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A B S T R A C T

A novel method is proposed for extracting the mixed-mode cohesive laws of composite materials undergoing
delamination with large-scale fibre bridging. In the approach, the mixed-mode cohesive laws are derived from a
potential function expressed in cylindrical coordinates with the magnitude and phase angle between the normal
and tangential end-openings. The potential function is mapped using experimental R-curves in terms of the
J-integral and the end-openings. The mixed-mode cohesive laws describe both the crack tip (high tractions,
small separations) and bridging region (small tractions, high separations). The extracted mixed-mode cohesive
tractions are fully coupled, i.e., both the normal and shear traction depend on the normal and tangential
openings. The peak normal and shear tractions were found to be at a mixed mode opening.
1. Introduction

For most composite structures such as wind turbine rotor blades,
delamination has been identified as one of the most concerning dam-
age mechanisms due to its effect on both the overall stiffness and
load-carrying capacity of the structure [1]. Currently, there are many
cohesive zone models (CZM) that can simulate mixed-mode delamina-
tion both under monotonic [2–7], and cyclic loading [8–13]. However,
virtually all of these models rely on idealised (simplified), uncou-
pled (or coupled in a predefined manner e.g. bi-linear [2,3,6,13],
trapezoidal [6], and exponential [14,15]) cohesive laws. The shape of
idealised cohesive laws is typically defined a priori instead of being
derived or measured. The use of idealised cohesive laws is based on
the assumption that the shape of the cohesive law is not critical as long
as the fracture energy is correct. While this holds true for small-scale
fracture (i.e. when the fracture process zone is contained in the K-
dominated region) [16], it is not correct under large-scale fracture [17].
As such, having a predefined shape of the cohesive laws presents
limitations for analyses of large-scale fracture process zone problems.
The correct shape of the cohesive law is needed to compute the crack
growth stability (transition from stable to unstable crack growth) of
a composite structure [18]. In general, the shape of the cohesive law
conveys much information about the fracture behaviour of a material
as pointed out by Sørensen and Kirkegaard [19].

The predictive ability and accuracy of cohesive zone models (CZM)
largely depend on the accurate determination of the cohesive param-
eters defining the traction–separation law [20]. It follows that the
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experimental determination of cohesive laws is crucial to the accuracy
of CZM. Historically, the fracture mechanics characterisation of mate-
rials has mainly been built around linear elastic fracture mechanics
(LEFM), i.e. measuring the critical value of the energy release rate
associated with onset at crack growth [21–26], not to measure cohesive
laws. However, now with cohesive laws as the relevant material laws
to determine, it is preferable to use test specimens for which a J-
integral equation exists, since the path-independence property of the
J-integral provides a connection between the cohesive law and the
applied load [27]. A prominent class of specimens are double cantilever
beams (DCB) loaded with bending moments [28]. For these specimens,
J-integral equations are independent of the size of the FPZ and details
of the cohesive laws. Furthermore, these specimens ensure stable crack
growth such that the entire fracture resistance, from the onset of
crack growth to steady-state (fully developed bridging zone) can be
measured. Assuming that the cohesive laws are derived from a potential
function, mixed-mode cohesive laws can be obtained by partial differ-
entiation, since the J-integral value equals the potential function [19].
In an earlier study, the potential function was expressed in terms
of a sum of products of Chebyshev polynomials, and mixed-mode
bridging laws were determined for a laminate undergoing large-scale
fibre bridging [29]. A drawback of the approach is that the cohesive
tractions would ‘‘wobble’’ in areas where there are no experimental
data. Therefore, this approach requires large series of mixed-mode
experiments to cover the entire region of end-openings [19,29].
vailable online 26 November 2022
359-835X/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.compositesa.2022.107346
Received 26 September 2022; Received in revised form 16 November 2022; Accept
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ed 24 November 2022

https://www.elsevier.com/locate/compositesa
http://www.elsevier.com/locate/compositesa
mailto:riea@dtu.dk
https://doi.org/10.1016/j.compositesa.2022.107346
https://doi.org/10.1016/j.compositesa.2022.107346
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compositesa.2022.107346&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Composites Part A 165 (2023) 107346R. Erives et al.
Fig. 1. Schematic of a crack under mixed-mode loading and exhibiting large-scale bridging (a) Definition of normal, tangential, and combined end-openings [30], (b) Cylindrical
coordinate system used for the end-openings.
The present study aims to develop a systematic procedure to char-
acterise the mixed-mode delamination of UD composites exhibiting
large-scale bridging in terms of their mixed-mode cohesive laws. This
is done by defining a potential function that depends on parameters
extracted from experimental R-curves (using the J-integral). This func-
tion closely matches the experimentally measured mixed-mode fracture
resistance and is used to determine the mixed-mode cohesive laws of a
UD composite undergoing large-scale bridging. The proposed procedure
is divided into four parts, namely the experimental determination of
the R-curves, the extraction of fracture parameters for each mixed-
mode, the determination of a potential function that covers the fracture
resistance of all mixed-modes, and the derivation of the cohesive
tractions.

2. Theory: Cylindrical mixed-mode cohesive law

The theoretical framework of the proposed method is described
in detail elsewhere [30]. However, the most important concepts are
presented here for the sake of completeness.

It is assumed that the mixed-mode cohesive laws of a material can
be derived from a potential function [14,31,32], 𝛷, (to be determined)
so that

𝜎𝑛 =
𝜕𝛷
𝜕𝛿𝑛

, and 𝜎𝑡 =
𝜕𝛷
𝜕𝛿𝑡

, (1)

where 𝜎𝑛 and 𝜎𝑡 are the normal and the shear traction respectively, and
𝛿𝑛 and 𝛿𝑡 are the normal and tangential openings. Then, the J-integral
evaluated locally around the cohesive zone gives [19]

𝐽 (𝛿∗𝑛 , 𝛿
∗
𝑡 ) = 𝛷(𝛿∗𝑛 , 𝛿

∗
𝑡 ). (2)

