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Societal drought vulnerability and the Syrian
climate-conflict nexus are better explained by
agriculture than meteorology
Lina Eklund 1,2✉, Ole Magnus Theisen3, Matthias Baumann 4, Andreas Forø Tollefsen5,

Tobias Kuemmerle4,6 & Jonas Østergaard Nielsen4,6

Droughts are often suspected to increase the risk of violent conflict through agricultural

production shocks, and existing studies often explore these links through meteorological

proxies. In Syria, an alleged agricultural collapse caused by drought is assumed to have

contributed to increased migration and the conflict outbreak in 2011. Here we use satellite

derived cropland and climate data to study land use dynamics in relation to drought and

conflict in Syria. We show that claims of an agricultural collapse cannot be substantiated as

croplands saw a fast recovery after the 2007–2009 drought. Our study highlights the

importance of considering land-use dynamics for understanding linkages between meteor-

ological droughts, agricultural impacts, migration and conflict. Furthermore, our results

suggest that the influential drought-migration-conflict narrative for Syria needs to be reex-

amined, with implications for wider discussions of how climate change might alter

conflict risk.
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The relationship between climate change and conflict has
received much attention in research and policy alike1,2.
Weather extremes, such as meteorological droughts, have

been found to sometimes coincide with armed conflict outbreaks,
suggesting a potential causal mechanism between the two3,4.
Agricultural production shocks, often with subsequent migration,
constitute the most commonly suggested mechanism linking
climate to violent conflict5,6. Yet, sparse or unreliable sub-
national data on agricultural yields and cropping patterns for
countries with high conflict risk7 has largely prevented scrutiny of
the assumption that weather extremes lead to increased agri-
cultural vulnerability in conflict studies4,5,8. With a few notable
exceptions9–11 the majority of studies have solely relied on
meteorological data and assume that these indicate widespread
crop failure, or even agricultural collapse, arguably contributing
to a lack of overall consensus on the relationship between climate
and conflict5,12–22.

Studies and media reports have, to varying extents, linked the
2011 political protests in Syria, and the ensuing civil war, to the
severe drought that affected the Middle East between 2007 and
200923–25. The reasons behind the Syrian uprising are complex and
manifold. They include increasing unemployment and poverty
levels, corruption, repression and police brutality, injustice, a
growing rural-urban divide, and a lack of political freedom26–28.
Even though there were many causes of the conflict, the drought
has received much attention, either as a trigger of the conflict or as a
major factor contributing to it29. Several scholars have argued that
the drought caused a collapse in Syria’s agricultural system24,30,31,
with subsequent widespread rural-urban migration32,33. This
reportedly placed much strain on Syrian cities and, in turn, con-
tributed to the Syrian uprising in 201124,30,31,33,34 (Fig. 1B).
Although plausible, the evidence for such a causal chain is mainly
anecdotal or based on events that coincide in time, yet little data
exists to back up this drought-migration-conflict nexus28,29,35,36.
There is also evidence that the unrest concentrated largely in areas
with less severe drought impacts34, and that migrants were gen-
erally not linked to the protests28,36,37. Moreover, it is unclear
whether the drought induced a qualitative shift in the agricultural

system (i.e. a collapse) or if it, despite its undeniable severe impact,
rather constituted a shock from which the agricultural system
recovered (Fig. 1B, C).

In Syria, groundwater depletion and land salinization were
substantial more than a decade before the 2007–2009
drought28,35,38. A suggested reason behind this degradation is the
neoliberal restructuring of the economy since 2000, causing
underinvestment in agricultural infrastructure combined with
bad environmental governance and an over-exploitation of water
resources26,35,39. In particular, the four northeastern governorates
(Fig. 1A), where the 2007–2009 drought was the harshest, were
subject to the most aggressive and, arguably, unsustainable agri-
cultural expansion38. Farmers experienced additional strains in
May 2008 and May 2009 when the government removed fuel
subsidies, causing pumping of irrigation water to become more
than three times more expensive40, and fertilizer subsidies
respectively26,40. These cuts may have increased agricultural
sensitivity to meteorological drought in the subsequent period,
particularly in areas relying on diesel-pump irrigation. In 2010, a
yellow rust outbreak reportedly led to 300,000 hectares of wheat
becoming un-harvestable40. How these factors have contributed
to the alleged agricultural collapse preceding the conflict outbreak
in Syria remains weakly understood.

