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Abstract: Surveillance systems regularly create massive video data in the modern technological era,
making their analysis challenging for security specialists. Finding anomalous activities manually
in these enormous video recordings is a tedious task, as they infrequently occur in the real world.
We proposed a minimal complex deep learning-based model named EADN for anomaly detection
that can operate in a surveillance system. At the model’s input, the video is segmented into salient
shots using a shot boundary detection algorithm. Next, the selected sequence of frames is given to
a Convolutional Neural Network (CNN) that consists of time-distributed 2D layers for extracting
salient spatiotemporal features. The extracted features are enriched with valuable information that
is very helpful in capturing abnormal events. Lastly, Long Short-Term Memory (LSTM) cells are
employed to learn spatiotemporal features from a sequence of frames per sample of each abnormal
event for anomaly detection. Comprehensive experiments are performed on benchmark datasets.
Additionally, the quantitative results are compared with state-of-the-art methods, and a substantial
improvement is achieved, showing our model’s effectiveness.

Keywords: anomaly detection; shots segmentation; computer vision; deep learning; histogram
difference; keyframe extraction; intelligent surveillance networks; crime detection

MSC: 68T45

1. Introduction

In the twenty-first century, the rise in the crime rate is one of the prime reasons for lost
lives [1]. A smart video surveillance system is one possible solution for rapidly detecting
unexpected criminal events. Recently, enormous quantities of surveillance cameras have
been put globally in various areas for public safety. Due to the limitations of manual
surveillance, law enforcement organizations perform poorly in detecting or avoiding
anomalous activities. A smart computer vision system is required to detect unusual
behavior, one that can effectively recognize normal and abnormal events without human
intervention. Such an automated system is beneficial for monitoring and decreases the
human work required to maintain 24-h manual observation.

In the current literature, anomaly detection approaches based on sparse coding have
shown promising results to date [2–5]. These techniques are assumed to be standard for
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anomaly identification. These approaches are trained so that the initial frames of a video are
utilized to construct a dictionary of usual events. Despite computational efficiency, this is a
poor technique for accurately detecting abnormal events. Weakly supervised multi-instance
learning (MIL)-based techniques are also explored for anomaly detection in [3,5,6]. In such
techniques, the training phase divides the videos into a predefined number of segments.
These segments construct a bag of instances for positive and negative samples.

Due to the dynamic nature of surveillance environments, sparse coding techniques
have specific drawbacks. For example, converting the dictionary from usual to anoma-
lous events leads to a high false-positive and false-negative. Additionally, recognizing
anomalous events in low resolution noisy videos is exceedingly difficult. While humans
can recognize regular or uncommon events based on their intuition, machines must rely on
visual features.

Predominantly, the existing methods suffer from a high proportion of false alarms,
leading to lower performance. Furthermore, these approaches perform well on small
datasets, but their performance is limited when applied to real-world circumstances. In this
paper, to address these concerns, we proposed a simple and efficient lightweight model to
detect anomalies in surveillance videos. EADN uses a windowing approach and processes
five frames per sample, chronologically ordered to detect movements and actions in the
surveillance videos. Our model learns visual features from a sequence of five frames per
sample by integrating them into spatiotemporal information from surveillance videos. The
key contributions of our work are as follows:

• Pre-Processing: Surveillance camera generates huge amount of data on a regular basis
in the current technological era, needing a considerable amount of computational
complexity and time for exploration. Existing techniques in anomaly detection in
surveillance video literature lack the focus on pre-processing steps. In this paper,
we present a novel and efficient pre-processing strategy of video shots segmentation,
where shots boundaries are segmented based on underlying activity. Further, the
segmented shots of the video can be processed for advanced analysis such as anomaly
activities without any transmission delay. Thus, our pre-processing strategy plays a
prominent role in the overall anomaly detection in the surveillance video framework.

• A simple, light-weight, and novel CNN model consisting of time-distributed layers
for learning spatiotemporal features from a series of frames per sample is proposed.

• A comprehensive model evaluation on standard performance metrics using a chal-
lenging benchmark dataset and achieving promising results compared to the state-of-
the-art with a model size of only 53.9 MBs.

The rest of the paper is organized in the following order. In Section 2, the background
and related work is explained. The EADN framework is elaborated in Section 3. Details
about the dataset, the quantitative evaluation, and discussion are given in Section 4. The
final remarks and future directions are given in Section 5, which concludes the paper.

