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A B S T R A C T

Due to the lack or high costs of measurement devices to monitor and control metabolites in microbial
cultivation processes, state estimators are often required. These estimators depend on available on-line
measurements and model dynamics. However, they are often characterized by simple models due to the
lack of full knowledge on the process dynamics and high variability in the cell metabolism. This causes
uncertainty in the model parameters and therefore the necessity of on-line model adaptation, for instance
through simultaneous state and parameter estimation. However, these estimation problems are often ill
conditioned. The Moving Horizon Estimator (MHE) is a good candidate in this context, since it easily allows
enforcing hard constraints as well as regularization to address the ill-posedness. In this work, we present a
method for simultaneous state and parameter estimation in the absence of full state measurements, with the
aid of two regularization methods, in a microbial fed-batch cultivation.
1. Introduction

Real-time monitoring is of paramount importance in control of
bioprocesses. Indeed, it is critical for quality assessment and there-
fore feedback implementations. However, in many applications this
is a great challenge, since not all the variables of interest can be di-
rectly measured on-line. In the case that key variables are unmeasured,
state estimators can be used to infer information from the available
measurements to compensate for it (Doyle III, 1998; Dochain, 2003).
State estimators, also called Soft Sensors (Dochain, 2003), depending
on mathematical models (Rao, 2000) that usually represent the real
system in an oversimplified manner (e.g. Monod growth model, Monod
(1949)), can yield to poor estimates, due to the high model uncertainty,
mostly caused by biological variability (Jabarivelisdeh et al., 2020).

Schei (2008) and Mohd Ali et al. (2015) reviewed the implemen-
tation of state estimators in chemical processes, discussing design
issues, as well as general guidelines for selecting the proper tech-
nique in specific applications. Among the various state estimators
reported, optimization-based methods, such as the Moving Horizon
Estimator (MHE), have two main advantages: (1) they can handle
multi-rate measurements easily (Rao, 2000), often encountered in
bioprocesses (Elsheikh et al., 2021); (2) they can explicitly incorporate
equality or inequality constraints in both states and parameters that
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may vary in the model (Rao, 2000; Rao et al., 2003), enabling the
possibility to handle uncertainty (Doyle III, 1998; Dochain, 2003).

Whereas the capability of handling constraints in combination with
multi-rate measurements has been extensively exploited for biological
applications, to the best of our knowledge, constraints handling meth-
ods have been mostly applied to either state or parameter estimation,
not both. Our work aims to account for model uncertainty by simultane-
ously performing state and parameter estimation in absence of full state
feedback. Although not applied to a biological process, the work of Liu
et al. (2021) also recently presented simultaneous state an parameter
estimation in an MHE. However, differently from the work of Bae et al.
(2021) and ours, they used a penalty quadratic term for the calculation
of the arrival cost (i.e. to take the past information into account).

The majority of the up to date MHE applications in bioprocesses,
reconstruct both states and key parameters using multi-rate full state
feedback (Gatzke and Doyle III, 2002; Küpper et al., 2009, 2010;
Vercammen et al., 2016; Jabarivelisdeh et al., 2020; Elsheikh et al.,
2021; Bae et al., 2021; Hernández Rodríguez et al., 2021; Valipour
and Ricardez-Sandoval, 2021, 2022b,a). Some of the reported ap-
plications (Gatzke and Doyle III, 2002; Küpper et al., 2009, 2010;
Vercammen et al., 2016; Hernández Rodríguez et al., 2021) have shown
successful reconstruction of critical model parameters (i.e. model up-
date or adaptation). Elsheikh et al. (2021) presented a review on the
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utilization of multi-rate measurements and the effect of different arrival
cost updates. Valipour and Ricardez-Sandoval (2021) and Jabarivelis-
deh et al. (2020) showed the implementation of an MHE along with
a nonlinear Model Predictive Controller (NMPC), while Valipour and
Ricardez-Sandoval (2022b,a) focused on the improvement of the esti-
mation of unexpected process and measurement noises, by the adoption
of non-Gaussian distributions. Bae et al. (2021) presented instead an
implementation that attenuates the ill-posed problem arising from the
estimation of all parameters, by reducing the number of decision vari-
ables (i.e. regularization method). Fewer and less recent works focused
on inferring information on the unmeasured states (Raïssi et al., 2005;
Goffaux and Wouwer, 2008) without taking into account the possibility
to estimate the model parameters. The work of Raïssi et al. (2005)
presented an implementation where the solution of the optimization is
a bounded set consistent with model, measurements and errors. Goffaux
and Wouwer (2008), on the other hand, implemented a min–max
optimization problem to deal with parameter uncertainty.

The concept of expressing the uncertain parameters as bounded
variables can be dated back to the work of Grossmann and Sargent
(1978) and later addressed by Bonvin et al. (2001). Considering that
MHE has the ability to explicitly incorporate physical constraints on
the parameters, and that disturbances in the form of time-varying pa-
rameters can be added as extra degrees of freedom in the optimization
problem (Robertson et al., 1996; Rao et al., 2003; Kühl et al., 2011),
MHE results a good candidate for performing combined state and
parameter estimation. However, uncertainty in the model parameters
can potentially cause a large bias in the estimates of the unmeasured
states (Dochain, 2003). Moreover, the inclusion of process parameters
as decision variables, can lead to an ill-posed optimization problem.
Therefore, to obtain a unique local solution, regularization methods are
required.

Several approaches have been proposed for selecting parameters
subsets (i.e. regularization methods) to attenuate ill-posed parameter
estimation problems. McLean and McAuley (2012) reported and di-
vided them in different categories: (1) methods based on the correlation
and collinearity indexes (López C et al., 2015; Anane et al., 2019),
(2) Orthogonalization Method (Yao et al., 2003; Lund and Foss, 2008;
Thompson et al., 2009; Bae et al., 2021), (3) methods based on the
Fisher Information Matrix (FIM) characteristics (Balsa-Canto et al.,
2007), and (4) methods based on Principal Component Analysis (PCA)
and eigenvalue–eigenvector decomposition (Vajda et al., 1989; Kim and
Lee, 2019; Nakama et al., 2020; Chen et al., 2022). In addition to these
methods, common practice is also to allow the variation of only one
poorly known parameter per measurement value (Dochain, 2003). Fur-
ther details on regularization techniques can also be found in Kravaris
et al. (2013). Most of the regularization methods are dependent on cut-
off or threshold values for the selection of the number of constraints.
However, some authors already presented alternatives, to avoid cut-off
values, based on the minimization of the mean squared error (MSE) to
improve model prediction (Chu et al., 2009; Wu et al., 2011).

To capture the changing or missing dynamics caused by the plant-
model mismatch (Psichogios and Ungar, 1992; Jabarivelisdeh et al.,
2020; Bae et al., 2021), our work exploits the ability of MHE to explic-
itly incorporate physical constraints on the parameters, to continuously
update them.

This is done by adding them as single degrees of freedom to the
optimization problem and, as also reported in Bae et al. (2021), will
result in parameter drifts. To overcome the ill-conditionedness of the
problem that arises from that, we implemented and compared two
different regularization methods, coupled with a stopping criterion
based on structural identifiability. The latter allowed to select, at each
time point, the number of active constraints necessary to regularize the
problem, based on the available on-line information. Firstly, to reduce
the search space of the decision variables, we adopted the regulariza-
tion approach (Subset Selection by Transformation, SST) as proposed
2

by Kim and Lee (2019) and implemented it in an MHE. This was done
using real experimental data of a fed-batch bacterial cultivation of
Corynebacterium glutamicum (Tuveri et al., 2021). Secondly, to evaluate
the properties of SST and show its advantages, we compared it to the
known Orthogonalization Method (OM) (Lund and Foss, 2008; Bae
et al., 2021). Finally, to avoid using a stopping criterion based on a
threshold value, for the selection of the number of the active constraints
on the parameters, we proposed a strategy based on the structural
identifiability of the system (Villaverde, 2019), in both OM and SST.
The results, validated using experimental data from a real bioprocess,
present accurate state estimates with respect to the reference values
also allowing simultaneous parameter adaptation.

2. Experimental setup

The experiment was conducted using the C. glutamicum ATCC13032
strain. The cells were harvested in a shake flask pre-culture over night
in 2YT complex medium and then inoculated in a 2.7 L baffled stirred
tank reactor Labfors5 (Infors AG, Switzerland). The experiment was
conducted with initial volume of 1.5 L and initial OD600 of 1. The
500 mL of glucose feeding (100 g∕L) were added once the dissolved
oxygen stabilized above 60%. Temperature, pressure and pH were kept
respectively to 30 ◦C, 1 bar and 7. The reactor was aerated with 2
NL∕min pressurized air and the dissolved oxygen was controlled above
30% by modifying the stirrer speed (200–1100 rpm). C. glutamicum was
cultured on CGXII minimal medium and glucose used as carbon source.
On-line measurements for absorbance (840–910 nm, ASD12-N Absorp-
tion Probe, Optek GmbH), volume and off-gas composition (BlueInOne
Ferm, BlueSens GmbH) were available every 10 s trough the process
information management system Lucullus (Securecell, Switzerland).
Off-line samples for sugars were instead collected and stored at 4 ◦C
by the NUMERA system (Securecell, Switzerland). Glucose samples
were analyzed using an high-pressure liquid chromatography system
(UltiMate 3000 series, Thermo Scientific, U.S.). The off-line biomass was
instead evaluated by measuring cell dry weight. The reader is referred
to Tuveri et al. (2021) for more details on cultivation process and
analytical procedures.

3. Bioprocess description

This section starts by introducing the system dynamics (Section 3.1)
and the noise structure (Section 3.1.1). Following this, on-line (i.e. out-
puts) and off-line measurements (i.e. reference values) are described
(Section 3.1.2) together with the signal processing (Section 3.1.3).

3.1. System model

The process describes an aerobic bacterial cultivation, which is
performed in two phases:

• A batch phase, up to complete sugar depletion and stabilization
of dissolved oxygen above 60%;

• A fed-batch phase, followed a short period of starvation.