The term agricultural collapse is itself problematic and has been
used loosely in the literature. Assessing whether or not agricultural
collapse has occurred requires a stringent definition. On a general
level, agricultural collapse can be defined as a breakdown of agri-
cultural production that leads to a fundamental shift in the agri-
cultural system41. This resonates well with notions of state or
regime shifts in social-ecological systems, where a collapse should
meet four criteria: (i) abruptness of factor driving change, (ii)
substantial loss in a state variable, and (iii) persistence of this loss,
leading eventually to (iv) a structural change to the system41–43.
Assessing agriculture through the lens of regime shifts thus means
that a collapse involves change that occurs quickly in comparison
with regeneration times (i), and these changes should be much
more severe than changes caused by previous similar events (ii).
The consequences of a collapse need to be lasting (iii), and include

Fig. 1 Situating the study geographically and conceptually. A Study area, including the four North-Eastern governorates. B Conceptual model of the Syrian
drought-conflict narrative and some alternative pathways discussed in this paper. C Conceptual chart of different drought outcomes on the agricultural
system.
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the disappearance of key actors, system components, and
interactions (iv).

Here we discuss the extent to which the 2007–09 Middle East
drought produced an agricultural collapse, subsequent migration,
and indirectly contributed to the conflict in Syria. Studies of the
Syrian drought follow the general approach in the literature—
relying largely on meteorological data23–25,34 and leaving the
crucial question of how the drought-affected agricultural activity
and productivity unanswered. As a result, the question of whether
or not the drought has contributed to, or even triggered, the
Syrian conflict continues to be debated and has reached a dead
end—with diverging interpretations of the scant evidence that
exists on the agricultural decline and migration29,34,36,44–46. We
here argue that there is an urgent need to move beyond weather
data towards directly observing changes in agricultural activity in
order to better understand the mechanisms linking drought and
conflict.

Focusing on the Syrian conflict, the droughts preceding it and
the claim of an agricultural collapse, we aim to fill this gap by
studying satellite-based time series data on cropland dynamics
covering the pre- and early-conflict period in Syria. Specifically,
we map active and fallow croplands, and measure the share of
fallow land (hereafter “fallowness”) for each year between 2000
and 2016. Croplands are an excellent indicator of the productivity
of the agricultural system as a whole, as croplands provide staple
crops to local populations as well as the majority of fodder for
livestock in the dry season47. FAOSTAT data shows that cereals
(mainly wheat) was the most common commodity produced in
Syria during the period of interest48. Furthermore, croplands in
dry regions can be relatively easily monitored using satellite
images, in contrast to the livestock sector, where grazed and
ungrazed areas cannot be easily separated, and because detailed
livestock data are not available. We also include national
FAOSTAT-data on livestock numbers and a brief analysis in the
SI (Supplementary Discussion 1, Supplementary Fig. 1).

Using these analyses, we address the overarching research
question: How did the 2007–2009 drought affect the Syrian
agricultural system right before the outbreak of the Syrian civil
war in 2011?

Three subquestions structure the paper:

1. What were the effects of climate variability on agriculture in
Syria, as approximated through changes in cropland extent?

2. How did the vulnerability of Syria’s agricultural system to
drought and dryness change between 2000 and 2016?

3. Do the observed cropland dynamics fit the criteria of an
agricultural collapse?

We use the concept of drought to specifically address the
drought periods in the early and late 2000s, and “dryness” to refer
to the combined meteorological (precipitation and temperature)
conditions over the October-March growing season of each year.
Our univariate spatio-temporal analysis shows a sharp increase in
fallowness in 2008, followed by a partial recovery by 2009, and a
near-full recovery by 2010. A subsequent statistical analysis finds
a causal relationship between dryness and fallowness, and some
support for increased drought sensitivity during the post-drought
period, but this can only to a limited extent be attributed to
irrigation dependence and local violence.

Results and Discussion
Changes in agricultural activity, 2000–2016. As a proxy for
agricultural productivity, we used cropland maps derived through
remote sensing (see Methods, Supplementary Fig. 2 and Sup-
plementary Tables 1–5). Our first major finding is that the extent
of fallow cropland in Syria varied widely over the whole period,

with a median of 21% of cropland being fallow each year
(Fig. 2A). The years 2000 and 2008 stand out, with around half of
the cropland laying inactive. The years 2010 and 2013 had low
levels of fallowness, with around 90% of cropland actively being
cultivated. The years 2006 and 2007, which are sometimes
described as drought years23,24,26, also had a below-median fal-
lowness with only 15% and 16%, respectively. Fallowness patterns
largely followed dryness patterns, as measured by the 6-month
Standard Precipitation-Evaporation Index (SPEI6, Fig. 2A). At
the peak of the drought (in 2008), we recorded a high level of
fallowness (50%) compared to previous years (around 15%), yet,
as the dryness decreased in 2009, substantially less fallowness
occurred (25%) (Fig. 2A).