2. Related Work

The literature of anomaly detection methods is discussed in two main categories:
Traditional handcrafted feature-based methods and deep feature-based methods for anoma-
lous event recognition. Previously, anomaly detection was highly dependent on low-level
hand-crafted feature-based methods. These methods are primarily based on three stages:
(1) Feature extraction, in which low-level patterns from the training set are extracted; (2) fea-
ture learning is distinguished by the distribution of encoding regularity or normal events;
and (3) outlier detection, separated clusters or outliers are identified as anomalous events.
For example, Zhang et al. [7] employed the Markov random field to represent common
occurrences by using spatiotemporal features. Similarly, Mehran et al. [8] developed a
social interaction model in which cooperation forces were computed, and normal and
abnormal activities were detected using optical flow. Furthermore, Nor et al. [9] proposed
an explainable anomaly detection framework that assists in prognostic and health manage-
ment PHM. Their framework is based on a Bayesian deep learning model with predefined
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prior and likelihood distributions. It provides additive explanations to come up with the
local and global explanations for the PHM tasks. Similarly, Ullah et al. [10] come up with
an attention-based LSTM for the action recognition in sport videos. They used convolution
block attention to refine the spatial features. Similarly, a fully connected neural network
with a softmax classifies the refine feature maps into different sports actions. Compared to
visual data, Selicato et al. [11] worked on detecting anomalies in the gene data. For example,
they come up with an ensemble-based approach for detecting the normal and abnormal
gene expression matrices using hierarchical clustering and principal component analysis
(PCA). Riaz et al. [12] proposed an ensemble of deep model for detecting anomalies in
complex scenes. In the first step, a human pose estimation model is incorporated that
detects the human joints. In the second step, the detected joints are treated as features
and are given to a densely connected fully CNN for the anomaly detection. More recently,
Zhao et al. [13] proposed an unsupervised technique that used a time varying sparse coding
style to detect anomalies in videos using online query signals and sparse reconstruction
ability acquired from a learned vocabulary of all events. However, developing the ability
to identify anomalies in a timely way has remained a challenge, attracting the interest of
several researchers. For example, Lu et al. [4] utilized Sparse Combination Learning (SCL)
and analyzed their technique with local and cloud servers.

Compared to traditional methods, deep feature-based models have gained signifi-
cant success in a variety of nonlinear high-dimensional data domains in the modern age,
including activity identification and video summarization, among others. Liu et al. [14]
developed a system in which video frames were encoded using a CNN, and anomalous
events were detected using ConvLSTM. Their encoder encodes motion variation to detect
abnormalities in a surveillance environment. Hasan et al. [15] proposed a convolution
autoencoder and a RNN. Luo et al. [14] came up with a convolutional LSTM model with an
autoencoder for video anomaly detection. Moreover, they expanded this work by detecting
anomalies using a stacked RNN with an autoencoder. Liu et al. [16] proposed a technique
for detecting video abnormalities by integrating a temporal and spatial detector. The
discriminant saliency detector and a collection of dynamic texture features were treated in
this model as normal training data events. Cheng et al. [17] developed a clustering-based
deep autoencoder to extract information from normal events efficiently. Two modules are
used to learn spatial-temporal feature regularity, and the spatial autoencoder in the first
module handles the last individual video frame. In contrast, the temporal autoencoder in
the second module operates and produces the RGB difference between the frames. Ad-
ditionally, generative models are used for detecting anomalies in videos. For instance,
Sabokroul et al. [18] came up with generative adversarial networks (GANs) for detecting
abnormalities in a videos. This model teaches the normal distribution using GANs with
discriminator and generator techniques. More recently, weakly supervised approaches for
video labeling have been proposed where anomalous events are detected using C3D and
MIL [19,20]. For example, Sultani et al. [5] developed a framework for detecting anomalous
events based on weak video labels, and the MIL method. This model was trained on both
normal and unusual videos by creating two distinct bags for common and uncommon
events and then using the MIL technique to detect anomalous activity scores in the videos.
Landi et al. [21] proposed a tube extraction technique that uses coordinates to build a
regression model for abnormalities. Briefly, the average pooling layer combines the spatial
features from the inception block with the temporal features of optimal flow before sending
it to the regression model. Zhong et al. [22] developed a technique for detecting weakly
supervised anomalies and a supervised system for action categorization with noisy labels.
The novelty was keeping only the anomaly video labels noisy due to the unpredictable
nature of the anomalous events. Additionally, a graph CNN was trained to clean up these
noisy labels, and the activities were classified using an action classifier. Compared to the
existing approaches, this paper proposed an efficient time-distributed 2D CNN with LSTM
for anomaly detection in videos. The prominent features of the proposed method are
discussed in Section 3.
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3. Proposed Framework