Here, an asterisk as superscript indicates a quantity at the end of the
fracture process zone so that 𝛿∗𝑛 is the normal end-opening and 𝛿∗𝑡 is the
tangential end-opening (See Fig. 1). Thus, by measuring 𝐽 , 𝛿∗𝑛 , and 𝛿∗𝑡
during a series of mixed mode experiments, the potential function 𝛷
can be determined experimentally [29]. In the present approach, both
the fracture resistance and the cohesive tractions are defined in terms
of the magnitude of the end-openings, 𝛿∗, and the phase angle between
the normal and tangential end-openings, 𝜑∗. These two are depicted in
Figs. 1(a) and 1(b) respectively, and defined as [14]

𝛿∗ =
√

𝛿∗𝑛
2 + 𝛿∗𝑡

2, and 𝜑∗ = 𝑡𝑎𝑛−1
( 𝛿∗𝑡
𝛿∗𝑛

)

. (3)

The potential function proposed to fit the fracture resistance (now
written in a cylindrical form), 𝛷(𝛿, 𝜑), is defined in a piece-wise manner
using two differentiable functions,

Φ(𝛿, 𝜑) =

⎧

⎪

⎨

⎪

⎩

Φ𝐶𝑇 (𝛿, 𝜑) 𝑓𝑜𝑟 0 < 𝛿 ≤ 𝛿0
Φ𝐵(𝛿, 𝜑) 𝑓𝑜𝑟 𝛿0 < 𝛿 < 𝛿𝑠𝑠
Φ𝐵(𝛿𝑠𝑠, 𝜑) 𝑓𝑜𝑟 𝛿𝑠𝑠 ≤ 𝛿,

(4)

where the subscripts 𝐶𝑇 , and 𝐵 refer to the crack-tip and bridging
region, respectively. The subscripts 0, and 𝑠𝑠 represent the onset (ini-
tiation) and steady-state fracture respectively. Given 𝛷 in cylindrical
2

coordinates, then using the chain rule for differentiation, the cohesive
tractions can be expressed as [19]:

𝜎𝑛 (𝛿, 𝜑) = cos (𝜑) 𝜕𝛷
𝜕𝛿

−
sin(𝜑)
𝛿

𝜕𝛷
𝜕𝜑

, (5)

𝜎𝑡 (𝛿, 𝜑) = sin (𝜑) 𝜕𝛷
𝜕𝛿

+
cos(𝜑)
𝛿

𝜕𝛷
𝜕𝜑

. (6)

The potential function corresponding to the crack-tip (0 < 𝛿 ≤ 𝛿0)
is [30]

𝛷𝐶𝑇 (𝛿, 𝜑) = 𝐶3𝛿
3 + 𝐶2𝛿

2 + 𝐶1𝛿 + 𝐶0, (7)

where the terms 𝐶0, 𝐶1, 𝐶2, 𝐶3 are functions of the phase angle 𝜑 only.
A 3rd degree polynomial was chosen since it describes well the fracture
resistance at the crack-tip for all tested phase angles. Similar shapes of
the crack-tip fracture resistance (fitting well a 3rd degree polynomial)
can be found in other studies [33].

The potential function corresponding to the bridging fracture pro-
cess zone (𝛿0 < 𝛿 ≤ 𝛿𝑠𝑠) is [30]:

𝛷𝐵 (𝛿, 𝜑) = Φ0 + 𝛥𝛷𝑠𝑠

(

𝛿 − 𝛿0
𝛿𝑠𝑠

)𝜁
, (8)

where 𝛷0, 𝛥𝛷𝑠𝑠, 𝛿0, 𝛿𝑠𝑠, and 𝜁 are all functions of 𝜑 only. The meaning
of these parameters is explained in Section 3.4. The partial derivatives
of the potential function needed to obtain the mixed-mode cohesive
laws (Eq. (5) and (6)) can be found elsewhere [30].

3. Methods

3.1. Materials and DCB specimens

The laminate used for manufacturing the DCB specimens consisted
of 20 unidirectional (UD) stitched layers. The backing in all the layers is
facing downwards, which means that the laminate is near-symmetric,
but it has an asymmetric interface at the midplane. The glass fabrics
used were E-1182 Saertex, and the matrix material was a Hexion RIMR
035c epoxy. A Teflon release foil with a thickness of 35 ± 15 μm
was placed in the middle interface (see Fig. 2) to introduce an initial
crack of an initial length of 𝑎0 = 70 mm. The laminate was processed
by vacuum infusion and was consolidated with a cure cycle of 12 h
at 40 ◦C plus 10 h at 80 ◦C. The overall fibre volume fraction of
the laminate was approximately 58% [34]. The elastic properties of
the laminate are given in Table 1 where 𝐸1 and 𝐸2 are the Young’s
moduli in the 𝑥1 (the fibre direction) and 𝑥2 directions respectively,
and 𝜈12 and 𝜈21 are the major and minor Poisson’s ratio, and 𝐺12,
and 𝐺13 are the shear moduli. The DCB specimens were cut from
the laminate parallel to the fibre direction, and the specimens were
randomised before labelling/grouping in order to minimise effects from
local manufacturing variations. The dimension of the DCB specimens
are as follows: Length, 𝐿 = 500 mm, width, 𝐵 = 30 mm, and height,
2𝐻 = 16.9 mm. Metallic end-blocks were glued to the specimen to
facilitate the load introduction, and a pair of metallic pins were inserted
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Fig. 2. DCB specimen dimensions.

Table 1
Elastic properties of the UD glass/epoxy laminate [34].
Transversely isotropy is assumed.
𝐸1 46.3 GPa
𝐸3 = 𝐸2 12.9 GPa
𝜈13 = 𝜈12 0.26 –
𝜈21 = 𝜈31 0.07 –
𝐺12 = 𝐺13 4.3 GPa

near the initial pre-crack to mount an extensometer and two linear
variable differential transformer (LVDT’s) to measure the end-opening
displacements. A schematic of the DCB specimen is shown in Fig. 2. Fi-
nally, the specimens were also marked using a hand-drawn randomised
speckled pattern for digital image correlation measurements.