The high fallowness rates in 2008 struck all of Syria’s cropland
regions, but effects were particularly pronounced in the primary
grain-producing area of northeastern Syria (Al-Hassakeh pro-
vince), where most agricultural land, independent of cropping
frequency, was left fallow (Fig. 2B, C). The partial recovery in
2009 appeared in areas where higher cropping frequencies were
more common, still leaving many less frequently cropped and
marginal areas fallow in the northeast (Fig. 2B, C)—the areas that
had lately seen the most aggressive expansion. This indicates that
cultivation was prioritized in areas with high-intensity farming.
Very little land was permanently fallow after the drought. Only
113 km2 (0.5% of all normally active cropland) of the cropland
actively cultivated in the years preceding the drought (2006 and/
or 2007) showed indications of abandonment (i.e. left fallow for
all the subsequent five years, 2008–2012). In terms of area
cropped, Syria’s agriculture recovered from the 2007–2009
drought. While fine-scale data on grazing or livestock dynamics
are not available for the time period we studied, national-scale
livestock numbers confirm the pattern found here for croplands,
with livestock numbers declining during the drought, but
recovering thereafter (see Supplementary Discussion 1 and
Supplementary Fig. 1).

Drought effects on fallowness and vulnerability. Did the agri-
cultural system become more vulnerable to meteorological dis-
turbances after the 2007–2009 drought? In order to test this, we
ran a host of spatial fixed-effect models of the effect of dryness
(below-normal water availability as measured by SPEI6) on fal-
lowness with marginal effects depicted in Fig. 3. This allowed us
to discern whether agricultural sensitivity to dryness increased
after the drought, after the subsidy cuts (in 2008 and 2009), and
after the conflict outbreak. We also assessed whether increases in
sensitivity were more pronounced in the northeastern gover-
norates and in areas reliant on irrigation—areas affected both by
drought and the removal of fuel subsidies. As conflict is often
argued to increase vulnerability, we also tested whether local
violence enhanced sensitivity to drought.

Overall, drier periods coincided with stronger cropland
declines. One standard deviation below normal SPEI increased
fallowness by approximately 11–12% for the full period
(2000–2016), confirming the pattern shown in Fig. 2A. Regarding
increasing sensitivity over time, we found that for the pre-drought
and pre-subsidy-cuts period (2000–07), one standard deviation
drop in SPEI increased fallowness by approximately 7–8%
compared to a 13–18% increase for the 2008–2016 period (Fig. 3).
Although not statistically significant, we found a considerably
higher sensitivity to dryness in the post-drought period, in
particular for the later conflict years (2013–2016). For the latter,
one standard deviation drop in SPEI resulted in approximately
17% (black) and 22% (blue) increase in fallowness, representing
more than double the effect for 2000–2007 (Fig. 3 and
Supplementary Tables 7 and 8). Nevertheless, the enhanced
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Fig. 2 Fallow land extent before and during the outbreak of the Syrian civil war. A Relative extent of active and fallow cropland between 2000 and 2016
(yellow and black bars). Bright grey bars (between yellow and black) represent areas of uncertainty based on our accuracy assessment. Blue bars: annual
6 month Standard Precipitation-Evaporation Index (SPEI6, based on CRU v. 3.4.4) for Syria 2000–2016, B cropping frequency in Syria 2000–2016, C active
cropland and fallow cropland in the years preceding the conflict outbreak (2007-2010). Data for the figure is provided in Supplementary Data 1.

Fig. 3 Dryness effects on fallowness in different contexts and time periods.Marginal effects of sensitivity to dryness on extent of fallowness using spatial
Durbin fixed effects (black) and spatial Durbin two-way fixed effects (blue) during different time-periods and within different areas. Whiskers represent
95% confidence intervals. Supplementary Tables 7–18 present the parameters and full results for all models. Data for the figure is provided in
Supplementary Data 2.
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sensititivity to drought during the conflict years can only to a
small extent be safely attributed to violence proximate to
croplands. Although the quick recovery of cropland after the
2007–2009 drought refutes the assumption of a collapse, we
found indications of an overall structural shift in terms of
increasing vulnerability to drought in our data, in particular for
the conflict years.

We find little support for the argument that irrigated areas
experienced increased vulnerability after the subsidy cuts. Our
results instead show that both irrigated and rain-fed areas were
affected and that areas with below-median irrigation levels
experienced a slightly larger increase in vulnerability (Fig. 3 and
Supplementary Tables 9 and 10). Likewise, our separate analyses
of the four North-Eastern governorates largely resembled the
overall results (Fig. 3 and Supplementary Tables 11 and 12). We
find only some indications for local violence enhancing vulner-
ability to drought (Supplementary Table 19). Our data therefore
reflects a pattern expected for an agricultural system that is
adapted to drought periods and thus has the ability to bounce back
after such shocks. However, after 2008, the drought vulnerability
increased, suggesting a structural shift of the agricultural systems,
which could increase the risk of future collapse.