This section discusses the EADN framework and its essential constituent structure
in detail. The pictorial representation of our EADN framework is presented in Figure 1.
In a nutshell, the anomaly detection and classification task consist of three parts: (i) Shot
segmentation, (ii) feature extraction, and (iii) sequence learning and anomaly classification.
In the first step, salient frames are segmented using a shot boundary detection algorithm.
The segmented frames are given to the Lightweight CNN (LWCNN) model to extract
spatiotemporal features from the intermediate layer. After that, LSTM cells are used to learn
spatiotemporal features from a sequence of frames per sample of each anomalous event.
The proposed LWCNN took frames that are chronologically ordered to detect movements
and action. Finally, the proposed trained LWCNN LSTM network is used to recognize
anomalous events in the segmented shot of the video. A comprehensive list of model
parameters is given in Table 1. The model is trained end-to-end and the categorical cross
entropy loss function is used to optimize its parameters. Mathematically, the loss function
is defined as:

Loss = −
N

∑
i=1

yi · log ŷi (1)

where N is the total number of anomalies, yi is the true class label, and ŷi is the estimated
probability given by the model. Using this configuration, the model takes the key frames
of a given video and returns the score for the corresponding anomaly accoridngly. It is
important to mention that the key frames are representative of the input video. Therefore,
the anomaly detected in the key frames can be generalized as an anomaly occurring in the
input video.

Figure 1. EADN framework for anomaly detection in surveillance videos.
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Table 1. Summary of the input and output parameters in the proposed framework.

Symbol Description

m Rows.
n Columns.

BD( ft, ft+1) Block Difference between the corresponding blocks of the consecutive frames.
H( ft, j, c, b) Histogram value for the jth level, in the channel c at the bth block in the frame t.
H( ft+1, j, c, b) Histogram value for the jth level, in the channel c at the bth block in the frame t + 1.

NB Total number of blocks.
NH Total number of possible gray levels.

D( ft, ft+1) Histogram difference between two consecutive frames.
Wk Block’s weight at (k).
MD Mean of the histogram difference.
ST D Standard variance of the histogram difference.

τ Threshold.
x Reference frame.
Tv Total number of video sequences.

max(i) Searching for the maximum difference within a shot.
LWCNN Light-Weight Convolutional Neural Network.
Ft Spatial feature representation series.

ht+n Temporal feature representation series.
ht Hidden state of the LSTM layer at current time step t.

ht−1 Hidden state of the LSTM layer at previous time step t− 1.
it Input gate at time t.
ft Forget gate at time t.
Ot Output gate at time t.
g Recurrent unit.
Ct Memory cell.

3.1. Shot Segmentation Using Boundary Detection

Our shot segmentation algorithm is inspired by [23], where histogram differences are
used to detect shot boundary and consequently extracted keyframes. The key steps of the
algorithm are the following:

Step 1: First, divide a frame into blocks with m rows and n columns. Second, compute a x2

histogram that matches the difference in corresponding blocks between consecutive
frames in the video sequence. Here, the histograms of bth blocks in the ft and ft+1
frames areH( ft, j, c, b) andH( ft+1, j, c, b), respectively. Finally, use the following
equation to calculate the difference between blocks:

BD( ft, ft+1) =
3

∑
c=1

NB

∑
b=1

NH

∑
j=1

H( ft, j, c, b)−H( ft+1, j, c, b)
x

(2)

BD represents block difference, and NB is the total number of blocks, while NH is
the total number of possible gray levels andH( ft, j, c, b) is the histogram value for
the jth level in the channel c at the bth block in the frame t.

Step 2: Calculate the difference through x2 histograms between two consecutive frames:

D( ft, ft+1) =
N
∑
k=1

WkBDk( ft, ft+1) (3)

where Wk denotes the block’s weight at k and N represents the total number of
blocks, while BDk( ft, ft+1) is the block difference at k between ft and ft+1 frames.