3.2. Test configuration

The DCB specimen loaded with uneven bending moments (DCB-
UBM) can produce stable crack growth for any combination of normal
and tangential openings. Furthermore, for such a configuration, the J-
integral equation is independent of the crack length and of the details
of the cohesive laws. A detailed description of the DCB-UBM test
configuration can be found elsewhere [28]; yet, a brief description of
the experimental procedure is provided here for the sake of complete-
ness. In the test setup, the DCB specimens are fixed at the uncracked
end (opposite side of the initial crack) and loaded at the two beams
with uneven bending moments transmitted via the metallic end blocks
attached to them. The moments are established by a wired system under
tension as shown in Fig. 3(a). The tension load in the wire, 𝑃 , is the
same for both moment arms, however, by using different lever arms,
𝓁1, and 𝓁2 different bending moments 𝑀1, and 𝑀2 are applied on each
of the beams at the end of the DCB specimen. This setup allows for any
combination of fixed moment ratios (𝑀1∕𝑀2) i.e., any mixed-mode.

During the test, data was collected by two acquisition systems and
two cameras. One of the acquisition systems recorded acoustic emission
(AE) data from two sensors, while the other recorded displacements
from the extensometer (𝛥𝐸) and the LDVTs (𝛥𝐿1 and 𝛥𝐿2 ), elapsed time,
𝑡, and loads, 𝑃1, 𝑃2, from two separate 2 kN load cells. The two cameras
recorded video of the tested specimen; one with a zoom-in on the initial
crack and the other with a full view of the specimen. The extensometer
(Instron 2620–601, range ±5 mm) measured the linear displacement
between the pins, while the LDVTs (RDP GT 5000, range ±5 mm)
provided the displacements 𝛥𝐿1 , and 𝛥𝐿2 . Two AE sensors were mounted
on the specimens with a fixed distance of 110 mm between them. The
data acquisition frequency was 20 Hz. Fig. 3(b) shows a specimen with
all the measurement equipment.

The moments are applied by displacing a lower beam (at a constant
displacement rate of 10 mm∕min) that is connected to the wiring system
as shown in Fig. 3(a). The lever arms are fixed with an initial offset
negative angle 𝜃0 of 10◦ (after a rotation of 10◦ the lever arm will
be in a neutral horizontal position) in order to counteract the effect
of varying moments due to large beam deflections. This variation is
3

Table 2
List of the different tested mixed-mode and mode-mixities.

Group 𝑀1∕𝑀2 𝜓b 𝜑∗a

[-] [Deg.] [Deg.]

1 −1.00 0.0 0.6 ± 1.2
2 −0.66 10.1 3.6 ± 0.5
3 −0.41 19.9 5.6 ± 0.7
4 0.00 40.9 9.1 ± 1.3
5 0.12 47.8 10.2 ± 0.12
6 0.50 68.9 24.2 ± 1.9
7 0.81 83.1 52.6 ± 2.9
8 0.87 85.4 69.45 ± 2.9
9 0.87 85.4 51.7 ± 14.4
10 0.96 88.7 45.5 ± 9.5
11 0.99 89.7 65.7 ± 3.08

aThe values are the average of the 4 tests carried at the same nominal phase angle 𝜓 .
bAnalytical solution for an orthotropic DCB-UBM specimen [35].

presented elsewhere [28]. By staying within the range of ±10◦ the
maximum error on the measurement of the fracture resistance will
be smaller than 6% (see [28]). It was observed that for 𝑀1∕𝑀2 ≈ 1
the beams were deflecting beyond the prescribed limit before reaching
steady-state. Therefore, in some tests, the sample was inclined (further
rotated) about 10◦–14◦ at the start of the test in order to get the beams
within the ±10◦ limits at the load level where cracking occurred. The
test was stopped when the steady-state fracture was reached, which was
assumed once the ‘‘real-time’’ value of the applied force remained at a
near-constant value.

3.3. Data analysis

The full experimental campaign consisted of 44 tested specimens
in total. These tests were divided into 11 different groups with 4
specimens per group. Each group was tested at different moment ratios
to cover the entire range of mixed-modes (from pure normal opening,
𝑀1∕𝑀2 = −1, to near pure tangential opening, 𝑀1∕𝑀2 = 0.99). A list
of the tested groups is given below in Table 2. The tested specimens are
grouped by the applied moment ratio 𝑀1∕𝑀2, with the corresponding
nominal phase angle (the LEFM phase angle formed by the stress
intensity factors 𝐾𝐼 and 𝐾𝐼𝐼 ) 𝜓 [35], as well as the average measured
end-opening phase angle 𝜑∗ for each group.

The analytic solution for the J-integral evaluated along the external
boundaries of a DCB-UBM specimen for plane strain is [29]

𝐽 =
21(𝑀2

1 +𝑀2

2 ) − 6𝑀1𝑀2

4𝐵2𝐻3𝐸∗
1

(9)

where 𝑀1 and 𝑀2 are the external bending moments (𝑀1 = 𝑃𝓁1,
𝑀1 = 𝑃𝓁2), and 𝐸∗ is the Young’s modulus for plane strain1 ,2 (𝐸∗

1 =
𝐸1∕(1 − 𝜈12𝜈21)).

3.4. Extraction of fracture and fitting parameters

The overall process of measuring the parameters needed to de-
termine the mixed-mode cohesive laws of a material based on the
proposed method is shown schematically as a series of steps in Fig. 4.

Steps 1 and 3 in Fig. 4 are conceptually straightforward. The exper-
imental R-curves, i.e. Step 1, are obtained by the fracture mechanics
tests described above, and the calculation of the fracture resistance,
𝐽𝑅(𝛿∗, 𝜑∗), (from Eq. (9), and Appendix A of [29]). For Step 3, once the

1 Since the beams are under bending moment, the flexural modulus might
be more appropriate than the elastic modulus

2 Plane strain was chosen because, during crack initiation, the crack tip
stress field is seen as being a wide specimen. However, it can be argued that
the beams of the specimen are slender and thus plane stress would be more
appropriate. The difference between these two is small.
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Fig. 3. DCB-UBM test set-up and measurement equipment (a) schematic (b) picture of mounted specimen.
Fig. 4. Overview of the proposed method for extracting mixed-mode cohesive laws from experimental R-curves. The subscript 𝑖 refers to the measured value of test number 𝑖.
potential function 𝛷 has been determined, then the cohesive tractions
are obtained using Eqs. (5) and (6). The determination of the param-
eters for the potential function involves several steps as described in
Fig. 4. First, the parameters to determine the potential function need
4

to be extracted individually for each data set (i.e. for a fixed 𝜑∗ for
each test). This process is divided into two sub-steps (Sub-step 2–1 and
Sub-step 2–2). Once the fracture parameters have been determined for
each data set, then all data sets are connected to map the potential



