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Abstract
The marine economic activities has become a vital economic driving force for development of
China’s economy. However, the trajectory of greenhouse gas (i.e. GHG) emissions associated the
fast growing marine economy and its role in emission mitigation remain unclear. Through
compiling high-resolution and time-series environmental input–output tables for 2002, 2007, 2012
and 2017, this study quantify development of 13 key marine industries in driving national
economic development and its supply chains, and assesses the direct and indirect contributions of
marine industries to the national economy and GHGs emissions. Our results show that the total
emissions of marine economy increased by 2.3 times from 2002 to 2017, and the share of that in
national total emissions increased by 43.3%. The economic output of marine economy may lead to
up to 1.8 times of the total economic output in the upstream industries, while the indirect
emissions of major marine economy embodied in the upstream supply chains is on average 3.5
times of direct emissions from marine industries. Our findings highlight the necessity of
considering total supply chain GHGs emissions associated with the fast growing marine economy
to better achieve China’s climate mitigation targets.

1. Introduction

China is a vital player in global production, consump-
tion, and trade of maritime products. The global
marine economy, measured according to marine-
based industries’ contribution to economic output
and employment, is substantial (OECD: Organisa-
tion for Economic Co-Operation and Development
2017). For example, China is the leading aquacul-
ture and ship producer in the world, accounting
for 58% (Brodie Rudolph et al 2020) and 40.07%
(UNCTAD STAT 2020) of the global total seafood
and ship production in 2018, respectively. Since the
beginning of the 21st century, developingmarine eco-
nomy (or ‘ocean economy’) has become a critical part

of national strategies in most coastal countries, and
China is no exception (Jiang et al 2014, He et al 2015,
OECD: Organisation for Economic Co-Operation
and Development 2017, To and Lee 2018). China has
approximately 14 500 km coastline, ranking the 11th
in the world (WorldAtlas 2020). In 2018, China’smar-
ine GDP reached 8.3 trillion yuan, accounting for
9.3% of the national GDP (Department of Marine
Strategic Planning and Economics, Ministry of Nat-
ural Resources 2007), close to Australia’s GDP in the
same year (8.8 trillion). Under the guidance of the
Buliding Maritime Superpower strategy (Hu 2012, Xi
2017), theChinese government plans to futher unlock
growth potential of marine economy through imple-
menting supply-side structural reforms, and aims to
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take it as a new power horse of future economic devel-
opment (National Development and Reform Com-
mission, and State Oceanic Administration 2017).
Therefore, China’s marine economy will play a more
vital role in the future of national economic devel-
opment (text S1 and figure S1 (available online at
stacks.iop.org/ERL/16/054061/mmedia)).

The United Nations (UN) (United Nations Con-
ference on Trade and Development 2014) and the
World Bank (2017) have recently proposed the
concept of ‘Blue Economy’ successively, advocating
for the sustainability of marine economic growth
(Fenichel et al 2020). It has been also proved that
blue economy and UN’s sustainable development
goals are highly interdependent (Lee et al 2020). Thus
developing low-carbon marine economy (Johnson
et al 2018, OECD: Organisation for Economic Co-
Operation and Development 2019, Unit 2016) is
internal requirements for sustainable development of
marine economy.

Meanwhile, it is worth noting that the ‘Blue
acceleration’(Jean-Baptiste Jouffray et al 2019) is
already faced growing challenges and pressures for
having major climate consequences as marine eco-
nomic activities are accompanied by a large amount
of greenhouse gas (i.e. GHG) emissions (Corbett
2003, Johansson et al 2017, Mohan 2018, Parker et al
2018). Previous studies have focused on reducing
emissions in the traditional energy sectors. However,
marine industries, such as marine oil and gas exploit-
ation and processing industry, marine fishery, mar-
ine transportation and tourism, are energy intens-
ive industries in particular when taking account their
supply chain effects. To achieve the overall national
emission migration targets, it is necessary to explore
the potential contribution of marine sectors to cli-
mate change. Some existing studies have focused on
emissions caused by marine industries themselves,
such as ocean shipping (Corbett 2003, Bouman et al
2017) and fisheries (Parker et al 2018), but the sup-
ply chain effects of the marine industries have been
largely ignored.

In addition to the direct impact on GHG emis-
sion,marine industries can also causeGHGemissions
of their upstream suppliers via inter-sectoral linkages
(Liu et al 2018, Yuan et al 2018). In fact, the marine
economy and the inland economy are interdepend-
ent and mutually reinforcing (Yin et al 2018, Schlüter
et al 2020). But the economic and environmental sup-
ply chain effects of China’s marine economy is rarely
studied. Assessing the total effects of China’s marine
economy on GHG emissions from the perspective of
supply chain could greatly benefit low carbon devel-
opment and sustainable supply chain management of
China’s marine economy.