Agricultural collapse and permanent outmigration? Drought-
induced agricultural collapse causing widespread rural out-
migration is a central premise in the climate-conflict argument
related to the Syrian conflict. We assess this claim through the
lens of social-ecological systems, using the collapse criteria put
forward by Cumming and Peterson42: (i) abruptness, (ii) sub-
stantial loss, (iii) persistence, and (iv) structural change. We find
that the drought-related changes to the agricultural system were
indeed abrupt (i), as we recorded a sudden three-fold increase in
fallowness from 16% in 2007 to 50% in 2008, likely due to
widespread crop failures. Whether this represents a substantial
loss compared to previous perturbations (ii) is less clear, but
appears unlikely as our data indicate that the drought period
around the year 2008 led to similar levels of fallowness as the one
in the early 2000s, with 51% fallowness in 2000 and a complete
recovery in 2002 (21% fallowness). After the 2008–2009 decline,
the active cropland extent did bounce back to high levels in 2010.
Consequently, the drought-related increase in fallowness was not
persistent, refuting criteria (iii). Only a very small area (0.5% of
cropland) showed long-term fallowness after 2008 and, in 2010,
the fallowness levels were below median. As for the structural
change criteria (iv), we find some evidence for the agricultural
system becoming more vulnerable to dryness after the drought.
However, we suggest a mix of subsidy cuts, unsustainable agri-
cultural practices, and to some extent local violence, are likely
more important than drought for this change (see Supplementary
Table 19 for effects of violence on drought sensitivity). While we
acknowledge that cropland dynamics may not reflect the agri-
cultural system as a whole, it is an important indicator con-
sidering the importance of wheat as a staple crop49. The fact that
livestock numbers follow a pattern similar to cropland dynamics
further strengthens our conclusion that this was a temporary
decline rather than an agricultural collapse.

Comparing the periods 2000–2007 and 2008–2016, we find
that slightly more cropland was left fallow during the latter
period. Our analysis suggests that a major reason for this is that
the latter period includes drier years, even if excluding the
2008–2009 drought. The latter period may also include the effects
of fuel and fertilizer subsidy cuts, that occurred in 2008 and 2009
and likely increased the agricultural system’s vulnerability.
Furthermore, and arguably more importantly, the latter period
includes the outbreak of the armed conflict in Syria, which caused

a humanitarian crisis with outmigration and displacement, and
also affected infrastructure and government support for vulner-
able farmers. Our statistical analysis reflects this, showing an
increasing vulnerability to dryness between 2013 and 2016,
although there is only weak evidence of an effect of local violence
on increased vulnerability. A fourth factor that may be reflected
in the fallowness data for 2011 and 2012 (31% and 34%
respectively) is the yellow rust outbreak of 2010, in which 300,000
hectares of wheat were affected, representing 13% of the mapped
croplands40. This estimate, however, indicates that the majority of
active cropland in 2010 yielded usable harvests, and only a small
part of it had to be discarded due to yellow rust. Our data show
very low levels of fallowness in 2013 and 2015, suggesting that
agricultural activity was maintained, despite the drastic shock that
armed conflict entailed on top of the drought, pest outbreaks and
subsidy cuts.

Migration is a supposed key link in the causal chain between
drought, agricultural abandonment, and elevated conflict risk.
Research on climate stress and migration show that droughts may
either increase or decrease migration depending on the socio-
economic and political characteristics of exposed communities50.
Agriculture is considered an important link between climate
stress and migration, where migration becomes an adaptation
option in the absence of other options, when agricultural
livelihoods are compromised51. Perceived climate stress has also
been identified as a factor influencing migration52. While data for
Syria on migration are scant and uncertain, migration in Syria
likely surged during the drought years29, as farmers and farm
workers (temporarily) migrated to cities or other areas for jobs37.
Yet, our finding that most of the cropland was again actively used
in 2010 indicates that farmers and farm workers either returned,
or that lands were used by others by 2010. Reported coping
strategies facing the drought in Syria includes distress sales of
household assets, loans, reduced food intakes (resulting in
malnutrition), and internal or international migration53. Thus,
the drought may have caused deeper changes to the socio-
economic system, which are impossible to infer from our satellite-
based assessment of cropland dynamics alone. However,
considering the previous mobility of the rural population in
Syria and the reported temporary migration of rural households
in connection with the drought37, temporary migration of one or
several household members in 2009, after a severe crop failure in
2008, and a return in 2010 is a plausible explanation. The
narrative of widespread permanent rural-urban migration (or
“mass migration”) of farming families leading to long-term
cropland abandonment is, in contrast, not supported by our
findings.