Composites Part A 165 (2023) 107346R. Erives et al.

t
o
e
l
i
A
a
m
a
c

f
R
c
S
I
d
r
t
w
t
A

Fig. 5. (a) Cumulative of AE events as a function of time elapsed for determination of crack initiation 𝑡0 and (b) comparison between 𝑡0 from AE (cumulative events) and
end-opening displacements from DIC measurements.
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function in the 𝜑∗−direction using fitting functions computed for each
parameter. This is, again, broken down in 3 Sub-steps (Sub-step 2–4
to Sub-step 2–6). A detailed description of each sub-step is provided
below.

3.4.1. Extraction of parameters for an individual data set
Sub-step 2–1 involves the determination of the average phase angle

of the end-openings 𝜑∗. This is done using a linear fit of 𝛿∗𝑛 and 𝛿∗𝑡 .
The slope from the linear fit is used in combination with Eq. (2) to
calculate the average phase angle, 𝜑∗

𝑖 , for each experiment (subscript
𝑖 indicates the experimental number). Fig. 6(a) shows an example of
Sub-step 2–1. In Sub-step 2–2, several fracture parameters that describe
𝛷(𝛿∗, 𝜑∗ = 𝜑𝑖) are extracted from the R-curves (listed in Fig. 4). First,
the initiation of the crack, and the steady-state crack growth should be
identified. In principle crack initiation can be identified visually using
high magnification cameras, however, in practice, it can be difficult to
identify the onset of crack growth due to the very small openings at the
crack-tip; furthermore, cracking can start in the middle of the specimen
(𝑥3 = 0), and a curved crack front starts developing (not uniformly
along the width of the specimen) so that the initial crack growth may
not be visible from the surface that is being recorded (𝑥3 = 𝐻∕2).
For this reason, in the present study, AE measurements were used to
determine the time of crack initiation, 𝑡0, which is then correlated to
he load (and hence to 𝐽0, and 𝛿0) at that time. More precisely, the time
f crack initiation, 𝑡0, is determined from the cumulative sum of AE
vents, which shows a characteristic ‘‘knee’’ that depicts a shift from a
ow to a higher activity. This time is then taken as an indication of crack
nitiation. The approach is shown in Fig. 5(a), where the cumulative of
E events are plotted for 3 different experiments with different phase
ngle values. To corroborate these results, cumulative events from AE
easurements were overlapped with DIC measurement of end openings

s shown in Fig. 5(b). Both measurements provide a similar time of
rack initiation.

Steady-state crack growth is attained when the bridging zone is
ully-developed. The transition to a steady state is defined from the
-curves as the instance when the fracture resistance attains either a
onstant value or when it starts oscillating around a constant value.
teady-state corresponds to the coordinate (𝛿𝑠𝑠, 𝐽𝑠𝑠) in the R-curves.
n practice, however, a criterion needs to be defined to systematically
etermine the end-opening corresponding to the steady-state fracture
esistance. In the present work, the maximum value of 𝐽𝑅 (within
he valid range of the lever-arms angle as mentioned in Section 3.2)
as taken as steady-state, so that steady-state value 𝐽𝑠𝑠 corresponds

o the maximum value of 𝐽𝑅 and its corresponding end-opening, (𝛿𝑠𝑠).
n example of the identification of crack initiation and steady-state is
5

llustrated in Fig. 6(b). Then, the shape parameter, 𝜁 , is obtained by
itting the experimental R-curve (black curve) to Eq. (8).

To complete Sub-step 2–2, the parameters 𝛿00 and 𝐽00 (which are
xplained in detail in [30]) need to be identified in order to determine
he values of 𝐶0 − 𝐶3 (explained below). The parameters 𝛿00 and 𝐽00
orrespond to the inflexion point of 𝛷𝐶𝑇 = (0 < 𝛿 < 𝛿0, 𝜑𝑖), which can
e obtained by means of ordinary derivatives of 𝛷𝐶𝑇 = 𝐽𝐶𝑇 [30].

.4.2. Parameter fitting of all data sets together
Having determined 𝛿00 and 𝐽00 for all sets individually, Sub-step 2–3

onsist of connecting all parameters (i.e. 𝐽0, 𝐽𝑠𝑠, 𝐽00, 𝛿0, 𝛿𝑠𝑠, 𝛿00, and 𝜁)
ata sets (different 𝜑∗’s) together using polynomial fitting. Next, in Sub-
tep 2–4, the functions 𝐶0(𝜑∗)−𝐶3(𝜑∗) are determined. These functions
re obtained using the polynomial fits of 𝛿0, 𝐽0, 𝛿00, and 𝐽00, which
re continuous functions dependent on 𝜑∗. This means that a unique
et of coefficients 𝐶0(𝜑∗) − 𝐶3(𝜑∗) can be found at any given 𝜑∗ [30].
inally, in Sub-step 2–5 the complete potential function is obtained by
dding the potential function of the crack-tip and the bridging potential
unction to ensure continuity of 𝛷 between 𝛷𝐶𝑇 and 𝛷𝐵 .

