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The effect of building attributes on the energy performance at a scale: an
inferential analysis
Ruslan Zhuravchak , Natasa Nord and Helge Brattebø

Department of Energy and Process Engineering, NTNU. Kolbjørn Hejes v. 1B, Trondheim, Norway

ABSTRACT
The commitments to mitigate the negative impacts associated with final energy use stipulate the
increase of energy efficiency of the built environment. This is the focus of urban energy policies
and of built stock energy models that aid them. The complexities behind the phenomenon,
however, hinder the development of the means for controlling and unbiased modelling. Such
tasks necessitate the empirical evidence of causal relationships between architectural and
technical attributes and building energy performance at the population level. This study,
therefore, elaborates on the methods of inferential statistics for establishing such causal effects.
The focus is on the methods of frequentist inference, active use of which may advance the
understanding of the phenomenon and foster more accurate modelling practices. The case
study examines the energy performance exhibited by distinct configurations of construction
periods, envelope materials, sources of energy for space heating and the ventilation system
types. The empirical sample consists of more than 11,000 records registered in the Norwegian
energy performance certification system. The results document the effects and their
significance. These methods are applicable in any urban context and may provide the empirical
basis for promoting/discouraging certain technological and architectural tendencies, and
simulating the phenomena through probabilistic programming.
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Introduction

Energy use in buildings is seen as one of the key bottle-
necks in the transition towards more sustainable cities,
communities and nations. Improving the energy
efficiency and energy flexibility of the built stock, there-
fore, is amongst the central components of urban devel-
opment strategies which are being initiated, supported
and/or supervised through a variety of political mechan-
isms (Kennedy et al., 2014; Tozer, 2020). Developing,
implementing and reviewing such mechanisms rely on
long-term urban energy planning that seeks to accurately
predict and rationally match future energy use to the gen-
eration capacities. Building energy use at the urban level,
however, is a complex phenomenon governed by mul-
tiple factors of socioeconomic, architectural, technical,
environmental and other kinds. Such complexities,
amplified by the heterogeneity and the continuous evol-
ution of the built environment, entail uncertainties that
undermine the plausibility of energy planning. Develop-
ing the means for analysing and predicting the phenom-
enon while overcoming these challenges is the subject of

built stock energy modelling and has important impli-
cations for achieving sustainability targets.

The significance of stock-wide energy modelling for
practical and policy-related applications is one of the
reasons for elevated attention to such models in build-
ing energy research (Johari et al., 2020; Moghadam
et al., 2017; Reinhart & Davila, 2016). Given a variety
of objectives that build stock energy modelling may pur-
sue, their design, methodological foundations and
resource needs may differ substantially. These charac-
teristics are the basis for the hierarchical model classifi-
cation proposed by Swan and Ugursal (2009). A more
recent study by Langevin et al. (2020) suggested an
extended classification of models by design and several
additional criteria to determine their taxonomic affilia-
tion, namely the degree of transparency, system bound-
aries, spatial resolution, temporal dynamics and the
approach to handle the uncertainties.

The prevailing modelling practices, although indis-
putably instrumental at addressing their objectives, do
not rest on empirically validated causal relationships
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between building attributes and the energy performance
at a population level. Even if such relationships may
have been established for individual buildings, project-
ing them to the urban scale implies the risks of biased
results. The bias is caused by a virtually infinite number
of aspects that, directly and indirectly, statically and
dynamically, individually and jointly, affect the real
energy use at a population level. Addressing such com-
plexities represents a significant challenge. To maintain
the data, labour and computational resources rational,
modelling procedures often involve the assumptions
and approximations in relationships. These are, ulti-
mately, some of the key drivers of the performance
gap (van den Brom et al., 2018; Menezes et al., 2012)
and elevate the risks of developing irrelevant theories,
making misleading conclusions and pursuing implausi-
ble or ineffective energy strategies.

Establishing the causal relationships with explicit
account for variabilities in final energy use at the popu-
lation level is advocated by energy epidemiology - a fra-
mework for incisive analysis and modelling proposed by
Hamilton et al. (2013). Methodologically, it implies
synthesizing the analytical instruments used in health
sciences with already established architecture- and
engineering-based foundations of building energy
research. Epidemiological approaches articulate the
need for robust conclusions about the direct and indir-
ect, individual and joint causal effect of a certain factor
on the phenomenon of interest. It is, for example,
expected that within the built stock renovation pro-
gram, insulation of building envelope leads to energy
savings (direct positive effect) (Jones et al., 2013). The
occupant may, however, prefer elevated indoor temp-
erature setpoints once the renovation is done which
leads to higher energy use (indirect negative effect),
a.k.a. rebound effect (Guerra Santin, 2013; Hamilton,
2016). Furthermore, the joint influence of multiple fac-
tors is likely to result in ‘effect modification’, e.g. the
energy savings that follow envelope insulation together
with the deployment of renewable energy technologies
is not equal to the sum of savings from these measures
if implemented separately.

Documented evidence-based causal relationships,
considering the inherent variabilities handled through
the epidemiological approach, may enable to (i) acquire
a better theoretical understanding of the phenomenon;
(ii) improve the accuracy of modelling practices; (iii)
rationalize the energy planning and the associated legis-
lative mechanisms. Although these needs are under-
stood, building energy research lacks the means to
address them. The causalities are commonly documen-
ted by comparing the parameters of central tendency
(mean, median, mode), dispersion (variance, standard

deviation, interquartile range, support) and shape
(skewness, kurtosis) of the empirical univariate sample
distribution, as shown in van den Brom et al. (2019);
Gangolells et al. (2016); Hjortling et al. (2017). Individu-
ally, neither of these parameters characterize the
phenomenon through the entire range of possible
values. More comprehensive metrics must be used to
facilitate the conclusions about the causal relationships.
Probability density function (PDF) and probability mass
function (PMF) are therefore used as parsimonious rep-
resentations of continuous and discrete phenomena
accordingly. PDF or PMF accommodate the central ten-
dency, dispersion and shape of the distribution, rep-
resent a statistical model capable of generating
synthetic data and hence, used for carrying out simu-
lations facilitated by the methods of probabilistic pro-
gramming (Zhuravchak et al., 2021). The procedure of
identifying the underlying PDF or PMF given the
empirical sample is referred to as density estimation.

