle in
a security game G. During the simulation of G, we use a list H to record all
query-respond pairs of H. On query x, the game simulator samples y $← Y, sets
H[x] := y (which means that now H(x) = y), and then returns y as the respond.
We say x has been queried, or simply x ∈ H, if and only if H[x] = y for some
y ∈ Y. For x /∈ H, we always have H[x] = ⊥ /∈ Y.

2.1 Cryptographic Assumptions

Let G be an cyclic group with a generator g and prime order p. Let X = gx

and Y = gy for some x, y ∈ Zp. The CDH value of X and Y is written as
cdh(X,Y ) = gxy. Here we suppose that (G, g, p) is a public parameter.

Definition 1 (Multi-Instance DDH (mDDH)). We say the mDDH problem
is hard on G if for any A, the mDDH advantage of A against G

AdvmDDH
G (A) :=

∣∣∣Pr
[
A(g1, (gri

0 , g
ri
1 )i∈[µ])⇒ 1

]
− Pr

[
A(g1, (gri

0 , g
r′i
1 )i∈[µ])⇒ 1

]∣∣∣
is negligible, where µ is the number of challenges, g0 := g, g1 := gω0 for some
ω $← Zp, and ri, r′i $← Zp for some i ∈ [µ].

By the random self-reducibility of DDH [13], mDDH assumption is tightly
equivalent to DDH assumption (i.e., single-instance version of mDDH).

Definition 2 (Strong Diffie-Hellman (StDH) Problem [1]). For a fixed
X ∈ G, let dhpX be the gap oracle that given (Y ′, Z ′) ∈ G2 outputs whether
cdh(X,Y ′) = Z ′ or not. We say the StDH problem is hard on G if for any A, the
StDH advantage of A against G, AdvStDH

G (A), is negligible.

AdvStDH
G (A) := Pr

[
(X,Y ) $← G2,AdhpX (·,·)(X,Y )⇒ cdh(X,Y )

]
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Definition 3 (Twin Diffie-Hellman (TDH) Problem [10]). For fixed X0, X1 ∈
G, let 2dhpX0,X1 be an oracle that on input (Y ′, Z ′0, Z ′1) ∈ G3, determines whether
cdh(X0, Y

′) = Z ′0 and cdh(X1, Y
′) = Z ′1. We say the TDH problem is hard on G

if for any A, the TDH advantage of A against G

AdvTDH
G (A) := Pr

[
A2dhpX0,X1 (·,·,·)(X0, X1, Y )⇒ (cdh(X0, Y ), cdh(X1, Y ))

]
is negligible, where X0, X1, Y

$← G.

The StDH and TDH problems can be extended to multi-instance versions.

Definition 4 (Multi-Instance StDH (mStDH)). Let µ be the number of in-
stance. We say the mStDH problem is hard on G if for any A, given X,Y1, ..., Yµ

$←
G, the mStDH advantage of A against G, AdvmStDH

G (A), is negligible.

AdvmStDH
G (A) := Pr

[
AdhpX (·,·)(X, (Yi)i∈[µ])⇒ cdh(X,Yi) for some i ∈ [µ]

]
Definition 5 (Multi-Instance TDH (mTDH)). Let µ be the number of in-
stance. We say the mTDH problem is hard on G if for any A, given X0, X1, Y1, ...,
Yµ

$← G, the mTDH advantage of A against G, AdvmStDH
G (A), is negligible

AdvmStDH
G (A) := Pr

[
A2dhpX0,X1 (·,·,·)(X0, X1, (Yi)i∈[µ])
⇒ (cdh(X0, Yi), cdh(X1, Yi)) for some i ∈ [µ]

]
The mStDH and mTDH assumptions are tightly implied by the StDH and

TDH assumption, respectively. This can be showed naturally by the random
self-reducibility of the Diffie-Hellman assumption. We state the lemmas here and
leave the proof in our full version paper [7].

Lemma 1 (StDH tight−−−→ mStDH). For any mStDH adversary A, there exists an
StDH adversary B such that AdvmStDH

G (A) ≤ AdvStDH
G (B).

Lemma 2 (TDH tight−−−→ mTDH). For any mTDH adversary A, there exists an
TDH adversary B such that AdvmTDH

G (A) ≤ AdvTDH
G (B).

Definition 6 (Collision Resistance). A hash function h has collision resis-
tance if for all adversary A, the CR advantage of A against h

AdvCR
h (A) := Pr [x 6= x′ ∧ h(x) 6= h(x′)|(x, x′) $← A(h)]

is negligible. A hash function family H is collision-resistant if for all h $← H,
AdvCR

h (A) is negligible.
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GAME CORAPKE
01 (pk, sk)← KG
02 m $← AO(pk, sk)
03 c = Enc(pk,m)
04 if Dec(sk, c) = m : return 1
05 return 0

Fig. 1. The COR game for a PKE scheme PKE and A. A might have access to some
oracle O (e.g., random oracles, decryption oracles). It depends on the specific reduction.

2.2 Public-Key Encryption Scheme

Definition 7 (PKE). A Public-Key Encryption (PKE) scheme PKE consists
of three polynomial-time algorithms (KG,Enc,Dec) and a message space M, a
randomness space R, and a ciphertext space C. KG outputs a public and secret
key pair (pk, sk). The encryption algorithm Enc, on input pk and a message
m ∈M, outputs a ciphertext c ∈ C. We also write c := Enc(pk,m; r) to indicate
the randomness r ∈ R explicitly. The decryption algorithm Dec, on input sk and
a ciphertext c, outputs a message m′ ∈M or a rejection symbol ⊥ /∈M.

Correctness of PKE. Some of our PKE schemes do not have perfect correct-
ness, and the correctness bound of PKE might depend on some computational
bound, e.g., the collision bound of hash function. Following [24], we use a game
COR to define PKE correctness.

Definition 8 (PKE Correctness). Let PKE := (KG,Enc,Dec) be a PKE
scheme with message space M and A be an adversary against PKE. The COR
advantage of A is defined as

AdvCOR
PKE (A) := Pr

[
CORAPKE ⇒ 1

]
,

where the COR game is defined in Figure 1. If there exists a constant δ such that
for all adversary A, AdvCOR

PKE (A) ≤ δ, then we say PKE is (1− δ)-correct.

Selective Opening Security. Selective Opening (SO) security preserves con-
fidentiality even if an adversary opens the randomnesses of some ciphertexts. We
use simulation-based approach to define SO security as in [20]. We consider two
types of SO security definition: Simulation-based SO security against Chosen-
Ciphertext Attacks (SIM-SO-CCA, Definition 9) and Indistinguishability-based
SO security against Chosen-Ciphertext Attacks (IND-SO-CCA, Definition 10).

Definition 9 (SIM-SO-CCA security). Let PKE be a PKE scheme with
message spaceM and randomness space R and A := (A0,A1) be an adversary
against PKE. Let µ be the number of challenge ciphertexts Let Rel be a relation.
We consider two games defined in Figure 2, where A is run in REAL-SO-CCAPKE
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GAME REAL-SO-CCAAPKE

01 (pk, sk) $← KG
02 (Ma, st) $← ADec

0 (pk)
03 for i ∈ [µ] :
04 m[i] := mi

$←Ma

05 ri
$←R

06 c[i] := Enc(pk,mi; ri)
07 out $← AOpen,Dec

1 (st, c)
08 return
Rel(Ma,m, I, out)

Dec(c) // for c /∈ c
09 m := Dec(sk, c)
10 return m

GAME IDEAL-SO-CCASPKE

11 (Ma, st) $← S0
12 for i ∈ [µ] :
13 m[i] := mi

$←Ma

14 m′′[i] := |mi|
15 out $← SOpen

1 (st,m′′)
16 return Rel(Ma,m, I, out)

Open(i) // i ∈ [µ]
17 I := I ∪ {i}
18 return (mi, ri) // REAL-SO-CCAPKE
19 return mi // IDEAL-SO-CCAPKE

Fig. 2. The SO security games for PKE schemes. S1 only learn the lengths of challenge
messages mi instead of the challenge ciphertexts.

and a SO simulator S := (S0,S1) in IDEAL-SO-CCAPKE. Ma is a distribution
overM chosen by A0. We define the SIM-SO-CCA advantage function

AdvSIM-SO-CCA
PKE (A,S, µ,Rel) :=

∣∣∣Pr
[
REAL-SO-CCAAPKE ⇒ 1

]
− Pr

[
IDEAL-SO-CCASPKE ⇒ 1

]∣∣∣,
PKE is SIM-SO-CCA secure if, for every adversary A and every relation Rel,
there exists a simulator S such that AdvSIM-SO-CCA

PKE (A,S, µ,Rel) is negligible.
Definition 10 (IND-SO-CCA security). Let PKE be a PKE scheme with
message spaceM and randomness space R and A := (A0,A1,A2) be an adversary
against PKE. Let µ be the number of challenge ciphertext.

We consider the game defined in Figure 3. Samp and ReSamp are efficient
algorithms output by A0, where Samp outputs µ messages according to some
distribution (determined by A0) over M, and ReSamp(I,m0) resamples m0[i]
for i /∈ I according to the same distribution of Samp and then outputs m1. For
i ∈ I, m0[i] = m1[i]. We define the IND-SO-CCA advantage function

AdvIND-SO-CCA
PKE (A, µ) :=

∣∣∣Pr
[
IND-SO-CCAAPKE,0 ⇒ 1

]
− Pr

[
IND-SO-CCAAPKE,1 ⇒ 1

]∣∣∣.
PKE is IND-SO-CCA secure if AdvIND-SO-CCA

PKE (A, µ) is negligible for any A.

3 Direct Constructions

We construct a compact and tightly SIM-SO-CCA PKE, PKEStDH, from the strong
Diffie-Hellman assumption. We also weaken this assumption using the twinning
technique from [10], and the resulting scheme is only based on the Computational
Diffie-Hellman assumption at the cost of being less efficient.
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GAME IND-SO-CCAAPKE,b

01 (pk, sk) $← KG
02 (Samp,ReSamp, st0) $← A0(pk)
03 m0

$← Samp
04 for i ∈ [µ] :
05 ri

$←R
06 c[i] := Enc(pk,m0[i]; ri)
07 st1

$← AOpen,Dec
1 (c, st0)

08 for i ∈ [µ]\I :
09 m1[i] := ReSamp(I,m0)
10 b′ $← ADec

1 (st1,mb)
11 return b′

Dec(c) // for c /∈ c
12 m := Dec(sk, c)
13 return m

Open(i) // i ∈ [µ]
14 I := I ∪ {i}
15 return (mi, ri)

Fig. 3. The SO security games for PKE schemes. S1 only learn the lengths of challenge
messages mi instead of the challenge ciphertexts. For i ∈ I,m0[i] = m1[i], and for
i ∈ [µ]\I, m0[i] has the same distribution with m1[i] but not necessary to be the same.

3.1 Construction from the Strong Diffie-Hellman Assumption

Let G be a group with order p. Let H : {0, 1} ×G3 →M× {0, 1}l, h : {0, 1}l ×
G2 → {0, 1}` be hash functions. We construct a compact and tightly SIM-SO-
CCA PKE scheme PKEStDH = (KG,Enc,Dec) with message spaceM as in Figure 4.
The randomness space of PKEStDH is the set {0, 1} × Zp ×G.