The system dynamics are described using first order Monod-like kinet-
ics (Tuveri et al., 2021). In addition, cell death is considered to be linear
and dilution is due to the addition of feeding. The model equations are
the following:

�̇� =𝐹𝑖𝑛

�̇� = −
𝐹𝑖𝑛
𝑉

𝑋 + 𝜇𝑚𝑎𝑥
𝑆

𝐾𝑠 + 𝑆
𝑋 − 𝑘𝑑𝑋

�̇� =
𝐹𝑖𝑛
𝑉

(𝑆𝑖𝑛 − 𝑆) − 𝜇𝑚𝑎𝑥
𝑆

𝐾𝑠 + 𝑆
𝑋
𝑌𝑋𝑆

̇CO2 =𝜇𝑚𝑎𝑥
𝑆

𝐾𝑠 + 𝑆
𝑋

𝑌𝑋CO2

− 𝑞𝑎𝑖𝑟CO2

(1)

The states 𝑉 , 𝑋, 𝑆 and CO2 in Eq. (1) represent the concentrations
of volume, biomass, glucose (or substrate, sugar) and carbon dioxide
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Table 1
Model parameters 𝜃 ∈ R𝑛𝜃 for the system in Eq. (1) given values, units and standard
deviation (Tuveri et al., 2021).

Parameter Description Value Unit Std. Dev.

𝜇𝑚𝑎𝑥 Maximum growth rate 0.19445 [h−1] 3.25 ⋅ 10−6

𝐾𝑆 Monod growth constant 0.007 [g L−1] 3.92 ⋅ 10−6

𝑘𝑑 Death rate constant 0.006 [h−1] 4.49 ⋅ 10−6

𝑌𝑋𝑆 S from X yield 0.42042 [g g−1] 3.58 ⋅ 10−6

𝑌𝑋𝐶𝑂2 CO2 from X yield 0.54308 [g g−1] 2.22 ⋅ 10−6

(CO2), respectively. 𝐹𝑖𝑛 indicates the feeding flow to the reactor, given
a substrate concentration 𝑆𝑖𝑛. In addition, 𝑞𝑎𝑖𝑟 represents a constant gas
inflow. From herein, we define:

• State vector 𝑥 ∈ R𝑛𝑥 and input 𝑢 ∈ R𝑛𝑢 :

𝑥 = [𝑉 , 𝑋, 𝑆, CO2]𝑇 and 𝑢 = [𝐹𝑖𝑛] (2)

• Measured outputs 𝑦 ∈ R𝑛𝑦 :

𝑦 = [𝑉 , 𝑋, CO2]𝑇 (3)

• Parameters 𝜃 ∈ R𝑛𝜃 :

𝜃 = [𝜇𝑚𝑎𝑥, 𝐾𝑠, 𝑘𝑑 , 𝑌𝑋𝑆 , 𝑌𝑋CO2
]𝑇 (4)

This allows us to write the model in Eq. (1) as �̇� = 𝑓 (𝑥, 𝑢, 𝜃). Addition-
ally, by adding the parameters as state variables with zero dynamics
(�̇�𝑖 = 0), the system in Eq. (1) can be written as:

̇ 𝑎 = 𝑓 (𝑥𝑎, 𝑢) (5)

where 𝑥𝑎 ∈ R𝑛𝑥+𝑛𝜃 is defined as 𝑥𝑎 = [𝑥, 𝜃].

3.1.1. Noise structure tuning
Following the works of Leu and Baratti (2000) and Kolås et al.

(2009), the process noise was added to the deterministic plant model
(Eq. (1)) twofold. In the states, in order to address unmodeled dynam-
ics, and in the parameters, to address parameter uncertainty (standard
deviations are reported in Table 1). Indeed, the idea is that the model
uncertainty (Leu and Baratti, 2000; Kolås et al., 2009) arises mostly
from the uncertainty in the model parameters (𝜔𝜇𝑚𝑎𝑥 , 𝜔𝐾𝑆

, 𝜔𝑘𝑑 , 𝜔𝑌𝑋𝑆
,

𝑌𝑋CO2
). Moreover, in our case, to prevent the noise covariance matrix

rom becoming singular when the substrate 𝑆 is depleted, the noise is
dded to the state dynamics (𝜔𝑉 , 𝜔𝑋 , 𝜔𝑆 , 𝜔CO2

). The noise enters the
aterial balances (Eq. (1)) as:

�̇� =𝐹𝑖𝑛 + 𝜔𝑉

�̇� = −
𝐹𝑖𝑛

𝑉
𝑋 + (𝜇𝑚𝑎𝑥 + 𝜔𝜇𝑚𝑎𝑥 )

𝑆
(𝐾𝑠 + 𝜔𝑘𝑆 ) + 𝑆

𝑋 − (𝑘𝑑 + 𝜔𝑘𝑑 )𝑋 + 𝜔𝑋

�̇� =
𝐹𝑖𝑛

𝑉
(𝑆𝑖𝑛 − 𝑆) − (𝜇𝑚𝑎𝑥 + 𝜔𝜇𝑚𝑎𝑥 )

𝑆
(𝐾𝑠 + 𝜔𝑘𝑆 ) + 𝑆

𝑋
(𝑌𝑋𝑆 + 𝜔𝑌𝑋𝑆

)
+ 𝜔𝑆

̇O2 =(𝜇𝑚𝑎𝑥 + 𝜔𝜇𝑚𝑎𝑥 )
𝑆

(𝐾𝑠 + 𝜔𝑘𝑆 ) + 𝑆
𝑋

(𝑌𝑋CO2
+ 𝜔𝑌𝑋CO2

)
− 𝑞𝑎𝑖𝑟CO2 + 𝜔CO2

(6)

given the noise vector 𝜔 ∈ R(𝑛𝑥+𝑛𝜃 ):

𝜔 =
[ 𝜔𝜇𝑚𝑎𝑥 𝜔𝑘𝑠 𝜔𝑘𝑑 𝜔𝑌𝑋𝑆 𝜔𝑌𝑋CO2

𝜔𝑉 𝜔𝑋 𝜔𝑆 𝜔CO2
]𝑇

with 𝜔 ∼  (0, 𝑄𝜔), where the diagonal elements of the covariance
matrix 𝑄𝜔 ∈ R(𝑛𝑥+𝑛𝜃 )×(𝑛𝑥+𝑛𝜃 ) are reported in Table 2. For the batch
phase, the values of 𝑄𝜔 related to the parameters 𝜃 are tuned by
setting them equal to the value of the variance, obtained by parameter
estimation on a single experiment, while the ones related to the states 𝑥
are defined as tuning parameters and therefore selected manually. For
the fed-batch phase, only the values of 𝜎2𝐾𝑆

and 𝜎2𝑌𝑋CO2
are increased to

ompensate for unmodeled dynamics (Tuveri et al., 2021). The model
ith noise (Eq. (6)) can be compactly written as:

̇ = 𝑓 (𝑥, 𝑢, 𝜃, 𝜔) (7)
3

Table 2
Diagonal elements of the covariance matrix 𝑄𝜔. The values are kept constant until the
fed-batch phase, when the values of 𝜎2

𝐾𝑆
and 𝜎2

𝑌𝑋CO2
are increased to compensate for

unmodeled dynamics.
Variance Additive noise Batch Fed-batch Unit

𝜎2
𝜇𝑚𝑎𝑥

In 𝜇𝑚𝑎𝑥 1.05 ⋅ 10−11 – [h−2]

𝜎2
𝐾𝑆

In 𝐾𝑆 1.54 ⋅ 10−11 3.38 ⋅ 10−2 [g2 L−2]

𝜎2
𝑘𝑑

In 𝑘𝑑 2.02 ⋅ 10−11 – [h−2]

𝜎2
𝑌𝑋𝑆

In 𝑌𝑋𝑆 1.28 ⋅ 10−11 – [g2 g−2]

𝜎2
𝑌𝑋
𝐶𝑂2 In 𝑌𝑋𝐶𝑂2 4.91 ⋅ 10−12 4.91 ⋅ 10−2 [g2 g−2]

𝜎2
𝑉 In 𝑉 1 ⋅ 10−1 – [L2 h−2]

𝜎2
𝑋 In 𝑋 1 ⋅ 10−2 – [g2 h−2]

𝜎2
𝑆 In 𝑆 1 ⋅ 10−2 – [g2 h−2]

𝜎2
CO2

In CO2 1 ⋅ 10−1 – [h−2]

The process noise covariance 𝑄𝑘 ∈ R𝑛𝑥×𝑛𝑥 for the system described as
in Eq. (6), is updated at each sampling time 𝑘 as Tuveri et al. (2021):

𝑄𝑘 = 𝐺𝑘 ⋅𝑄𝜔 ⋅ 𝐺𝑘
𝑇 (8)

Eq. (8) therefore allows to have a state-dependant varying covariance
𝑄𝑘, where 𝑄𝜔 is a constant related to the statistics of the parameter un-
certainty. 𝐺𝑘 ∈
R𝑛𝑥×(𝑛𝜃+𝑛𝑥) is the Jacobian of Eq. (7) with respect to the noise 𝜔:

𝐺𝑘 =
𝜕𝑓 (𝑥, 𝑢, 𝜃, 𝜔)

𝜕𝜔
(9)

Additionally, to estimate the parameters 𝜃 together with the states
𝑥, we define them as additional state variables and the augmented state
vector becomes 𝑥𝑎 ∈ R𝑛𝑥+𝑛𝜃 . In accordance with the work of Grossmann
and Sargent (1978), the parameters are considered as bounded vari-
ables, given that probability distribution functions for the parameters
are available. This is done to reflect the drifting characteristics of
the model parameters used to describe the system, as was previously
showed in Bae et al. (2021). Therefore, by approximating the probabil-
ity distribution functions of the parameters to be normal, with mean
value 𝜃0 and variance 𝜎𝜃2 (Table 2), we will treat them as drifting
bounded variables, allowing them to vary within their bounds at each
iteration. The augmented model (Eq. (10)) can therefore be written
as:

�̇� =𝐹𝑖𝑛 + 𝜔𝑉

�̇� = −
𝐹𝑖𝑛

𝑉
𝑋 + (𝜇𝑚𝑎𝑥 + 𝜔𝜇𝑚𝑎𝑥 )