Documenting the properties of the population based
on the available subset (empirical sample) is the objec-
tive of statistical inference, density estimation being
one of its components. The focus on population
makes statistical inference distinct from the descriptive
analysis which is focused on the empirical sample only.
The practices of statistical inference follow either of the
two established paradigms: frequentist and Bayesian
inference. The debates on theoretical correctness, prac-
tical benefits and the possible synthesis of frequentist
and Bayesian approaches last for a century (Bayarri &
Berger, 2004; Cox, 2006; Raue et al., 2013). In numerous
applications dealing with knowledge discovery and
modelling, the choice between these approaches is dri-
ven primarily by the objectives, considerations on the
accessibility and quality of data, availability of prior
information and computational resources. In the built
stock energy research, density estimation is often
approached using Bayesian inference, as a part of either
forward or inverse uncertainty analysis procedures
(Tian et al., 2018). The distributions of parameters
related to architectural and operational characteristics
of the buildings, for example, are documented in several
studies (Booth et al., 2012; Heo et al., 2015; Tian &
Choudhary, 2012; Zhao et al., 2016). The variability of
typology-specific actual building energy performance
is quantified by Choudhary (2012), Choudhary and
Tian (2014), Braulio-Gonzalo et al. (2016). Frequentist
methods are scarcely represented in the domain litera-
ture, with one example of density estimation by Fonseca
and Panão (2017).

Unless the data for the entire population is collected,
any conclusions about the population based on a ran-
domly collected sample are prone to errors. That is,
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there is the risk that the causal relationships apparent in
the sample do not apply to the population. In such a
case, projecting the sample-based analysis on the popu-
lation leads to biased results. Most of the time, however,
collecting the data for the whole population is irrational
or impossible to carry out. To address the problems of
this kind, both frequentist and Bayesian inference pro-
vide the methods of hypothesis testing (Silva, 2018)
that yield a measure of confidence in any claims related
to causal relationships. Statistical hypothesis testing,
despite its appreciation in epidemiological studies
(Rigby, 1998) and scientific practices in general (Miz-
rahi, 2020), is not being used systematically in building
energy research. One of the likely causes is that hypothe-
tical reasoning is amongst the most challenging statisti-
cal concepts to explain and to comprehend (Park, 2019).

This study, therefore, is motivated by the need to
elaborate on some methods for determining the causal
relationships in the context of energy epidemiology,
with the focus on frequentist approaches (Section Meth-
odology). Statistical hypothesis testing, in this study, is
represented by Kolmogorov–Smirnov (KS) test. Density
estimation - by maximum likelihood estimation (MLE)
and several metrics for judging the goodness-of-fit. The
case study is based on the empirical dataset, as described
in Methodology section, and exemplifies (in Results sec-
tion): (i) hypothesis testing procedures to find if the age,
envelope material, source of energy for space heating
and the type of ventilation system have direct or indirect
implications on the actual energy performance of the
population of apartments in Oslo, Norway; (ii) density
estimation to document the variability of energy per-
formance between apartments having distinct combi-
nations of these attributes. This enabled identifying
the combinations of attributes that exhibit relatively
high and low energy performance within the scope of
the case study. Discussion section points towards several
practical applications of the methods discussed, evalu-
ates the possibilities for upscaling and diversifying the
scope and outlines several alternative methods of inter-
est. A summary of findings is provided in Conclusion
section. These findings are partially based on and can
be reproduced/replicated through Built Stock Explorer
(https://buildingstockexplorer.indecol.no) – an open
access research software for knowledge discovery and
modelling of the Norwegian built stock.

Methodology

Empirical data

Following the Energy Performance of Buildings Direc-
tive (EPBD) 2002/ 91/ EC, the Norwegian strategy for

advancing towards low energy use in buildings is
assisted by the Energy Labelling System for Houses
and Dwellings (Brekke et al., 2018). One of the outputs
of this system is the energy performance certificate
(EPC) registry. EPCs contain the reported total annual
energy use (kWh · y−1) per certified unit and its
source-specific annual energy use if more than one
source is used. The values are averaged over 3 years of
the building’s operation to account for the varying
weather conditions, occupancy- and maintenance-
related factors. The reported total annual energy use
normalized per unit of heated floor area is a continuous
random variable that reflects the actual energy perform-
ance - a reported total energy use intensity (EUI) in
kWh ·m−2 · y−1.

The residential built stock in Oslo consists of apart-
ment blocks and several typologies of houses, namely
detached, semi-detached, chained, terraced and quad
house. In the EPC registry, the apartment is the most
frequent typology, reaching 74% by records count,
54% by heated floor area and 52% by total annual energy
use amongst all the residential units. Certified apart-
ments have four attributes relevant to this study,
namely:

(1) Construction period (CP) > 1990: binary [True,
False];

(2) Primary envelope material (EM) used: either of
[Concrete, Brick, Wood];

(3) Source of energy for space heating (SH): either or a
combination of [Electricity (El), District heating
(DH), Wood, Gas, Oil, Heat pump (HP)];

(4) Ventilation system (VS) type: either of [Natural
(N), Periodical (P) extraction, Continuous (C)
extraction, Balanced (B)].

The construction period is seen as a proxy to archi-
tectural and envelope-related measures made to comply
with the energy performance standards active during a
certain period. Historically, in Norway, substantial
improvements in the energy performance requirements
occurred in 1990 (Sandberg et al., 2016; Sartori et al.,
2009). The year 1990, therefore, is used in this study
as the basis for separating the empirical sample into
two groups. The other attributes reflect structural, tech-
nological and indoor environmental comfort consider-
ations which are likewise expected to affect the actual
energy performance. In addition to the direct effects
triggered by the building attributes, they could be the
cause and/or the result of more indirect tendencies of
socio-cultural, physiological, economic and other
kinds exhibited by the occupants. The inferential analy-
sis presented in this study, therefore, examines both
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direct and indirect effects associated with building
attributes.