KG
01 x $← Zp
02 X := gx

03 pk := X
04 sk := x
05 return (pk, sk)

Enc(pk,m ∈M)
06 b $← {0, 1}
07 rb

$← Zp
08 Rb := grb

09 R1−b
$← G

10 Zb := pkrb

11 (K, k) := H(b, R0, R1, Zb)
12 d := K ⊕m
13 T := h(k,R0, R1, d)
14 return (R0, R1, d, T )

Dec(sk, (R0, R1, d, T ))
15 m := ⊥
16 Z0 := Rx0 , Z1 := Rx1
17 (K0, k0) := H(0, R0, R1, Z0)
18 T0 := h(k0, R0, R1, d)
19 (K1, k1) := H(1, R0, R1, Z1)
20 T1 := h(k1, R0, R1, d)
21 if T0 = T : m := d⊕K0
22 if T1 = T : m := d⊕K1
23 return m

Fig. 4. Our Direct Construction of SIM-SO-CCA secure PKE schemes from the mStDH
assumption, PKEStDH = (KG,Enc,Dec)

Correctness. The correctness of PKEStDH depends on the hash function h. If h is
not collision resistant, then there is a decryption error. For instance, a ciphertext
c of m is generated using b = 1, which means it uses τ1 = h(k1, R0, R1, d)
with (K1, k1) := H(1, R0, R1, Z1). If there is a collision as h(k1, R0, R1, d) =
h(k0, R0, R1, d) and (K1, k1) 6= (K0, k0), then c will be decrypted incorrectly
as m′ := d ⊕K0 6= m = d ⊕K1. Hence, the correctness error AdvCOR

PKEStDH
(A) is

bounded by the collision probability of h. If h is modeled as a random oracle,
then AdvCOR

PKEStDH
(A) ≤ qh

2` . In our tight proof, we require collision resistance of a
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standard hash function, and thus we use the similar requirement here, namely,
AdvCOR

PKEStDH
(A) ≤ AdvCR

h (A).
On Sampling of a Group Element. We require that a group element of G
can be sampled without knowing the corresponding exponent. A concrete example
is as follow: Let p be a prime s.t. q = rp+ 1 is also a prime for some r. Let G
be a subgroup of Zq and with order p. Canetti et al. [9, Section 4.3.2] showed
how to sample a group element from such G without knowing exponent. Other
examples are some widely-used standard elliptic-curve groups, such as NIST
P256, NIST P384, and Curve25519. To generate a random point without knowing
the exponent, we can pick a random x-coordinate, compute the point, and then
use the cofactor to check whether the point is in its prime subgroup.

Theorem 1. PKEStDH in Figure 4 is SIM-SO-CCA secure (Definition 9) if the
mStDH problem is hard on G and H and h are modeled as random oracles. For
any SIM-SO-CCA adversary A and relation Rel, there exists a simulator S and
an adversary B such that:

AdvSIM-SO-CCA
PKEStDH

(A,S, µ,Rel) ≤ 8AdvmStDH
G (B) + 2n2

H

|M|
+ 2(n2

H + n2
h)

2l

where qH and nDec are the numbers of A’s queries to H and Dec, respectively,
and µ is the number of challenge ciphertexts. nH = µ + qH + 2nDec and nh =
µ+ qh + 2nDec are the total numbers of queries to H and h, respectively.

By Lemma 1, PKEStDH in Figure 4 is SIM-SO-CCA secure under the StDH
assumption, and the security reduction is tight.

Corollary 1. PKEStDH in Figure 4 is SIM-SO-CCA secure (Definition 9) if the
StDH problem is hard on G and H and h are modeled as random oracles. For
any SIM-SO-CCA adversary A and relation Rel, there exists a simulator S and
an adversary B such that:

AdvSIM-SO-CCA
PKEStDH

(A,S, µ,Rel) ≤ 8AdvStDH
G (B) + 2n2

H

|M|
+ 2(n2

H + n2
h)

2l

where qH and nDec are the numbers of A’s queries to H and Dec, respectively,
and µ is the number of challenge ciphertexts. nH = µ + qH + 2nDec and nh =
µ+ qh + 2nDec are the total numbers of queries to H and h, respectively.

Proof (Theorem 1). The theorem is proved by the game sequence in Figures 5
and 6. In G0, we use lazy sampling to simulate Random oracles H and h. We
assume that from G0 to G8, there is no collision among the outputs of random
oracle h, the first parts of outputs of H (i.e., K), and the second parts of outputs
of H (i.e., k). Let nH and nh be the total numbers of queries (including the
queries from the game simulator) to H and h, respectively. By collision bounds,∣∣∣Pr

[
REAL-SO-CCAAPKEStDH

⇒ 1
]
− Pr

[
GA0 ⇒ 1

]∣∣∣ ≤ n2
H

|M|
+ n2

H + n2
h

2l
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Games G0-G2
01 (X,x) $← KG
02 (Ma, st) $← ADec,H,h

0 (X)
03 for i ∈ [µ]
04 m[i] := mi

$←Ma

05 bi
$← {0, 1}

06 ri,bi

$← Zp, Ri,bi
:= gri,bi

07 Zi,bi
:= Xri,bi

08 Ri,1−bi

$← G // G0
09 ri,1−bi

$← Zp // G1-G2
10 Ri,1−bi

:= gri,1−bi // G1-G2
11 Zi,1−bi

:= Xri,1−bi // G1-G2
12 (Ki, ki) := H(bi, Ri,0, Ri,1, Zi,bi

)
13 di := mi ⊕Ki

14 Ti := h(ki, Ri,0, Ri,1, di)
15 c[i] := (Ri,0, Ri,1, di, Ti)
16 out $← AOpen,Dec,H,h

1 (st, c)
17 return Rel(Ma,m, I, out)
Open(i)
18 I := I ∪ {i}
19 rand := (bi, ri,bi

, Ri,1−bi
)

20 return (mi, rand)

H(b, R0, R1, Z)
21 if H[b, R0, R1, Z] = ⊥:
22 (K, k) $←M× {0, 1}l
23 H[b, R0, R1, Z] := (K, k)
24 return H[b, R0, R1, Z]

Dec(c) // c /∈ c
25 parse (R0, R1, d, T ) := c
26 if ∃i ∈ [µ] s.t. T = Ti // G2
27 return ⊥ // G2
28 m := ⊥
29 Z0 := Rx0 , Z1 := Rx1
30 (K0, k0) := H(0, R0, R1, Z0)
31 (K1, k1) := H(1, R0, R1, Z1)
32 T0 := h(k0, R0, R1, d)
33 T1 := h(k1, R0, R1, d)
34 if T0 = T : m = d⊕K0
35 if T1 = T : m = d⊕K1
36 return m

Fig. 5. Games G0-G2 for proving Theorem 1. Random oracle h is simulated as usual
(i.e., similar to the simulation of H in G0).

Game G1: We generate Ri,1−bi
:= gri,1−bi by choosing ri,1−bi

$← Zp, and
compute Zi,1−bi

:= Xri,1−bi . This modification does not change A’s view since
Ri,1−bi

is still distributed uniformly at random. Therefore, we have

Pr
[
GA0 ⇒ 1

]
= Pr

[
GA1 ⇒ 1

]
Game G2: We modify Dec oracle. When A queries Dec on c := (R0, R1, d, T ),

if T is the tag of one of the challenge ciphertexts (i.e., T = Ti for some i ∈
[µ]), then Dec returns ⊥. By the definition of SIM-SO-CCA security, we have
(R0, R1, d, T ) /∈ c. Thus, if T = Ti, we have (R0, R1, d) 6= (Ri,0, Ri,1, di). From
this, we can find a collision for h, since T must equal to h(k0, R0, R1, d) or
h(k1, R0, R1, d). We have assumed there is no collision among the output of h,
so we have

Pr
[
GA1 ⇒ 1

]
= Pr

[
GA2 ⇒ 1

]
Game G3: In this game, we simulate Dec by searching for the corresponding

keys from the random oracle queries, instead of computing Z0, Z1 as in G2.
Intuitively, this does not change the view of A, since a ciphertext is valid if A has
asked the corresponding random oracle queries before. Otherwise, the ciphertext
is invalid and the decryption will only output ⊥.

Concretely, G3 use the following three lists Hval,Hinv, and Hdec to keep track
of the oracle queries to H, and each of them stores a particular type of oracle
queries, namely:
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Games G3-G9
01 (X,x) $← KG
02 (Ma, st) $← ADec,H,h

0 (X)
03 for i ∈ [µ]
04 m[i] := mi

$←Ma

05 bi
$← {0, 1}

06 ri,bi

$← Zp, Ri,bi
:= gri,bi

07 Zi,bi
:= Xri,bi

08 ri,1−bi

$← Zp

09 Ri,1−bi
:= gri,1−bi

10 Zi,1−bi
:= Xri,1−bi

11 (Ki, ki)
:= H(bi, Ri,0, Ri,1, Zi,bi

) // G3-G5
12 (Ki, ki) $←M× {0, 1}l // G6-G9
13 di := mi ⊕Ki

14 Ti := h(ki, Ri,0, Ri,1, di)
15 c[i] := (Ri,0, Ri,1, di, Ti)
16 out $← AOpen,Dec,H,h

1 (st, c)
17 return Rel(Ma,m, I, out)

Open(i)
18 I := I ∪ {i}
19 Hval[bi, Ri,0, Ri,1, Zi,bi

]
:= (Ki, ki) // G6,G8-G9

20 rand := (bi, ri,bi
, Ri,1−bi

) // G3-G6,G8-G9
21 Hval[1− bi, Ri,0, Ri,1, Zi,1−bi

]
:= (Ki, ki) // G7

22 rand := (1− bi, ri,1−bi
, Ri,bi

) // G7
23 return (mi, rand)

H(b, R0, R1, Z)
24 if ∃i ∈ [µ]\I s.t.

(b, R0, R1, Z) = (1− bi, Ri,0, Ri,1, Rx
i,1−bi

)
abort // G4-G7

25 if ∃i ∈ [µ]\I s.t.
(b, R0, R1, Z) = (bi, Ri,0, Ri,1, Rx

i,bi
)

abort // G5-G7
26 if ∃(K, k) s.t. Hdec[b, R0, R1] = (K, k)

and Z = Rx
b

27 Hval[b, R0, R1, Z] := (K, k)
28 Hdec[b, R0, R1] := ⊥
29 if ∃(K, k) s.t. Hval[b, R0, R1, Z] = (K, k)

or Hinv[b, R0, R1, Z] = (K, k)
30 return (K, k)
31 else
32 (K, k) $←M× {0, 1}l

33 if Z = Rx
b

: Hval[b, R0, R1, Z] := (K, k)
34 else Hinv[b, R0, R1, Z] := (K, k)
35 return (K, k)

Dec(c) // c /∈ c
36 parse (R0, R1, d, T ) =: c
37 if ∃i ∈ [µ] s.t. T = Ti: return ⊥ // G3-G8
38 m := ⊥
39 for b ∈ {0, 1}:
40 if ∃(Z,K, k) s.t. Hval[b, R0, R1, Z] = (K, k)

or ∃(K, k) s.t. Hdec[b, R0, R1] = (K, k)
41 (Kb, kb) := (K, k)
42 else
43 (Kb, kb) $←M× {0, 1}l

44 Hdec[b, R0, R1] := (Kb, kb)
45 Tb := h(kb, R0, R1, d)
46 if Tb = T : m = d⊕Kb

47 return m

Fig. 6. Games G3-G9 for proving Theorem 1.

