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Abstract 
Model predictive control (MPC) is an advanced optimal 
control technique to minimize a control objective while 
satisfying a set of constraints and is well suited to activate 
the building energy flexibility. The MPC controller 
performance depends on the accuracy of the model 
prediction. Inaccurate predictions can directly lead to low 
control performance. Linear time-invariant (LTI) models 
are often used in MPC in buildings. However, LTI models 
do not adapt to the weather conditions varying throughout 
the whole space-heating season, which makes the MPC 
based on LTI models not perform well over a long period 
of time. Therefore, this study introduces an adaptive MPC 
where the parameters of a linear grey-box model are 
continuously updated in real-time. Two alternative 
versions of this adaptive control are investigated. The first 
one, called partially adaptive MPC, only updates the 
effective window area of the grey-box model, while the 
second one, called fully adaptive MPC, updates all the 
parameters of the grey-box model. Results show that the 
partially adaptive MPC is not able to deliver satisfactory 
prediction performance. The fully adaptive MPC shows 
better performance compared to the other models when 
implemented in a MPC, especially in avoiding thermal 
comfort violation. 
Introduction 
The grid system today is facing new challenges due to the 
fastly increasing penetration of renewable energy 
resources (RES). The weather-dependent RES brings 
intermittent and is prone to uncertainty which makes the 
balance between the electricity supply and demand a 
challenging task. Thus, more flexibility is needed for the 
current energy system. Demand response (DR) is 
considered as a feasible solution on the demand side, 
which can adapt to volatile electricity generation (Esther 
& Kumar, 2016; Oconnell et al., 2014). Buildings account 
for a significant proportion of final energy consumption 
in developed countries (Pérez-Lombard et al., 2008) (20–
40%). The thermal mass of building envelopes can be 
used as short-term heat storage to perform DR. This study 
mainly investigates model predictive control (MPC) to 
activate the flexibility of the building thermal mass. The 
MPC controller enables the indoor temperature to 
fluctuate within acceptable indoor temperature limits for 
the occupants while it optimizes the time profile of energy 
use by loading the building thermal mass at certain 

periods. The MPC controller performance strongly 
depends on the accuracy of the model prediction. 
Therefore, identifying an accurate prediction model is a 
key task for the deployment of MPC. 
This study focuses on MPC using grey-box models as the 
prediction model. Grey-box models have a structure 
based on physical laws, while the model parameters are 
calibrated on measurement data (i.e., based on time-series 
data). The grey-box models are not as mathematically 
complex as white-box models, so they are less 
computationally expensive to solve. Grey-box models 
also have better extrapolation properties than black-box 
models (Madsen et al., 2016). In grey-box models, 
lumped resistance and capacitance (RC networks) are 
commonly used to represent the model structure of the 
building, which is also used in this study. Some existing 
studies have shown that linear time-invariant (LTI) 
models can approximate the thermal dynamics of 
buildings with sufficient accuracy for MPC purposes 
(Bacher & Madsen, 2011; M. D. Knudsen & Petersen, 
2020; Michael Dahl Knudsen & Petersen, 2017; Prívara 
et al., 2013; Vogler-Finck et al., 2018). However, the 
performance of the MPC controller cannot be maintained 
if it is applied over a long period of time due to the time-
varying weather conditions throughout the year. Thus, an 
MPC controller where the parameters of the grey-box 
model can be updated in real-time should provide 
satisfactory control performance over a long period of 
time. This paper uses virtual experiments (i.e., co-
simulation) to compare the performance of a conventional 
MPC based on an LTI model to an adaptive MPC. IDA 
ICE is a detailed dynamic building performance 
simulation (BPS) software, which is used as the emulator 
for virtual experiments. The MPC controller is 
implemented in MATLAB with a co-simulation function 
in IDA-ICE provided by the company EQUA.  
The data collected from IDA ICE simulations are used to 
train the parameters of the grey-box model. Then, the 
obtained model is used as the prediction model for the 
MPC controller. The adaptive MPC controller has two 
versions in this study. The first version, called partially 
adaptive MPC, only updates the effective window area of 
the grey-box model when the prediction error is large 
during the MPC operation. The reason is that solar 
radiation is the dominant factor that influences the model 
accuracy due to the cloud condition, changing altitude and 
zenith angles of the sun. The second version, called fully 