The subset of the EPC registry, limited to apartments
in Oslo, with the reported total EUI and the four attri-
butes specified, constitutes a sample of 11,163 records.
These units have distinct combinations of attributes,
each of which is defined explicitly in this study. The
number of all possible combinations of two CPs, three
EMs, nine unique combinations of energy sources for
SH and four VS types is given by the cardinality (216)
of the Cartesian product of these attributes. All possible
combinations of these attributes are illustrated as a cir-
cular tree structure in Figure 1. A central (root) node in
Figure 1 represents the entire sample (11,163 records) of
apartments in Oslo. This node has two child nodes
representing the subsets of apartments in Oslo con-
structed (i) before and (ii) after 1990. Similarly, each
of these nodes has the child nodes that represent the
subsets of distinct EMs, sources of energy for SH and
VS types. This tree structure has 216 leaf nodes that
form the outermost circle. Every distinct path from
the root to the leaf node defines a unique combination
of four attributes that characterize the apartments in
Oslo. The diameter of the node is proportional to the
size of the sample represented by this node.

Statistical hypothesis testing

Identifying the direct or indirect effects of building attri-
butes on the energy performance involves comparing
the samples of the energy performance of buildings
with and without this attribute. However, since the
available empirical sample is only a subset of the popu-
lation, the effect observed in the data may occur by
chance. Statistical hypothesis testing, therefore, answers
the question: ‘If the attribute does not affect the energy
performance in the population, how likely is it to
observe this effect in the empirical sample that rep-
resents this population?’

A formal hypothesis testing requires (i) the choice of
test statistic -- the metrics that quantify the effect of
interest, e.g. differences in population means, popu-
lation proportions, etc.; (ii) the formulation of the null
hypothesis, which is an initial assumption about the
absence of direct or indirect effect measured by the
test statistic; (iii) computing the p-value (Figure 2),
which is the likelihood of observing a certain effect pro-
vided that the null hypothesis is true; (iv) judging the
statistical significance of the results: small p-value
suggests that the observed effect is not likely to occur
by chance (implies rejecting the null hypothesis), a
large p-value implies a failure to reject the null hypoth-
esis. This decision is typically based on comparing

p-value to the threshold α of statistical significance
established prior to the experiment.

In Figure 2, the shaded area illustrates p-value as the
likelihood of observing the values of the test statistic as
large as x or more extreme. The illustration applies to
two-sided tests since p-value accounts for extreme
values on both sides of the distribution. Alternatively,
one-sided tests can be used (outside the scope of this
study).

This study tests the null hypothesis formulated as
‘distinct combinations of building attributes do not
affect the energy performance’. Rejecting this hypothesis
is made at a significance level a = 0.05. The test statistic
and the calculation of p-value are based on the KS test
(Bhattacharya et al., 2016; Feldman & Valdez-Flores,
2010). In the (two-sided) KS test, a measureD of confor-
mity between two empirical samples is the supremum of
the difference between their cumulative distribution
functions (CDF) (Marsaglia et al., 2003):

D = sup
x

|F1(x)− F2(x)| (1)

where: x, random variable; F1(x), CDF of sample being
tested; F2(x), CDF of the sample against which the test is
carried out.

Figure 3 illustrates the empirical CDFs of two arbi-
trary samples and the associated D-statistic. Because
the CDF fully characterizes the central tendency and
the dispersion of the empirical sample, the KS test is
recognized as a comprehensive and convenient method
for hypothesis testing. This is a non-parametric test,
applicable to any empirical and theoretical distributions.
The p-value associated with the test can be found from
the asymptotic distribution of the KS test statistic.

Density estimation

Density estimation seeks to fit (and to evaluate the
goodness-of-fit) a set of parameters θ that characterize
the PDF fX(x | u) of the theoretical random variable X
to the empirical sample x:[x1, x2, x3, . . . , xn]. MLE
(Robert & Casella, 2013; Thomopoulos, 2017) is a
method for finding the parameters θ by solving a multi-
variate unconstrained optimization problem of maxi-
mizing the log-likelihood function that has a form:

L(u, x) = max
u

ln
∏n
i

fX(xi | u)
[ ]{ }

= max
u

∑n
i

ln [fX(xi | u)]
{ }

. (2)
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The objective of MLE may be achieved with numer-
ous optimization techniques, such as the downhill sim-
plex (Nelder–Mead) method (Gao & Han, 2012; Härdle
et al., 2017; Nelder & Mead, 1965), where the objective
function converges by adjusting the arbitrary-selected
initial parameters step-wisely. The objective is met
either if the error tolerance satisfies a certain criterion
or if the objective function exhibits no changes for sev-
eral past iterations.

Goodness-of-fit between the theoretical parameter-
ized distribution and the empirical data must be quan-
tified further. A KS test, discussed above, may be
adapted for this purpose, with D-statistic and the associ-
ated p-value used as reference metrics. High p-value
suggests that the null hypothesis ‘the observed sample
is the outcome of the fitted PDF’ cannot be rejected.
The conformity between the sample density and the
theoretical parameterized PDF can be also quantified

Figure 1. Building attributes structured as a circular tree.
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with the sum of squared errors (SSE, Equation (3)),
where a small SSE indicates a better fit. Another instru-
mental metric is the coefficient of determination R2

(squared coefficient of correlation R) of the linear
least-squares fit between the quantiles of the theoretical
distribution and the ordered values of the sample. R2

quantifies the total variation in the sample described
by the variation in the theoretical quantiles. High R2

suggests a good fit and vice versa.

SSE =
∑n
i=0

(yi(x)− fi(x))
2 (3)

where yi(x), sample density at the ith interval; fi(x),

density of a fitted PDF at the ith interval; n, number
of intervals considered.

Figure 4 exemplifies the metrics for goodness-of-fit
associated with fitting the exponentially modified
Normal (Exponnorm) distribution to the empirical
sample. The figure suggests overall conformity
between the empirical sample and the parameterized
distribution. The theoretical PDF (Figure 4a) approxi-
mates the density histogram, with occasional underes-
timated spikes compensated by overestimating the
neighbouring density. This fit is associated with a
small SSE. A theoretical continuous CFD (Figure 4b)
follows the step function of the empirical CDF, with
rare minor deviations. The corresponding D-statistic

Figure 2. p-value under the distribution f (x) of test statistic x.