– (b, R0, R1, Z) ∈ Hval if A has queried H on (b, R0, R1, Z) and Z = Rxb . We
call this type of hash queries valid.

– (b, R0, R1, Z) ∈ Hinv if A has queried H on (b, R0, R1, Z) and Z 6= Rxb . We
call this type of hash queries invalid.

– (b, R0, R1) ∈ Hdec if A has queried Dec with (R0, R1) as parts of a ciphertext.
It is clear that Hval ∩ Hinv = ∅.

Oracles H and Dec in G3 are simulated in the following ways:

– Dec oracle: On input (R0, R1, d, T ), the simulator tries to search (Kb, kb)
(b ∈ {0, 1}) from Hval (see Items 40 and 41). If it fails, the simulator samples
a random key pair (Kb, kb) and store (b,Kb, kb) in Hdec. Then the simulator
decrypts (R0, R1, d, T ) as usual.

– H oracle: On input (b, R0, R1, Z), the simulator firstly checks if (b, R0, R1) ∈
Hdec. If (b, R0, R1) ∈ Hdec and Z = Rxb , then the simulator sets Hval[b, R0, R1,
Z] = (Kb, kb) and removes (b, R0, R1) from Hdec. Then the simulator checks
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whether (b, R0, R1, Z) has been queried, and if so returns the recorded re-
sponse (see Items 29 and 30). Otherwise, it determines (b, R0, R1, Z) should
be added to Hval or to Hinv by checking Z = Rxb (see Items 33 and 34), and
samples a fresh (K, k) and records it in Hval or Hinv. The output distribution
of H in this game is still uniformly random.

Now consider the case that A queries Dec on (R0, R1, d, T ) but A has not
queried H on the corresponding H-query of (R0, R1, d, T ). In this case, the simula-
tor cannot extract (K0, k0) and (K1, k1) from Hval. Instead of using x to compute
Z0 and Z1 as in G2, the game simulator of G3 samples fresh key pairs (K0, k0) and
(K1, k1) and adds (0, R0, R1) and (1, R0, R1) into Hdec. Lately, when A queries
H on (b, R0, R1, Z) where Z = Rxb , the game simulator “patches” (b, R0, R1, Z)
into Hval, i.e., sets Hval[b, R0, R1, Z] = (Kb, kb), and removes (b, R0, R1) from Hdec
(see Items 26 to 28).

We note that the use of these three lists is internal but the outputs of H and
Dec are the same as in G2. Thus,

Pr
[
GA2 ⇒ 1

]
= Pr

[
GA3 ⇒ 1

]
Game G4: G4 aborts ifA queriesH on (1−bi, Ri,0, Ri,1, Zi,1−bi) with Zi,1−bi =

Rxi,1−bi
and c[i] is not opened for some 1 ≤ i ≤ µ. We note that this abort

condition lead to the CDH value of X and Ri,1−bi
. Hence, we can bound the

probability of this abort event with the multi-challenge strong Diffie-Hellman
(mStDH) assumption.

BdhpX

1 (X,Y1, ..., Yµ)
01 Z∗ := ⊥
02 (Ma, st) $← ADec,H,h

0 (X)
03 for i ∈ [µ]
04 m[i] := mi

$←Ma

05 bi
$← {0, 1}

06 ri,bi

$← Zp, Ri,bi
:= gri,bi

07 Zi,bi
:= Xri,bi

08 (Ki, ki) := H(bi, Ri,0, Ri,1, Zi,bi
)

09 Ri,1−bi
:= Yi

10 di := mi ⊕Ki

11 Ti := h(ki, Ri,0, Ri,1, di)
12 c[i] := (Ri,0, Ri,1, di, Ti)
13 out $← AOpen,Dec,H,h

1 (st, c)
14 if Z∗ = ⊥ : Z∗ $← G
15 return Z∗

H(b, R0, R1, Z)
16 if ∃i ∈ [µ]\I s.t.

(b, R0, R1) = (1− bi, Ri,0, Ri,1)
and dhpX(Ri,1−bi

, Z) = 1
17 Z∗ := Z // records the solution
18 Aborts the simulation and returns Z∗
19 if ∃(K, k) s.t. Hdec[b, R0, R1] = (K, k)

and dhpX(Rb, Z) = 1
20 Hval[b, R0, R1, Z] := (K, k)
21 Hdec[b, R0, R1] := ⊥
22 if ∃(K, k) s.t. Hval[b, R0, R1, Z] = (K, k)

or Hinv[b, R0, R1, Z] = (K, k)
23 return (K, k)
24 else
25 (K, k) $←M× {0, 1}l
26 if dhpX(Rb, Z) = 1
27 Hval[b, R0, R1, Z] := (K, k)
28 else Hinv[b, R0, R1, Z] := (K, k)
29 return (K, k)

Fig. 7. mStDH adversary B1 in bounding the difference between G3 and G4. The
simulation of Dec and h are the same as in G4 in Figure 6.
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The reduction B1 against the mStDH assumption is constructed in Figure 7.
On input (X,Y1, ..., Yµ), B1 sets Ri,1−bi

:= Yi. It can simulate G4 without x, since
it can use its dhpX oracle to check whether Z = cdh(X,Ri,1−bi

). Therefore,∣∣∣Pr
[
GA3 ⇒ 1

]
− Pr

[
GA4 ⇒ 1

]∣∣∣ ≤ AdvmStDH
G (B1)

Game G5: We introduce the abort rule in the H oracle: If A queries H(bi, Ri,0,
Ri,1, R

x
i,bi

) for some i ∈ [µ], then G5 aborts. Let Bad be this querying event and
Badj be the event that Bad happens in Gj . The adversary cannot detect this
modification unless it triggers Bad5. We have∣∣∣Pr

[
GA4 ⇒ 1

]
− Pr

[
GA5 ⇒ 1

]∣∣∣ ≤ Pr [Bad5]

Here we cannot bound Pr [Bad5] using mStDH yet, since if the adversary
queries Open(i), then the simulator has to returns ri,bi

, where is unknown
when constructing reduction from mStDH . We will bound it later. Our strategy
is to decouple c[i] with H(bi, Ri,0, Ri,1, Rxi,bi

) and then use the randomness
(1 − bi, ri,1−bi , Ri,bi) to explain c[i] (and thus we do not need ri,bi and can
construct reduction from mStDH).

Game G6: The difference to G5 is that when generating c[i], we choose random
key pair (Ki, ki) independent of H(bi, Ri,0, Ri,1, Rxi,bi

), and when A opens c[i],
then we define H(bi, Ri,0, Ri,1, Rxi,bi

) as (Ki, ki).
By abort condition in H, H(bi, Ri,0, Ri,1, Rxi,bi

) will not be defined before c[i]
is opened, so this modification does not change A’s view, we have∣∣∣Pr

[
GA5 ⇒ 1

]
− Pr

[
GA6 ⇒ 1

]∣∣∣ ≤ Pr [Bad6] ,Pr [Bad5] = Pr [Bad6]

Game G7: We modify the simulation of Open: When A opens c[i], we set
H(1 − bi, Ri,0, Ri,1, R

x
i,1−bi

) := (Ki, ki), but not H(bi, Ri,0, Ri,1, Rxi,bi
). More-

over, instead of returning (bi, ri,bi
, Ri,1−bi

), we return its complement, (1 −
bi, ri,1−bi

, Ri,bi
).

We argue that if Bad7 does not occur, then the view of A in G7 is the same
as in G6. This is because G7 does not abort means that A has queried neither
H(bi, Ri,0, Ri,1, Rxi,bi

) for some i ∈ [µ]\I nor H(1−bi, Ri,0, Ri,1, Rxi,1−bi
) for some

i ∈ [µ]\I. Hence, A has no information about these two values, and, as a result,
A cannot tell the change in Open. We have∣∣∣Pr

[
GA6 ⇒ 1

]
− Pr

[
GA7 ⇒ 1

]∣∣∣ ≤ Pr [Bad7] ,Pr [Bad6] = Pr [Bad7]

To conclude our argument, we construct a reduction B2 against the mStDH
assumption to bound Pr [Bad7]. B2 has a similar structure with B1 in Figure 7,
except that now B2 embeds Yi into Ri,bi

(by setting Ri,bi
:= Yi for all i ∈ [µ]).

The construction of B2 is shown in Figure 8.
In B2’s construction, it does not have ri,bi

and cannot compute Zi,bi
= Rxi,bi

.
But it is not a problem, since B3 can program the random oracleH. More precisely,
it leaves Zi,bi as unknown and choose a random pair (Ki, ki) (cf. Item 09). Now
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BdhpX

2 (X,Y1, ..., Yµ)
01 Z∗ := ⊥
02 (Ma, st) $← ADec,H,h

0 (X)
03 for i ∈ [µ]
04 m[i] := mi

$←Ma

05 bi
$← {0, 1}

06 ri,1−bi

$← Zp, Ri,1−bi
:= gri,1−bi

07 Zi,1−bi
:= Xri,1−bi

08 Ri,bi
:= Yi

09 (Ki, ki) $← K × {0, 1}l
10 di := mi ⊕Ki

11 Ti := h(ki, Ri,0, Ri,1, di)
12 c[i] := (Ri,0, Ri,1, di, Ti)
13 out $← AOpen,Dec,H,h

1 (st, c)
14 if Z∗ = ⊥ : Z∗ $← G
15 return Z∗

Open(i)
16 I := I ∪ {i}
17 Hval[1− bi, Ri,0, Ri,1, Zi,1−bi

]
:= (Ki, ki)

18 return (mi, (1− bi, ri,1−bi
, Ri,bi

))

H(b, R0, R1, Z)
19 if ∃i ∈ [µ]\I s.t.

(b, R0, R1, Z) = (1− bi, Ri,0, Ri,1, Zi,1−bi
)

20 Z∗ $← G
21 Aborts the simulation and returns Z∗
22 if ∃i ∈ [µ]\I s.t. (b, R0, R1) = (bi, Ri,0, Ri,1)

and dhpX(Ri,bi
, Z) = 1

23 Z∗ := Z // records the solution
24 Aborts the simulation and returns Z∗
25 if ∃(K, k) s.t. Hdec[b, R0, R1] = (K, k)

and dhpX(Rb, Z) = 1
26 Hval[b, R0, R1, Z] := (K, k)
27 Hdec[b, R0, R1] := ⊥
28 if ∃(K, k) s.t. Hval[b, R0, R1, Z] = (K, k)

or Hinv[b, R0, R1, Z] = (K, k)
29 return (K, k)
30 else
31 (K, k) $←M× {0, 1}l
32 if dhpX(Rb, Z) = 1
33 Hval[b, R0, R1, Z] := (K, k)
34 else Hinv[b, R0, R1, Z] := (K, k)
35 return (K, k)

Fig. 8. mStDH adversary B2 in bounding Bad7. It simulates G7 for A. The simulation
of Dec and h are the same as in Figure 6. If A queries H on bi, Ri,0, Ri,1, Ri,1−bi for
some i ∈ [µ]\I, B2 aborts the simulation and return a random solution.

if Bad7 does not happen then the response of H(bi, Ri,0, Ri,1, Zi,bi) is anyway
random to A and it does not change its view. If Bad7 happens, then B2 can
find out Zi,bi

= gri,bi
·x by its dhp oracle and extract the solution to the mStDH

problem. Thus, we have

Pr [Bad5] = Pr [Bad6] = Pr [Bad7] ≤ AdvmStDH
G (B2)

Now all challenge ciphertexts are encrypted by random key (Ki, ki). From G8
we conclude the proof by undoing the other changes in a reverse order.