. Results

.1. Overview of results

The normal and tangential end openings for representative exper-
ments are plotted in Fig. 7(a). From Fig. 7(a), it can be seen that
he end-openings are indeed increasing nearly proportional to each
ther giving a fairly constant value of 𝜑∗ from the crack initiation
o the steady-state (fully developed bridging zone). R-curves of the
ame representative experiments are shown in Fig. 7(b). Overall, the
-integral value increases rapidly to 𝐽0 for very small end-openings
alues, which corresponds to crack initiation. Then, beyond 𝐽0, 𝐽𝑅
ncreases more slowly until reaching 𝐽𝑠𝑠 for much larger values of
nd-openings. Some of the experiments with high phase angle values
id not reach steady-state; the end-points of the linear fits of these
xperiments are indicated by an open symbol and an arrow in Fig. 7.
previous study had encountered similar issues reaching steady-state

or experiments with high phase angle values [29]. Plausible reasons
or this are further discussed in Section 5. From Fig. 7(b), it can be
een that for a fixed 𝛿∗ value, the fracture resistance varies significantly
s a function of the phase angle 𝜑∗. For small 𝜑∗ values, the R-curves
how a strongly non-linear behaviour, rising quickly and then flattening
ut reaching a steady state. For large 𝜑∗ values, after rising quickly
he fracture resistance increases almost linearly until reaching a steady
tate value.
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Fig. 6. Example for (a) Sub-step 2-2: determination of phase angle from a linear fit of 𝛿∗𝑛 and 𝛿∗𝑡 measurements and (b) Sub-step 2-3: Determination of fracture parameters using
the experimental R-curve. The red circle indicates crack initiation, while the blue circle indicates steady-state. The red curve indicates the crack-tip region, while the blue indicates
the bridging zone.
Fig. 7. Plots of representative (a) end-openings at different mixed-mode loading and (b) R-curves at different phase angles. The experimental data are shown in solid black, while
the fitted data are in blue curves for each experiment. The red circles indicate crack initiation, while the full-blue circles indicate the onset of steady-state. The open circles with
an arrow indicate that steady-state was not reached. The dashed lines in (a) indicate the range covered in the present experimental campaign.
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4.2. Interpolation of fracture and fitting parameters

The measurements of the fracture parameters (listed in Sub-step 2–
4) and the corresponding fitting functions are presented in Figs. 8 to 11.
In these figures, the grey area enclosed by the black dashed curves
represents the 95% confidence intervals. All parameters, but the shape
function, are fitted using polynomial fits (either least-squares or Gaus-
sian process models [36]). The degree of the polynomial fits was chosen
based on two criteria; (i) best fit in terms of the 𝑅2 value, and (ii) that
the interpolation does not produce any results that are not physically
sound, e.g. negative values of fracture resistance.

In Fig. 8, the parameters 𝛿00 and 𝐽00 are shown. Because of the small
openings at the crack-tip, fitting of 𝛿00 can lead to negative openings at
some values of 𝜑. To avoid such nonphysical values, the logarithm of
𝛿00 was used in the fitting instead of the 𝛿00 value. This also provided
igher 𝑅2 values. Fig. 8(b), shows the corresponding fracture resistance
alues and the polynomial fit. The same approach of the logarithm was
sed for 𝛿0 in Fig. 9(a). For 𝐽0, the polynomial fit was carried out using
aussian process models [36]. The fracture parameters at steady-state
re shown in Fig. 10(a) for the fully-developed end-openings and in
ig. 10(b) for the fracture resistance. The error bars shown in the plot
or 𝐽0 and 𝐽𝑠𝑠 are calculated to account for geometrical variations of the
idth and height of the specimen and to account for the small change
6

f the effective lever-arm(s) as these rotate following the beams of
he DCB specimen. Note that only valid experiments are shown, which
eans that those experiments that did not reach steady-state are not

ncluded, hence the different number of experiments in Figs. 8–9, and
ig. 10.

The experimental values of the shape parameter 𝜁 , and its fitting
function are shown in Fig. 11(a). An S-shaped function was used to fit
𝜁 instead of a polynomial function (see Appendix B). The coefficients
𝐶0 − 𝐶3 normalised by the corresponding maximum value are shown
n Fig. 11(b). The coefficients describe the variation of the fracture
esistance in the crack-tip region.

The vast majority of the experimental data points lay within the
5% confidence interval. Furthermore, the 𝑅2 values of the fits range
rom 0.48 to 0.97. In general, there is a considerably larger scatter in
he steady-state parameters. This is further addressed in Section 5. Note
hat the largest attained phase angle was 𝜑∗ = 73◦, as such, any value

result beyond this value is the result of extrapolation. The same applies
to the computed potential function, and the cohesive laws derived from
it.

4.3. Mixed-mode fracture resistance

A surface plot of the potential function 𝛷(𝛿𝑛, 𝛿𝑡) is shown for the
crack-tip and the bridging zones in Fig. 12. Representative R-curves (as
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Fig. 8. Interpolation of the fracture parameters (a) 𝛿00(𝜑∗) and (b) 𝐽00(𝜑∗).
Fig. 9. Interpolation of fracture parameters related to crack initiation (subscript 0) (a) 𝛿0(𝜑∗) and (b) 𝐽0(𝜑∗).
Fig. 10. Interpolation of fracture parameters related to steady-state crack growth (subscript 𝑠𝑠) (a) 𝛿𝑠𝑠(𝜑∗) and (b) 𝐽𝑠𝑠(𝜑∗).
a function of the normal and tangential end-openings) are shown in the
same plots for comparison.

It can be observed that, overall, there is a very good agreement be-
tween the potential function and the measured R-curves. The difference
between 𝛷 and the 𝐽𝑅 curves varies slightly with different phase angles;
however, overall there is a small difference for all tested coupons.
7