Conclusion: a better understanding of the drought-
agriculture-conflict nexus
The Syrian case provides useful lessons for the climate-conflict
community as a whole. We show that making assumptions about
causal mechanisms that link weather extremes and drought via
agricultural collapse oversimplifies a complex system. The effects
of a drought are not only determined by its severity in meteor-
ological terms, but also by the ability of the affected agricultural
system to recover. Furthermore, to understand the causal effects
of droughts on conflict risk, we need to move closer to actual
impacts on the ground, from broad-scale and distal meteor-
ological drought proxies to data on agricultural productivity and
its socioeconomic impacts. Temporally and spatially detailed data
of sufficient quality are often challenging to acquire in areas
affected by violent conflict. Here we propose a remote sensing
approach focused on the intermediate variable in the climate-
conflict nexus: agriculture.
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By using longitudinal data on cropping and fallowness pat-
terns, we provide insights into how the 2007–2009 meteorological
drought affected the agricultural system in the short and long
term. In particular, our dense time series revealed temporal
dynamics that would have remained hidden in a setup of broader
time steps. Existing products that consistently map dense time
series of land cover change are often limited to forest cover54 or
have limitations in capturing the dynamics of active and fallow
croplands55. Yet, consolidated image archives (i.e., MODIS,
Landsat), new sensor constellations (Sentinel 1 and 2, Landsat 9)
at no-cost availability, and increasing cloud-based computational
capabilities56 now allow for mapping agricultural land-use change
at high spatial and/or temporal resolution back to the 1980s. This
will allow for establishing a more robust and comprehensive link
between meteorological droughts and agricultural activity than is
currently done in most climate-conflict studies.

The “Syrian climate-conflict narrative” has received much
attention in media and policy circles, and has become a frequent
example of a “climate-induced conflict”, despite the research
community’s more careful and nuanced conclusions26,35,36. With
this study we wish to draw attention to the agricultural system as
central for understanding drought vulnerability and the impacts
of climate stress on societies. Knowing, for example, how crop-
land areas respond to drought and conflict is crucial for under-
standing where to focus resources to aid the population, as well as
for post-conflict reconstruction. Regardless of the exact role of the
2007–2009 drought in the Syrian conflict, our research highlights
the importance of building resilience to drought and climate
stress in rural communities.

Methods
Cropland dynamics. For cropland extent, we use a land-use/land-cover
dataset49,57, which covers the area between 28.35-37.84°N and 35.29-49.14°E (Iraq
and Syria) and shows annual cropland extent (single- and double cropping) as well
as other land covers for the period 2000–2016 (Supplementary Table 1).

Classification method. Our classification of land-use/land-cover was based on an
8-day NDVI time series from MODIS Terra data, which we calculated from
MODIS surface reflectance values (MOD09Q1)58. We smoothened the time series
by applying a 30-day moving average to remove holes and pixels contaminated by
clouds. Our underlying assumption for the analysis was that the different land-
cover types in our study area show distinct phenological signals59,60 (Supple-
mentary Fig. 2).

We collected training samples from four different years (i.e., 2003, 2007, 2013,
and 2015), determined by the availability of high-quality Landsat data. To find
representative training samples, we used a combination of Landsat RGB
composites and high-temporal resolution MODIS phenological profiles. We first
visually identified a training location for our land cover class of interest (e.g.,
‘cropland (single)’) in a Landsat composite (i.e., at 30 m resolution). To ensure that
only clear training samples enter in our classification model we only selected
samples that we covered by entire MODIS pixels. We then compared this location
to the underlying phenological profile of our MODIS NDVI time series of the same
year and labeled the training point in accordance with the phenological profile. We
identified a total of 1573 training points across the four years (Supplementary
Table 2), and we used these points as input for our classification.

We used the smoothed MODIS NDVI time series (i.e., 46 values per year), as
well as a set of spectral-temporal metrics (20 in total, e.g., median-maximum ratio,
mean, amplitude, etc.) as input (hereafter: NDVI collection). We used these input
data to build a time-calibrated model using the random forest statistical technique.
To do so, we extracted for each point of our training dataset the NDVI collection of
the respective year (e.g., for a training point of the year 2007 the collection of the
year 2007) and used this information to apply a two-stage classification approach.
First, we parameterized a random forest model with 500 trees using all 66 input
bands, ranked all bands based on their variable importance, and selected the 15
bands/metrics with the highest variable importance (Supplementary tble 3).
Second, we used these 15 bands/metrics, parameterized a new random forest
model, and used this model to predict our land cover classes for each year of our
analysis (i.e., 2000–2016).

Fallowness data. To identify fallow areas, we defined a “normal cropland extent”
based on the most frequent class (mode value) over the 2000–2016 period. We then
defined “normal cropland” as where the most frequent class was either “single

cropped” or “double cropped”. For each year we compared this “normal cropland
extent” to the actively cropped land to calculate the area that was fallow or inactive.