E3S Web of Conferences 362, 12001 (2022) https://doi.org/10.1051/e3sconf/202236212001
BuildSim Nordic 2022

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution  
License 4.0 (http://creativecommons.org/licenses/by/4.0/).



adaptive MPC, updates all the parameters of the grey-box 
model when the prediction error is large during the MPC 
operation. The second version has more freedom to fit the 
model parameters compared to the first one. However, the 
second version of adaptive MPC theoretically takes more 
time to converge to a new set of parameters and may have 
the risk of obtaining a set of unphysical parameters due to 
insufficient training data. Both versions of the adaptive 
model use the full space-heating season data (here called 
full winter) to train the model parameters as the initial 
model to start the adaptive MPC. This study compares the 
performance of a conventional MPC based on an LTI  
grey-box model to the adaptive MPC.  
Description of virtual experiments setup 
This study uses a building model in IDA ICE developed 
in a previous study (Yu et al., 2021) as the emulator for 
the co-simulation. It is a detached house in Oslo. The floor 
area of the house is approximately 160 m2 and is 
constructed in wood. The lightweight construction 
complies with Norwegian passive house standards (NS 
3700 [15]) requirements. The appearance of the building 
is shown in  Figure 1, while its floor plan is presented in 
Figure 2. The envelope of the building is the dominant 
heat dynamics to be modeled in this study, which has 
good linear properties. Thus, it is reasonable to use the 
linear grey-box model as the prediction model for the 
MPC controller design. The internal doors of the building 
are set to be open in the virtual experiments. Therefore, 
the mono-zone grey-box model is considered as the 
prediction model. The temperature of the indoor air node 
is represented by the volume-averaged temperature of the 
nine zones in IDA ICE. Electrical radiators are selected to 
be the space-heating system in the BPS since they are it is 
the most common for Norwegian residential buildings 
(Bøeng et al., 2014). The heat dynamics of electrical 
radiators are neglectable due to much smaller thermal 
inertia compared to the envelope. The profile for internal 
gains and occupancy is taken from the Norwegian 
technical standard TS3031:2016 (Norge, 2016).  

Figure 1: 3D geometry of the building model in IDA ICE 
(showing the southwest facade) 

The heat dynamics of the building need to be perturbed to 
obtain the data for training the model parameters. The 
Pseudo-Random Binary Signal (PRBS) approximates 
white noise properties, which can excite the dynamic 

system in a large spectrum of frequencies (Kristensen et 
al., 2004; Lennart, 1999). The electrical radiator is the 
only controllable input of the system, so the PRBS signal 
is applied to the electrical radiator to obtain the training 
data. It is not always feasible to apply PRBS signal in real 
operation due to thermal discomfort caused by large 
variations of the indoor temperature for occupants. 
Therefore, the time of applying PRBS signal should also 
be limited. This study takes one week in November as the 
training week to apply PRBS signal to the heating system. 
It starts on November 23rd and lasts for one week (close 
to the middle of the whole experimental period). The 
outdoor temperature is mild with an average value of 5 ℃. 
The data generated under typical operations are also used 
as training data. Intermittent heating with changing 
temperature setpoints is applied. The setpoint is shifted 
between daytime and nighttime (i.e. a night setback) and 
the local controller of the radiator is on-off. The model 
trained from the PRBS signal is only used for the LTI 
control model. The model trained from the full winter 
intermittent heating with changing temperature setpoints 
is also used as the initial model for the adaptive MPC. 

Figure 2: Floor plan of the test building (ducts for the supply 
ventilation air are in blue and in red for extraction) 