4.4. Mixed-mode cohesive tractions

The 3D mixed-mode cohesive tractions 𝜎𝑛 and 𝜎𝑡 are shown as a
function of 𝛿𝑛 and 𝛿𝑡 in Fig. 13, and Fig. 14. In Fig. 13 the axes are
chosen so that the shape of the cohesive tractions at the crack-tip can
be appreciated. The plots of the crack-tip of the normal traction in
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Fig. 11. Interpolation of (a) shape parameter 𝜁 for 𝛷𝐵 and (b) the coefficients of 𝛷𝐶𝑇 .
Fig. 12. Comparison between 𝛷 (surface) and 𝐽𝑅 (curves) showing (a) the crack-tip region (red), and (b) the bridging region (blue). The upper and lower plots show the same
data, however, with a different view. The regions with a lighter colour (red/blue) represent the range of the potential function which comes from extrapolation. The dashed curves
are the values of 𝛷 evaluated at 𝛿0 (for red) and 𝛿𝑠𝑠 (for blue) as well as their projection onto the 𝛿𝑛 − 𝛿𝑡 plane.
Fig. 13(a), show a peak traction value �̂�𝑛 of about 61 MPa at very small
end-openings (about 5μm) rapidly decreasing as 𝛿∗ increases. The crack-
tip area of the shear traction in Fig. 13(a) shows a more rounded shape
with a peak shear traction value �̂�𝑡 of about 41 MPa at relatively large
values of 𝛿𝑡 (up to 70 μm). The normal and shear tractions show not
only different peak values but very different shapes. Clearly, both 𝜎𝑛
and 𝜎𝑡 depend on both 𝛿𝑛 and 𝛿𝑡, i.e. the derived mixed-mode cohesive
laws are coupled. It can be noted in Figs. 14 and 13(a) that for small
tangential dominated openings (0 < 𝛿 < 10 μm and 𝛿𝑛 ≈ 0) 𝜎𝑛 shows
negative values (down to ≈ −5 MPa). Likewise, 𝜎𝑡 takes a negative
value ( −12 MPa) for small openings. The cohesive tractions are plotted
in Fig. 14 for the full opening range with a truncation in the traction
8

axis to observe the shape (and extent) of the cohesive tractions in the
bridging region. In the bridging region (𝛿0 < 𝛿 < 𝛿𝑠𝑠), both the normal
and tangential bridging tractions are dependent on the phase angle with
a small value at 𝜑 = 0◦, and a larger value at 𝜑 = 90◦.

For a more descriptive and easier interpretation, the obtained co-
hesive tractions are plotted in Fig. 15 for selected phase angle values.
The thin dashed black curve in Figs. 15(a) and 15(a) shows the dis-
continuities obtained at the transition point (𝛿0). Large variation of
the cohesive tractions can be observed for different phase angles. From
Figs. 15(c) and 15(d) it can be seen that the maximum value of peak
normal traction, �̂�𝑛, occurs at a phase angle of 𝜑 = 4◦, and the
maximum value of peak cohesive shear traction, �̂� , occurs at 𝜑 = 70◦.
𝑡
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Fig. 13. 3D plots of the cohesive tractions as a function of 𝛿𝑛 and 𝛿𝑡 with a focus on the crack-tip region for (a) 𝜎𝑛 and (b) 𝜎𝑡.
Fig. 14. 3D surface plots of the cohesive tractions as a function of 𝛿𝑛 and 𝛿𝑡. The traction axis is cut-off to visualise the shape of the bridging (a) 𝜎𝑛 and (b) 𝜎𝑡.
5. Discussion

Some key results from the experimental campaign and extracted
cohesive laws are further discussed in this section.

5.1. Characteristics of cohesive tractions

The present work provides experimental data suggesting that co-
hesive tractions are coupled for all mixed-mode conditions. Non-zero
normal tractions are found under pure tangential opening displacement
(Figs. 13 and 14). This result is in agreement with the findings of
an earlier study [29]. Sørensen and Goutianos associated this effect
with interface dilatation [37], and they have suggested three physical
phenomena that may lead to it namely (i) in-plane surface roughness
(ii) shear cracks (formed at an angle with respect to the main crack
plane) and (iii) fibre buckling. Interface dilatation is also known from
the fracture of concrete [38]. Likewise, non-zero shear tractions are
obtained for pure normal separations. The proposed approach is rather
general in the sense that it makes no assumptions with regard to the
coupling of the tractions. The method aims to describe the fracture
resistance as close as possible, and the cohesive tractions are then
derived from it.

It is therefore appropriate to discuss what constraints should be
enforced for the potential function and cohesive tractions. The presence
of normal tractions under pure tangential opening displacements (see
Fig. 15(a)) and especially the presence of non-zero shear traction under
pure normal opening (see Fig. 15(b)) may appear surprising at first.
However, these non-zero traction values cannot be disregarded by
the use of symmetry arguments. If the fracture plane is not strictly
symmetric (as in the present case, see Section 3.1), then the symmetry
9

arguments used to define pure modes (in LEFM) cannot be applied
(M.D. Thouless, private discussion). The specimens used in the present
study are nominally symmetric (10 UD layers above and below the
mid-plane), but have an asymmetric mid-plane interface due to the
orientation of the backing. As mentioned previously all the specimens
were manufactured and tested with the backing facing downwards as
depicted in Fig. 16. The presence of backing bundles perturbates the
crack tip stress field inducing asymmetry which can cause the crack to
kink off of the specimen mid-plane (and into the backing bundles). It re-
mains unclear to the authors whether this would be enough to produce
shear tractions measurable at macroscopic specimens, however, since
the symmetry argument is cannot be applied, then there is no reason
to enforce a zero shear traction under pure normal separations.

The surfaces of the normal and shear tractions (Figs. 13(a) and
14(b)) have distinctively different shapes. The surface of the normal
traction has a slender shape with its peak value at small openings and
small phase angle values. Under pure normal opening, the material
in the FPZ fails due to tension which usually gives a small FPZ (low
values of 𝛿0). This leads to a more ‘‘brittle’’ fracture behaviour with a
steep raise, followed by a drop-off of the cohesive tractions. The surface
of the shear traction has a more ‘‘plumped’’ shape with peak traction
located at 𝜑 = 70◦. It is well known that as the proportion of shear
loading is increased, then the fracture process zone ahead of the crack
tip starts to develop multiple microscopic shear cracks (cusps) [39].
This results in a longer crack-tip FPZ which corresponds to larger values
of 𝛿 at the crack-tip before starting the bridging region (the red curves
in Figs. 14(a) and 14(b) extend longer as 𝜑 increases).

Large differences can also be observed between normal and shear
tractions in the bridging region. Micromechanical models of cross-over

bridging ligaments produce coupled normal and shear tractions with
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Fig. 15. Cohesive tractions evaluated on intervals of 30◦ of the phase angle 𝜑 for (a) normal traction and (b) shear traction. Peak cohesive tractions, �̂�𝑛, �̂�𝑡 as a function of the
phase angle in (c) the crack-tip and (d) the bridging region. The red curves represent the tractions in the crack-tip region, whereas the blue curves indicate the cohesive tractions
in the bridging region.
Fig. 16. Schematic of a specimen (macroscopic) with symmetric laminate but asymmetric interface (microscopic).
different shapes [40,41]. The obtained normal bridging tractions found
in the present study are larger than the shear bridging tractions, which
is in contrast to these micromechanical predictions. It is possible that,
under mixed-mode and pure tangential displacement opening, some of
the bridging fibres will be under compression and buckle, and thus not
contribute much to the bridging tractions.