Figure 3. Empirical CDFs of two arbitrary samples and the D-statistic.
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is small, and the p-value is high. A strong positive
correlation between theoretical quantiles and the
empirical values can be observed (Figure 4 c), with
negligible deviations from the linear fit and, therefore,
high R2. The example demonstrates the key goal of
density estimation - obtaining an approximate para-
metric description of the data generating process. It
is not possible and not attempted to assure that the
observed empirical sample is generated by one distri-
bution and not another. The p-value solely suggests
that the observed D-statistic is not too rare to reject
the choice of the distribution. SSE and the R2 provide
the quantitative metrics to support the choice of the
distributions amongst the alternatives and to better
understand the performance of the probabilistic
model based on this fit.

Results

The method of statistical hypothesis testing introduced
above assists with concluding if buildings characterized
by distinct attributes have distinct energy performance.
The difference and the statistical significance of such
difference are quantified and documented for individual
attributes. A significance level for hypothesis testing
through this study is set to a = 0.05. The KS test stat-
istic enabled identifying which building configurations
amongst those analysed are most- and least favourable
for better energy efficiency of the built stock within
the scope of the study. This section also elaborates
and documents the results of density estimation per
individual building configuration. The reference is

made to Figure 1 whenever applicable to explain
which sample(s) are considered.

Attribute-wise analysis of conformity

The first question of interest is formulated as: ‘do the
populations of apartments in Oslo, constructed [1]
before and [2] after 1990 have a significant difference
in their energy performance?’. The null- and the alterna-
tive hypothesis are set as follows:

H0 : E1 − E2 = 0; Ha : E1 − E2 = 0; (4)

where E1, energy use intensity (kWh ·m−2 · y−1) of the
population [1]; E2, energy use intensity
(kWh ·m−2 · y−1) of the population [2].

The empirical samples used for testing correspond to
all the EPC records for apartments in Oslo where [1] CP
. 1990: False and [2] CP . 1990: True. These samples
are accommodated by all the nodes in [1] upper and [2]
lower semicircles accordingly in Figure 1. The results of
the test are illustrated in Figure 5.

Empirical cumulative distribution functions (ECDF)
in Figure 5(a) suggest that the phenomenon exhibits
distinct properties in the two groups, particularly in
the range [100 . . . 200] kWh ·m−2 · y−1. The energy
performance of recently built apartments is evidently
better. The non-diagonal elements in the colour-
encoded matrix (Figure 5b) illustrate the largest absol-
ute difference (D-statistic) found within pairwise KS
testing. Obtaining this D-statistic is associated with
rather small p-values illustrated as the non-diagonal
elements (Figure 5c). Because the p-values obtained

Figure 4. Goodness-of-fit between the arbitrary sample and the MLE-parameterized exponentially-modified Normal distribution: (a)
sample density histogram over 100 bins with the PDF of a fitted distribution; (b) an empirical CDF with the CDF of a fitted distribution;
(c) probability plot, i.e. quantiles in the PDF of a fitted distribution against the ordered values of the empirical sample with the linear
fit.
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Figure 5. Energy performance of apartments in Oslo, by construction periods: (a) ECDFs of the samples; (b) D-statistic found with KS
test; (c) p-values associated with the test.

Figure 6. Energy performance of apartments in Oslo, by envelope material: (a) ECDFs of the samples; (b) D-statistic found with KS test;
(c) p-values associated with the test.
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through the test are substantially smaller than the estab-
lished significance level a = 0.05, the null hypothesis is
rejected. With the available empirical samples, energy
use intensity in the populations of apartments in Oslo
constructed [1] before and [2] after 1990 is found to
differ significantly.

Pairwise KS testing enables examining the impli-
cations of the other attributes on building energy per-
formance. Figure 6 illustrates the results of KS testing
to answer the next question: ‘is there a significant differ-
ence in the energy use intensities between populations
of apartments in Oslo that have [1] concrete, [2] bricks
or [3] wood as a primary construction material in their
envelope?’. All nodes matching a specific envelope
material in either of construction periods (upper or
lower semicircle in Figure 1) constitute the empirical
samples.

Figure 6(a) suggests that apartments constructed
with [1] concrete exhibit better energy performance
compared to the alternatives. Energy use intensity in
this population is significantly different from apart-
ments built with bricks [2] or wood [3], which is con-
veyed by small p-values associated with the tests [1] –
[2] and [1] – [3] accordingly in Figure 6(c). The null
hypothesis adapted from Equation (4) which asserts
the conformity between populations, in this case, can
be rejected. The p-value returned by the test [2] and
[3], however, exceeds the significance level α, meaning
that the significant evidence against the null hypothesis
is absent which implies a failure to reject it. It may be
concluded that, given the empirical samples, the popu-
lations of apartments in Oslo constructed from [2]
bricks and [3] wood do not have a significantly different
energy use intensity.

Similarly to the previous attributes, Figure 7 implies
rejecting or failing to reject the asserted null hypothesis
for populations of apartments given the distinct sources
of energy for space heating. All nodes matching a
specific energy supply solution in any of construction
periods and any of envelope materials (Figure 1) form
the samples.

Figure 7(a) suggests mutual conformity in the distri-
bution of total energy use intensity amongst the apart-
ments heated by [3,4] district heating, [5,6] oil and [9]
heat pump. The differences (Figure 7(b)) between their
ECDFs are insignificant (Figure 7c). Energy perform-
ance of apartments with space heating solutions
based on [1] electricity only and the combinations of
electricity with [2] wood, [7] heat pump and [8] natu-
ral gas is significantly different from any other alterna-
tives considered (Figure 7a–c). Electric combined with
wood [1], on the one hand, and a group of solutions
[3,4,5,6,9] on the other are the two extremes in the

energy performance (Figure 7a). Whereas for the lat-
ter, 80% of records use less than 100 kWh ·m−2 · y−1,
the share of such efficient units representing the former
is only 20%.