𝑆
(𝐾𝑠 + 𝜔𝑘𝑆 ) + 𝑆

𝑋 − (𝑘𝑑 + 𝜔𝑘𝑑 )𝑋 + 𝜔𝑋

�̇� =
𝐹𝑖𝑛

𝑉
(𝑆𝑖𝑛 − 𝑆) − (𝜇𝑚𝑎𝑥 + 𝜔𝜇𝑚𝑎𝑥 )

𝑆
(𝐾𝑠 + 𝜔𝑘𝑆 ) + 𝑆

𝑋
(𝑌𝑋𝑆 + 𝜔𝑌𝑋𝑆

)
+ 𝜔𝑆

̇CO2 =(𝜇𝑚𝑎𝑥 + 𝜔𝜇𝑚𝑎𝑥 )
𝑆

(𝐾𝑠 + 𝜔𝑘𝑆 ) + 𝑆
𝑋

(𝑌𝑋CO2
+ 𝜔𝑌𝑋CO2

)
− 𝑞𝑎𝑖𝑟CO2 + 𝜔CO2

�̇�𝑚𝑎𝑥 =𝜔𝜇𝑚𝑎𝑥

�̇�𝑠 =𝜔𝐾𝑠

�̇�𝑑 =𝜔𝑘𝑑

�̇�𝑋𝑆 =𝜔𝑌𝑋𝑆

�̇�𝑋CO2
=𝜔𝑌𝑋CO2

(10)

Eq. (10) can be written compactly as �̇�𝑎 = 𝑓 (𝑥𝑎, 𝑢, 𝜔). The state-
dependant covariance matrix for the augmented system �̄�𝑘 ∈
R(𝑛𝑥+𝑛𝜃 )×(𝑛𝑥+𝑛𝜃 ) is updated at each sampling time 𝑘 as:

�̄�𝑘 =
[

𝑄𝑘 0
0 𝑄𝜃

]

(11)

where the state-dependant submatrix 𝑄𝑘 (Eq. (8)) is updated at each
sampling time 𝑘, while 𝑄𝜃 ∈ R𝑛𝜃×𝑛𝜃 is a constant diagonal matrix
with variances 𝜎𝜃2 defined in Table 2. The latter is done to allow the
parameters to vary within the bounds at each iteration 𝑘 and it is a
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necessary assumption since the real dynamics of the parameters are
unknown.

3.1.2. On-line and off-line measurements
The on-line output measurements 𝑦 were available with a frequency

of 10 s and used by the estimator to monitor biomass, volume and
CO2 and to infer the unmeasured glucose composition. Additionally, to
have reference values for evaluating the estimation performance, off-
line samples of 𝑋 and 𝑆 were taken with a lower sample frequency and
not used at any time by the estimator. The samples for biomass 𝑋 were
collected manually approximately every 3 h, whereas for glucose 𝑆 they

ere collected automatically by the NUMERA auto-sampler every hour.
dditional information is available in Tuveri et al. (2021).

.1.3. Signal processing
The on-line output measurements 𝑦 were used by the estimator every

0 s. Signals from the absorbance probe were obtained in concentration
nits (0.05–4 CU) and than converted to 𝑔∕𝐿 of biomass 𝑋 (cell dry

weight, CDW) using a calibration curve as follows:

𝐶𝐷𝑊𝐶𝑈 =

{

22.187 ⋅ 𝐶𝑈 − 5.0991 𝐶𝑈 ≥ 0.9
11.124 ⋅ 𝐶𝑈 + 0.66116 𝐶𝑈 < 0.9

On-line CO2 signals were obtained by measurements of the composition
in the outflow (0%–25%). The volume measurement 𝑉 was calcu-
lated by integration of the on-line flow signals every 10 s. Moreover,
to consider the amount of volume taken for the off-line samples (8
mL/sample), these values were iteratively integrated with the pump
signals. Although available every 10 s, each of the measurements was
only used by the estimator every 60 s. This is done to not increase the
size of the optimization problem.

4. Background theory

This section presents some important concepts utilized to develop
the proposed approaches presented in the following section. We first
introduce the sensitivity matrix (Section 4.1) which is the base for the
regularization methods implemented. Than, briefly discuss the local
observability and identifiability of the system (Section 4.2), for the
further introduction of the stopping criterion used in the regularization
methods.

4.1. Sensitivity matrix

The sensitivity matrix of model outputs is typically defined as the
Jacobian of the outputs (𝑦) with respect to the parameters 𝜃 (Vajda
et al., 1985; Yao et al., 2003; Lund and Foss, 2008; Thompson et al.,
2009; Bae et al., 2021; Chen et al., 2022). However, because in this
work we are interested in the effect of the parameters on the states,
following the work of Bae et al. (2021), we define it as the Jacobian of
the state variables (𝑥) with respect to the parameters (𝜃):

𝑆𝜃,𝑚𝑛 =
𝜕𝑥𝑚
𝜕𝜃𝑛

|

|

|

|�̂�,�̂�
(12)

where:
𝑚 = 1,… , 𝑛𝑥
𝑛 = 1,… , 𝑛𝜃

and �̂� and �̂� are respectively the estimates of states and parameters.
The idea behind using the state variables (𝑥) instead of the output
measurements (𝑦) is to identify the model parameters (𝜃) which have
a significant effect on the state variables (Bae et al., 2021). This allows
us to identify time-varying values for the parameters (𝜃) so that the
estimated state variables (�̂�) can better match the off-line samples
(𝑦∗) and therefore the underlying true process behavior (i.e. obtain
lower RMSE). The sensitivity matrix therefore summarizes locally the
4

influence of the parameters on the state variables. It is important
to carefully scale 𝑆𝜃 since this will directly affect the information
obtained for the parameter estimation method (Vajda et al., 1989; Yao
et al., 2003; Lund and Foss, 2008; Thompson et al., 2009; McLean and
McAuley, 2012; Chis et al., 2016). Therefore, to address the problem
of different orders of magnitudes in the parameters, their logarithm
(𝑙𝑜𝑔(𝜃)) is used to avoid scaling issues due to differences in their orders
f magnitude (Vajda et al., 1989; Chis et al., 2016). Additionally, to
ake into account the characteristics of the data and the available
ariation ranges, we will refer to the same scaling method applied
n Thompson et al. (2009), McLean and McAuley (2012) and Bae et al.
2021), by using the state and parameter variance obtained from the
ovariance matrix. The scaled sensitivity matrix 𝑍 ∈ R𝑛𝑥×𝑛𝜃 is defined

as:

𝑍𝑚,𝑛 =
𝜕𝑥𝑚

𝜕𝑙𝑜𝑔(𝜃𝑛)
𝑙𝑜𝑔(𝜎𝜃𝑛 )
𝜎𝑥𝑚

|

|

|

|

|�̂�,�̂�
(13)

n the following, unless differently stated, we will refer to the sensitivity
s defined in Eq. (13).

.2. Local observability and identifiability

Observability of nonlinear systems based on Lie algebra is a struc-
ural and local property (Hermann and Krener, 1977; Isidori, 1985;
ijmeijer and van der Schaft, 1990; Powel and Morgansen, 2015;
illaverde, 2019). The local observability of the system in Eq. (1) was
lready analyzed and discussed by Tuveri et al. (2021). However, the
ocus there was limited to assess the possibility to infer information
bout the unmeasured variable of interest (𝑆). Here instead, we take
nto account also the process parameters (𝜃) and therefore need to
valuate structural identifiability (Villaverde, 2019). By assuming that
he only input is 𝐹𝑖𝑛 (previously defined in Eq. (2)), being 𝑆𝑖𝑛 and 𝑞𝑎𝑖𝑟

constant over time (Section 2), the system in Eq. (5) can be written
as an input-affine system, with the terms only dependent on the states
(𝑓𝑥) and the ones dependent on the input (𝑓𝑢) such that:

̇ 𝑎 = 𝑓𝑥(𝑥𝑎) + 𝑓𝑢(𝑥𝑎) ⋅ 𝑢 (14)

𝑦 = ℎ(𝑥) (15)

If we now consider that 𝑓𝑢(𝑥𝑎) does not carry any information about the
parameters (see Eq. (1)), we can define the map 𝑂, which represents
the observation space of the system (Eq. (14)), without considering the
term 𝑓𝑢(𝑥𝑎) ⋅ 𝑢, as:

𝑂 = {𝑂1, 𝑂2, 𝑂3} = {𝐿0
𝑓𝑥
ℎ,𝐿1

𝑓𝑥
ℎ,𝐿2

𝑓𝑥
ℎ} (16)

where:

𝐿0
𝑓𝑥
ℎ = ℎ, 𝐿1

𝑓𝑥
ℎ = 𝜕ℎ

𝜕𝑥𝑎
𝑓𝑥 𝐿2

𝑓𝑥
ℎ =

𝜕(𝐿1
𝑓𝑥
ℎ)

𝜕𝑥𝑎
𝑓𝑥

nd obtain the codistribution 𝑑𝑂:

𝑂 = 𝑠𝑝𝑎𝑛{𝑑(𝑂1), 𝑑(𝑂2), 𝑑(𝑂3)} (17)

The dimension of the codistribution 𝑑𝑂 defines if the system is locally
observable (𝑑𝑂 = 𝑛𝑥). Moreover, when considering structural identi-
fiability, if 𝑑𝑂 has the same size as the augmented vector (𝑛𝑥 + 𝑛𝜃),
he system is said to be locally observable with identifiable parame-
ers (Villaverde, 2019). The system in consideration (Eq. (1)) is locally
bservable, since 𝑑𝑂 = 𝑛𝑥 when considering only the states 𝑥, but
ot all the parameters are locally identifiable at every iteration, since
𝑂 < 𝑛𝑥 + 𝑛𝜃 when considering the augmented vector 𝑥𝑎. Therefore

indicating that the available information in the latter is not enough to
estimate all states and parameters together.