Step 3: Calculate the threshold: For the entire video sequence, compute the difference of
the x2 histogram through mean and standard deviations as follows:

MD =
∑
Tv−1
ft=1
D( ft, ft+1)

Tv−1
(4)
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ST D =

√√√√∑
Tv−1
ft=1

(D( ft, ft+1))2

Tv−1
(5)

where Tv is the total number of video sequence.
Step 4: Detection of shot boundaries: Let T = MD + α × ST D be the threshold. α

is the constant. It weights the standard deviation for the overall threshold T . If
D( ft, ft+1) ≥ T , the frame ft represents the end of the previous shot, and the frame
ft+1 represents the end of the following shot. Generally, the shortest shot should
last between 1 and 2.5 s. For the sake of fluency, the frame rate must be at least
25 frames per second (in most situations, it is 30 frames per second), or a flash may
appear. As a result, a shot must have at least 30 to 45 frames. Thus, a shot merging
principle created that state: If a detected shot has fewer than 38 frames, it will be
merged into the preceding shot or considered independent. The pseudo-code is
given in Algorithm 1.

Algorithm 1 Pseudocode of shot boundary detection.

Require: Total number of videos = Tv ∈ R3

Require: Distribute Each frame f in sixteen block i.e., ∀ f ∈ B16

for T ← 1 Tv do
for f ← 1 T do
BD( ft, ft+1)← ∑3

c=1 ∑NB
b=1 ∑NH

j=1
H( ft ,j,c,b)−H( ft+1,j,c,b)

x

D( ft, ft+1)← ∑Nk=1 WkBDk( ft, ft+1)

MD ←
∑
Tv−1
ft=1

D( ft , ft+1)

Tv−1

ST D ←

√
∑
Tv−1
ft=1

(D( ft , ft+1))2

Tv−1

τ =MD + α× ST D
if D( ft, ft+1) ≥ τ then

Previous shot last frame ft
Next shot last frame ft+1.

else if then
Print “Shot not detected”

end if
end for
return Shot boundary detection for the given video.
Repeat loop until last video frame

end for

3.2. Extraction of Keyframes

Keyframes are essential in the abstraction of video. The term “keyframes” refers to a
collection of prominent frames taken from video sequences. The following describes the
algorithm for keyframe extraction:

Step 1: Compute the difference between the general frames (all frames except the reference
frame) and the reference frame (first frame of each shot):

D(x, y) =
N
∑
k=1

WkBD‖(x, yt+1) (6)

where Wk denotes the block’s weight at k and N represents the total number of
blocks, while BD‖(x, yt+1) is the block difference at k between the x reference
frame and y general frames.
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Step 2: Within a shot, look for the maximum difference:

max(i) = D(x, y)max y = 2, 3, 4, ...,FC (7)

where max(i) represents the maximum x2 histogram within shot i, and D(x, y) is
the difference between the x reference frame and y general frames, while FC is the
total number of the current shots.

Step 3: Use the relationship between max(i) andMD to determine “Shot Type”:

TypeShot =
1 i f max(i) ≥MD
0 otherwise

(8)

A shot will be declared as a dynamic shot if its max(i) is bigger thanMD; otherwise
it is a static shot.

Step 4: Determine the keyframe’s location: If TypeShot = 0 and the number of frames in
the shot is odd, the frame in the center of the shot is chosen as a keyframe; if the
number of frames is even, any frame between the two frames in the middle of the
shot can be chosen as the keyframe. When TypeShot equals 1, the frame with the
greatest difference is designated as the keyframe [23]. The graphical depiction of
the four steps for extracting the keyframes is given in Figure 2.

Figure 2. Steps of keyframe extraction from a given input video.