Figure 8 enables concluding that energy use intensity
amongst the populations of apartments in Oslo featur-
ing various types of ventilation systems differs signifi-
cantly. The empirical samples include all the nodes
matching [1] natural, [2] periodical extraction, [3] con-
tinuous extraction or [4] balanced ventilation systems in
Figure 1. Figure 8(a) suggests that the units equipped
with the balanced [4] system perform better compared
to the alternatives. With the empirical interpretation
of Figure 8(a), 50% of such units use less than 100
kWh ·m−2 · y−1 which is followed by continuous
extraction [3] (40%). The units having natural [1] and
periodical [2] types appear as the least efficient, and
often mutually conforming (Figure 8a). The difference
between these two types, however, is found to be signifi-
cant given the choice of the test statistic and the signifi-
cance threshold.

The most and the least favourable configurations

The section above provides the empirical evidence that
there are differences in the energy performance of popu-
lations of apartments in Oslo given the energy sources
for space heating, envelope materials, vintage and venti-
lation systems used. These differences, provided that
they are significant, tend to vary across the distinct attri-
butes, e.g. the energy sources for space heating are
associated with a larger D-statistic compared to the con-
struction period. Such variability hinders the under-
standing of which combination of attributes that
constitute building configurations perform relatively
better or worse. Additionally, actual building energy
performance is likely to be governed by the attributes
jointly rather than individually. This section, therefore,
is concerned with finding which building configurations
exhibit significantly better and significantly worse
energy performance relative to the entire stock of apart-
ments in Oslo. The task requires analysing all the mem-
bers in the Cartesian product of four attributes provided
that the sample of minimum size is available. In this
study, the minimum required sample size is set arbitrary
to 20 records. 62 out of 216 possible building configur-
ations (Figure 1) met this requirement.

Identification of the best performing configurations
amongst those available involves pairwise KS testing
of the corresponding sample (leaf nodes in Figure 1)
versus the composite sample (root node in Figure 1)
of all the apartments. A favourable configuration is
associated with a large positive D-statistic between the
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Figure 7. Energy performance of apartments in Oslo, by the source of energy for space heating: (a) ECDFs of the samples; (b) D-stat-
istic found with KS test; (c) p-values associated with the test.

Figure 8. Energy performance of apartments in Oslo, by type of ventilation system: (a) ECDFs of the samples; (b) D-statistic found with
KS test; (c) p-values associated with the test.
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two ECDFs. For this difference to be considered signifi-
cant, the p-value associated with the test should be
below a = 0.05. A reverse objective focused on large
negative D-statistic enables the identification of the
worst-performing building configurations. Figure 9
illustrates 62 ECDFs for all building configurations
and highlights the best- (Figure 9a) and worst-perform-
ing (Figure 9b) compared to the composite if the differ-
ence is significant.

Figure 9 enables drawing several conclusions about
the implications of building configurations on the actual
energy performance. Building configurations already
present in the built stock are associated with a wide
spectrum of high and poor energy performance. Poorly
performing apartments are typically more common
(correspond to larger sample size), which governs a gen-
erally poor performance of the entire stock of apart-
ments, as shown by the composite ECDF. To the
largest extent, the distinction between the best- and
poorest-performing configurations follows the distinct
energy source for space heating, which, as shown earlier,
reflect the largest significant differences in total energy
use intensity. The least favourable configurations are
featuring purely electric or electric with wood-based
space heating solutions (Figure 9b). Amongst the most
favourable ones, the demand for space heating is
fulfilled through district heating alone or in combi-
nation with electric heaters, through heat pumps or oil
(Figure 9a). The concrete- or brick-based building
envelope is the most common amongst the apartments
with low energy intensity (Figure 9a). The walls made of
bricks, however, also appear frequently amongst the
least-favourable configurations (Figure 9b). Despite
having a high energy performance standard, new apart-
ments are not common amongst those with the best
energy performance (Figure 9a). Some configurations
involving new apartments appear amongst the worst-
performing ones (Figure 9b). Various types of the ven-
tilation system are equally frequent amongst the least
and most favourable configurations (Figure 9a,b).

Density estimation for building configurations

Varying shapes and locations of the ECDFs in Figure 9
indicate that the populations of apartments with distinct
building configurations exhibit distinct statistical prop-
erties, which can be effectively characterized by the
PDFs. Accounting for these properties is crucial for
probabilistic simulation of the populations. This objec-
tive necessitates selecting, parameterizing and evaluat-
ing the goodness-of-fit of the PDF for each building
configuration.

Parameterized distributions that are found to charac-
terize the empirical data per individual building
configuration are documented in Appendix. The distri-
bution and the parameters represent the MLE-based
best fit (the smallest D statistic) amongst the 97 distri-
butions available in scipy.stats if p-value exceeds
0.05. The ranges (Min–Max) of values that the random
variables are known to take are specified. The metrics
used to evaluate the goodness-of-fit (D-statistic, p-
value, SSE and R2) is present in the table together with
the sample size (SS) that the fit is based on.

Discussion

The development of large-scale energy efficiency strat-
egies necessitates building energy research to establish
better theoretical foundations and more accurate mod-
elling practices. It becomes apparent that these needs
cannot be addressed through architectural and engin-
eering knowledge alone, because of the underlying com-
plexity, magnitude, dynamics and genuinely stochastic
aspects that govern the phenomenon. The instruments
of inferential statistics, intended for making robust con-
clusions under the acute variability, uncertainty and
data scarcity, are often used in population health
sciences and may tackle similar challenges in building
energy research. This study, therefore, agrees with
(Hamilton et al., 2013) on energy epidemiology as
capable to address the performance gap at the popu-
lation level.

From the epidemiological point of view, three
mutually related questions about the population-level
energy use are essential: (i) given all possible direct or
indirect effects that the technical or architectural
measures may have, is there evidence of causal relation-
ships between these measures and the phenomenon? (ii)
under such complex relationships, which combinations
of building attributes exhibit the most- and the least-
favourable energy performance? (iii) how can this
knowledge inform more accurate modelling practices?
This study exemplifies the achievable answers and elab-
orates on some of the applicable instruments.