5. Proposed approach

Simultaneous estimation of both states and parameters can lead to

an ill-posed optimization problem. To attenuate the ill-posed problem
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Fig. 1. Geometric representation of the constraint implementation. Orthogonalization Method (OM, left) and Subset Selection by Transformation (SST, right). Each plane represents
an individual constrained region. When more than one constraint is selected, the constrained region is represented by their intersection (blue line). In OM (left), constraints are
used for singular parameters (planes) and the degrees of freedom are the unconstrained parameters (blue line). In SST (right), constraints are implemented by linear combinations
of different 𝜃𝑖 and therefore the planes are not required to be normal to an axis, leaving more freedom to the individual parameters. Here, both 𝜃1 and 𝜃3 (right) can vary within
the projection of the constrained region (blue line) along their axes. The values reported here are only for illustration purposes.
Fig. 2. Dimension of the observability space (dO) for the open loop model and Glucose
(S) dynamics. dO is calculated without taking into account the terms related to the input
(𝑢, Eq. (14)). The decrease in dO (𝑑𝑂 = 5) is a consequence of the sugar depletion.

that arises by the addition of the parameters as decision variables,
we consider two different approaches, namely the Orthogonalization
Method (OM) (Section 5.2.1) and the Subset Selection by Transforma-
tion (SST) (Section 5.2.2). Both methods are based on the sensitivity
matrix and reduce the parameter space, but while OM keeps a subset
of parameters constant, SST fixes linear combinations of parameters
(i.e. clusters of parameters). The SST method can be therefore regarded
as a more flexible approach, since it constrains linear combinations and
not single parameters. This enables to vary more parameters simulta-
neously. However, a stopping criterion for the decision on how many
degrees of freedom can be used for the estimation of the parameters is
necessary for both methods (OM and SST). In this work we propose a
stopping criterion based on the structural identifiability (Section 5.1).

This section will first present the stopping criterion proposed (Sec-
tion 5.1), explaining how to practically use identifiability as a decision
making criterion for constraints selection. Secondly, it introduces the
two regularization approaches (i.e. OM and SST) together with the
application of the proposed stopping criterion (Section 5.2). Thirdly,
it shows the implementation of the aforementioned methods in a MHE
formulation (Section 5.3), for the combined estimation of states and
parameters.

5.1. Lie-based constraints selection

The intention of this work is to present a consistent and simple
method to select the constraints for regularizing the optimization prob-
lem (Fig. 1). Although different regularization methods have been
5

presented (McLean and McAuley, 2012), their dependence on a cut-
off or threshold value might hinder their results (Chu et al., 2009; Wu
et al., 2011; Kim and Lee, 2019; Nakama et al., 2020; Chen et al.,
2022). We therefore want to use the information obtained by the
local identifiability (structural property) as a baseline for the decision
method of constraints selection. That is, at any time, we select the
available degrees of freedom given the dimension of the observability
co-distribution 𝑑𝑂 for the augmented system. The open loop test in
Fig. 2 reports the dimension of the observability co-distribution 𝑑𝑂 for
the system in Eq. (1), calculated as in Section 4.2. The system is locally
observable (𝑑𝑂 > 4, Fig. 2), but not all parameters are structurally
identifiable (𝑑𝑂 < 7 under sugar depletion, Fig. 2). However some
information can still be retrieved also when the substrate is depleted.
During the dynamic phases of the process (0–11 h and 20–25 h) the
available information from the data is higher. Both under absence
(𝑑𝑂 = 7) and presence (𝑑𝑂 = 5) of sugar depletion, it is possible to
infer information of some of the parameters without having an ill-posed
problem.

To introduce the method, we start by defining the dimension of
the observability co-distribution 𝑑𝑂. This is equivalent to the max-
imum number of degrees of freedom (i.e. decision variables of the
optimization problem):

DOF𝑚𝑎𝑥 = 𝑑𝑂 (18)

Eq. (18) indicates that 𝑑𝑂, being a local property, gives us information
about the maximum number of states and parameters that can be
estimated, given the available information at each time. The maximum
DOF (𝐷𝑂𝐹𝑚𝑎𝑥) is given by 𝑛𝑥 + 𝑛𝑦, which is 7 for this problem. Four of
these degrees of freedom (DOF𝑥 = 4) are used for the estimation of the
state variables (𝑛𝑥). Following the previous considerations, the degrees
of freedom (DOF𝜃) available for estimating the parameters are given
by:

DOF𝜃 = DOF𝑚𝑎𝑥 − DOF𝑥 (19)

Therefore, the number of constraints (𝑛𝜃𝑠 ) that we need to impose on
the estimation problem to achieve identifiability is:

𝑛𝜃𝑠 = 𝑛𝜃 − DOF𝜃 (20)

That is, whenever DOF𝜃 < 𝑛𝜃 , we will add linear constraints on the pa-
rameters to attenuate the ill-posed estimation problem. However, since
in real microbial cultivations the substrate is not entirely consumed
(𝑆 ≠ 0), some precautions must be taken. For numerical reasons, small
values of 𝑆 (in this work < 10−3 g/L) should be considered 𝑆 = 0 during

the on-line calculation of 𝑑𝑂.
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Fig. 3. Orthogonalization Method implementation block diagram. Initial values are
given and the scaled sensitivity matrix is obtained in (1). Then the scaled parameter
with the biggest norm is added to vector 𝑌𝑙 (2) and the matrix projection is calculated
in (3), given (1) and (2). Consecutively, the residual error is obtained in (4). Finally,
the stopping criteria are verified in (5) and (6). If one of these conditions is satisfied,
the vector of constrained parameters is obtained in (8). More specifically, condition (6)
is set with a threshold of 10−8. If not the method goes to (7) and starts again to add
an extra parameter to be constrained.

5.2. Regularization methods

This section describes the two regularization methods adopted
(i.e. OM and SST) (Sections 5.2.1 and 5.2.2), together with their
geometrical interpretation (Section 5.2.3).

5.2.1. Orthogonalization Method
Among the various Parameter Subset Selection (PSS) methods, the

Orthogonalization Method is the heuristic method most commonly used
due to its simplicity (Yao et al., 2003; Lund and Foss, 2008; Kim
and Lee, 2019; Bae et al., 2021). In the context of MHE, this method
is appealing due to its small computational loads (Bae et al., 2021).
However, an unsuitable selection of the cut-off value for the stopping
criterion, might result in poor estimates. To avoid that, we present
here its implementation (Fig. 3) together with the stopping criterion
previously presented (Section 5.1). For that purpose, we start with the
scaled sensitivity matrix 𝑍 (Eq. (13)):

𝑍 = [𝑧1, 𝑧2,… , 𝑧𝑛𝜃 ] (21)

The elements 𝑧𝑖 of the Eq. (21) represent the column vectors of 𝑍.
Those vectors are sorted in decreasing order, by calculating the Eu-
clidean norm. We take the one with the largest norm 𝑧1, representing
the main direction, and normalize it:

𝑞1 =
𝑧1

‖

‖

‖

𝑧1
‖

‖

‖

(22)

At the first step (𝑙 = 1), 𝑍𝑙 = 𝑍, 𝑌𝑙−1 = ∅ and 𝛩𝑙−1 = ∅. The parameter
𝜃𝑙, corresponding to the column vector 𝑧𝑙, is than appended to the
vector 𝛩𝑙 = [𝛩𝑙−1, 𝜃𝑙]. Similarly, the matrix 𝑌𝑙 is defined by appending
𝑞𝑙. Given 𝑌𝑙, we calculate the matrix projection of 𝑍𝑙 onto it:

�̂�𝑙 = 𝑌𝑙(𝑌 𝑇
𝑙 𝑌𝑙)−1𝑌 𝑇

𝑙 𝑍𝑙 (23)

If we now subtract the projection �̂�𝑙 (Eq. (23)) we obtain the residual
error (Eq. (24)) which is orthogonal to 𝑌𝑙:

𝐸𝑙 = 𝑍𝑙 − �̂�𝑙 (24)

The method stops, differently from Bae et al. (2021), if the following
condition, based on the stopping criterion defined in Section 5.1, is
satisfied:

𝑠𝑖𝑧𝑒(𝛩𝑙) = DOF𝜃 (25)

where DOF𝜃 is obtained as in Eq. (19). If this condition is not satisfied,
we set 𝑍𝑙+1 = 𝐸𝑙 until all the parameters are ranked or until 𝑌 𝑇

𝑙 𝑌𝑙
is nearly singular (Yao et al., 2003; Bae et al., 2021). The reader is
referred to Strang (2016), Yao et al. (2003), Lund and Foss (2008),
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Thompson et al. (2009), McLean and McAuley (2012), Kim and Lee
(2019) and Bae et al. (2021) for more detailed information.

5.2.2. Subset Selection by Transformation
Subset Selection by Transformation (SST, Fig. 4), was firstly in-

troduced by Kim and Lee (2019) and further applied in Kim et al.
(2019) and Chen et al. (2022). As observed in Nakama et al. (2020),
and reported in Chen et al. (2022), Subset Selection by Transformation
(SST) induces the same regularization effect as Principal Component
Regression (PCR). Also known as Truncated Singular Values Decompo-
sition (TSVD) (Kim and Lee, 2019), PCR is an eigenvalue–eigenvector
based analysis that reveals existing dependencies among the parameters
and that can reduce the parameter space by using the eigenvectors of
the reduced Hessian matrix (Nakama et al., 2020). However, while in
PCR the parameters are projected onto the subspace of the eigenvectors
associated with the larger eigenvalues, in SST the parameter space is
restricted by adding constraints in the directions of the eigenvectors
associated with the smaller eigenvalues. Following the works of Kim
and Lee (2019), Kim et al. (2019) and Chen et al. (2022), we linearized
the model in Eq. (1) around 𝜃 = 𝜃0:

𝑥 = 𝑥0 + 𝑆𝜃(𝜃 − 𝜃0)

= 𝑆𝜃𝜃 + 𝑐
(26)

where 𝑥0 and 𝜃0 represent the initial values, 𝑆𝜃 is the sensitivity matrix
(Eq. (12)) and 𝑐 = 𝑥0 − 𝑆𝜃𝜃0 is a constant. By adopting the Hessian
approximation ( ≈ 𝑆𝑇

𝜃 𝑆𝜃), as reported in Vajda et al. (1985), we
can analyze the changes in the state variables 𝑥 with respect to the
parameters 𝜃. Based on the eigenvalue–eigenvector decomposition, the
Hessian approximation  ≈ 𝑆𝑇