3.3. Proposed CNN Architecture

Our proposed CNN architecture (LWCNN) consists of time distributed 2D convolu-
tional layers (CL) and two time distributed 2D max-pooling layers, whose number of
filters, kernel sizes, and strides are specified in Table 2. Each time distributed 2D CL
is followed by the Rectified Linear Unit (ReLU) activation function with a kernel size of
3 × 3 and stride size of 2 × 2. After the second and third CL, it has a time distributed
2D max pooling layer with a stride size of 2 × 2 to reduce the network’s size. We employ
same-padding strategies for each convolutional operation to prevent skipping information
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at the input frame’s border. As a result, the system produces feature maps that are the
same size as the raw frame input of h × w. We begin with 64 feature maps in the first CL
and then the same feature maps in the second. The final CL contains 128 feature maps.
The proposed model receives a pre-processed frame of segmented shot as input. First,
our system extracts spatial features from each frame by using (LWCNN) and then feeds
the sequence of spatial features into the LSTM to capture temporal features. For final
prediction, the fully connected layer receives the output of the last time step of the LSTM
layer and feeds it to the softmax layer [24], as seen in Figure 1. To capture the spatial
features of each frame, we used a frame-wise LWCNN , as seen in Figure 1. Furthermore, the
input frames ( ft, ft+1, ft+n) are feed into an LWCNN individually, which transforms each
frame into a sequence of spatial feature representation series as seen in Equation (9); Ft is a
spatial feature representation series. However, the temporal features 〈t+n are computed
using the spatial feature representation series as input to the LSTM network, as shown in
Equation (10). TheHt is the hidden state of the LSTM layer at current time step t, and the
hidden state of the previous time step t− 1 is denoted by Ht−1 [24]. The previous time
step’s information is fed as an input to the current time step. The output of the last time
step of the hidden stateHt+n is passed into the next fully connected layer as an input [24].
The softmax layer receives input from the fully connected layer and calculates the final
probability estimate for each class, as shown in Equation (11).

Ft = LWCNN( ft, ft+1, ft+n) (9)

Ht+n = LSTM(Ft) (10)

Predication : yj = so f tmax(Ht+n) (11)

Table 2. Description of LWCNN architecture used in EADN framework.

Layer Type Number of Filters Size Padding Value Stride Activation Output Shape

Time Distributed Conv2D1 64 3 × 3 same 2 × 2 Relu 5, 112, 112, 64
Time Distributed Conv2D2 64 3 × 3 same 2 × 2 Relu 5, 56, 56, 64

Time Distributed MaxPooling2D1 1 2 × 2 - 2 × 2 - 5, 28, 28, 64
Time Distributed Conv2D3 128 3 × 3 same 2 × 2 Relu 5, 14, 14, 128

Time Distributed MaxPooling2D2 1 2 × 2 - 2 × 2 - 5, 7, 7, 128
Time Distributed Flatten1 - - - - - 56272

4. Experimental Results

Three benchmark datasets, CUHK Avenue [4], UCSD Pedestrian [25], and UCF-
Crime [5], are used for the evaluation of the EADN framework. Details about the num-
ber of videos, training–testing split, average frame, and types of anomalies are given in
Tables 3 and 4. Sample frames of normal and anomalous events are given in Figure 3. Fur-
thermore, the 3D visualizations of datasets are given in Figure 4. Two quantitative metrics,
namely frame-based area under the curve (AUC) and receiver operating characteristic
(ROC) [26], are used for the quantitative analysis. The algorithm is implemented in Keras
backed Tensor Flow in Python version 3.7.4 programming environment. Experiments
were done using a personal computer (PC) equipped with an NVidia GeForce GTX TITAN
1080 graphics-processing unit (GPU) with 8GB of RAM, a Windows 10 operating system,
and the CUDA toolkit 9.0 with cuDNN v7.0. The quantitative results demonstrated the
effectiveness of our EADN framework and showed a sustainable improvement in the
state-of-the-art.
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Table 3. The UCSD Pedestrian and Avenue dataset’s statistical information

Dataset No. of
Videos

Training
Set

Test
Set

Average
Frames

Dataset
Length Example of Anomalies

UCSDPet1 70 34 36 201 5 min Bikers, small carts, walking across walkways
UCSDPet2 28 16 12 163 5 min Bikers, small carts, walking across walkways

Avenue 37 16 21 839 5 min Run, throw, new object

Table 4. The UCF-Crime dataset’s statistical information.