The results suggest that individually, the construc-
tion period, some primary envelope materials, some of
the energy sources for space heating and all ventilation
system types considered in this study entail a causal
effect on the energy performance of apartments in
Oslo. These are inferred at the significance level
a = 0.05 using the KS test. The energy policies that
are targeting the building attributes that have a causal
effect on the phenomenon can be used to mediate this
phenomenon. The picture is less clear once more build-
ing attributes are under consideration since multiple
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effects are involved. Empirical evidence of a particular
combination of attributes to perform better or worse
compared to the alternatives is essential for energy pol-
icies that may promote or discourage certain architec-
tural and technological tendencies in the built
environment. A KS test statistic, therefore, is advocated
in this study as the means for detecting the most and the
least favourable combinations. An approach for struc-
tured sample analysis based on the hierarchical tree
can be adapted to increasingly diversified combinations.
Modelling of transformational processes in the built

stock requires accommodating the underlying variabil-
ity which is effectively addressed through the probabil-
istic framework. The inferred PDF for each combination
of attributes is a parsimonious parametric approximate
of the variability. The phenomenon can further be mod-
elled as a random variable that follows its distribution.
Figure 10, for example, illustrates the parameterized dis-
tributions for the most- (Figure 10a) and the least-
favourable (Figure 10b) building configurations ident-
ified in the Results section. Energy policies that support
the substitution of units from the least with the ones

Figure 9. ECDFs for 62 building configurations within the scope of the study. Ten configurations that are found to perform consider-
ably better (a) or worse (b) compared to the composite are highlighted.
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from the most favourable groups is a rational step to
increase the energy performance of the built stock
within the shortest time. These conclusions, however,
need to be justified and possibly corrected considering
the expected targets, the size of populations targeted,
the anticipated socioeconomic and technical
constraints.

In this study, a list of 216 possible building configur-
ations (Figure 1) is not examined exhaustively due to the
absence of the sample or the limited available sample
size for some of them. Because of scarce presence in
the EPC registry, the anticipated size of their popu-
lations is small and therefore, of little significance to
the current total energy use at the municipal level.
Given the continuous transformation of the built
stock, future analysis is likely to reveal other promising
combinations of attributes in addition to or instead of
those found in this study. Revising these analytical
results systematically is also necessary for maintaining
the knowledge about the actual state and the develop-
ment of the built stock.

A hierarchical structure enables further up- or down-
scaling of the scope of the analysis carried out in this

study. The level of architectural and technological detail
may be extended by numerous attributes of interest.
Upscaling the scope may further improve the under-
standing of the phenomenon across building types, geo-
graphical and national contexts. The presented case
study, for example, is focused on apartments which is
the largest residential building type in Oslo. A more
comprehensive and complete inference for the munici-
pality must involve other typologies, energy perform-
ance of which is known to exhibit distinct statistical
properties (Figure 11).

Figure 11 suggests the presence of two distinct
groups of building types within the built stock. ECDFs
of residential types are evidently shifted towards zero
and steeper compared to the non-residential, which
implies generally higher efficiency and smaller dis-
persion of the former. The variation among individual
building types within both residential and non-residen-
tial groups is likewise evident. Comprehensive energy
policies must consider the attributes that significantly
affect the energy performance of all these typologies.
A similar conclusion applies to the nation-wide energy
efficiency programs.

Figure 10. Theoretical distributions of the energy performance of apartments in Oslo featuring distinct building configurations: (a)
with low and (b) high energy intensity, as described in Results.
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The methods and procedures applied in this study
are exemplary of a broader toolset offered by probability
theory to tackle the problems alike. The analysis of
skewness versus kurtosis proposed by Cullen and Frey
(1999), for example, may support the choice of a theor-
etical continuous distribution. Probability–Probability
(P–P) and Quantile–Quantile (Q–Q) plots may inform
about the goodness-of-fit likewise. Alternatively to the
KS test, Cramer–von Mises and Anderson–Darling
methods (D’Agostino & Stephens, 1986) may be instru-
mental for evaluating the goodness-of-fit between the
empirical sample and the theoretical continuous distri-
bution. Examining the criteria related to penalties in the
log-likelihood functions, such as Akaike and Bayesian
information criteria is also a common practice to con-
sider for this task. The present study applies MLE for
parameter estimation which has alternatives, e.g. several
variations of minimum distance estimation, moment
matching estimation and quantile matching estimation.
In some cases, a downhill simplex method for finding
the maximum of the log-likelihood function is substi-
tuted by e.g. Broyden–Fletcher–Goldfarb–Shanno or
conjugate gradient algorithms.

Aided by the inferential analysis, meaningful con-
clusions about the population based on the sample
necessitate rather strict demands from experimental
design and data quality (Breiman, 2001; Miller, 2014).
Distortion of measurements, errors in readings, report-
ing and registering the data affect the reliability of con-
clusions further based on it. Preventing and/or
mitigating the bias occurring within data collection/
measurement procedures must be supplemented by

responsible data management practices and the objec-
tive interpretation of findings. Concerning this study,
the potential source of bias is in identifying, measuring
and reporting the characteristics and the energy use in
the buildings certified. Unless there is a systematic
source of large error, the conclusions are expected to
be valid. Minor and seldom inaccuracies in simulating
the phenomenon are tolerated by the probabilistic
programming.

Conclusion

High energy efficiency and flexibility are amongst the
pivotal characteristics envisioned for sustainable cities
and neighbourhoods. Modelling of such complex sys-
tems necessitates systematic identification and docu-
menting of the causal relationships between building
attributes and the phenomenon at the population
level. This study suggests the means to obtain the
empirical evidence of such relationships, if any,
under an acute variability of the phenomenon. It elab-
orates on (i) statistical hypothesis testing to aid with
concluding whether the buildings featuring certain
attributes have a causal effect on the energy perform-
ance and (ii) methods for density estimation to obtain
a parsimonious probabilistic representation of variabil-
ity. The former is discussed and exemplified with the
Kolmogorov–Smirnov test whereas the latter, in this
study, is focused on maximum likelihood estimation
and several metrics for goodness-of-fit. The proposed
hierarchical structure enables hypothesis testing and
density estimation for virtually any number of

Figure 11. ECDFs for 21 building types in Oslo, illustrating the variability of energy performance in both residential (RE) and non-
residential (NR) buildings.
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attributes individually and in combinations. The same
structure allows a more comprehensive inference with
an extended list of attributes and an account for various
building types, climate and administrative boundaries.