𝜃 𝑆𝜃 , can be represented as:

𝑆𝑇
𝜃 𝑆𝜃 = 𝐷𝛴𝐷𝑇 (27)

with 𝐷 ∈ R𝑛𝜃×𝑛𝜃 as the orthogonal eigenvectors matrix. Moreover,
given that 𝐷 is an orthonormal matrix (𝐷𝑇𝐷 = 𝐷𝐷𝑇 = I), we can
rewrite Eq. (26) (Kim and Lee, 2019; Chen et al., 2022):

𝑥 = 𝑆𝜃𝐷𝐷𝑇 𝜃 + 𝑐

= 𝑀𝛼 + 𝑐
(28)

where 𝑀 = 𝑆𝜃𝐷 and 𝛼 = 𝐷𝑇 𝜃. In this way we have obtained a
vector 𝛼 ∈ R𝑛𝜃 of transformed parameters. Note that the eigenvalue–
eigenvector decomposition of the approximated Hessian based on either
𝑆𝜃 or 𝑍 (Eq. (13)), for the calculation of Eq. (28), does not change
the direction of the eigenvectors (𝐷), but just the magnitude of the
eigenvalues (𝛺). Eq. (27) can then be rewritten with respect to Eq. (13)
as:

𝑍𝑇𝑍 = 𝐷𝛺𝐷𝑇 (29)

Consequently, based on the stopping criterion defined in Section 5.1,
the number of active constraints (𝑛𝜃𝑠 ) (Eq. (20)) is defined. The vector
𝛼 (Eq. (28)) can therefore be further divided in two subvectors 𝛼1 and
𝛼2 as:

𝑥 = 𝑀1𝛼1 +𝑀2𝛼2 + 𝑐 (30)

where the magnitude of the eigenvalues sorts them in descending order.
This two subvectors indicate the clusters of parameters corresponding
to the larger eigenvalues (𝛼1 = 𝐷𝑇

1 𝜃) which are estimated, and the
ones corresponding to the smaller eigenvalues (𝛼2 = 𝐷𝑇

2 𝜃) which are
fixed (i.e. constraints). Given this decomposition, it is possible to find
a constraint coefficient matrix 𝐶 ∈ R𝑛𝜃𝑆 ×𝑛𝜃 :

𝐶𝜃 = 𝑟 (31)

where 𝐶 = 𝐷𝑇
2 is a submatrix of 𝐷𝑇 (Eq. (29)) and 𝑟 ∈ R𝑛𝜃𝑆 is a given

constraint right-hand side vector. By defining the constraint right-hand
side vector as 𝑟 = 𝐶𝜃0, Eq. (31) becomes:
𝐶𝜃 − 𝐶𝜃0 = 0 (32)
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Fig. 4. Subset Selection by Transformation block diagram. This method requires the
calculation of the right eigenvector matrix through singular values decomposition (SVD)
in (2), given the scaled sensitivity matrix in (1). Then the submatrix of the right
eigenvectors corresponding to the smallest eigenvalues is selected according to the
𝐷𝑂𝐹𝜃 at the 𝑘𝑡ℎ iteration (3) and set equal to the constraint coefficient matrix 𝐶 (4).
The constraints are selected in (5) and the right hand side defined based on the initial
parameters 𝜃0.

Eq. (32) will therefore constrain, at each iteration 𝑘, the newly esti-
mated parameters based on the nominal conditions (𝜃0), which rep-
resent the local optimal solution (Table 1) previously obtained as
discussed in Tuveri et al. (2021). Our contribution to the method, in
addition to what previously presented in Kim and Lee (2019), consists
in its geometric interpretation. Indeed, while the work of Kim and
Lee (2019) looks at the problem through the transformation of the
parameters (i.e. 𝜃 = 𝐷𝛼, by rotating the axis through directions of
the principal components) and constrains the unselected transformed
parameters to their nominal values (i.e. 𝛼2 = 𝛼2,0), in our work we
look at it from the constraints point of view (Nakama et al., 2020).
Therefore showing that Eq. (32), which mathematically is equivalent
to the method of Kim and Lee (2019), geometrically implies fixing the
constraints in the directions of the smaller eigenvalues (Fig. 1) while
maintaining the direction of the axes of the original parameters 𝜃. This
has the advantage of enhancing the interpretability of SST, which, as
previously stated in Kim and Lee (2019), can complement OM and PCR.
Indeed, our interpretation shows that: (1) by maintaining the same axes
(Fig. 1), SST can be directly compared with the state of the art OM (Yao
et al., 2003; Lund and Foss, 2008), as will also be further explained in
Section 5.2.3; (2) by looking at the problem from the constraints point
of view, SST has the same regularization effect as PCR.

5.2.3. Interpretation of regularization methods
Given the two regularization methods, OM (Section 5.2.1) and

SST (Section 5.2.2), we want to show how the implementation of
constraints differs. This concept is geometrically represented (for three
dimensions) in Fig. 1, and mathematically translates, for OM, to:
[

1 0 0
0 1 0

]

⎡

⎢

⎢

⎣

𝜃1
𝜃2
𝜃3

⎤

⎥

⎥

⎦

=
[

𝑟1
𝑟2

]

(33)

and, for SST, to:
[

𝐶11 𝐶12 𝐶13
𝐶21 𝐶22 𝐶23

]

⎡

⎢

⎢

⎣

𝜃1
𝜃2
𝜃3

⎤

⎥

⎥

⎦

=
[

𝑟1
𝑟2

]

(34)

where Eqs. (33) and (34) are equivalent to Eq. (31). Indeed, while in
OM we constrain single parameters 𝜃 at every iteration (Eq. (33)), in
SST we constrain clusters of them (Eq. (34)). The main reasoning for
using SST is to allow the change of the parameters along the directions
with higher certainty, while restricting them along the less sensitive
directions. These directions represent a linear combination (i.e. cluster)
of parameters with a fixed relationship that can provide a more flexible
approach than constraining single parameters (Fig. 1).

5.3. Moving Horizon Estimator

Consider the system dynamics, described by a set of ordinary dif-
ferential equations (ODEs), which is given by the system in Eq. (1)
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augmented by considering the parameters as additional states (Eq. (5))
together with the measurement function ℎ(𝑥) = 𝐻𝑥 (Eq. (35b)). The
implementation of one of the regularization methods previously pre-
sented OM (Section 5.2.1) and SST (Section 5.2.2) consists in adding
a set of algebraic equations (𝑔(𝜃) = 0) to enforce equality constraints
on the parameters (Eq. (35c)). We than obtain a system of differential
algebraic equations (DAEs):

�̇�𝑎 = 𝑓 (𝑥𝑎, 𝑢) +𝑤 (35a)

𝑦 = ℎ(𝑥) (35b)

0 = 𝑔(𝜃) (35c)

where 𝑥 ∈ R𝑛𝑥 is the state vector, 𝑦 ∈ R𝑛𝑦 the output vector, 𝑢 ∈
R𝑛𝑢 the input vector, 𝜃 ∈ R𝑛𝜃 the parameters vector, 𝑥𝑎 ∈ R(𝑛𝑥+𝑛𝜃 )

the augmented vector and 𝑤 ∈ R(𝑛𝑥+𝑛𝜃 ) is the process noise random
variable. Here 𝑤 is different from 𝜔 ∈ R(𝑛𝑥+𝑛𝜃 ) which is solely a tuning
parameter for �̄�𝑘, indeed while 𝜔 ∼  (0, 𝑄𝜔), 𝑤 ∼  (0, �̄�𝑘). The
discretization of Eq. (35), given the sampling time 𝑡𝑘, yields to:

𝑥𝑎,𝑘+1 = 𝐹 (𝑥𝑎,𝑘, 𝑢𝑘) +𝑤𝑘 (36a)

𝑦𝑘 = ℎ(𝑥𝑘) (36b)

0 = 𝑔(𝜃𝑘) (36c)

𝐹 ∶ R(𝑛𝑥+𝑛𝜃 ) × R𝑛𝑢 → R(𝑛𝑥+𝑛𝜃 ) is obtained by discretization of 𝑓 . The
solution to the MHE problem (Kühl et al., 2011; Andersson et al., 2016)
consists of finding parameters, states and their noise within a finite-
time horizon 𝑇 = 𝑡𝑁 − 𝑡𝐿. Where 𝑡𝐿 and 𝑡𝑁 are respectively the initial
and final times of the horizon. This is done by solving the following
constrained least-squares optimization problem every 60 s (i.e. when
new measurements are available), along the horizon 𝑇 (30 min):

min
𝑥𝑖 ,𝜃𝑖 ,𝑤𝑖

‖

‖

‖

‖

‖

�̂�𝐿 − 𝑥𝐿
�̂�𝐿 − 𝜃𝐿

‖

‖

‖

‖

‖

2

𝑃𝐿

+
𝑁
∑

𝑖=𝐿
‖𝑦𝑖 − ℎ(𝑥𝑖)‖

2
𝑉 +

𝑁−1
∑

𝑖=𝐿
‖𝑤𝑖‖

2
𝑊𝑘

s.t. 𝑥𝑎,𝑖+1 = 𝐹 (𝑥𝑎,𝑖, 𝑢𝑖) +𝑤𝑖 𝑖 = 𝐿,… , 𝑁 − 1 (37a)

𝑔(𝜃𝑖) = 0 𝑖 = 𝐿,… , 𝑁 (37b)

𝑥𝑖 ≥ 𝑥𝑚𝑖𝑛 𝑖 = 𝐿,… , 𝑁 (37c)

𝜃𝑚𝑖𝑛 ≤ 𝜃𝑖 ≤ 𝜃𝑚𝑎𝑥 𝑖 = 𝐿,… , 𝑁 (37d)

The aim is to obtain states (𝑥𝑖), parameters (𝜃𝑖) and process noise
(𝑤𝑖) using the available information from the model (Eq. (1)) and the
outputs (1 min sampling rate). The constraints in Eq. (37) are defined
as:

• equality constraints on the state variables based on the process
dynamics (Eq. (37a)) and on the process parameters, based on
the regularization method selected in Eq. (37b) (Sections 5.2.1
and 5.2.2);

• inequality constraints based on physical limitations of the process
variables (𝑥𝑚𝑖𝑛 = [0, 0, 0, 0], Eq. (37c)) and the parameters uncer-
tainty (given the parameter bounds 𝜃𝑚𝑖𝑛 and 𝜃𝑚𝑎𝑥, Eq. (37d)). The
latter allows to maintain the newly estimated parameters close to
the nominal values, given that, under presence of structural plant-
model mismatch, parameter adaptation might not necessarily lead
to an improved model (Marchetti et al., 2008).