5.2. Model limitations and assumptions

There are two major assumptions of the present work. The first one
is that the cohesive tractions can be derived from a potential function
𝛷. This assumption implies that the cohesive traction is independent
of the history of the crack-opening displacements. This assumption is
implicit for all potential-based mixed-mode cohesive laws. Although
a micromechanical model (small displacements, small rotations) gives
mixed-mode cohesive laws that are derived from a potential func-
tion [41] when fibre buckling and fibre failure are disregarded, it
10
still remains an open research question if the cohesive laws due to
fibre bridging are path-dependent. The second assumption made in the
present work is that the end-openings increase proportionally. It can
be seen (Fig. 7(a)) that this is a good approximation for most of the
opening range. However, larger deviations are expected for very small
openings where the size of the active cohesive zone is small (within the
K-dominated zone, 𝜑 can be expected to be controlled by 𝜓). From [42]
it can be shown that under LEFM conditions the phase angles of the
openings at the crack-tip are related to 𝜓 as

tan(𝜑) = 𝜆1∕2 tan(𝜓) (10)

where 𝜆 = 𝐸2∕𝐸1. However, this needs to be further studied with more
precise measurements of the crack tip opening displacements.

In principle, the proposed method should be applicable to any non-
linear time-independent material/interface regardless of the size of the
FPZ. The method is robust in the sense that by adapting the functional
form of the potential function, different damage mechanisms should be
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represented accurately. Future work could be the implementation of the
method to other materials/interfaces involving large fracture process
zone, e.g. debonding of adhesive joints.

5.3. Fitting of parameters

As mentioned earlier the maximum attained measured phase angle
value is 𝜑∗ ≈ 73◦ even under load ratios of 𝑀1∕𝑀2 ≈ 1 (𝜓 ≈ 90◦).
As such, any conclusion made for 𝜑∗ > 70◦ is derived from the
extrapolation of data.

The correlation of the fracture process parameters gives good to an
excellent agreement based on the 𝑅2 values. In general, more scatter

as observed for the correlation of parameters at the steady-state point,
articularly for tangential-dominated openings. One of the reasons is
hat there is less data as not all of the experiments reached steady-state.
nother reason is that, unlike crack initiation, there is no standardised
pproach to determining a steady-state. At small openings (𝛿 < 80𝜇)
he shear traction for 𝜑∗ = 90◦ comes out negative (Fig. 15(b)). This
s clearly non-physical as it would produce negative work for 0 < 𝛿 <
80 μm. We believe this is an artefact of the fitting approach.

The fitting carried out was done in such a way that the potential
function was separated into functions of 𝛿 and functions of 𝜑. In this
way, instead of doing fitting of two independent variables [29], the
fitting is first carried out using only one variable. Next, to interpolate
the parameters as a function of 𝜑∗ polynomial functions (for all except
the shape parameter) were used due to their simplicity. Furthermore,
polynomials are flexible and they do not enforce a monotonic increment
of 𝐽0(𝜑∗). Non-monotonic variation of the 𝐽0 value as a function of
the mixed-mode has been observed [43]. The authors see no physical
justification to enforce a monotonic increase in 𝐽0 from pure normal
to pure tangential opening displacement, as required by the commonly
used BK criterion [44].

In the proposed work, 11 groups of different nominal mode-mixities
were tested. Clearly, the more tested mixed-modes, the better the co-
hesive tractions will be described. However, in principle, the proposed
method only requires 𝑛+1 different nominal mixed-mode values (if 𝑛 is
the highest polynomial degree used to fit the fracture parameters). For
the present interface, the largest polynomial degree was 5th so only 6
different nominal mixed-mode values should suffice. This represents a
reduction of the required experiments in comparison with the method
which required at least 8 sets of 𝐽𝑅 data (different 𝜑∗) [29], while also
eliminating the wobbling effect observed for that approach.

5.4. Experimental limitations

In the present study, a uniform crack front is assumed and the
end-openings are measured from the specimen’s edge. However, if the
beam experiences anticlastic behaviour then the crack front will not be
uniform [45,46]. This is currently not accounted for in the data analysis
of the present study. A way to address this experimentally is to reduce
the width of the fracture process zone (e.g. by introducing symmetric
side groves) or reduce the specimen width [46]. Another experimental
limitation is that there might be friction between the crack faces for
pure tangential opening displacements (i.e., 𝑀1∕𝑀2 = 1). In the present
study, this was partially addressed by not prescribing moment ratios of
1, but slightly lower values (i.e., 𝑀1∕𝑀2 = 0.99) to avoid the contact
of the two beams. Still, this issue deserves more attention, since the
fracture surfaces are found to be non-planar.

The authors would like to give a word of caution on the conclusions
made on the crack tip behaviour particularly on the obtained negative
normal and shear tractions at small openings (see Fig. 15). The magni-
tude of the negative normal and shear tractions is 5 MPa and may be
within the uncertainty of the method. A more detailed study should be
11

conducted to clarify if these findings are correct. a
6. Conclusion

A general procedure to determine the mixed-mode cohesive laws
based on parameters extracted from experimental R-curves is pre-
sented. The implementation of the method was carried out using a UD
composite laminate which exhibited large-scale fibre bridging. It was
found that a large portion of the total energy dissipated ( 30–85 %) dur-
ng crack growth corresponds to the work of the bridging tractions. This
eans that ignoring fibre bridging may lead to large inaccuracies in the
rediction of the load-carrying capacity of structures. The experimental
esults provide evidence of coupled cohesive laws. Furthermore, the
pproach enables separate cohesive laws for the crack-tip (high traction
alues ≈ 30–60 MPa, small separations ≈ 10–100 μm) and bridging
low traction values ≈ 20 MPa, large separations ≈ 3–8 mm). Such a
escription is more realistic than the state-of-the-art idealised cohesive
aws.