Environmentally extended input–output (IO)
analysis (Leontief 1970, Hawkins et al 2015) is a pop-
ular tool that captures the whole supply chain effects

of a sector or product and thus lay a good found-
ation for accounting for total GHGs emissions (Fei
and Lin 2017, Ma et al 2019). Because the sectors
in the aggregate (IO) table will lose some detailed
information of the marine industries (that is ‘aggreg-
ation deviation problem’), it is superior to disaggreg-
ate maritime sectors from the IO table to improve
the accuracy of the modeling results (Kymn 1990,
Lindner et al). Several efforts have been made to
develop marine economic IO model (MEIO model)
and accounts for marine economy and related activ-
ities over the past decades at national level (Kwak et al
2005, Morrissey and O’Donoghue 2013, Lee and Yoo
2014, Wang and Wang 2019), regional level (Hoag-
land et al 2005), as well as provincial level (Chiu and
Lin 2012). Unfortunately, there are several challenges
of employing MEIO model on the environmental
impacts of blue ocean economy due to the constraints
of data availability (Song et al 2013). Specifically,
most IO tables donot distinguish detailed sub-marine
sectors. Moreover, no consistent IO tables cover for
long time period. Thus, there is a urgent need to
compile and develop high-resolution, long-term cov-
erage, and comparable list of China’s marine eco-
nomic IO tables, which may be used to systemat-
ically evaluate GHGs emissions from each marine
industry.

To fill this gap, this study aims to assess direct and
supply chain effects ofmarine economic development
and associated GHGs emissions embodied in the
marine economy by building up relatively complete
MEIO model. Here, we first disaggregate 13 marine
sectors from national industries to construct consist-
ent and detailedMIOTs for the years 2002, 2007, 2012
and 2017. Second, environmentally extended MIOTs
coupling six major GHGs are developed to compute
different emission coefficients. Third, by employing
linkage (including forward and backward), multi-
plier and environmental related theories, we analyze
the linkages between each marine industry and other
non-marine economic sectors, and then assess total
GHGs emissions. Last, we discuss the policy implic-
ations about low carbon development of marine
economy.

2. Methods and data

2.1. Building China National marine IO table
(MIOT)
China’s marine andmarine-related industries include
three parts (text S2): (a) major marine industries;
(b) marine scientific research, education and man-
agement services industries; and (c) marine related
industries. Due to the large differences in the pro-
duction structure of different marine industries, it
is important to disaggregate them from the IO
table.
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Figure 1. Schematic example of disaggregating marine sectors from national IOT.

2.1.1. Matching sectors in IOTs
In this study, we use IO tables that are collected every
5 years from 2002 to 2017. And then, sectors in the
four national IOTs are aggregated into the same res-
olution according to their classification. As all IOTs
are sufficiently detail, the final consistent IOTs are in
96 sectors (method S1 and table S1).

2.1.2. Disaggregating 13 marine sectors from consistent
national IOTs
There are differences between environmental account
with 163 sectors from the EXIOBASE database and
the unified national IOTs with 96 sectors. To unify the
data, we aggregate GHGs emissions from EXIOBASE
into 96 sectors tomatchwith the sectors in the unified
national IOTs (see detailed methods in method S2).

The input and ouput information as well as GHGs
emissions of 13marine sectors are disaggregated from
the China’s national IO tables (method S3, figure S2),

and 109-sectors ChinaMIOTs nested with six types of
GHGs emissions inventories (table S2) are construc-
ted (Lenzen 2011, Lindner et al 2013b) (figure 1). The
contructed MIOT show the amount of flow between
marine and non-marine sectors and the GHGs emis-
sion accounts. Methodological limitations are illus-
trated in text S3.

2.1.3. Balancing MIOTs
MIOTs are equilibrium in principle. However, for
caution’s sake, the RAS approach is used to balance
and revise MIOTs until it reaches the final equilib-
rium (Toh 1998).

2.2. Inter-sectoral linkages
2.2.1. Inter-sectoral linkages of industries’ output
To assess the interdependency of marine sectors and
other economic sectors, we apply backward and for-
ward linkages and the corresponding coefficients of
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variation from both the demand side and supply side
based on Leontief input–outputmodel and Ghosh IO
model. The measurement (San Cristóbal and Biezma
2006,Miller and Blair 2009,Harada 2015, Freytag and
Fricke 2017) of them can be expressed as follows.