As exemplified through the case study, the combi-
nations of building attributes already present in the
built stock represent a wide spectrum, from high to
poor energy performance. This leaves room for the pol-
icies to mediate them towards the achievement of
energy-related and environmental targets. Practically,
quantifying the variabilities given the architectural and
technological configurations may provide the necessary
support with setting realistic goals, identifying the bot-
tlenecks/opportunities and screening the solutions for
energy efficiency improvements.

Hence, several configurations are identified as
capable of effectively improving the energy performance
of the stock of apartments in Oslo. The case study like-
wise reveals the configurations that perform poorly and
thus, considered to be the major barrier towards redu-
cing the total energy use by apartments in the munici-
pality. The former are typically featuring space heating
solutions involving either district heating with and with-
out electricity or oil or heat pumps and either concrete-
or brick-based envelope. The latter rely on electricity
alone or combined with wood to meet the demand for
space heating and have either brick or concrete or
wood as the main envelope material. The majority of
apartments having distinctly high or low energy per-
formance were constructed before 1990. Each configur-
ation has unique statistical properties accommodated by
the parameterized probability density function.

It is shown in this study that inferential statistics offers
the essential means to improve the understanding of
energy performance of the built stock, to advance the
modelling approaches and thus, to safeguard the effective-
ness of energy-related strategies based on these models.
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Appendix. Sample density estimation results

Sample information (Min/Max values and sample size (SS))
per building configuration (construction period (CP), pri-
mary envelope material (EM), space heating (SH) solution
and ventilation system (VS) type), best-fit distribution with
its parameters and the goodness-of-fit metrics (D-statistic,
p-value, sum of squared errors (SSE) and R2).
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CP. 1990 EM SH VS Min Max SS Distribution Parameters D p-value SSE R2

1 False Concrete El Natural 13.196 396.667 709 Generalized logistic [7.09, 16.69, 42.862] 0.016 0.993 0.000075 0.998
2 False Concrete El Periodical extraction 13.649 381.733 461 Power normal [0.016, 28.979, 9.901] 0.024 0.942 0.000123 0.994
3 False Concrete El Continuous extraction 10.276 453.396 819 Mielke Beta-Kappa [2.827, 5.671, −0.618, 133.578] 0.016 0.977 0.000064 0.997
4 False Concrete El Balanced 21.951 464.646 110 Von Mises (non-circular) [1.342, 109.521, 38.188] 0.053 0.899 0.000611 0.821
5 False Concrete El+wood Natural 10.314 772.000 478 Johnson SU [−0.55, 1.261, 115.888, 48.979] 0.020 0.987 0.000034 0.922
6 False Concrete El+wood Periodical extraction 24.417 638.489 247 Johnson SU [−1.09, 1.5, 83.738, 63.089] 0.027 0.993 0.000063 0.967
7 False Concrete El+wood Continuous extraction 21.739 768.116 120 Log-Laplace [2.573, −0.344, 126.966] 0.045 0.961 0.000100 0.982
8 False Concrete DH Natural 14.667 267.463 187 Alpha [3.149, −29.211, 261.422] 0.034 0.978 0.000621 0.904
9 False Concrete DH Periodical extraction 18.319 282.169 56 Burr (Type XII) [4.163, 0.587, −0.333, 46.343] 0.065 0.961 0.002146 0.935
10 False Concrete DH Continuous extraction 19.315 178.056 72 Generalized gamma [7.79, 0.429, 17.017, 0.325] 0.057 0.961 0.005247 0.971
11 False Concrete DH Balanced 20.505 154.833 22 Exponentially modified Normal [2.848, 33.594, 12.517] 0.099 0.967 0.024961 0.974
12 False Concrete El+DH Natural 10.497 236.294 101 Fisk [3.587, −4.152, 63.456] 0.045 0.980 0.001602 0.995
13 False Concrete El+DH Periodical extraction 27.000 198.630 47 Exponentially modified Normal [6.099, 31.173, 5.896] 0.056 0.997 0.007868 0.975
14 False Concrete El+DH Continuous extraction 18.304 441.778 62 Johnson SU [−1.153, 1.217, 35.521, 23.058] 0.040 1.000 0.000598 0.811
15 False Concrete El+oil Natural 14.020 212.101 64 Alpha [3.56, −54.072, 398.62] 0.050 0.995 0.003993 0.963
16 False Concrete El+oil Periodical extraction 16.250 159.746 23 Johnson SB [1.604, 1.342, 3.66, 254.167] 0.091 0.982 0.021860 0.983
17 False Concrete Oil Natural 18.519 345.041 49 Log-laplace [2.337, −0.16, 61.442] 0.053 0.998 0.001350 0.985
18 False Concrete El+HP Continuous extraction 30.469 186.339 28 Exponential power [0.839, 30.469, 113.378] 0.095 0.943 11.111212 0.958
19 False Brick El Natural 11.080 424.174 691 Exponentially modified Normal [1.059, 105.06, 41.627] 0.019 0.964 0.000111 0.997
20 False Brick El Periodical extraction 13.275 612.959 594 Mielke Beta-Kappa [3.251, 6.387, −0.753, 171.718] 0.018 0.987 0.000039 0.984
21 False Brick El Continuous extraction 11.174 550.523 349 Exponentially modified Normal [1.362, 95.813, 38.307] 0.022 0.996 0.000085 0.982
22 False Brick El Balanced 14.925 288.089 81 Johnson SU [−0.615, 1.51, 99.518, 68.032] 0.059 0.927 0.002206 0.963
23 False Brick El+wood Natural 13.322 944.698 1326 Mielke Beta-Kappa [4.407, 5.067, −0.64, 153.924] 0.025 0.393 0.000009 0.892
24 False Brick El+wood Periodical extraction 10.795 902.246 911 Burr (Type III) [6.388, 0.824, −38.001, 189.015] 0.024 0.674 0.000012 0.880
25 False Brick El+wood Continuous extraction 30.887 588.111 189 Johnson SU [−1.065, 1.19, 96.667, 42.581] 0.034 0.977 0.000197 0.984
26 False Brick El+wood Balanced 69.907 700.461 38 Folded Cauchy [2.093, 69.907, 35.699] 0.064 0.995 0.000452 0.813
27 False Brick DH Natural 10.320 258.693 136 Burr (Type XII) [3.872, 0.606, −0.336, 50.827] 0.044 0.947 0.001036 0.872
28 False Brick DH Periodical extraction 25.352 183.103 46 Pearson type III [2.011, 70.922, 45.827] 0.063 0.988 0.006619 0.983
29 False Brick DH Continuous extraction 22.785 170.886 27 Johnson SU [−0.258, 1.27, 58.496, 26.287] 0.093 0.955 0.016185 0.928
30 False Brick El+DH Natural 14.647 483.946 108 Folded Cauchy [2.119, 14.647, 20.844] 0.059 0.823 0.000366 0.717
31 False Brick El+DH Periodical extraction 25.571 368.613 27 Alpha [2.539, −12.58, 178.077] 0.088 0.972 0.002373 0.925
32 False Brick El+DH Continuous extraction 16.746 215.385 26 Folded Cauchy [2.471, 16.746, 21.791] 0.075 0.996 0.010785 0.761
33 False Brick El+oil Natural 18.271 200.000 38 Exponentially modified Normal [5.144, 27.44, 7.419] 0.052 1.000 0.006414 0.990
34 False Brick El+oil Periodical extraction 27.529 996.513 23 Johnson SU [−0.584, 0.542, 53.14, 5.768] 0.072 0.999 0.000570 0.832
35 False Brick Oil Natural 23.583 297.562 56 Exponentiated Weibull [73.823, 0.335, 15.053, 0.387] 0.061 0.979 0.002784 0.969
36 False Brick HP Natural 29.885 109.311 24 Exponentially modified Normal [4.544, 35.848, 5.196] 0.079 0.995 0.056493 0.972
37 False Wood El Natural 15.152 317.857 53 Right-skewed Gumbel [108.094, 53.304] 0.073 0.919 0.001995 0.972
38 False Wood El Periodical extraction 55.825 265.080 63 Exponentially modified Normal [1.23, 100.668, 29.206] 0.046 0.998 0.002800 0.992
39 False Wood El Continuous extraction 40.349 881.172 30 Cauchy [144.382, 35.279] 0.111 0.817 0.000250 0.647
40 False Wood El+wood Natural 61.652 251.801 56 Triangular [0.584, 44.787, 219.684] 0.064 0.964 0.004923 0.995
41 False Wood El+wood Periodical extraction 42.913 494.388 72 Burr (Type III) [3.974, 1.063, −0.41, 132.314] 0.059 0.952 0.000774 0.968
42 True Concrete El Natural 11.111 244.605 87 Generalized logistic [0.859, 128.423, 23.045] 0.048 0.981 0.002116 0.994
43 True Concrete El Periodical extraction 46.796 345.558 291 Mielke Beta-Kappa [3.958, 6.61, −0.406, 139.505] 0.025 0.989 0.000261 0.995
44 True Concrete El Continuous extraction 10.198 325.896 521 Generalized gamma [31.658, 1.789, −302.169, 61.842] 0.022 0.959 0.000229 0.984
45 True Concrete El Balanced 10.255 342.037 179 Von Mises (non-circular) [3.589, 111.255, 73.46] 0.033 0.986 0.000513 0.966
46 True Concrete El+wood Periodical extraction 54.217 320.251 26 Alpha [5.460, −107.623, 1278.951] 0.093 0.964 0.005331 0.941
47 True Concrete El+wood Continuous extraction 52.909 400.000 26 Hyperbolic secant [128.552, 31.785] 0.094 0.958 0.002606 0.722
48 True Concrete DH Periodical extraction 20.667 188.679 34 Exponentially modified Normal [7.555, 29.519, 7.11] 0.069 0.993 0.008710 0.945
49 True Concrete DH Continuous extraction 28.302 239.958 83 Weibull minimum [1.04, 28.269, 55.724] 0.046 0.992 0.002223 0.989
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Continued.
CP. 1990 EM SH VS Min Max SS Distribution Parameters D p-value SSE R2