In the co-simulation, the length of each MPC time step is 
set to 15 min. IDA ICE first sends the current calculated 
volume-averaged indoor temperature of the building to 
MATLAB. Then the MPC controller takes the prediction 
of the weather data and internal heat gains into the 
optimization to output the optimal control sequence for 
the heating system. However, only the first step decision 
of the control sequence is taken and sent back to IDA ICE. 
The heaters in the building will execute the calculated 
optimal power after receiving the control signal. When 
this time step is done in IDA ICE, the new state of the 
volume-averaged indoor temperature is sent back to 
MATLAB again; a new round starts. The process will 
keep iterating in time using this co-simulation setup until 
the pre-determined simulation period is finished. A 
similar co-simulation setup with IDA ICE has been 
applied in the study (Khatibi et al., 2022). A short 
initialization period is necessary for IDA ICE to come to 
realistic temperatures in each zone of the model, so PID 
control is applied at the beginning of co-simulation. The 
length of the initialization period in this study is set to be 
half-day.  
In the co-simulation framework, there are variable 
constraints set in  the MPC due to system limitations. In 
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the IDA ICE model, the total heating power of all the 
radiators is 3220W. The radiator in IDA ICE is assumed 
to be able to modulate its power by adjusting its part load 
ratio (PLR). Thus, the power constraint of the heating 
system in the MPC is from 0 to 3220W. The thermal 
comfort should also be considered and it is here 
considered using minimum and maximum indoor 
temperature limits. The minimum indoor temperature 
limit is set to be 20 °C and the maximum limit is set to be 
24 °C. There is a night setback for the minimum 
temperature limilt decreasing from 20°C to 16 °C from 
11PM to 7AM. 
Methodology 
Grey-box model 
A grey-box model structure that has too many parameters 
may lead to overfitting and increase the calculation cost. 
Lower order models with few parameters can decrease the 
calculation cost for the MPC optimization but at the cost 
of unacceptable prediction performance. A considerable 
amount of research has already been done to find suitable 
mono-zone grey-box model structures to be applied to 
MPC of buildings (Bacher & Madsen, 2011; Berthou et 
al., 2014; Harb et al., 2016; Reynders et al., 2014; Viot et 
al., 2018). In the previous study (Yu et al., 2022), a 3R2C 
grey-box model has proven to be a suitable trade-off 
between model complexity and accuracy for the test case. 
Therefore, this model structure is used for the MPC 
controller in our work. The model structure and its 
parameters are given in Figure 3 and Table 1. 

Figure 3: 3R2C grey-box model 

Table 1: The physical interpretation of the parameters of the 
3R2C grey-box model 

Parameters Physical interpretation and unit 

Ti  
Temperature of the internal node (i.e., indoor air, 
furniture) [°C]. 

Te Temperature of the external walls [°C]. 

Ta The ambient (or outdoor) temperature [°C]. 

Ci  Heat capacity including the thermal mass of the air, 
the furniture [kWh/K]. 

Ce Heat capacity of external wall  [kWh/K]. 

UAie Heat conductance between the building envelope and 
the interior [kW/K]. 

UAea Heat conductance between the outdoor and the 
building envelope [kW/K]. 

UAinf Heat conductance between the outdoor and the 
interior node (components with negligible thermal 
mass, like windows and doors) [kW/K]. 

Qint Internal heat gain from artificial lighting, people and 
electric appliances [kW]. 

Qh Heat gain delivered to the heat emitter [kW]. 

Isol Global solar irradiation on a horizontal plane [W/m2]. 

Ai The effective window area of the building 
corresponding to Ti [m2]. 

Ae The effective window area of the building 
corresponding to Te [m2]. 

MATLAB system identification toolbox (Ljung, 2014) is 
used to calibrate the parameters of the grey-box model. 
This paper uses the global optimization routine of the 
previous study (Yu et al., 2021) to avoid the local 
optimum. The routine consists of two stages. The 
heuristic particle swarm optimization (PSO) is used at the 
first stage to give a general estimation of parameter values. 
Then the gradient-based optimization function (greyest) is 
applied in the second stage to further polish the parameter 
values. The objective function f(x) of the optimization is 
defined as Equation 1.  
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Optimal Control Problem Formulation 
The goal to implement MPC in the building varies 
between applications. The objective function of the MPC 
in our study is to minimize the total electricity use of the 
heating system while keeping the building within the 
thermal comfort temperature limits. 
With the control objectives and constraints, the optimal 
control problem can be formulated. The time step of each 
control decision is 15 minutes. The prediction horizon of 
the MPC controller is set to be 24 hours (96 slots, N = 96). 
This duration of the prediction horizon is a typical value 
found in the literature. It keeps the computational time 
reasonable. The equations of the optimization problem are 
given below. 
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In the equations, x[k] is the state vector in discrete-time, 
F, G and C are the discrete state space matrice obtained 
from the grey-box model identification process, u[k] is the 
input vector in discrete-time and y[k] is the output. K is 
the tunned steady Kalman gain. Qh[k] is the calculated 
optimal heat power at each step for the prediction horizon, 
while Qh,max[k] is the max power of the heating system. ε1 