Game G8: We undo the abort rules in the H oracle, and explain the random-
ness of c[i] using (bi, ri,bi

, Ri,1−bi
). That is, we withdraw the modifications made

in G7, G5 and G4. Since now the computation of (Ki, ki) is independent of bi and
1− bi, we can construct reduction from mStDH as we did in G4 and G7. Roughly,
if we want to embed the challenge into Ri,bi

, then we can specify the random bit
of c[i] as 1− bi and explain the randomness of c[i] by reprogramming H, and so
we do not need the exponent of Ri,bi

. We have∣∣∣Pr [G7 ⇒ 1]− Pr [G8 ⇒ 1]
∣∣∣ ≤ 4AdvmStDH

G (B)

Game G9: We undo the modification made in G2. We have

Pr [G8 ⇒ 1] = Pr [G9 ⇒ 1]
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SOpen

01 (X,x) $← KG
02 (Ma, st) $← ADec,H,h

0 (X)
03 OutputsMa and receives m′′ //S0
04 for i ∈ [µ]
05 bi

$← {0, 1}
06 ri,bi

$← Zp, Ri,bi
:= gri,bi

07 Zi,bi
:= Xri,bi

08 ri,1−bi

$← Zp, Ri,1−bi
:= gri,1−bi

09 Zi,1−bi
:= Xri,1−bi

10 (di, ki) $←M× {0, 1}l

11 Ti := h(ki, Ri,0, Ri,1, di)
12 c[i] := (Ri,0, Ri,1, di, Ti)
13 out $← AOpen,Dec,H,h

1 (st, c)
14 return out //S1

Open(i)
15 Queries its Open on i
16 Receives mi and records
17 H[bi, Ri,0, Ri,1, Zi,bi

] := (mi ⊕ di, ki)
18 rand := (bi, ri,bi

, Ri,1−bi
)

19 return (mi, rand)

Fig. 9. SIM-SO-CCA simulator S that simulates G9 to conclude the proof of Theorem 1.
We ignore the simulation of H, h, and Dec which are the same as in G9 in Figure 6.

Now we can construct a SIM-SO-CCA simulator S that simulates G9 for A and
interacts with the IDEAL-SO-CCA game to conclude the proof. The construction
of simulator is shown in Figure 9.
S samples di uniformly fromM and computes Ki as di ⊕mi (when A opens

c[i]), which is equivalent to sampling Ki firstly and then computing di := Ki⊕mi.
Therefore, S perfectly simulates G9. Note that at the start of the proof we assume
that from G0 to G8, there is no collision among the outputs of random oracle h,
the first parts of outputs of H (i.e., K), and the second parts of outputs of H
(i.e., k). Here we need to add back this collision bound. That is,∣∣∣Pr

[
GA9 ⇒ 1

]
− Pr

[
IDEAL-SO-CCASPKEStDH

⇒ 1
]∣∣∣ ≤ n2

H

|M|
+ n2

H + n2
h

2l

By combining all the probability bounds, we have∣∣∣Pr
[
REAL-SO-CCAAPKEStDH

⇒ 1
]
− Pr

[
IDEAL-SO-CCASPKEStDH

⇒ 1
]∣∣∣

≤ 8AdvmStDH
G (B) + 2n2

H

|M|
+ 2(n2

H + n2
h)

2l ,

as stated in Theorem 1.

3.2 Construction from the Twin Diffie-Hellman Assumption

Using the twinning technique from [10], we can remove the use of StDH assumption
in PKEStDH and have a scheme based on the standard CDH assumption. Let
G be a group with prime order p and generator g. Let H : {0, 1} × G3 →
M× {0, 1}l, h : G2 × {0, 1}l → {0, 1}` be hash functions. We propose a PKE
scheme PKETDH = (KG,Enc,Dec) (shown in Figure 10) based on TDH. The
randomness space of PKETDH is {0, 1} × Zp × G. By [10], the TDH problem is
tightly equivalent to the CDH problem.
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KG
01 x0, x1

$← Zp
02 X0 := gx0

03 X1 := gx1

04 pk := (X0, X1)
05 sk := (x0, x1)
06 return (pk, sk)

Enc(pk,m ∈M)
07 parse (X0, X1) := pk
08 b $← {0, 1}, rb $← Zp
09 Rb := grb , R1−b

$← G
10 Zb,0 := Xrb

0 , Zb,1 := Xrb

1
11 (K, k) := H(b, R0, R1, Zb,0, Zb,1)
12 d := K ⊕m
13 T := h(k,R0, R1, d)
14 return (R0, R1, d, T )

Dec(sk, (R0, R1, d, T ))
15 parse (x0, x1) := sk
16 m := ⊥
17 Z0,0 := Rx0

0 , Z0,1 := Rx1
0

18 Z1,0 := Rx0
1 , Z1,1 := Rx1

1
19 (K0, k0) := H(0, R0, R1, Z0,0, Z0,1)
20 (K1, k1) := H(1, R0, R1, Z1,0, Z1,1)
21 T0 := h(k0, R0, R1, d)
22 T1 := h(k1, R0, R1, d)
23 if T0 = T : m = d⊕K0
24 if T1 = T : m = d⊕K1
25 return m

Fig. 10. Our Direction Construction of SIM-SO-CCA secure PKE schemes from the
TDH assumption, PKETDH = (KG,Enc,Dec)

Theorem 2. PKETDH in Figure 10 is SIM-SO-CCA secure (Definition 9) if the
mTDH problem is hard on G and H and h are modeled as random oracles.
Concretely, for any SIM-SO-CCA adversary A and relation Rel, there exists a
simulator S and adversaries B and Ahash such that:

AdvSIM-SO-CCA
PKETDH

(A,S, µ,Rel) ≤ 8AdvmTDH
G (B) + 2n2

H

|M|
+ 2(n2

H + n2
h)

2l

where qH and nDec are the numbers of A’s queries to H and Dec, respectively,
and µ is the number of challenge ciphertexts. nH = µ + qH + 2nDec and nh =
µ+ qh + 2nDec are the total numbers of queries to H and h, respectively.

The proof of Theorem 2 is almost identical to Theorem 1. The difference is that
we use the mTDH assumption to argue that if the randomness bit of challenge
c[i] is b, then the adversary cannot query H on (Z1−b,0, Z1−b,1), and we use 2dhp
oracle to replace dhp oracle in Dec.

By Lemma 1, PKETDH in Figure 4 is tightly SIM-SO-CCA secure under the
TDH assumption which is tightly equivalent to the standard CDH assumption.

Corollary 2. PKETDH in Figure 10 is SIM-SO-CCA secure (Definition 9) if
the TDH problem is hard on G and H and h are modeled as random oracles.
Concretely, for any SIM-SO-CCA adversary A and relation Rel, there exists a
simulator S and adversaries B and Ahash such that:

AdvSIM-SO-CCA
PKETDH

(A,S, µ,Rel) ≤ 8AdvTDH
G (B) + 2n2

H

|M|
+ 2(n2

H + n2
h)

2l

where qH and nDec are the numbers of A’s queries to H and Dec, respectively,
and µ is the number of challenge ciphertexts. nH = µ + qH + 2nDec and nh =
µ+ qh + 2nDec are the total numbers of queries to H and h, respectively.
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3.3 Direct Construction from the Decisional Diffie-Hellman
Assumption

Our third direct construction is based on THE DDH assumption. Let G be a
group with prime order p and two generators g0 and g1. Let H : {0, 1} ×G3 →
M × {0, 1}l, h : {0, 1}l × G2 → {0, 1}` be hash functions. The PKE scheme
PKEDDH = (KG,Enc,Dec) with message space M is shown in Figure 11. The
randomness space of PKEDDH is the set {0, 1} × Zp ×G2.

KG
01 (x0, x1) $← Z2

p

02 pk := gx0
0 gx1

1
03 sk := (x0, x1)
04 return (pk, sk)

Enc(pk,m ∈M)
05 parse (X0, X1) := pk
06 b $← {0, 1}, rb $← Zp
07 Rb,0 := grb

0 , Rb,1 := grb

1
08 R1−b,0

$← G, R1−b,1
$← G

09 Zb := pkrb

10 (K, k) := H(b, R0,0, ..., R1,1, Zb)
11 d := K ⊕m
12 T := h(k,R0,0, ..., R1,1, d)
13 return (R0,0, ..., R1,1, d, T )

Dec(sk, (R0,0, R0,1, R1,0, R1,1, d, T ))
14 parse (x0, x1) := sk
15 m := ⊥
16 Z0 := Rx0

0,0R
x1
0,1

17 Z1 := Rx0
1,0R

x1
1,1

18 (K0, k0) := H(0, R0,0, ..., R1,1, Z0)
19 (K1, k1) := H(1, R0,0, ..., R1,1, Z1)
20 T0 := h(k0, R0,0, ..., R1,1, d)
21 T1 := h(k1, R0,0, ..., R1,1, d)
22 if T0 = T : m = d⊕K0
23 if T1 = T : m = d⊕K1
24 return m

Fig. 11. SIM-SO-CCA secure PKE scheme PKEDDH = (KG,Enc,Dec)

Correctness. Similar to PKEStDH, the correctness of PKEDDH depends on the
hash function h. The correctness error AdvCOR

PKEStDH
(A) is bounded by the collision

probability of h, namely, AdvCOR
PKEDDH

(A) ≤ AdvCR
h (A).

Theorem 3. PKEDDH in Figure 11 is SIM-SO-CCA secure (Definition 9) if the
mDDH problem is hard on G and H and h are modeled as random oracles.
Concretely, for any SIM-SO-CCA adversary A and relation Rel, there exists a
simulator S and a adversary B such that:

AdvSIM-SO-CCA
PKEDDH

(A,S, µ,Rel) ≤ 10AdvmDDH
GGen (B) + 6µqH

p
+ 2n2

H

|M|
+ 2(n2

H + n2
h)

2l

where qH and nDec are the numbers of A’s queries to H and Dec, respectively,
and µ is the number of challenge ciphertexts. nH = µ + qH + 2nDec and nh =
µ+ qH + 2nDec are the total numbers of queries to H and h, respectively.

PKEDDH is based on the DDH-based non-committing KEM in [26], plus the
double-randomness technique. The proof of Theorem 3 is similar to Theorem 1.
In the reduction, we can embed the DDH challenge into one of (Rb,0, Rb,1) and
(R1−b,0, R1−b,1), and then claim the ciphertext to another one. Since we always
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have the secret key (x0, x1) in reduction, the decryption oracle can be simulated
in a straightforward way. We leave our proof in Appendix B.

4 Generic Construction: From Lossy Encryption to
SO-CCA PKE

In this section, we prove the tight SO security of Fujisaki-Okamoto’s (FO)
transformation [15] assuming that the underlying PKE is a lossy encryption
[3]. More precisely, if the lossy encryption scheme has efficient opener (e.g., the
one from [25]), then FO is SIM-SO-CCA-secure. If the lossy encryption does not
have efficient opener (e.g., the one from hash proof systems [19,3]), then FO is
IND-SO-CCA secure.