RediT authorship contribution statement

R. Erives: Conceptualization, Methodology, Data curation, Formal
nalysis, Writing – original draft. B.F. Sørensen: Conceptualization,
upervision, Writing – review & editing. S. Goutianos: Methodology.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgements

The present article was partially funded by the Mexican National
ouncil on Science and Technology, and the Energy Sustainability

und (CONACyT-SENER), and the RELIABLADE project supported by
he Danish Energy Agency through the Energy Technology Devel-
pment and Demonstration Program (EUDP), grant no. 64018-0068.
he authors would like to acknowledge Helmuth L. Toftegaard for
ross-checking parts of the experimental analysis.

ppendix A. Experimental data: fracture parameters

The fracture mechanics parameters are summarised in Table 3.

ppendix B. Fitting of fracture parameters

The coefficients of the fracture parameters are listed in Table 4:
The shape function 𝜁 (𝜑) (Fig. 11(a)) was fitted using the equation

(𝜑) = 𝛼(1 − 𝑒𝛽𝜑
∗𝜂
) + 𝛾 (11)

with 𝛼 = 0.6451, 𝛽 = −2.563𝐸 − 08, 𝜂 = 4.932, 𝛾 = 0.3524.

ppendix C. Supplementary data

Supplementary material related to this article can be found online

t https://doi.org/10.1016/j.compositesa.2022.107346.
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Table 3
Experimental data.
𝜑∗ 𝐽0 𝐽𝑠𝑠 𝛿0 𝛿𝑠𝑠 𝜁 𝛿00 𝐽00
[Deg] [J∕m2] [J∕m2] [mm] [mm] [−] [mm] [J∕m2]

0.0 269 1180 0.0006 2.33 0.36 NAa NAa

0.0 183 1174 0.0034 3.47 0.28 NAa NAa

1.9 353 978 0.0062 2.09 0.37 0.0067 126
3.1 303 923 0.0092 2.68 0.29 0.0041 141
3.3 332 894 0.0098 1.34 0.29 0.0099 319
3.6 337 881 0.0101 1.97 0.32 0.0046 164
4.2 369 874 0.0158 2.34 0.32 0.0110 211
5.0 467 1046 0.0139 1.43 0.37 0.0085 208
5.0 418 1192 0.0130 1.56 0.38 NAc NAc

6.0 430 1026 0.0150 2.07 0.37 0.0104 228
6.3 471 1202 0.0144 2.10 0.40 0.0116 324
8.2 978 2100 0.0173 2.53 0.45 0.0098 503
8.3 961 1910 0.0117 2.21 0.36 0.0067 494
8.8 1078 1946 0.0157 3.08 0.48 0.0136 858
10.1 1053 1843 0.0211 2.36 0.46 0.0109 487
10.2 891 1624 NAb NAb NAd NAb NAb

10.2 873 1843 0.0335 3.03 0.36 0.0395 672
10.3 1058 1816 0.0204 2.88 0.58 NAc NAc

11.1 1031 2067 0.0103 1.22 0.30 0.0042 369
21.5 1777 3252 0.0424 2.65 0.26 0.0223 913
23.8 2083 3353 0.0625 1.85 0.36 0.0325 1069
25.4 2216 3160 0.0719 1.83 0.33 0.0308 1071
26.1 2063 3132 0.0607 1.54 0.24 0.0321 1034
27.1 3049 7435 0.0891 6.92 0.60 0.0484 1585
32.3 2861 6544 0.1002 7.35 0.87 NAc NAc

36.0 3155 8634 0.0904 5.58 0.65 0.0455 1558
42.3 2664 8015 0.1350 7.62 1.00 0.0515 1329
49.8 2765 NAd 0.0687 NAd NAd 0.0288 1350
51.0 2523 NAd 0.0730 NAd NAd 0.0330 1214
51.9 2961 NAd 0.1216 NAd NAd NAc NAc

54.2 2984 NAd 0.1127 NAd NAd NAb NAb

54.8 2727 NAd 0.1867 NAd NAd 0.1264 1833
54.9 2946 NAd 0.1594 NAd NAd NAc NAc

54.9 2989 6984 0.1427 5.25 1.54 0.0471 1626
64.0 2566 NAd 0.0810 NAd NAd 0.0392 1208
64.5 3000 NAd 0.0825 NAd NAd 0.0361 1400
65.5 2990 NAd 0.1550 NAd NAd 0.0442 1303
67.4 2459 NAd 0.1003 NAd NAd 0.0432 1208
67.8 3007 NAd 0.1615 NAd NAd 0.0609 1479
68.8 2952 NAd 0.1216 NAd NAd NAc NAc

70.3 2806 NAd 0.0993 NAd NAd 0.0485 1385
72.3 3222 NAd 0.1560 NAd NAd 0.0471 1232

aNot detected by extensometer-LDVT.
bExperimental issue.
cCould not fit 3rd degree polynomial.
dNot reached steady-state.
Table 4
Coefficients of polynomial fit for the potential function 𝛷.
𝑓 (𝜑∗) = 𝑎𝑛 × 𝜑∗𝑛 + 𝑎𝑛−1 × 𝜑∗𝑛−1 + ... + 𝑎0

𝐽0 log 𝛿0 𝐽00 log 𝛿00 𝐽𝑠𝑠 𝛿𝑠𝑠
[J∕m2] [log(mm)] [J∕m2] [log(mm)] [J∕m2] [mm]

𝑎0 1.8316E+02 −5.6162E+00 −2.9628E+00 −5.3569E+00 5.1288E+02 1.8354E+00
𝑎1 4.3253E+01 2.1029E−01 6.0709E+01 1.1625E−01 1.5581E+02 6.5854E−02
𝑎2 4.8279E+00 −4.2877E−03 −4.8528E−01 −1.8833E−03 5.1325E−04
𝑎3 −1.6440E−01 2.8755E−05 −5.1476E−03 9.8360E−06
𝑎4 1.7000E−03 4.9861E−05
𝑎5 −4.5088E−06
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