[k] and ε2[k]  are the slack variables of the soft constraints
on the thermal comfort band. The existence of soft
constraints can help the solver to avoid infeasible
optimization problems by allowing thermal comfort limits 
to be violated. Tindoor[k] is the predicted indoor
temperature from the grey-box model. Tlow[k] and Tup[k]
are the corresponding temperature limits during the
prediction horizon. The thermal discomfort (ε) is
quantified in Kelvin hours outside the predefined thermal
comfort limits. L is the penalty factor for discomfort in the 
objective function. For favor comparison of results, it has
been decided that the thermal discomfort should be rare
when using MPC so that a very high value of 108 is given
to the penalty L. MPC resorts to a receding horizon. The
above optimization problem is solved at each step to get
the optimal control decision. Then, the initial states of the
model and the weather forecasts are updated with the
receded prediction horizon. Due to the quadratic form of
the slack variables ε1 and ε2, a solver that can solve
quadratic programming problems is needed. In this study,
the toolbox YALMIP (Lofberg, 2004) in MATLAB is
used for the formulation of the optimization problem,
while Gurobi (Lofberg & Gurobi Optimization, 2004) is
used to solve the optimization problem.

Conventional and Adaptive MPC 

The baseline MPC is based on LTI models, which keep 
the value of the model parameters constant during 
simulation. The LTI model trained using the full winter 
experiments with intermittent heating is called FullWinter. 
The LTI model trained using the PRBS experiments of 
November is called PRBSNOV.  

The partially adaptive MPC takes the FullWinter model 
to initialize the model, only the effective window area (Ai) 
parameter is updated during the simulation. The pseudo-
code for updating the effective window area is presented 
in Algorithm 1. The fully adaptive MPC also starts with 
the FullWinter model but updates all the seven parameters 
of the model during simulation. The pseudo-code for fully 
adaptive MPC is presented in Algorithm 2.  

The sliding accumulated error (ErrorS) is the index to 
detect when the parameters need to be updated. The 
sliding accumulated error sums up the absolute value of 
the prediction error (value difference between the 
measurement and the model prediction). The length of the 

sliding accumulated error is set to be 12 steps (i.e., 3 
hours). When the ErrorS is larger than a predefined 
threshold, it actives the parameter updating routine. The 
threshold is called error_index and is set to be 5 in this 
study. It is unreasonable to use a short training period to 
update the model parameters as the parameters can be 
unphysical or with large uncertainty. On the opposite, 
taking a long period of historical data for training is also 
not optimal since the adaptive MPC should be able to 
adapt the parameters for changing operating conditions. 
Pushed to extremes, a very long training period will make 
the adaptive model converge to the LTI model. Thus, the 
two adaptive MPC take a training period of 7 days of data 
to update the model parameters. As a result, the adaptive 
MPC routines are not able to start the first model update 
during the first seven days of co-simulation. 

Algorithm 1: Pseudo-code for the partially adaptive MPC 

Algorithm 1: Partially Adaptive MPC

Initialize: Set FullWinter as the prediction model for the 
Partially Adaptive MPC; 

Input: ErrorS； 

if ErrorS> ErrorIndex 

 Update the parameter Ai. 

else 

 Keep Ai unchanged. 

end 
Algorithm 2: Pseudo-code for the fully adaptive MPC 

Algorithm 2: Fully Adaptive MPC

Initialize: Set FullWinter as the prediction model for the 
fully Adaptive MPC; 

Input: ErrorS； 

if ErrorS > ErrorIndex 

 Update all parameters of the model. 

else 

 Keep parameters unchanged. 