The cost function (Eq. (37)) is given by the summation of three Eu-
clidean norms. The first term is the arrival cost which summarizes past
information (its calculation is reported in S1). The second is the output
noise cost, and the third is the process noise cost. The three terms are
weighted by Kühl et al. (2011):

𝑃𝐿 = 𝑃−1∕2, 𝑉 = 𝑅−1∕2, 𝑊𝑘 = �̄�−1∕2
𝑘 (38)

where the notation for the squared norm is ‖𝑏‖2𝐵 = 𝑏𝑇𝐵𝑇𝐵𝑏 (Kühl
et al., 2011). 𝑃 ∈ R(𝑛𝑥+𝑛𝜃 )×(𝑛𝑥+𝑛𝜃 ), 𝑅 ∈ R𝑛𝑦×𝑛𝑦 and �̄� ∈ R(𝑛𝑥+𝑛𝜃 )×(𝑛𝑥+𝑛𝜃 )
𝑘
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are respectively error, measurement noise and process noise (for the
augmented system) covariance matrices. The terms �̂�𝐿 and �̂�𝐿 (Eq. (37))
epresent, instead, the optimal estimates of 𝑥𝐿 and 𝜃𝐿.

The optimal solution of the nonlinear programming (NLP) was ob-
ained using IPOPT (Wächter and Biegler, 2006) embedded in CasADi
Andersson et al., 2019), where the continuous time model was dis-
retized by a three point Legendre collocation on finite elements.

. Results

In the present section we first describe the implementation and the
uning parameters (Section 6.1). Then we present the results obtained.
irstly, to show how the presence of structural plant-model mismatch
nd the absence of full state feedback can hinder the estimation re-
ults, we present the possibility to use additional constraints on the
arameters to find a trade-off between state and parameter estimates
Section 6.2). This is shown by using the Subset Selection by Trans-
ormation (SST) method, since one of the novelties of the work is
o present SST as a more flexible regularization method in a MHE
ormulation. Consecutively, to show the advantages of SST, we compare
he results obtained by its implementation to the ones obtained by the
se of OM. To evaluate the accuracy of the estimates of biomass 𝑋
nd glucose 𝑆, and compare the results obtained through the different
ethods, we calculate the root mean squared error (RMSE) with respect

o the reference off-line measurements, which were not used at any
ime by the estimator. In addition, to avoid that the zero values for
he glucose could average out the RMSE, we calculate it separately for
oth batch (0–8 h) and fed-batch phase (20–30 h), without taking the
ero values into account.

.1. Implementation

The sampling rate was set to 1 min together with an estimation
orizon T = 30 min. For the starting phase of the MHE problem,
hen the estimation window is smaller than the number of available
easurements (i.e. 𝑘 < 𝑇 ), the initial state vector was used (Kühl et al.,
011). The parameters 𝜃, to be estimated along with the states, were
ppended to the augmented state vector 𝑥𝑎 at each sampling interval.
he MHE was initialized given the real values for the states and the
ominal parameters (𝜃0) reported in Table 1 as initial conditions:

𝑎,0 = [ 1.5 1.2 20 0 0.19445 0.007 0.006 0.42042 0.54308 ]𝑇

The initial error covariance matrix was selected as:

𝑃0
+ =

[

𝑃𝑥,0+ 0
0 𝑃𝜃,0+

]

with 𝑃𝑥,0
+ obtained, according to Schneider and Georgakis (2013), as

𝑃0 = 𝑑𝑖𝑎𝑔((�̂�0 − 𝑥0)𝑇 (�̂�0 − 𝑥0)):

𝑃𝑥,0
+ =

[

2.09⋅10−8 0 0 0
0 1.10⋅10−5 0 0
0 0 1.09⋅10−4 0
0 0 0 2.17⋅10−5

]

nd

𝜃,0
+ =

⎡

⎢

⎢

⎢

⎣

1.05⋅10−11 0 0 0 0
0 1.54⋅10−11 0 0 0
0 0 2.02⋅10−11 0 0
0 0 0 1.28⋅10−11 0
0 0 0 0 4.95⋅10−12

⎤

⎥

⎥

⎥

⎦

he measurement noise covariance matrix 𝑅:

=
[

10−2 0 0
0 10−1 0
0 0 10−3

]

nd the process noise covariance matrix for the augmented system
̄ 𝑘 was tuned as in Section 3.1.1 (Eq. (11)), maintaining 𝑄𝜔 and 𝑄𝜃
nchanged throughout the different case studies. Moreover, for the
8

rrival cost calculation (Sec. S1), to take into account the variation
Table 3
Lower (𝜃𝑚𝑖𝑛) and upper (𝜃𝑚𝑎𝑥) parameter bounds.

Case 𝜃𝑚𝑖𝑛∕𝜃𝑚𝑎𝑥 𝜇𝑚𝑎𝑥 𝐾𝑠 𝑘𝑑 𝑌𝑋𝑆 𝑌𝑋𝐶𝑂2

Case 1 𝜃𝑚𝑖𝑛 0.15 5 ⋅ 10−3 1 ⋅ 10−5 0.3846 0.10
𝜃𝑚𝑎𝑥 0.30 8 ⋅ 10−3 7 ⋅ 10−3 0.4562 2

Case 2 𝜃𝑚𝑖𝑛 0.1941 6.6 ⋅ 10−3 5.6 ⋅ 10−3 0.4201 0.5429
𝜃𝑚𝑎𝑥 0.1948 7.4 ⋅ 10−3 6.4 ⋅ 10−3 0.4208 0.5433

Case 3 𝜃𝑚𝑖𝑛 0.10 5 ⋅ 10−3 1 ⋅ 10−5 0.3846 0.10
𝜃𝑚𝑎𝑥 0.40 3 ⋅ 10−2 9 ⋅ 10−3 0.4562 2

between the past information and the new horizon T, a weighting
matrix �̄�𝐿 ∈ R(𝑛𝑥+𝑛𝜃 )×(𝑛𝑥+𝑛𝜃 ) (Sec. S1) is defined as follows:

�̄�𝐿 =
[

𝑊𝐿 0
0 I

]

where 𝑊𝐿 ∈ R𝑛𝑥×𝑛𝑥 is defined as 𝑊𝑘 = 𝑄−1∕2
𝑘 for 𝑘 = 𝐿 and I𝑛𝜃×𝑛𝜃 is

the identity matrix. I was selected as the identity matrix so that, being
always smaller than 𝑊𝑘, changes with respect to the past information
in the states are penalized more than the ones in the parameters.

6.2. Trade-off between state and parameter estimates

To present the possibility to find a trade-off between model update
and estimation accuracy, we present how the implementation of addi-
tional bounds on the parameters (i.e. inequality constraints, Eq. (37d)),
differently leaves the possibility to adapt the model. In this extent, we
present in this section the estimated states and the effects of the bounds
on the parameters (i.e. inequality constraints) using three different
cases. The aim is to show how the bounds selected can influence the
performance of model prediction and estimation accuracy. Table 3
reports the bounds for the three presented cases.

6.2.1. Bounds selection
In Case 1 the bounds on the parameters were selected to demon-

strate the possibility to find a trade-off between model update and
estimation accuracy (Table 3). This was achieved by carefully relaxing
the standard deviations 𝜎𝜃𝑖 reported in Table 1, therefore defining
bounds on the parameters that leave them enough possibility to vary
and adapt the model. Moreover, the bounds for 𝑌𝑋𝑆 were kept narrower
than for the other parameters because of its only dependence on the
glucose (𝑆).

Following the idea that an improvement in the model prediction
can compromise the accuracy of the estimates, in Case 2 we selected
tighter bounds on the parameters (Table 3). The main idea is to allow
the parameters to only vary within their uncertainty range as also
reported in Kim et al. (2019), therefore reducing the penalization on
the accuracy of the estimates. These bounds were also selected based on
the standard deviations 𝜎𝜃𝑖 reported in Table 1. However, considering
that the standard deviation for the parameters was obtained by a
single experiment, the values were relaxed by increasing the order of
magnitude of the variance either by two times what reported in Table 1
(i.e. 𝜃0 ±102 ⋅𝜎𝜃𝑖 ). This was done to take only batch-to-batch variations
into account.

To show the influence and necessity of bounds to further regular-
ize the optimization problem, in Case 3 we selected higher variation
margins for the parameters. Indeed, the bounds were defined to leave
more freedom to the parameters to adapt, however, considering their
necessity to avoid the deterioration of the glucose estimates. The only
parameter maintained with tight bounds was 𝑌𝑋𝑆 , due to its only de-
pendence on 𝑆. Moreover, the reader is here warned that lower values
were selected as non zero because of the presence of the logarithm in
the calculation of the sensitivities (Eq. (13)).
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Fig. 5. Subset Selection by Transformation, Case 1 - Biomass (a), glucose (b) and CO2 (c) compositions and their confidence intervals (95% 𝜎). An improvement in the updated
model is visible in (a) during the batch phase (0–20 h) and during the fed-batch phase (over 20 h). The updated model captures the sugar and the CO2 dynamics correctly until
the end of the fed-batch phase (after 25 h). Off-line samples are only reported as reference, but not used by the estimator.
Fig. 6. Subset Selection by Transformation, Case 2 - Biomass (a), glucose (b) and CO2 (c) compositions and their confidence intervals (95% 𝜎). While improvement in the updated
model is moderate, RMSE values show a good performance for the glucose estimate, with a value of 0.93 (b). Off-line samples are only reported as reference, but not used by the
estimator.
Fig. 7. Subset Selection by Transformation, Case 3 - Biomass (a), glucose (b) and CO2 (c) compositions and confidence intervals (95% 𝜎). These results show the dependence
of the methods on the bounds, to avoid deterioration of both state and parameter estimates. In (b) it is visible how the performance of the SST method is less influenced (in
comparison to OM) by the choice of the bounds. Off-line samples are only reported as reference, but not used by the estimator.
6.2.2. Estimation results using constrained regularization

By solving the optimization problem, defined in Eq. (37), the esti-
mates are:

• the estimated states (�̂�) presented in Figs. 5–7;
9

• the estimated parameters (�̂�, reported in S2), considered as addi-
tional states and estimated along with the states.