We recall the notion of lossy encryption and the FO transformation. Then we
prove the tight SO security of FO’s transformation in the random oracle model.
Definition 11 (Lossy Encryption [3]). Let wPKE := (wKG,wEnc,wDec) be
a PKE scheme with message spaceM and randomness space R. wPKE is lossy
if it has the following properties:
– wPKE is correct according to Definition 8.
– Key indistinguishability: We say wPKE has key indistinguishability if there is
an algorithm LKG such that, for any adversary B, the advantage function

Advkey-ind
wPKE (B) := |Pr [B(pk)⇒ 1]− Pr

[
B(pk′)⇒ 1

]
|

is negligible, where (pk, sk) $← wKG and (pk′, td) $← LKG.
– Lossiness: Let (pk′, td) $← LKG and m,m′ be arbitrary messages inM′, the
statistical distance between wEnc(pk′,m) and wEnc(pk′,m′) is negligible.

– Openability: Let (pk′, td) $← LKG, m and m′ be arbitrary messages, and
r be arbitrary randomness. For ciphertext c := wEnc(pk′,m; r), there ex-
ists an algorithm open such that open(td, pk′, c, r,m′) outputs r′ where c =
wEnc(pk′,m′; r′). Here open can be inefficient.
We extend the above lossiness definition to a multi-challenge setting. The

multi-challenge lossiness is implied by the single-challenge one using hybrid
argument. Since it is only a statistical property, the hybrid argument will not
affect tightness of the computational advantage.
Definition 12 (Multi-Challenge Lossiness). Let (pk′, td) $← LKG, µ be the
number of challenge, and r1, r

′
1, ...rµ, r

′
µ be arbitrary messages in M′. Multi-

challenge Lossiness requires that statistical distance between {wEnc(pk′, ri)}i∈[µ]
and {wEnc(pk′, r′i)}i∈[µ] is negligible. We write the distance as εm-enc-los

wPKE .
We require γ-spreadness for our construction.

Definition 13 (γ-Spreadness). Let wPKE := (wKG,wEnc,wDec) be a PKE
scheme with message spaceM, randomness space R, and ciphertext space C. We
say wPKE is γ-spread if for every key pair (pk, sk) $← wKG, and every message
m ∈M,

max
c∈C

Pr
r

$←R
[c = wEnc(pk,m; r)] ≤ 2−γ .
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4.1 Construction

Let wPKE := (wKG,wEnc,wDec) be a lossy encryption scheme with message
spaceM′ and randomness space R′. Let H :M′ →M and G :M′ ×M→ R′
be two hash functions. The FO transformation FO := (KG,Enc,Dec) is defined in
Figure 12. Here we use the one-time pad as the symmetric part to encrypt the
message. The randomness space of FO is R′.

KG
01 (pk, sk) $← wKG
02 return (pk, sk)

Enc(pk,m)
03 r ←M′
04 K := H(r)
05 d := K ⊕m
06 R := G(r, d)
07 e := wEnc(pk, r;R)
08 return (e, d)

Dec(sk, (e, d))
09 m′ := ⊥
10 r′ := wDec(sk, e)
11 R′ := G(r′, d),K′ := H(r′)
12 if e = wEnc(pk, r′;R′)
13 m′ := d⊕K′
14 return m′

Fig. 12. Fujisaki-Okamoto’s transformation FO with lossy encryption wPKE.

As shown in [24], if wPKE is (1− δ)-correct and G is modeled as a random
oracle, then FO is (1− qGδ)-correct where qG is the number of queries to G.

Theorems 4 and 5 show the tight SIM-SO-CCA and IND-SO-CCA security
of FO, respectively. We only prove Theorem 4 in the main body and leave that
of Theorem 5 in our full version paper [7], since both proofs are similar and the
SIM-SO-CCA security is more common.

Theorem 4. FO in Figure 12 is SIM-SO-CCA secure if G and H are modeled
as random oracles, and wPKE is a lossy encryption with efficient openability and
γ-spreadness. Concretely, for any SIM-SO-CCA adversary A and relation Rel,
there exists a simulator S and B such that:

AdvSIM-SO-CCA
FO (A,S, µ,Rel) ≤ Advkey-ind

wPKE (B) + 2εm-enc-los
wPKE

+ µnDec

2γ + 2n2
H

|M|
+ 2n2

G

|R′|
+ 4µ2 + 5µ(qG + qH)

|M′|
,

where qH , qG, and nDec are the numbers of A’s queries to G,H, and Dec,
respectively, µ is the number of challenge ciphertexts, and nG = µ+ nDec + qH
and nH = µ+ nDec + qG are the number of queries (including the simulator) to
G and H, respectively.

Theorem 5. FO in Figure 12 is IND-SO-CCA secure (Definition 10) if G and H
are modeled as random oracles, and wPKE is a lossy encryption and γ-spreadness.
Concretely, for any IND-SO-CCA adversary A, there exists B such that:

AdvIND-SO-CCA
FO (A, µ) ≤ 2(Advkey-ind

wPKE (B) + 3εm-enc-los
wPKE + µnDec

2γ )

+ 2n2
H

|M|
+ 2n2

G

|R′|
+ 6µ2 + 5µ(qG + qH)

|M′|
,
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where qH , qG, and nDec are the numbers of A’s queries to G,H, and Dec,
respectively, µ is the number of challenge ciphertexts, and nG = µ+ nDec + qH
and nH = µ+ nDec + qG are the number of queries (including the simulator) to
G and H, respectively.

4.2 Proof of Theorem 4

We prove it by the game sequence as in Figure 13. G0 is the original game except
that we use lazy sampling to simulate ROs G and H. We assume that, from G0
to G9, there is no collision among ri’s and the outputs of H and G. Let nG and
nH be the number of queries to G and H, respectively. By the security game in
Figure 13, nG = µ+ nDec + qG and nH = µ+ nDec + qH . We have∣∣∣Pr

[
REAL-SO-CCAAFO ⇒ 1

]
− Pr

[
GA0 ⇒ 1

]∣∣∣ ≤ n2
H

|M|
+ µ2

|M′|
+ n2

G

|R′|

Games G0-G7
01 (pk, sk) $← wKG // G0-G1
02 (pk′, td) $← LKG // G2-G7
03 (pk, sk) := (pk′, td) // G2-G7
04 (Ma, st) $← AH,G0 (pk)
05 for i ∈ [µ]
06 m[i] := mi

$←Ma

07 ri
$←M′

08 r′i
$←M′ // G3-G7

09 Ki := H(ri)
10 Ki

$←M // G5
11 di := mi ⊕Ki

12 di $←M // G6-G7
13 Ki := di ⊕mi // G6-G7
14 Ri := G(ri, di)
15 Ri

$←R′ // G5-G7
16 ei := wEnc(pk, ri;Ri)
17 c[i] := (ei, di)
18 out $← AOpen,H,G

1 (st, c)
19 return Rel(Ma,m, I, out)

H(r)
20 if ∃i ∈ [µ]\I s.t. r = r′i // G3-G7
21 abort // G3-G7
22 if ∃i ∈ [µ]\I s.t. r = ri // G4-G7
23 abort // G4-G7
24 if H[r] = ⊥
25 H[r] := K $←M
26 return H[r]

Open(i)
27 G[ri, di] := Ri // G5-G7
28 H[ri] := Ki // G5-G7
29 R′i := open(sk, pk, ei, Ri, r′i) // G7
30 G[r′i, di] := R′i // G7
31 H[r′i] := Ki // G7
32 I := I ∪ {i}
33 return (mi, ri)

Dec(c) // c /∈ c
34 parse (e, d) := c
35 m′ := ⊥
36 r′ := wDec(sk, e) // G0
37 R′ := G(r′, d),K′ := H(r′) // G0
38 if e = wEnc(pk, r′;R′) // G0
39 m′ := d⊕K′ // G0
40 if ∃(r′, R′) s.t. G[r′, d] = R′

and e = wPKE(pk, r′;R′) // G1-G7
41 K′ := H(r′) // G1-G7
42 m′ := d⊕K′ // G1-G7
43 return m′

G(r, d)
44 if ∃i ∈ [µ]\I s.t. r = r′i // G3-G7
45 abort // G3-G7
46 if ∃i ∈ [µ]\I s.t. r = ri // G4-G7
47 abort // G4-G7
48 if G[r, d] = ⊥
49 G[r, d] := R $←R′
50 return G[r, d]

Fig. 13. Games G0-G7 for proving Theorem 4.



Compact and Tightly SO Secure PKE Schemes 25

Game G1: We modify Dec. Instead of using sk to simulate Dec, we use the
randomness recorded in G to decrypt given ciphertexts (see Items 40 to 42). This
simulation method is exact the same as the one in the original FO transformation
[15]. By the argument in [15], if wPKE is γ-spread, then we have∣∣∣Pr

[
GA0 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]∣∣∣ ≤ µ · nDec

2γ

Game G2: We switch the public key to lossy mode by (pk′, td) $← LKG. Since
in this game the decryption oracle are simulated without using sk, we can simulate
G2 with pk′. By the key indistinguishability of the lossy encryption,∣∣∣Pr

[
GA1 ⇒ 1

]
− Pr

[
GA2 ⇒ 1

]∣∣∣ ≤ Advkey-ind
wPKE (B0)

Game G3: This is a preparation step. We choose some internal randomness
r′i for the opening queries in the next games. We abort G3 if A queries either
H or G with r′i before opening c[i]. Since r′i (for i ∈ [µ]) are internal and never
revealed to A, the probability that A queries r′i for some i is qH +qG

|M′| . We also
require all r′i’s are different. By the union bound and collision bound, we have∣∣∣Pr

[
GA2 ⇒ 1

]
− Pr

[
GA3 ⇒ 1

]∣∣∣ ≤ µ · (qH + qG)
|M′|

+ µ2

|M′|

Game G4: We further modify the abort rules in H and G. If A queries H or
G with ri and c[i] is unopened, then G4 aborts. Let QueryBadj be the event that
such abort event occurs in Gj , i.e., A queries H (resp., G) on ri (resp, (ri, di))
where c[i] is unopened. Then we have∣∣∣Pr

[
GA3 ⇒ 1

]
− Pr

[
GA4 ⇒ 1

]∣∣∣ ≤ Pr [QueryBad4]

Here we cannot bound Pr [QueryBad4] directly yet, since all ei are correlated
to H(ri) and G(ri, di). We will bound Pr [QueryBad4] later. Our strategy for
that is to decouple ei with G(ri, di) and H(ri). In the end, A can query ri for
i ∈ [µ]\I (i.e., c[i] is unopened) with negligible probability.

Game G5: We modify the generation of Ri and Ki. In this game, Ri and Ki

are chosen uniformly, instead of using H and G. Moreover, upon Open(i), we
set H(ri) := Ki and G(ri, di) := Ri. By the abort rules in G and H, A can learn
neither H(ri) nor G(ri, di) before opening c[i]. Thus, we have

Pr
[
GA4 ⇒ 1

]
= Pr

[
GA5 ⇒ 1

]
, Pr [QueryBad4] = Pr [QueryBad5]

Game G6: We further modify the computation of di and Ki. In this game, di
are chosen uniformly at random, and Ki are computed as Ki := di ⊕mi. In G5
Ki is distributed uniformly at random. Hence, this modification is conceptual.