end 

Results 
The results using different MPCs are presented in this 
section. The virtual experiment starts from November 1st 
to December 31th (i.e., 61 days). The first 12 hours of 
simulation always start with a PID control to stabilize the 
co-simulation environment. Then, the control is switched 
to MPC. PRBSNOV MPC uses the LTI grey-box model 
trained using the data from one week of building 
operation with the PRBS excitation in November 
(PRBSNOV). FullWinter MPC uses the LTI grey-box 
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Table 2: Results summary of MPC controllers' performance model trained with the data from the intermittent heating 
with changing temperature setpoints during the full space-
heating season (i.e., from November 1st to March 31th). 
The indoor temperature computed using co-simulation 
and the four MPC controllers are shown in Figure 4. 
Figure 5 is a close-up section of Figure 4 and the 
corresponding heating power of the radiator is also given. 
The aggregated results are given in . The history of the 
effective window area update is shown in Figure 6. 
It can be seen that the FullWinter MPC can not make a 
satisfactory prediction, which causes the thermal comfort 
constraint to be significantly and frequently violated. The 

FullWinter 
MPC 

PRBSNOV 
MPC 

Partially 
Adaptive 

MPC 

Fully 
Adaptive 

MPC 

Consumed 
Energy 
[kWh] 

803.73 855.18 804.06 893.62 

Thermal 
Discomfort 

[Kh] 
534.39 194.37 528.87 72.04 

Figure 4: Indoor temperature profile under the operation of different MPC controllers with energy saving objective 
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partially adaptive MPC shows only slightly better 
performance compared to the FullWinter MPC. The 
thermal comfort constraint is still frequently violated. 
These two models consume less energy compared to the 
other two models (i.e., the fully adaptive MPC and the 
PRBSNOV MPC). However, the MPC should first 
guarantee the thermal comfort of the occupants and then 
provide DR service to the grid. The FullWinter MPC and 
Partially Adaptive MPC consume less energy because 
they are less accurate, which causes the indoor 
temperature to drop below the minimum indoor 
temperature threshold. The heating system is switched on 
too late in the morning and causes large thermal 
discomfort. This indicates that the LTI grey-box model 

trained using the full winter data may not be suitable as 
the prediction model in MPC. Furthermore, quite 
surprisingly, only updating the effective window area of 
the model is not sufficient. This is also confirmed by the 
history of updates of the effective window area. The 
partially adaptive MPC  updates the window area 
continuously, which means that the sliding accumulated 
error is always very large during simulation. The 
PRBSNOV MPC performs much better than the previous 
two models in terms of thermal discomfort. The resulting 
energy use of the PRBSNOV MPC is consequently 
higher. This result proves that it is necessary to use a 
model that is calibrated using a training period similar to 
the period when the MPC will be operated. The fully 

Figure 5: Close-up of the indoor temperature profile under the operation of different MPC controllers with energy saving objective 
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adaptive MPC further reduces the thermal discomfort 
significantly compared to the PRBSNOV MPC. 
However, the consumed energy is even higher. The fully 
adaptive model performs better than the partially adaptive 
model mainly due to the extra degrees of freedom to adapt 
the model parameters. After the first update of the 
parameters done by the fully adaptive MPC, the violation 
of the indoor temperature constraint is significantly 
reduced. As shown in Figure 6, the effective window 
area is only updated three times during the 
simulation, which means that the obtained model is 
accurate and can deliver a decent prediction. 
Conclusion 
This study aims to assess different MPC controller 
performances using virtual experiments by coupling IDA 
ICE and MATLAB. The control objective of the MPC 
controller is to minimize the energy use with a high 
penalty on the thermal discomfort to give priority to 
thermal comfort over energy use. 

Results show that the LTI grey-box model trained using 
the FullWinter data is not suitable as MPC prediction 
model. This model is too general and gives large 
prediction errors during specific periods of the winter. 
This is confirmed by the LTI grey-box model training 
using a PRBS excitation sequence for one week in 
November (PRBSNOV). The model is better calibrated to 
November than the FullWinter model and the resulting 
MPC gives better performance.   

Although the effective window area is known to vary 
significantly during the space-heating season, only 
updating the window area of the model is surprisingly 
not enough to reach satisfactory MPC performance. 
The lower amount of indoor temperature violations of the 

fully adaptive MPC compared to the PRBSNOV 
MPC demonstrates the need to update all the model 
parameters during the space-heating season.  

In future work, the performance of the four MPC 
controllers will be compared for different objective 
functions (e.g, minimization of the energy cost or the 
energy use during peak hours) and different magnitudes 
for the penalty coefficient weighting the thermal 
discomfort in the objective function. 
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