Anomaly’s Types No. of Videos Training Set Test Set

Abuse 50 48 2
Arrest 50 45 12
Arson 50 41 21

Assault 50 47 21
Explosion 50 29 21
Fighting 50 45 21
Shooting 50 27 21

Shoplifting 50 29 21
Vandalism 50 45 21
Burglary 100 87 21
Stealing 100 95 21
Accident 150 127 21
Robbery 150 145 5

Total 950 810 140

Figure 3. Sample of the ‘Normal’ and ‘Abnormal’ event frames from three datasets: Avenue, UCSD
(Ped1 and Ped2), and UCF-Crime.
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Figure 4. UMap data visualization of UCSD, CUHK, and UCF Crime datasets.

4.1. Quantitative Results

UCSD pedestrian is a widely used dataset for anomaly detection in surveillance videos
and is considered as a benchmark dataset. Similarly, the CUHK Avenue and UCF-Crime
datasets are freely accessible and frequently used to evaluate video anomaly detection
algorithms. We compare our EADN framework with both the earlier techniques [4,8,25,27] and
the contemporary ones [15,16,28–31], including supervised and unsupervised strategies.
Table 5 shows the quantitative comparison of the EADN against state-of-the-art methods
in frame-based AUC values. EADN achieved a frame-based AUC of 93% and 97% for the
UCSDped1 and UCSDped2 dataset, surpassing all the earlier methods. Similarly, on the
CUHK Avenue dataset, EADN achieved 97% AUC compared to the best state-of-the-art of
only 86.1%. Last but not the least, on the UCF-Crime dataset, EADN obtained 98% AUC,
improving the state-of-the-art substantially. In Figure 5, we compared the frame-based
ROC curve of our model with the state-of-the-art methods. Figure 6 plots the EADN’s
frame-based anomaly detection performance against the anomaly scores for test video
sequences (a) Arrest048-x264, (b) Fighting047-x264, (c) Assault051-x264, and (d) Normal-
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Videos-027-x264. Figures 7 and 8 illustrate the EADN’s training accuracy and loss against
the number of epochs.

Figure 5. The proposed approach is compared to other existing approaches using the UCFcrime,
UCSDped1, and UCSDped2 dataset. The ROC curves for state-of-the-art methods and our method
are represented in the color codes.

Figure 6. The curves of anomaly score, for four test videos from the test set of the UCF-Crime dataset
(a) Arrest048-x264, (b) Fighting047-x264, (c) Assault051-x264, and (d) Normal-Videos-027-x264. Cyan
regions denote the ground truth abnormal frames. For better representation, we normalized anomaly
scores for every video into the range of [0, 1]. This demonstrates that, as anomalies arise, the anomaly
scores increase. (For best results, view in color).

Figure 7. EADN training and validation accuracy graphs utilizing the UCF-Crime dataset. The
training accuracy and the validation accuracy are plotted against the number of epochs. It is apparent
from the graph that the model gets an optimal accuracy after 35 epochs. After 35 epochs, the model
tends to overfit.
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Figure 8. EADN training and validation loss graphs utilizing the UCF-Crime dataset. The training
loss and the validation loss are plotted against the number of epochs. It is apparent from the graph
that the model has a minimum loss after 35 epochs. After 35 epochs, the model tends to overfit.

Table 5. A frame-based AUC comparison of accuracies of the EADN framework against existing
approaches based on the UCSDped1, UCSDped2, CUHK Avenue, and UCF crime datasets.

Publication Year Method UCSDped1 [25] UCSDped2 [25] CUHK Avenue
Dataset [4]

UCF-Crime
Dataset [5]

2009 Kim and Grauman [27] 59 69.3
2009 Mehran et al. [8] 67.5 55.6
2010 Mahadevan et al. [25] 81.1 82.9
2013 Lu et al. [4] 91.8 - 65.51
2016 Hasan et al. [15] 81.0 90.0 70.2 50.6
2017 Ionescu et al. [32] 68.4 82.2 80.6
2017 Hinami et al. [28] - 92.2
2017 Luo et al. [29] - 92.2 81.7
2017 Chong & Tay [33] 80.3
2017 Xu et al. [31] 92.1 90.8
2018 Binary SVM classifier. [5] 50.0
2018 MIL-C3D without constraints [5] 74.44
2018 MIL-C3D with constraints [5] 75.41
2018 Liu et al. [16] 83.1 95.4 84.9
2019 Zhong et al. [22] - 93.2 81.08
2019 TSN-Optical Flow [22] 92.8 78.08
2019 Zhou et al. [34] 86.1
2019 Spatiotemporal [35] 63.0
2019 Zhou et al. [34] 83.3 94.9 86.1
2019 Lee et al. [36] 96.6 90.0
2020 Zaheer et al. [37] 94.47 79.54
2020 Singh et al. [38] 94.6 95.9 92.7
2020 Tang et al. [39] 82.6 96.2 83.7
2020 Ganokratanaa et al. [40] 98.5 95.5 87.9
2021 Maqsood et al. [41] 45.0
2021 Ullah et al. [42] 85.53
2021 Wu et al. [43] 85.9 92.4
2021 Qiang et al. [44] 85.2 97.1 85.8
2021 Madan et al. [45] 86.9
2021 Tian et al. [46] 96.5 84.30