In addition, the results presented in Figs. 5–7 report:

• the on-line data (𝑦) for 𝑋 (𝑦𝑋) and CO2 (𝑦CO2
) which are the on-line

measurements used by the estimator;
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Table 4
RMSE values calculated for both the nominal model and the estimated states with
respect to the reference off-line values of biomass (X) and glucose (S) based on the
results presented in Tuveri et al. (2022). RMSE for glucose is also calculated for the
single phases (batch and fed-batch) without taking the zero values into account. The
values of the parameters for the nominal model are reported in Table 1.

RMSE Biomass Glucose

tot. tot. Batch Fed-batch

Estimate 1.23 1.01 0.78 1.71
Nom. Model 1.83 2.11 3.68 2.05

• off-line samples (𝑦∗) for 𝑋 (𝑦𝑋∗) and 𝑆 (𝑦𝑆∗) which are only
reported as reference values to validate the accuracy of the esti-
mates and used to calculate the root mean squared error (RMSE),
but not used at any time by the estimator;

• confidence intervals for the estimates (95% 𝜎), obtained from the
diagonal elements of the error covariance matrix 𝑃 .

his results are obtained by the implementation of the MHE with SST
s regularization method. To evaluate their accuracy, the RMSE (Fig. 8)
s calculated with respect to the off-line measurements (𝑦∗) of biomass

(𝑦𝑋∗) and substrate 𝑆 (𝑦𝑆∗), reported by blue dots in Fig. 5a and b,
s follows:

𝑀𝑆𝐸𝑦∗ =

√

√

√

√

√

1
𝑛𝑦∗

𝑛𝑦∗
∑

𝑗=1
(𝑦∗ − �̂�)2 (39)

Additionally, to show the limitation of the model on describing the
ynamic behavior of the state variables (𝑥), due to the plant-model
ismatch (particularly visible during the fed-batch phase), we report

n Figs. 5–7 the model simulations for:

• the nominal model (i.e. open loop model), simulated by using the
nominal parameters (𝜃0), reported in Table 1;

• the updated model, simulated a posteriori, using the estimated
parameters (�̂�), reported in S2.

Firstly, to give the reader a reference of the accuracy on the esti-
ates obtained by simultaneously estimating states and parameters, we
resent the RMSE obtained by solely estimating the states, as previously
resented in Tuveri et al. (2022) (Table 4).

Relatively accurate and comparable estimates were found for the
iomass, with RMSE of 1.15 (Case 1, Fig. 5a), 1.21 (Case 2, Fig. 6a)
nd 1.11 (Case 3, Fig. 7a), presenting respectively 5%, 3% and 10%
mprovement with respect to solely estimating the states (Table 4). The
stimates of glucose present instead a bigger difference, resulting in a
MSE of 1.09 for Case 1, 0.94 for Case 2 and 1.53 for Case 3. This

therefore results in the sole improvement of Case 2, which improves
the estimate of the glucose by 7% with respect to solely estimating
the states (Table 4), while Case 1 and Case 3 penalize it by 8% and
10

o

51% respectively. Moreover, the RMSE of the transient phases only
(duration in which sugar values are not zero) shows that the error
varies between 1.50 and 1.52 for Case 1, 0.76 to 1.58 for Case 2 and
1.76 to 2.36 for Case 3 (Fig. 8). Therefore, while Case 2 shows an
overall higher accuracy on the glucose estimates, Case 1 presents a
more balanced error between batch and fed-batch phase and Case 3
presents the highest RMSE.

Effect on the unmeasured states. The results show that Case 2,
by presenting tighter bounds, yields to more accurate estimate for the
glucose (Fig. 6b). Due to the fact that both states and parameters are es-
timated in absence of direct glucose measurements, it is reasonable that
the estimates will be a compromise between improved model prediction
capabilities and accurate estimates. Indeed, parameters related to the
glucose dynamics (i.e. 𝜇𝑚𝑎𝑥, 𝐾𝑠 and 𝑌𝑋𝑆 , Eq. (1)) are dependant on the
available information on the glucose. More specifically, 𝑌𝑋𝑆 , which is
nly dependent on the glucose, is the most affected. Therefore, tighter
ounds on these parameters lead to more accurate glucose estimates.
Trade-off between variance and bias. When comparing the results

btained in the three different cases, it is possible to see that the unmea-
ured state (i.e. glucose, 𝑆) presents an higher bias in Case 1 and Case 3
Figs. 5b and 7b) with respect to Case 2 (Fig. 6b). However, as mostly
isible for the CO2, Case 2 presents higher variance in the estimates
Fig. 6c) with respect to the other two. Therefore, this interestingly
hows how the combined estimation of state and parameters presents
he necessity to find a trade-off between reducing variance and bias.
Effect of structural model mismatch. The updated model, calcu-

ated with the newly estimated parameters, yields to good predictions
n Case 1 (𝑅𝑀𝑆𝐸𝑋 = 1.26 and 𝑅𝑀𝑆𝐸𝑆 = 1.33) and Case 3 (𝑅𝑀𝑆𝐸𝑋 =
.35 and 𝑅𝑀𝑆𝐸𝑆 = 1.38), especially for the batch phase, presenting
espectively an RMSE of 0.92 (Fig. 5b) and 1.18 (Fig. 7b) for the
lucose. Differently, Case 2, having tighter parameters bounds, does not
resents such improvement in the predictions as the other two cases
𝑅𝑀𝑆𝐸𝑋 = 1.84 and 𝑅𝑀𝑆𝐸𝑆 = 2.11, Fig. 6). Instead it presents a
light penalization of the model prediction of less than 1% (Table 4).
owever, the improvement is limited in all the cases, due to the lack
f knowledge on the process dynamics (i.e. structural plant-model
ismatch, 25–30 h Figs. 5–7). It is sensible to understand that the

mprovement can not overpass the limitations of the model in use. In
act, the RMSE for the updated model, shows an increase of almost
0% between batch and fed-batch phases (Fig. 8), due to the higher
tructural plant-model mismatch in the latter. The updated parameters
alues are reported in Sec. S2.

.3. Subset Selection by Transformation as an alternative to the Orthogo-
alization Method

To show the advantages of implementing SST in an MHE formula-
ion, we compare the results previously presented (Section 6.2.2) to the

nes obtained by the implementation of OM (Figs. 9–11).
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Fig. 9. Orthogonalization Method, Case 1 - Biomass (a), glucose (b) and CO2 (c) compositions, and their confidence intervals (95% 𝜎). An improvement in the updated model is
visible in (a) in the batch (0–20 h) while less pronounced in the feeding phase (25–30 h). Similarly, the parameter adaptation could not yield to a glucose model (b) better than
the nominal during the feeding phase. In contrast, the updated model for the CO2 (c) could compensate better for the first 25 h. Off-line samples are only reported as reference,
but not used by the estimator.
Fig. 10. Orthogonalization Method, Case 2 - Biomass (a), glucose (b) and CO2 (c) compositions and their confidence intervals (95% 𝜎). While the improvement in the updated
model is moderate, RMSE values show a good performance for the glucose estimate, with a value of 0.96 (b). Off-line samples are only reported as reference, but not used by the
estimator.
Fig. 11. Orthogonalization Method, Case 3 - Biomass (a), glucose (b) and CO2 (c) compositions and their confidence intervals (95% 𝜎). These results show the dependence of the
methods on bounds to avoid deterioration of both states and parameter estimates. This is mostly noticeable in (b). Off-line samples are only reported as reference, but not used
by the estimator.
Case 1. The estimates for biomass obtained by SST and OM are
comparable, with RMSE of 1.15 for SST (Fig. 8) and 1.16 for OM
(Fig. 12). The estimates of glucose present instead a difference, with a
18% increase in RMSE for OM (1.29) with respect to SST (RMSE 1.09).
Moreover, the difference increases when looking only at the transient
11
phases (1.66–1.96 for OM and 1.50–1.52 for SST). Additionally, also
the updated model presents a 30% improvement in the predictions by
SST (RMSE 0.92) with respect to OM (RMSE 1.26).

Case 2. The RMSE values (Figs. 8 and 12) show similar results,
especially for the glucose estimates (RMSE 0.94 for SST and 0.91 for
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Fig. 12. Orthogonalization Method - RMSE values calculated for both the updated model and the estimated states with respect to the reference off-line values of biomass (X) and
glucose (S). RMSE for glucose is also calculated for the single phases (batch and fed-batch) without taking the zero values into account.
OM). These results show that, when adopting tighter bounds on the
parameters, the performance of the two methods is similar. However, it
is important to note that while OM presents a slightly better improved
RMSE for the glucose estimate (0.91) while presenting an RMSE for
the biomass estimates of 1.22, the SST presents a more pronounced
improvement in both of them (0.94 and 1.21) with respect to the case
when only estimating the states (Table 4).

Case 3. The results obtained in this case (Fig. 11) show that OM
is more influenced than SST (Fig. 7) by the selection of the bounds.
Indeed, the RMSE calculated for the glucose estimates and the updated
model in the batch phase are respectively 15 and 20% higher for OM
(Fig. 12).

These results show us how both methods necessitate bounds to
limit the possibility of deteriorating both state and parameter estimates.
However, they also show that SST, by yielding lower RMSE values
under looser bounds, presents less dependence on the bounds selection.

7. Discussion

In this work we present the use of two different methods, namely
Orthogonalization Method (OM) and Subset Selection by Transforma-
tion (SST), for combined state and parameter estimation in a MHE
framework, where the estimates were obtained based on the knowledge
of the on-line measurements of volume (V), biomass (X) and carbon
dioxide (CO2).