Pr
[
GA5 ⇒ 1

]
= Pr

[
GA6 ⇒ 1

]
, Pr [QueryBad5] = Pr [QueryBad6]
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Game G7: UponOpen(i), we compute the opened randomness R′i with respect
to r′i and ei using the open algorithm (see Item 29), and then set G(r′i, di) := R′i
and H(r′i) := Ki. Looking ahead, this modification is necessary for the later
modification that c[i] = (ei, di) can be claimed to r′i. A detects this modification
if it queries H(r′i) or G(r′i, di). This modification does not affect the occurring
probability of QueryBad7, since r′i is perfectly hidden. Therefore,

∣∣∣Pr
[
GA6 ⇒ 1

]
− Pr

[
GA7 ⇒ 1

]∣∣∣ ≤ µ(qG + qH)
|M′|

, Pr [QueryBad6] = Pr [QueryBad7]

In G7, we have the following observation: Before A opens i, Ri are independent
of ri, r′i,Ki, and di, so ei can be viewed as a ciphertext that ei := wPKE(pk′, ri;Ri)
where the randomness Ri is sampled independently and uniformly. Therefore,
by the lossiness of pk′, we can replace wPKE(pk′, ri;Ri) as another ciphertext
wPKE(pk′, r′′i ;R′′i ) where r′′i and R′′i are sampled independently and uniformly,
and A cannot distinguish such replacement except with εm-enc-los

wPKE . We move the
description of G7-G9 to Figure 14.

Games G7-G9
01 (pk′, td) $← LKG
02 (pk, sk) := (pk′, td)
03 (Ma, st) $← ADec,H,G

0 (pk)
04 for i ∈ [µ]
05 m[i] := mi

$←Ma

06 ri
$←M′ // G7-G8

07 r′i
$←M′

08 di $←M
09 Ki := di ⊕mi

10 Ri
$←R′

11 ei := wEnc(pk, ri;Ri) // G7
12 r′′i

$←M′ // G8-G9
13 R′′i

$←R′ // G8-G9
14 ei

$← wEnc(pk, r′′i ;R′′i ) // G8-G9
15 c[i] := (ei, di)
16 out $← AOpen,Dec,H,G

1 (st, c)
17 return Rel(Ma,m, I, out)

H(r)
18 if ∃i ∈ [µ]\I s.t. r = r′i // G7-G8
19 abort // G7-G8
20 if ∃i ∈ [µ]\I s.t. r = ri // G7-G8
21 abort // G7-G8
22 if H[r] = ⊥
23 H[r] := K $←M
24 return H[r]

Open(i)
25 R′i := open(sk, pk, ei, Ri, r′i) // G7
26 R′i := open(sk, pk, ei, R′′i , r′i) // G8-G9
27 G[r′i, di] := R′i
28 H[r′i] := Ki

29 H[ri] := Ki // G7-G8
30 G[ri, di] := Ri // G7-G8
31 I := I ∪ {i}
32 return (mi, ri) // G7
33 return (mi, r′i) // G8-G9

Dec(c) // c /∈ c
34 parse (e, d) := c
35 m′ := ⊥
36 if ∃(r′,K′) s.t. G[r′, d] = R′

and e = wPKE(pk, r′;R′)
37 K′ := H(r′)
38 m′ := d⊕K′
39 return m′

G(r, d)
40 if ∃i ∈ [µ]\I s.t. r = r′i // G7-G8
41 abort // G7-G8
42 if ∃i ∈ [µ]\I s.t. r = ri // G7-G8
43 abort // G7-G8
44 if G[r, d] = ⊥
45 G[r, d] := R $←R′
46 return G[r, d]

Fig. 14. Games G7-G9 for proving Theorem 4.
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Game G8: We modify the generation of ciphertext ei and simulation of Open.
In this game, ei is an encryption of a randomly chosen r′′i with randomness R′′i
(see Item 14) which are independent of ri, r′i, Ri, di. When A opens c[i] = (ei, di),
the game simulator reprograms H and G so that c[i] can be “explained” by
message mi and randomness r′i (i.e., Enc(pk,mi; r′i) = c[i]), and returns (mi, r

′
i).

By the lossiness of wPKE, the statistical distance between {wPKE(pk′, ri)}i∈[µ]
with {wPKE(pk′, r′′i )}i∈[µ] is εm-enc-los

wPKE . Hence, we have∣∣Pr
[
GA7 ⇒ 1

]
− Pr

[
GA8 ⇒ 1

]∣∣ ≤ εm-enc-los
wPKE

|Pr [QueryBad7]− Pr [QueryBad8]| ≤ εm-enc-los
wPKE

Now Pr [QueryBad8] can be bounded. Since ri and r′i are chosen uniformly
and independent of c[i] (for i ∈ [µ]), we have

Pr [QueryBad8] ≤ µ(qG + qH)
|M′|

,Pr[QueryBad7] ≤ εm-enc-los
wPKE + µ(qG + qH)

|M′|

Since now r′i are independent of ei before opening, and ri is redundant in the
simulation, we withdraw all the abort events defined in H and G, and no longer
reprogram H(ri) and G(ri, di).

Game G9: the aborts event defined in H and G are withdraw, and we no
longer generate ri and reprogram H(ri) and G(ri, di) when c[i] is opened. Since
in G9, for i ∈ [µ], ri are independent of c[i], and r′i are independent of c[i] before
opening, the probability that A can detect this modification is 2µ(qG+qH )

|M′| . Note
that we have assumed that there is no collision among r′is. So, we have

∣∣Pr
[
GA8 ⇒ 1

]
− Pr

[
GA9 ⇒ 1

]∣∣ ≤ 2µ(qG + qH)
|M′|

+ µ2

|M′|

Now we can construct a simulator S that interacts with the IDEAL-SO-CCA
game and simulate G9 for A. The construction of S is shown in Figure 15. The
main difference between G9 and S is that r′i is sampled uniformly and Ki is
computed when A queries Open(i), which is conceptual. We have assumed that
all r′i’s and all K’s are pair-wise distinct, and the outputs of ROs H and G are
different. Hence, we have∣∣∣Pr

[
GA9 ⇒ 1

]
− Pr

[
IDEAL-SO-CCASFO ⇒ 1

]∣∣∣ ≤ n2
H

|M|
+ µ2

|M′|
+ n2

G

|R′|

Combining all the above difference, we conclude Theorem 4 as∣∣∣Pr
[
REAL-SO-CCAAFO ⇒ 1

]
− Pr

[
IDEAL-SO-CCASFO ⇒ 1

]∣∣∣
≤ Advkey-ind

wPKE (B) + 2εm-enc-los
wPKE + µnDec

2γ + 2n2
H

|M|
+ 2n2

G

|R′|
+ 4µ2 + 5µ(qG + qH)

|M′|
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SOpen′

01 (pk′, td) $← LKG
02 (pk, sk) := (pk′, td)
03 (Ma, st) $← ADec,H,G

0 (pk)
04 Outputs Ma and receives m′′ //S0
05 for i ∈ [µ]
06 di $←M
07 r′′i

$←M′, R′′i
$←R′

08 ei
$← wEnc(pk, r′′i lR′′i )

09 c[i] := (ei, di)
10 out $← AOpen,Dec,H,G

1 (st, c)
11 return out //S1

Open(i)
12 r′i

$←M′
13 Queries Open′(i)
14 Receives and records mi

15 Ki := di ⊕mi

16 R′i := open(sk, pk, ei, R′′i , r′i)
17 G[r′i, di] := R′i
18 H[r′i] := Ki

19 return (r′i,mi)

Fig. 15. SIM-SO-CCA simulator S that simulates G9 to conclude the proof of Theorem 4.
Here we ignore the details about simulation of H, G, and Dec which are the same as
in Figure 14.

4.3 Instantiations from DDH

We instantiate FO using the DDH-based lossy encryption from Bellare et al. [3]
and Hofheinz et al. [25]. We describe the one with [25] here, since it leads to an
(almost) tightly SIM-SO-CCA secure PKE, which is the main focus of this paper.
Due to space limitation, we leave the one with [3] in our full version paper [7].
An Instantiation with Hofheinz et al.’s Lossy Encryption [25]. We use
Hofheinz et al.’s DDH-based lossy encryption to instantiate FO. Following the nota-
tion in [25], we use the matrix Diffie-Hellman notation [13] to describe this scheme.
Let G be a group with prime order p and generator g. Let A := (ai,j)(i,j)∈[l]×[k]
be a matrix in Zl×kp , then the group representation of A, denoted as [A], is
defined as (gai,j )(i,j)∈[l]×[k]. Given r and [A], one can efficiently compute [Ar]
(if their sizes match). We refer [13] for more details .

Let N be a positive integer. Let H : {0, 1}N →M and G : {0, 1}N ×M→
ZN+1
p be two hash functions. Let h : G→ {0, 1} be a universal hash function. The

instantiated PKE scheme FO2 is shown in Figure 16. Hofheinz et al.’s DDH-based
lossy encryption has efficient opener, and it is (log(p))-spread, thus by Theorem 4,
FO2 has tight SIM-SO-CCA security.

Corollary 3. FO2 in Figure 16 is SIM-SO-CCA secure (Definition 9) if the
DDH problem is hard on G. Concretely, for any SIM-SO-CCA adversary A and
relation Rel, there exists a simulator S and B such that:

AdvSIM-SO-CCA
FO (A,S, µ,Rel) ≤ N · AdvDDH

G (B) + 2µ
p

+ µnDec

p

+ 2n2
H

|M|
+ 2n2

G

pN+1 + 4µ2 + 5µ(qG + qH)
2N ,

where qH , qG, and nDec are the numbers of A’s queries to G,H, and Dec,
respectively, µ is the number of challenge ciphertexts, and nG = µ+ nDec + qH
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KGfo
2

01 A0
$← Z1×(N+1)

p

02 T $← ZN×1
p

03 A1 := TA0 ∈ ZN×(N+1)
p

04 pk := ([A0], [A1])
05 sk := T
06 return (pk, sk)

Encfo
2 (pk,m)

07 s← {0, 1}N
08 K := H(s)
09 d := K ⊕m
10 r := G(s, d) ∈ ZN+1

p

11 [R0] := [A0r] ∈ G
12 [Z] := [A1r] ∈ GN
13 for i ∈ [N ]
14 ci := h([Z]i)⊕ si
15 c := c0c1...cN
16 return (([R0], c), d)

Decfo
2 (sk, ([R0], c), d)

17 m′ := ⊥
18 [Z′] := [TR0]
19 c1c2...cN =: c
20 for i ∈ [N ]
21 s′i := ci ⊕ h([Z′]i)
22 s′ := s′1s

′
2...s

′
N

23 K′ := H(s′), r′ := G(s′, d)
24 if [R0] = [A0r′]
25 m′ := d⊕K′
26 return m′

Fig. 16. A DDH-based scheme FO2 with efficient opener.

and nH = µ+ nDec + qG are the number of queries (including the simulator) to
G and H, respectively.
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Appendix

A Strong Diffie-Hellman and Twin Diffie-Hellman: From
Single-instance to Multi-instance

Let GGen be a group generation algorithm. On input a security parameter λ,
GGen(λ) outputs a group description G = (G, g, p), where G is an abelian group
with a generator g and order p.
StDH =⇒ mStDH: Given an mStDH adversary A0, we construct an StDH adver-
sary B0 as follows: B0’s input is a StDH problem instance (G, X, Y ), and it also
has access to dhpX . It needs to simulate a mStDH instance and dhpX for A0.
Let µ be the number of challenge. Figure 17 shows the construction of B0. If A0
output cdh(X,Yi∗) for some i∗ ∈ [µ], then we have cdh(X,Y ) = cdh(X,Yi∗)·X−ri .
Therefore, AdvmStDH

GGen (A0) ≤ AdvStDH
GGen(B0).