Collection of reference data and accuracy assessments. An accuracy assessment for
the year 2014 was presented in Eklund et al.49. This was based on 800 random
training points (roughly 200 points per class) for the year 2014 with a minimum
distance of 500 meters between the validation points. The truth class of each of
these points was determined by means of visual assessment of Landsat scenes and
corresponding NDVI seasonality. The reason for choosing the year 2014 was data
availability, as it was the first full year with data from Landsat 8. The overall
accuracy for the 2014 classification was 80% with a producer accuracy of 95% and a
user accuracy of 66% for single cropland (Supplementary Table 4). High-intensity
cropland with two harvests showed a producer accuracy of 74% and a user accu-
racy of 92%. Other classes’ accuracies were above 75%.

In addition to the validation for the year 2014, we independently validated the
individual years that went into our classification. This enabled us to (a) assess the
quality of each individual classification, and (b) to extract more robust area
estimates with confidence intervals. We undertook the validation in two steps: first,
we randomly sampled 1700 points (i.e., 100 per year) in areas of stable cropland.
Second, we additionally sampled 1003 points (59 per year) in areas that had been
fallow or inactive in at least one year during our study period, since change classes
are often more error prone than stable land cover classes. We then manually
assessed each point by visually interpreting the MODIS phenological evolution of
the pixel, and by confirming our interpretation using Google Earth imagery. Once
we labeled all classes, we generated an error matrix for each year, calculated the
overall classification accuracy as well as class-wise user’s and producer’s accuracies,
and calculated confidence intervals around our area estimates61, following best
practices62. Our results suggest highly accurate land-cover maps (Supplementary
Table 5). On average, our annual fallow/cropland maps reached an average overall
accuracy of 90% (Standard Deviation (SD) of 6%). User’s and producer’s accuracies
were quite high, with 2016 showing the highest average user’s accuracies (97%, SD
of 9%) and the highest average producer’s accuracy (97%, SD of 11%). The
resulting confidence intervals around our area estimates were generally small
except for 2001 (see Supplementary Table 5).

Effects of dryness on fallowness. The statistical analysis of the effect of dryness
on fallowness uses 65 0.5° × 0.5° grid cells containing cropland (Supplementary
Fig. 3), observed annually, with resolution corresponding to meteorological data
from the Climatic Research Unit at the University of East Anglia (CRU) constituting
the most fine-grained temperature and precipitation data available63. We use a unit
fixed effects model since we are interested in the temporal variation within areas.
We use a spatial lag model including a spatial lag of the independent variable
(Spatial Durbin-model), using a maximum likelihood-estimator as this allows for
endogenous effects between units64. The spatial Y accounts for simultaneous and
reciprocal dynamics in which farmers in neighboring areas decide whether to crop
or leave the land fallow, whereas the spatial lag of dryness captures spatial depen-
dence in the observable sources of behavior that is not due to the diffusion captured
by the spatial Y (see below and Supplementary Figs. 3 and 4 for a fuller
elaboration)65. Our measure of dryness is the panel-standardized SPEI6-measure,
which incorporates the combined effects of precipitation and temperature66 during
six months – in our case the months October–March. These months capture the
rainy season prior to the main harvest (spring/summer). Fallowness is oper-
ationalized as the share of cropland in each grid-cell that are classified as bare soil in
the year in question. Since most regression estimators have their weaknesses and the
literature has not settled on whether time-fixed effects should be included, we report
one specification with year dummies and one without. Additionally, we ran a host of
alternative estimators, but our overall results did not change substantially from
those reported in Fig. 3 (see Supplementary methods 1 and Supplementary
Tables 7–22 for more details). Below, we specify the methods more in detail. For
tests on the potential of armed conflict on increasing sensitivity to drought, as well
as the link between fallowness and conflict, see Supplementary Method 1. Repli-
cation files for all analyses are available in Supplementary Data 3.

Study area. We estimate our model using grid cells with non-missing data as our
unit of analysis. Out of 102 grid cells covering Syria, 65 have agricultural areas,
while 37 cells are excluded as they do not contain detectable agricultural zones
throughout the long-term period. This results in a time-series cross-section with 65
grid cells observed across 17 years (2000–2016) having at least one pixel of
cropland (see Fig. S2). This results in 1,105 observations with variation on both the
dependent and independent variable.

Cropland and Fallowness data. For our statistical analysis, we used the land use
data described above and measured the share of cropland pixels that were fallow in
a grid cell in each year. This enabled us to capture fallowness relative to the cell
normal. Supplementary Fig. 3 shows fallowness patterns averaged by grid cell for
2008 (right panel).