2022 EADN (Ours) 93.0 97.0 97.0 98.0

4.2. Comparison with the State-of-the-Art Techniques

Our EADN framework is compared with the existing strategies using the benchmark
datasets. The authors of [42] examined a variety of deep learning models with the integration
of multi-layer BD-LSTM, including VGG-19+multi-layer BD-LSTM, InceptionV3+multi-layer
BD-LSTM, and ResNet-50 + multi-layer BD-LSTM. ResNet-50 combined with bidirectional-
LSTM has the smallest model size among these approaches. The EADN framework for
anomaly detection has a lower storage size, fewer learned parameters, and a faster process-
ing time than other existing approaches [22,42,47–49]. The model’s efficiency is compared
to the recent techniques in terms of model size, time complexity, and parameter count,
as seen in Tables 6 and 7. The quantitative results reveal that EADN framework has the
lowest false alarm rates. Additionally, it can process a 32-frame sequence in 0.194 s, which
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is considerably faster than previous approaches [22,42,47–49]. As seen in Table 7, the sizes
of existing approaches are significantly larger than the EADN.

Table 6. False alarm rate of the proposed EADN framework against state-of-the-art methods. In addi-
tion to the UCF-Crime dataset, EADN gives 0.08, 0.06, and 0.04 false alarm rates on the UCSDped1,
UCSDped2, and the CUHK Avenue datasets.

Method UCF-Crime Dataset [5]

MIL-C3D with constraints [5] 1.9
Hasan et al. [15] 27.2
Lu et al. SCL [4] 3.1

C3D [22] 2.8
TSN-RGB [22] 0.1

TSN-Optical flow [22] 1.1

EADN (Ours) 0.03

Table 7. Evaluation of EADN in terms of parameters, model size, and time complexity against the
state-of-the-art methods.

Method
Parameter

Count
(in million)

Model Size
(MB)

Latency/Per
Sequence

(s)

C3D [22] - 313 -
VGG-19+multi-layer BD-LSTM [47] 143 605.5 0.22
Inception V3+ multi-layer BD-LSTM

[48] 23 148.5 -

ResNet-50 + multi-layer
BD-LSTM [42,49] 25 143 0.20

EADN (Ours) 14.14 53.9 0.20

5. Conclusions

This paper proposed a lightweight and cost-effective model for anomaly detection
in surveillance videos that achieves promising accuracy on several benchmark anomaly
detection datasets. The model works in three main steps: (i) Shot segmentation, (ii) feature
extraction, and (iii) sequence learning and anomaly classification. In shot segmentation,
salient shots are segmented using a shot boundary detection algorithm from the surveillance
videos. Afterwards, we use our EADN framework to propagate a sequence of frames per
sample of the salient shots and forward it to a lightweight Convolutional Neural Network
(LWCNN) that gets the spatiotemporal features from the intermediate layer. After that,
LSTM cells learn the spatiotemporal features from a sequence of frames per sample of each
anomalous event, which enables the EADN to classify anomalous events in the segmented
shot of the video. Our model is validated using a variety of evaluation parameters and
proved to be more accurate than recently published techniques. The experimental results
demonstrate that EADN improves accuracy by 10.9%, 0.9%, 1.6%, and 15.88% for the
Avenue, UCSD Pedestrian1, UCSD Pedestrian2, and UCF-Crime datasets, respectively, and
significantly reduces false alarm rates as compared to recent works. However, our EADN
framework still has room for real-time accuracy and efficiency improvement. In the future,
we aim to incorporate the attention-based deep learning (self and multi-headed attention)
networks to improve the accuracy and efficiency of the current EADN framework.
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