TDH =⇒ mTDH: The argument is similar to StDH =⇒ mStDH. Given an
mTDH adversary A1, we construct an TDH adversary B1 (in Figure 17). We have
AdvmTDH

GGen (A1) ≤ AdvTDH
GGen(B1).

BdhpX

0 (G, X, Y )
01 for i ∈ [µ]
02 ri

$← Zp, Yi := Y gri

03 Z $← AdhpX

0 (X,Y1, ..., Yµ)
04 Finds i∗ ∈ [µ]
05 s.t. dhpX(Yi∗ , Z) = 1
06 Z′ := Z ·X−ri

07 return Z′

B2dhpX0,X1
1 (G, X0, X1, Y )

08 for i ∈ [µ]
09 ri

$← Zp, Yi := Y gri

10 (Z0, Z1) $← A2dhpX0,X1
1 (X0, X1, Y1, ..., Yµ)

11 Finds i∗ ∈ [µ] s.t. 2dhpX0,X1 (Yi∗ , Z0, Z1) = 1
12 Z′0 := Z0 ·X−ri

0 , Z′1 := Z1 ·X−ri

1
13 return Z′

Fig. 17. The construction of B0 and B1 in Appendix A.

B Proof of Theorem 3

The game sequence of the proof is given in Figure 18. In G0, we use lazy sampling
to simulate random oracle H. We assume that from G0 to G9, there is no collision
among the outputs of random oracle h, the first parts of outputs of H (i.e.,
K), and the second parts of outputs of H (i.e., k). Let nH and nh be the total
numbers of times (including the queries from the game simulator) that H and h
were queried, respectively. This assumption adds collision bounds n2

H

|M| + n2
H +n2

h

2l

to the bound of our proof.∣∣∣Pr
[
REAL-SO-CCAAPKEDDH

⇒ 1
]
− Pr

[
GA0 ⇒ 1

]∣∣∣ ≤ n2
H

|M|
+ n2

H + n2
h

2l
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Games G0-G9
01 (X, (x0, x1)) $← KG //X = gx0

0 gx1
1

02 (Ma, st) $← AH,Dec
0 (X)

03 for i ∈ [µ]
04 m[i] := mi

$←Ma

05 bi
$← {0, 1}, ri,bi

$← Zp
06 Ri,bi,0 := g

ri,bi

0

07 Ri,bi,1 := g
ri,bi

1 // G0-G7,G9
08 Ri,bi,1

$← G // G8
09 Zi,bi

:= Xri,bi // G0-G4
10 Zi,bi

:= Rx0
i,bi,0R

x1
i,bi,1 // G5-G8

11 (Ri,1−bi,0, Ri,1−bi,1) $← G2 // G0,G9
12 ri,1−bi

$← Zp // G1-G8
13 Ri,1−bi,0 := g

ri,1−bi

0 // G1-G8
14 Ri,1−bi,1

$← G // G1-G3

15 Ri,1−bi,1 := g
ri,1−bi

1 // G4-G8
16 Zi,1−bi

:= Rx0
i,1−bi,0R

x1
i,1−bi,1 // G1-G8

17 Ri := Ri,0,0, Ri,0,1, Ri,1,0, Ri,1,1
18 (Ki, ki) := H(bi,Ri, Zi,bi

)
19 (Ki, ki) $←M× {0, 1}l // G6-G9
20 di := mi ⊕Ki

21 Ti := h(ki,Ri, di)
22 c[i] := (Ri, di, Ti)
23 out $← AOpen,Dec,H

1 (st, c)
24 return Rel(Ma,m, I, out)

Open(i)
25 I := I ∪ {i}
26 H[bi,Ri, Zi,bi

] := (Ki, ki) // G0-G6,G9
27 H[1− bi,Ri, Zi,1−bi

] := (Ki, ki) // G7-G8
28 rand := (bi, ri,bi

, Ri,1−bi,0, Ri,1−bi,1)
29 rand := (1− bi, ri,1−bi

,
Ri,bi,0, Ri,bi,1) // G7-G8

30 return (mi, rand)

H(b,R, Z)
31 if ∃i ∈ [µ]\I s.t. Z = Zi,1−bi

abort // G3-G8
32 if ∃i ∈ [µ]\I s.t. Z = Zi,bi

abort // G5-G8
33 parse (R0,0, R0,1,

R1,0, R1,1) =: R
34 if H[b,R, Z] = ⊥
35 (K, k) $←M× {0, 1}l
36 H[b,R, Z] := (K, k)
37 return H[b,R, Z]

Dec(c) // c /∈ c
38 parse (R, d, T ) := c
39 parse (R0,0, R0,1,

R1,0, R1,1) =: R
40 if ∃i ∈ [µ] s.t. T = Ti

return ⊥ // G2-G8
41 m := ⊥
42 Z0 := Rx0

0,0R
x1
0,1

43 Z1 := Rx0
1,0R

x1
1,1

44 (K0, k0) := H(0,R, Z0)
45 (K1, k1) := H(1,R, Z1)
46 T0 := h(k0,R, d)
47 T1 := h(k1,R, d)
48 if T0 = T : m = d⊕K0
49 if T1 = T : m = d⊕K1
50 return m

Fig. 18. Games G0-G9 for proving Theorem 3.

Game G1: We generate Ri,1−bi,0 by choosing ri,1−bi
, and compute Zi,1−bi

:=
Rx0
i,1−bi,0R

x1
i,1−bi,1. This modification does not change A’s view since Ri,1−bi,0 is

still distributed uniformly at random. Therefore we have

Pr
[
GA0 ⇒ 1

]
= Pr

[
GA1 ⇒ 1

]
.

Game G2: We modify Dec oracle. When A queries Dec on c := (R, d, T ),
if T is one of the challenge ciphertexts, then Dec returns ⊥. Similar to the
argument in the proof of Theorem 1, we have

Pr
[
GA1 ⇒ 1

]
= Pr

[
GA2 ⇒ 1

]
Game G3: G3 aborts if A queries H on (b,R, Rx0

i,1−bi,0R
x1
i,1−bi,1) and c[i] is

unopened (see Item 32). By the argument in [26, Theorem 4], if (x0, x1) is secret
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and uniformly random, then Zi,1−bi = Rx0
i,1−bi,0R

x1
i,1−bi,1 is uniformly random and

independent in A’s view. Thus for all Z ∈ G, Pr [Z = Zi,1−bi
] = 1

p , so we have∣∣∣Pr
[
GA2 ⇒ 1

]
− Pr

[
GA3 ⇒ 1

]∣∣∣ ≤ µqH
p
.

Game G4: We generate Ri,1−bi,1 := g
ri,1−bi
1 (see Item 15) instead of ran-

domly sampling. That is, in this game, Ri,1−bi,1 = cdh(g1, Ri,1−bi,0). By a direct
reduction from mDDH, one can show that there exists some B such that∣∣∣Pr

[
GA3 ⇒ 1

]
− Pr

[
GA4 ⇒ 1

]∣∣∣ ≤ AdvmDDH
GGen (B).

Game G5: We compute Zi,bi
:= Rx0

i,bi,0R
x1
i,bi,1, which is equivalent to compute

Zi,bi
:= Xri,bi .

We also introduce the abort rule in the H oracle: If A queries H on (b,R, Zi,bi)
and c[i] is unopened. Let Badj be such querying event.

The modification of Zi,bi
does not change A’s view. If Bad5 does not occur,

then A’s view in G5 is the same as in G4. Now we cannot argue the probability
of Bad5 since Zi,bi

is not independently random, so we delay the bounding of
Pr [Bad5]. We have∣∣∣Pr

[
GA4 ⇒ 1

]
− Pr

[
GA5 ⇒ 1

]∣∣∣ ≤ Pr [Bad5] .

Game G6: For i ∈ [µ], the key (Ki, ki) is generated by uniformly sampling
from M× {0, 1}l instead of by computing H(bi,Ri, Zi,bi

). Moreover, when A
opens c[i], we reprogram H such that H(bi,Ri, Zi,bi

) = (Ki, ki). By the abort
rule in G5, A cannot query H(bi,Ri, Zi,bi) before opening c[i], so H(bi,Ri, Zi,bi)
will not be defined until A opens c[i]. Therefore, this modification does not
change A’s view if Bad6 does not occur, we have∣∣∣Pr

[
GA5 ⇒ 1

]
− Pr

[
GA6 ⇒ 1

]∣∣∣ ≤ Pr [Bad6] ,Pr [Bad5] = Pr [Bad6] .

Game G7: We modify Open so that the challenge ciphertext c[i] will be
opened to the randomness (1−bi, ri,1−bi

, Ri,1−bi,0, Ri,1−bi,1). Concretely, when A
opens c[i], the simulator sets H(1− bi,Ri, Zi,1−b) := (Ki, ki) (instead of setting
H(bi,Ri, Zi,b) := (Ki, ki)), and then returns (1 − bi, ri,1−bi , Ri,1−bi,0, Ri,1−bi,1)
as randomness of c[i] instead of (bi, ri,bi , Ri,bi,0, Ri,bi,1).

By the abort rules in the H oracle. the generation of c[i] is independent of
bi before c[i] is opened. By reprogramming H, the randomness returned from
Open is consistent with c[i], so specifying the random bit of c[i] to 1− bi does
not change A’s view, so we have∣∣∣Pr

[
GA6 ⇒ 1

]
− Pr

[
GA7 ⇒ 1

]∣∣∣ ≤ Pr [Bad7] ,Pr [Bad6] = Pr [Bad7] .

Game G8: For i ∈ [µ], (g0, g1, Ri,bi,0, Ri,bi,1) is no longer a DDH tuple in
this game. Namely, we sampling Ri,bi,1 from G at uniformly random instead of
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computing Ri,bi,1 := g
ri,bi
1 . This game can be simulated without knowing the

exponent ri,bi
, so we can construct a direct reduction from mDDH (similar to G4)

to bound the probabilistic difference between G7 with G8. Therefore, there exists
B such that ∣∣∣Pr

[
GA7 ⇒ 1

]
− Pr

[
GA8 ⇒ 1

]∣∣∣ ≤ AdvmDDH
GGen (B),

|Pr [Bad7]− Pr [Bad8]| ≤ AdvmDDH
GGen (B).

Since in G8, Ri,bi,1 is independent and uniformly random, similar to the argument
in G3, Zi,bi

is also independent and uniformly random in A’s view (as long as
the secret key (x0, x1) is unknown to A). So now

Pr [Bad8] ≤ µqH
p
,Pr [Bad5] = Pr [Bad6] = Pr [Bad7] ≤ µqH

p
+ AdvmDDH

GGen (B),

and thus we have∣∣∣Pr
[
GA4 ⇒ 1

]
− Pr

[
GA7 ⇒ 1

]∣∣∣ ≤ 3µqH
p

+ 3AdvmDDH
GGen (B).