Growing season drought. In order to capture the combined effect of precipitation
and temperature on soil moisture, and therefore using a measure that closely
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resembles agricultural drought, we employ the Standardized Precipitation and
Evapotranspiration Index (SPEI) based on data from the Climatic Research Unit of
University of East Anglia CRU v.3.22, acquired through PRIO-GRID v. 2.067. The
SPEI index measures drought severity according to its intensity and duration and
can identify the onset and end of drought episodes through both time and space.
This index calculates the difference between the observed water balance by sub-
tracting potential evapotranspiration (PET) from precipitation for the month in
question. The calculation of PET is done according to the Penman-Monteith (PM)
equation for calculating evapotranspiration, which captures the effect of solar
radiation, temperature, wind speed, and relative humidity – if available68. There-
after this monthly water balance is compared and standardized according to the
long-term median water balance for that month and is, therefore, a more reliable
measure of drought severity than a measure using rainfall alone, substantially better
suited to capture the effect of global warming on agriculture. The original SPEI-
variable has an average of 0 and a standard deviation of 1 for all units and is
therefore comparable across units and within units over time.

Since the main share of the rainfall in Syria falls between October and March,
and this, therefore, constitutes arguably the most crucial part of the growing
season, we calculate and use a six months version of SPEI, calculated over the
months October to March (SPEI-6). We then compared, SPEI6 for each year, to the
mean of the same temporal interval in previous years. We calculate SPEI-values for
October-December at year t-1 and January-March for year t and compare this to
the normal using data from 1980-2010. For example, SPEI values combined from
October to December of 2007 and January to March of 2008 constitutes our
measure of drought when analyzing the effect of drought on fallowness for 2008.

Irrigation data. We generated our measure of irrigation in each grid cell using the
AEI-EARTHSTAT_IR raster dataset which uses pixelated data on areas equipped
for irrigation in year 199069. First, we clipped the irrigation raster so that it
intersects with agricultural areas, using information from the data on which areas
could potentially be fallow, before we aggregated the mean raster value of irrigation
within each grid cell. The resultant value captures the share of cropland in each cell
that is irrigated, reflecting the importance of irrigation for agriculture in each cell.
Supplementary Fig. 3 shows the irrigation data for agricultural areas in Syria.

Northern governorates. Since the Northern governorates of Deir ez-Zor, Aleppo,
Raqqa and al-Hasakah (Fig. 1) are argued to have been particularly hard hit by the
drought and government policies, we generated a dichotomous measure taking the
value 1 for all cells that fell within these governorates and 0 otherwise.

Variable transformations. Since the spatial lag model using the maximum like-
lihood estimator is vulnerable to non-normally distributed variables64, having
variables that are not too far from being normally distributed is desirable. Our tests
show that panel-demeaned fallowness and SPEI6-variables have only weak skew-
ness and kurtosis, with transformations not improving fit. Since we rely on a unit
fixed effects models, demeaning of the time-variant fallowness and SPEI6-variables
is inbuilt in the algorithm, we used the raw data for SPEI6 and fallowness. As
supplementary Tables 7 and 13 show, there is little difference between using raw
data versus the panel demeaned-panel detrended fallowness and SPEI6-variables,
and analyses comparing raw vs. panel-demeaned (not detrended) variables yield
identical results (available on request). Since the irrigation variable has high kur-
tosis, and this is not demeaned, we took the square root of the variable. The
resulting variable is closer to a normal distribution than the original. We interact
this variable with the drought measure in order to capture the potentially different
effect of drought in areas more vs. less reliant on irrigation.

Estimation strategy and sensitivity tests. In the subsequent analysis, we employ
various conventional and novel statistical models. Each model explicitly states the
model used for the estimation of the parameters. OLS refers to ordinary least
squares, logit to logistic regression, and nbreg to negative binomial count models.
The models where fallowness is the outcome we employ spatial fixed effects models
as implemented through the spxtregress command in STATA.

We estimate panel grid-cell, fixed-effects models to exploit the variation in
drought intensity and fallow cropland areas within the same grid cell over time. To
minimize the impact of possible unobserved confounders, this model effectively
accounts for all time-invariant heterogeneity, making us able to account for time-
invariant omitted variables.

Since our data consists of contiguous subnational units, spatial dependence
should be accounted for. We tested the Moran’s I for fallow land using annual
cross-sections of grid-cells in Syria (Moran’s I is calculated on cross-sectional data).
Supplementary Fig. 4 shows significant clustering of fallow land in 2000,
2007–2009 period and 2014, all of which are years that experienced droughts. This
suggests that fallow land tends to be more clustered in years of drought than in
relatively normal years. Clearly, our data exhibit significant spatial autocorrelation
(for most years), and this needs to be accounted for in the models, motivating the
use of spatial regression modeling.