50 True Concrete DH Balanced 10.526 701.518 213 Exponentially modified Normal [3.897, 32.868, 13.146] 0.038 0.899 0.000133 0.839
51 True Concrete El+DH Periodical extraction 23.616 185.185 33 Kappa (3 parameters) [5.649, 23.616, 63.862] 0.077 0.981 0.013423 0.954
52 True Concrete El+DH Continuous extraction 12.308 208.979 69 Johnson SU [−1.535, 0.97, 34.314, 10.698] 0.073 0.826 0.002763 0.921
53 True Concrete El+DH Balanced 16.724 245.614 107 Power log-normal [0.058, 0.101, −55.969, 82.579] 0.039 0.996 0.001665 0.997
54 True Concrete El+gas Balanced 11.774 295.484 32 Generalized normal [0.69, 99.873, 18.118] 0.091 0.931 0.004564 0.913
55 True Brick El Natural 69.561 309.462 31 Exponentially modified Normal [3.042, 93.153, 16.074] 0.052 1.000 0.004743 0.989
56 True Brick El Periodical extraction 56.310 277.778 69 Rice [1.18, 46.749, 55.728] 0.059 0.956 0.003439 0.988
57 True Brick El Continuous extraction 16.947 244.903 66 Alpha [16.943, −606.3, 12439.065] 0.052 0.989 0.002600 0.985
58 True Brick El Balanced 45.000 282.923 37 Beta prime [15.106, 19.677, −0.303, 168.949] 0.083 0.944 0.004783 0.975
59 True Brick El+wood Periodical extraction 85.940 255.528 23 Alpha [4.366, −39.66, 780.872] 0.086 0.990 0.013691 0.967
60 True Brick DH Balanced 14.524 152.174 25 Inverted gamma [44.633, −117.146, 8007.042] 0.083 0.989 0.023475 0.954
61 True Wood El Periodical extraction 71.930 222.796 33 Folded normal [1.004, 71.93, 49.677] 0.062 0.999 0.013860 0.993
62 True Wood El Continuous extraction 12.802 275.000 28 Johnson SU [−0.587, 0.899, 107.293, 21.818] 0.065 0.999 0.003854 0.953
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