Game G9: We undo the abort rules in the H oracle and the Dec oracle,
and modify the generation of Ri. Specifically, we modify G8 in the following
order: (1) Undo the abort rule at Item 32. (2) Generate Ri,bi,1 by computing
g
ri,bi
1 . (3) Generate Ri,1−bi,1 and Ri,1−bi,1 by uniformly sampling from G and
the randomness of c[i] is explained by (bi, ri,bi , Ri,1−bi,0, Ri,1−bi,1). (4) Undo the
abort rule at Item 31. (5) Undo the abort rule in Dec. That is, we undo the
modifications made in G8,G5,G4,G3, and G2. We can construct reduction from
mDDH and collision-resistance as we did in G3,G4,G5, and G8 to bound the
probability difference. We have∣∣∣Pr

[
GA8 ⇒ 1

]
− Pr

[
GA9 ⇒ 1

]∣∣∣ ≤ 3µqH
p

+ 5AdvmDDH
GGen (B).

Now we can construct a SIM-SO-CCA simulator S that simulates G9 for A
and interacts with the IDEAL-SO-CCA game. The construction of simulator is
shown in Figure 19.
S samples di uniformly fromM and computes Ki as di ⊕mi (when A opens

c[i]), which is equivalent to sampling Ki firstly and then computing di := Ki⊕mi.
Note that at the start of the proof we assume that from G0 to G9, there is no
collision among the outputs of random oracle h, the first parts of outputs of H
(i.e., K), and the second parts of outputs of H (i.e., k). Here we need to add
back this collision bound. That is,∣∣∣Pr

[
GA9 ⇒ 1

]
− Pr

[
IDEAL-SO-CCASPKEDDH

⇒ 1
]∣∣∣ ≤ n2

H

|M|
+ n2

H + n2
h

2l

By combining all the probabilistic bounds, we have∣∣∣Pr
[
REAL-SO-CCAAPKEDDH

⇒ 1
]
− Pr

[
IDEAL-SO-CCASPKEDDH

⇒ 1
]∣∣∣
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SOpen

01 (X, (x0, x1)) $← KG //X = gx0
0 gx1

1
02 (Ma, st) $← AH,Dec

0 (X)
03 Outputs Ma //S0
04 Receives m′
05 for i ∈ [µ]
06 bi

$← {0, 1}, ri,bi

$← Zp
07 Ri,bi,0 := g

ri,bi

0 , Ri,bi,1 := g
ri,bi

1
08 Zi,bi

:= Xri,bi

09 (Ri,1−bi,0, Ri,1−bi,1) $← G2

10 Ri := Ri,0,0, Ri,0,1, Ri,1,0, Ri,1,1
11 (di, ki) $←M× {0, 1}l
12 Ti := h(ki,Ri, di)
13 c[i] := (Ri, di, Ti)
14 out $← AOpen,Dec,H

1 (st, c)
15 return out //S1

Open(i)
16 Queries its Open oracle on i
17 Receives mi

18 Ki := di ⊕mi

19 H[bi,Ri, Zi,bi
] := (Ki, ki)

20 rand := (bi, ri,bi
, Ri,1−bi,0, Ri,1−bi,1)

21 return (mi, rand)

H(b,R, Z)
22 parse (R0,0, R0,1,

R1,0, R1,1) =: R
23 if H[b,R, Z] = ⊥
24 (K, k) $←M× {0, 1}l
25 H[b,R, Z] := (K, k)
26 return H[b,R, Z]

Dec(c) // c /∈ c
27 parse (R, d, T ) := c
28 parse (R0,0, R0,1,

R1,0, R1,1) =: R
29 m := ⊥
30 Z0 := Rx0

0,0R
x1
0,1

31 Z1 := Rx0
1,0R

x1
1,1

32 (K0, k0) := H(0,R, Z0)
33 (K1, k1) := H(1,R, Z1)
34 T0 := h(k0,R, d)
35 T1 := h(k1,R, d)
36 if T0 = T : m = d⊕K0
37 if T1 = T : m = d⊕K1
38 return m

Fig. 19. SIM-SO-CCA simulator S that simulate G9 to conclude Theorem 3.

≤ 10AdvmDDH
GGen (B) + 6µqH

p
+ 2n2

H

|M|
+ 2(n2

H + n2
h)

2l

as stated in Theorem 3.

C Proof of Theorem 5

The proof idea of Theorem 5 is the same as the one of Theorem 4. In G10 of the
proof of Theorem 4 (see Figure 14), m[i] is independent of c[i] if c[i] is unopened.
Therefore, we can resample m[i] for i ∈ [µ]\i, and finally change the game from
IND-SO-CCAAwPKE,0 to IND-SO-CCAAwPKE,1. Note that now the algorithm open
does not need to be efficient, since we do not need to construct an efficient
simulator in IND-SO-CCA.

The games of the proof is shown in Figure 20. Similar to the argument in
Theorem 4, we assume that from G0 to G12, there is no collision among all ri’s,
Ri’s, all K’s, and the outputs of ROs G and H. We have∣∣∣Pr

[
IND-SO-CCAAwPKE,0 ⇒ 1

]
− Pr

[
GA0 ⇒ 1

]∣∣∣ ≤ n2
H

|M|
+ µ2

|M′|
+ n2

G

|R′|
The game transitions from G0 to G9 in Figure 20 are exactly the same as the

transitions in the proof of Theorem 4. Therefore, we have∣∣Pr
[
GA0 ⇒ 1

]
− Pr

[
GA9 ⇒ 1

]∣∣
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Games G0-G10
01 (pk, sk) $← wKG // G0-G1
02 (pk′, td) $← LKG // G2-G10
03 (pk, sk) := (pk′, td) // G2-G10
04 (Samp,ReSamp, st0) $← A0(pk)
05 m $← Samp
06 for i ∈ [µ]
07 ri

$←M′
08 r′i

$←M′ // G3-G10
09 Ki := H(ri)
10 Ki

$←M // G5
11 di := mi ⊕Ki

12 di $←M // G6-G10
13 Ki := di ⊕mi // G6-G10
14 Ri := G(ri, di)
15 Ri

$←R′ // G5-G7
16 ei := wEnc(pk, ri;Ri) // G0-G7
17 r′′i

$←R′ // G8-G10
18 ei

$← wEnc(pk, r′′i ) // G8-G10
19 c[i] := (ei, di)
20 st $← AOpen,Dec,G,H

0 (c)
21 m := ReSamp(I,m) // G10
22 b′ $← ADec,G,H

1 (st,m)
23 return b′

H(r)
24 if ∃i ∈ [µ]\I s.t. r = r′i // G3-G10
25 abort // G3-G10
26 if ∃i ∈ [µ]\I s.t. r = ri // G4-G10
27 abort // G4-G10
28 if H[r] = ⊥
29 H[r] := K $←M
30 return H[r]

Open(i)
31 G[ri, di] := Ri // G5-G8
32 H[ri] := Ki // G5-G8
33 R′i := open(sk, pk, ei, r′i) // G7-G10
34 G[r′i, di] := R′i // G7-G10
35 H[r′i] := Ki // G7-G10
36 I := I ∪ {i}
37 return (ri,mi) // G0-G7
38 return (r′i,mi) // G8-G10

Dec(c) // c /∈ c
39 parse (e, d) := c
40 m′ := ⊥
41 r′ := wDec(sk, e) // G0
42 R′ := G(r′, d),K′ := H(r′) // G0
43 if e = wEnc(pk, r′;R′) // G0
44 m′ := d⊕K′ // G0
45 if ∃(r′, R′) s.t. G[r′, d] = R′

and e = wPKE(pk, r′;R′) // G1-G10
46 K′ := H(r′) // G1-G10
47 m′ := d⊕K′ // G1-G10
48 return m′

G(r, d)
49 if ∃i ∈ [µ]\I s.t. r = r′i // G3-G10
50 abort // G3-G10
51 if ∃i ∈ [µ]\I s.t. r = ri // G4-G10
52 abort // G4-G10
53 if G[r, d] = ⊥
54 G[r, d] := R $←R′
55 return G[r, d]

Fig. 20. Games G0-G11 for proving Theorem 4.

≤ Advkey-ind
wPKE (B0) + 2εm-enc-los

wPKE + µnDec

2γ + 2µ2

|M′|
+ 5µ(qG + qH)

|M′|

Game G10: We resample m[i] for all i ∈ [µ]\I. Since in G9, c[i] is independent
of m[i] if i ∈ [µ]\I, this modification does not change A’s view. SO we have

Pr
[
GA9 ⇒ 1

]
= Pr

[
GA10 ⇒ 1

]
Now G10 is the same as IND-SO-CCAAwPKE,1 if we undo all modifications. For

simplicity, we ignore the details. We have∣∣∣Pr
[
GA10 ⇒ 1

]
− Pr

[
IND-SO-CCAAwPKE,1 ⇒ 1

]∣∣∣
≤ Advkey-ind

wPKE (B0) + 2εm-enc-los
wPKE + µnDec

2γ + n2
H

|M|
+ n2

G

|R′|
+ 3µ2 + 5µ(qG + qH)

|M′|
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By combining all probability difference, we have∣∣∣Pr
[
IND-SO-CCAAwPKE,0 ⇒ 1

]
− Pr

[
IND-SO-CCAAwPKE,1 ⇒ 1

]∣∣∣
≤ 2(Advkey-ind

wPKE (B0) + 2εm-enc-los
wPKE + µnDec

2γ ) + 2n2
H

|M|
+ 2n2

G

|R′|
+ 6µ2 + 5µ(qG + qH)

|M′|
,

as stated in Theorem 5.

D More Instantiation of FO from DDH

An Instantiation with Bellare et al.’s Lossy Encryption [3]. We use
Bellare et al.’s DDH-based lossy encryption to instantiate the generic construction
FO. Let G be a group with prime order p and generator g, H : G → M and
G : G ×M → Z2

p be hash functions. The resulting scheme FO1 is shown in
Figure 21. Bellare et al.’s DDH-based lossy encryption does not have efficient
opener [3], and it is log(p)-spread, thus by Theorem 5 , the resulting scheme FO1
in Figure 21 has tight IND-SO-CCA security.

KGfo
1

01 (x, ω) $← Z2
p

02 g0 := g,X := gx0
03 g1 := gω, h := gx1
04 pk := (X, g1, h)
05 sk := x
06 return (pk, sk)

Encfo
1 (pk,m)

07 s← G
08 K := H(s)
09 d := K ⊕m
10 (r0, r1) := G(s, d)
11 R0 := gr0

0 g
r1
1

12 R1 := Xr0hr1 · s
13 return ((R0, R1), d)

Dec(sk, ((R0, R1), d))
14 m′ := ⊥
15 s′ := R1/Rx0
16 (r′0, r′1) := G(s′, d)
17 K′ := H(s′)
18 R′0 := g

r′0
0 g

r′1
1

19 R′1 := Xr′0hr
′
1 · s′

20 if (R′0, R′1) = (R0, R1)
21 m′ := d⊕K′
22 return m′

Fig. 21. Scheme FO1 from instantiating FO using the DDH-based lossy encryption in [3].

Corollary 4. FO1 in Figure 21 is IND-SO-CCA secure (Definition 10) if the
DDH problem is hard on G and G and H are random oracles. Concretely, for
any IND-CCA adversary A, there exists B such that:

AdvIND-SO-CCA
FO (A, µ) ≤ 2(AdvDDH

G (B) + 2µ
p

+ µnDec

p
)

+ 2n2
H

|M|
+ 2n2

G

p2 + 6µ2 + 5µ(qG + qH)
p

where qH , qG, and nDec are the numbers of A’s queries to G,H, and Dec,
respectively, µ is the number of challenge ciphertexts, and nG = µ+ nDec + qH
and nH = µ+ nDec + qG are the number of queries (including the simulator) to
G and H, respectively.
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