The significant spatial clustering in fallowness reflects diffusion in cropping
strategies. To account for such interdependencies, we estimate spatial regression
models when analyzing whether there was a structural break in agriculture’s
sensitivity to drought. Since the formal tests distinguishing between different

spatial modeling strategies generally have weak test power, with alternative models
not nested in each other, expectations about mechanisms guide the choice of
estimation strategy70. We expect farmers in proximate units to communicate and
adapt to each other’s cropping strategies. Knowledge about other farmers
abandoning their crops can trigger neighboring farmers to do the same. Since this
is a simultaneous and reciprocal dynamic in which learning goes both ways and
occurs within the same growing year, a spatial lag model is preferable to a spatial
error model, since the former can account for reciprocity and therefore avoid
simultaneity bias using the Maximum Likelihood estimator. Since there is also
spatial clustering in our drought measure, we also included a spatial lagged variable
of the SPEI6 measure. Accounting for spatial dynamics in general yields more
conservative standard errors compared to a conventional unit fixed effects (non-
spatial) model (results available on request).

Since we are interested in the potential different effects between the pre (2000-07)
and post (2008-16) drought period, we relied on models with and without year fixed-
effects, since STATA’s supporting material and communication is unclear on whether
or not variables that are time-variant but static across all observations in the same
cross-section can be used. We did not use temporally lagged dependent variables in
the models reported in Fig. 3 as this introduces Nickell bias in fixed-effects models71,
and one should generally be careful when considering using them in spatial
models72,73. The models behind the results reported in Fig. 3 are reported in
Supplementary Tables 7–12.

Analyzing panel-wise detrended data. In sensitivity tests (Supplementary
Tables 13–14), we account for that our SPEI6 and fallowness data show mild
symptoms of trending. We first performed panelwise linear detrending of these two
variables by conducting cell-wise regression of each variable using time as the
explanatory variable. The residuals from these models constitute detrended variables,
which we used to rerun our models with, both without (Supplementary Table 13) and
with time fixed effects (Supplementary Table 14). In these models, any cell-specific
temporal linear trend is taken out of the data. The results corroborate the main
results. The results for detrended analyses without year fixed effects are very similar to
the parallel model without detrended variables (compare Supplementary Tables 13
and 7). There is only a modestly higher difference when comparing the models using
detrended vs. non-detrended variables when applying year fixed effects (compare
Supplementary Tables 14 and 8).

Excluding cases with very few pixels of cropland. The main models include all cells
with non-zero pixels of cropland. In order to ensure that our results are not driven
by such outliers, we ran our main models excluding the three out of 65 cases with
the least cropland, since these three cases have substantially less cropland than the
other cells. Comparing our overall models without year fixed effects with the
parallel models without these three outliers shows a slight drop in the effect of
drought on fallowness (see Tables S7 and S15). For the models using time fixed
effects, the models with all cells (Supplementary Table 8) and those without the
three with least agricultural land (Supplementary Table 16) are also very similar,
without any systematic and substantial change in results. We also tested effects
without the ten cells with the least cropland, which generally reduced the effect of
drought on fallowness for all models, but, crucially, the difference between time-
periods remained similar. However, this accounts for 10 out of 65 cells, which
reduces the sample considerably, and it also breaks up the spatial contiguity matrix
making the results less reliable.

Results including a temporally lagged dependent variable. In addition to running
analyses with and without year fixed effects, and with and without detrended
variables, we conducted a final sensitivity analysis to root out any potential tem-
poral dependence. This was done by including a temporally lagged dependent
variable in our core models. Some caution should be applied when interpreting
fixed effects models with a lagged dependent variable as they can suffer from the
so-called Nickell bias74, essentially, with very little residual variation in the
dependent variable being left for the causal variables to pick up. Comparing our
core model without year fixed effects with the parallel model with a lagged
dependent variable; we see that the effect of SPEI6 on fallowness is slightly wea-
kened in the latter type of models. The results for our core models including time
fixed effects are also slightly weakened when including a lagged dependent variable
(compare Supplementary Tables 8 and 18). A slight weakening of effects is
expected when combining unit fixed effects and a lagged dependent variable74, and
while remedies have been suggested, no clear solution is available71,73. The slight
decrease in effect for the models including a lagged dependent variable could also
be due to the models in Supplementary Table 17 also excluding the year 2000
which was very dry and saw substantial fallowness.

Further sensitivity analyses were run but not shown here for space constraints.
These are available upon request.

Data availability
The land use datasets generated during and/or analysed during the current study are
available in the Zenodo repository, https://doi.org/10.5281/zenodo.4224925. SPEI and
Irrigation data is available through PRIO-GRID: https://grid.prio.org/#/. Data used in the
graphs in Figs. 2 and 3 are provided as Supplementary Data.
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Code availability
Replication files for the STATA 17.0 Standard Edition analysis are available as
Supplementary data.
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