One of the main contributions of this work is to apply MHE as a
state estimator, to an experimental data-set, to estimate, in addition to
the states, the model parameters. This is done to account for model
uncertainty in the experimental data-set. However, as visible when
comparing the RMSE values (Fig. 8), the more uncertain the model
parameters are (i.e. model uncertainty), the larger is the estimation
bias of the unmeasured states. This is consistent with what is stated
in Dochain (2003). Moreover, when including all the parameters, an ill-
posed problem arises. To alleviate that, we implemented and compared
two regularization methods (i.e. OM and SST). Therefore taking practi-
cal identifiability into consideration (McLean and McAuley, 2012; Chis
et al., 2016; Kim and Lee, 2019). The advantage of this implementation
is to enable the selection of different subsets of parameters during the
process, to avoid overfitting when adapting them. Another novelty of
this work, therefore consists in the implementation of the SST method
in an MHE and its comparison to the performance with a state of the
art method as the OM. Additionally, an important aspect of this work
is also the introduction of a stopping criterion based on the structural
identifiability of the system (Villaverde, 2019). This bypasses the need
to define an heuristic threshold value for the selection of the number
of active constraints, therefore leading to a more consistent model
adaptation. Moreover, the choice of this stopping criterion allows both
methods to have a comparable way to select the available degrees of
freedom. Additional stopping criteria are available in literature, like
12

the definition of a threshold as in Nakama et al. (2020) and Bae et al.
(2021), or the minimization of the Mean Squared Error (MSE) proposed
by Chu et al. (2009), Wu et al. (2011) and applied in Kim and Lee
(2019) and Chen et al. (2022). Indeed, the comparison between the
two regularization methods, when the stopping criteria is a threshold,
would be purely based on trial and error tuning of this threshold, and
will not necessarily tell us about how effective the two regularizations
are. We did not compare the proposed criteria with the minimiza-
tion of the MSE because, due to the absence of full-state feedback
(i.e. measurements of the substrate S is missing) and therefore the lack
of information on all the state variables, an on-line selection of the
degrees of freedom would not be possible.

Our work presents the possibility to estimate glucose by on-line
measurements of other states (i.e. volume, biomass and CO2), whereas
the estimation of the internal states (i.e. parameters) was not the main
focus, the parameters were estimated in order to adapt the model
uncertainty. Indeed, the idea is that parameters should adapt in order
to consider batch-to-batch variation, aiming to obtain more accurate
state estimates (i.e. lower RMSE with respect to the off-line samples
𝑦∗). Consistent with Bae et al. (2021), simultaneous estimation of states
and parameters improves the estimates of the variables of interest.

The results obtained for Case 1 in Figs. 5 and 9 indicate that
the SST method yields improved accuracy over the OM method, for
both glucose estimate and model prediction capabilities. This improved
accuracy (see Section 6.3) is a consequence of the different parameter
estimation strategies. Indeed, in all the cases OM allows to vary a maxi-
mum of three parameters per iteration (see Sec. S2). In contrast, in SST
all the parameters can potentially vary, within the clusters. Therefore,
enabling higher flexibility for model adaptation. This is in agreement
with what is reported in Kim and Lee (2019), Nakama et al. (2020)
and Chen et al. (2022), stating that transformation of the constraints
provides more flexibility to the regularization. Additionally, the results
of Case 2 indicate that tighter bounds on the model parameters yield
better accuracy of the glucose estimates, both for SST (RMSE 0.94) and
OM (RMSE 0.91), reducing the effect of the bias. Therefore presenting
a good compromise for the glucose estimates (Figs. 6b and 10b). Lastly,
Case 3 supports these results, since by relaxing the bounds the estimates
exhibited deterioration in both states and parameters. Therefore show-
ing that both methods necessitate additional bounds (i.e. inequality
constraints). This necessity emerges mainly for two reasons: (1) The
discontinuities in the derivatives, due to sudden changes in the process
dynamics (e.g. 8, 20 and 23 h, Fig. 7), which cause the parameters to
hit the bounds, and (2) The absence of knowledge about the dynamics
of the process (i.e. structural plant-model mismatch), which causes
limitations on the model improvement. However, the results presented
in Case 3 show that SST (Fig. 8), by maintaining a fixed relationship
between the parameters, presents less dependence on the bounds in
comparison to OM (Fig. 12), where the bounds are the only limitation
on the parameters. Since, as also reported in Kim et al. (2019), the
choice of the bounds reflects the level of uncertainty in the parameters,

their selection can be based on prior knowledge or historical data
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(i.e. 𝜃0 ± 𝛼 ⋅ 𝜎𝜃) depending on the level of conservativeness desired
i.e. Case 2) or by certain physical considerations (i.e. Case 1 and Case
).

At this point, it is possible to discuss the differences between OM
nd SST. In fact, the different selection of constraints on the parameters
ill change the search region of the optimization problem (i.e. dif-

erently regularize the problem, Fig. 1). For instance, SST will use a
ifferent orthonormal base for the constraint selection, in comparison
o the OM, based on the eigenvectors of the approximated Hessian,
reating clusters that maintain the same relation between the param-
ters as in the nominal case (𝜃0). Conversely, OM will yield solutions
hat maintain singular parameters at nominal values (𝜃0). Therefore,
hile SST allows more parameters to vary (i.e. clusters) but with fixed

elationships among them, OM allows fewer parameters to vary freely
Fig. 1), and is therefore a less flexible approach. In other words, while
M reduces the number of decision variables, SST reduces their search

egion.
The optimization problem finds local optimal estimates (of states 𝑥

nd parameters 𝜃) given the available information (i.e. model, mea-
urements and constraints). This strongly depends on the available
easurements and the regularization method selected, and therefore

n the given constraints that intrinsically carry information (Psicho-
ios and Ungar, 1992). Indeed, due to the absence of multi-rate full
tate feedback, also the unmeasured states are affected, potentially
resenting a large bias in the estimates (Dochain, 2003). Under this
cenario, the available information over a finite horizon is limited. As a
onsequence, the model is likely to overfit the data, therefore resulting
n poor model predictions (Bae et al., 2021). Additionally, as reported
n Bonné and Jørgensen (2001), the use of regularization results in
iased estimates, becoming a trade-off between reducing variance and
ias. As shown in the results, Case 1 and Case 3 present an higher bias
Figs. 5b and 7b) but a lower variance (Figs. 5c and 7c) compared to
ase 2 (Fig. 6b and c). It is therefore important to consider that, given
he total absence of information on the sugar measurements, limita-
ions on the parameter estimation, and consequently on the prediction
apability of the model will arise. In fact, as visible in the comparison
f the three cases presented (Section 6.2.2), a high variation in the
arameters related to the sugar consumption (i.e. 𝜇𝑚𝑎𝑥, 𝐾𝑆 and 𝑌𝑋𝑆 ),
lthough could improve model prediction, would decrease the accuracy
f the sugar estimates. Because these estimates are dependent on the
uning of the weights in the optimization (i.e. MHE), it is reasonable
o assume that one possible solution is an iterative correction of the
eight 𝑄𝑘 for the model error cost (Dochain, 2003), to account for

mprovement in the model prediction. This, which is also in agreement
ith the work of Kim et al. (2019), where the authors state that, to
void biased estimates when unanticipated model mismatch occurs,
ignificant a priori knowledge about the structural model mismatch is
ecessary, will be further investigated in future works.

Finally, it is important mentioning that the results obtained by SST
re satisfactory, given the simplicity of the model and its limitations.
or instance, either the estimates or the model predictions can be
mproved, without the guarantee of an accurate tracking of the drifting
odel parameters (Bae et al., 2021). It can therefore be considered that

he improvements in the estimates are due to the reduction of the effect
f the uncertainty caused by plant-model mismatch and unmodeled
isturbances (Kim et al., 2019), rather than the accurate estimation of
odel parameters (Bae et al., 2021). Thus, the parameters can only

mprove the model accuracy but they can not compensate for the lack
f knowledge about its dynamics. In fact, it is clear from Figs. 5a, 6a
nd 7a that the model is unable to properly describe the transition
etween growth phase and steady state for the biomass, especially after
eeding. This applies also for the transient phase of the glucose (25-
0 h, Figs. 5b, 6b and 7b). Indeed, despite the complexity of biological
rocesses (Becker and Wittmann, 2012), bioprocesses are usually repre-
13

ented by oversimplified, unstructured Monod models. However, they
re based on very simplistic representations of the cellular metabolism,
y involving lumped parameters for the description of the intracellular
henomena (Jabarivelisdeh et al., 2020). To further illustrate that, we
efer the reader to Section S3, which shows the difference between
atch and fed-batch phases by the same model.

A possible solution to overcome this limitation is the use of hybrid
grey-box) models (Zendehboudi et al., 2018; Narayanan et al., 2019;
oiroux et al., 2019; Bradford et al., 2021). Some pioeneering works
n the use of hybrid models to compensate for the lack of knowledge
n the process dynamics can be found in process system engineering
pplications (Johansen and Foss, 1992), and more specifically for fed-
atch bioreactors in Psichogios and Ungar (1992). As stated in Boiroux
t al. (2019), hybrid models attempt to combine the advantages of first
rinciple (i.e. white-box) and black-box (Narayanan et al., 2019) or
aussian Process models (Bradford et al., 2021), by using the synergy
etween them (Narayanan et al., 2019). Indeed, in the case of absence
f complete knowledge of the cell metabolism (i.e. lack of knowledge
n the dynamics of the process), the hybrid model can correctly follow
he physics of the process and therefore exhibit improved interpolation
nd extrapolation capabilities (Narayanan et al., 2019). These results
herefore provide the opportunity to exploit the advantages of SST in
he case of implementation of hybrid models.

. Conclusions

This work presents the simultaneous estimation of states and pa-
ameters by an MHE in a microbial experimental fed-batch process. We
ere presented the comparison of two different regularization methods
mplemented in an MHE, for the selection of the additional decision
ariables (i.e. parameters or clusters). In addition, we proposed a
topping criterion based on structural identifiability to avoid the se-
ection of cut-off values for the constraints selection. The results also
resent how, under presence of high model-mismatch, the necessity of
dditional inequality constraints (i.e. bounds on the parameters) is nec-
ssary when not full state feedback is available. Although under certain
imitations, the results present accurate estimates and the possibility to
dapt the model on-line.
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