Firstly, we calculate the direct backward link-
ages and forward linkages which estimates the direct
links between all marine industries and non-marine
sectors.

BL(d)j
j={1,...,13}

=
n∑

i=1

aij
i= {1, . . . ,n}
j= {1, . . . ,n}

with

A=
[
aij
]
, A= Zx̂−1, (1)

FL(d)i
i={1,...,13}

=
n∑

j=1

bij
i= {1, . . . ,n}
j= {1, . . . ,n}

with

B=
[
bij
]
, B= x̂−1Z (2)

where the Z terms represent interindustry or inter-
mediate sales matrix, x terms denotes output vec-
tor. A and B express direct-input coefficients matrix
(or direct technical coefficient matrix) and direct-
output coefficients matrix (or direct distribution
coefficient matrix) of MIOT, respectively. n is 109.
BL(d)j

j={1,...,13}
denotes direct backward linkages, repres-

enting marine industries are interrelated with their
related industries and thus have a demand-pulling
influence from input perspective. Specifically, the
marine industries have a direct or indirect correla-
tion mechanism to those industries or departments
that supply them with production factors (services or
products), and takes this as intermediate consump-
tion ofmarine industries. FL(d)i

i={1,...,13}
is direct backward

linkages, representing marine industries are inter-
related with their related industries and thus have
a supply-pulling influence from output perspective.
Specifically, the marine industries has a connection
mechanism with those industries that have direct or
indirect demand for products of these industries, and
takes this as intermediate input of marine industries.

Secondly, taking into account the integrated link-
ages between all sectors, total (output multiplier)
backward linkages and forward linkages of marine
industries can be shown as:

BL(t)j
j={1,...,13}

=
n∑

i=1

lij
i= {1, . . . ,n}
j= {1, . . . ,n}

with

L=
[
lij
]
, L= (I−A)−1 (3)

FL(t)i
i={1,...,13}

=
n∑

j=1

gij
i= {1, . . . ,n}
j= {1, . . . ,n}

with

G=
[
gij
]
, G= (I−B)−1 (4)

where matrix L is generally called the Leontief inverse
matrix or the total demand coefficient matrix of
MIOT. lij is the total consumption coefficient between
sector i and sector j, showing the sum of the dir-
ect input of the sector products corresponding to the
total output of the unit in the jth sector and the indir-
ect input of the sector products corresponding to the
industrial association with other sectors. The matrix
G is Ghosh inverse or total supply coefficient matrix
of MIOT (Ghosh 1958). gij is the total distribution
coefficient between sector i and sector j, showing the
amount directly and indirectly allocated to the cor-
responding sector in the total output of the ith sec-
tor, including the amount directly allocated to the
corresponding sector in the total output of the unit
sector as well as the amount indirectly allocated to
the corresponding sector through inter-sector associ-
ation. I represents identity matrix, L-I is total con-
sumption coefficient, and G-I is total distribution
coefficient.

Thirdly, here is total normalized backward link-
ages and forward linkages indexes. They respectively
represent the driving force to upstream industries and
the pushing force to downstream industries per unit
of output.

BL(t)j
j={1,...,13}

=

n∑
i=1

lij
i= {1, . . . ,n}
j= {1, . . . ,n}(

1
n

)
·

n∑
j=1

n∑
i=1

lij
i= {1, . . . ,n}
j= {1, . . . ,n}

(5)

FL(t)i
i={1,...,13}

=

n∑
j=1

gij
i= {1, . . . ,n}
j= {1, . . . ,n}(

1
n

)
·

n∑
i=1

n∑
j=1

gij
i= {1, . . . ,n}
j= {1, . . . ,n}

(6)

where BL(t)j
j={1,...,13}

is backward linkages or the power of

dispersion, representing the extent to which the pro-
duction demand for various sectors of the national
economy is affected by the addition of a unit of final
product in marine sector j. FL(t)i

i={1,··· ,13}
is forward link-

ages or the sensitivity of dispersion, representing out-
puts provided bymarine sector i for the production of
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other sectors when all sectors of the national economy
add one unit of final product.

Here, our calculation sectoral linkages include
the interactions between among the 13 key marine
industries as well as the between marine and non-
marine sectors. The direct linkages include all pur-
chases of the 13 key marine industries from marine
and non-marine sectors and the sales of the 13 key
marine industries to marine and non-marine sec-
tors (captured by equations (1) and (2)). This is
the same for total backward and forward linkages
as we used the entire A matrix for the multiplier
calculation.

The upstream non-marine economic sectors refer
to the upstream suppliers of onemarine industry. The
upstream suppliers include the direct suppliers of the
studied marine industry and the suppliers of the sup-
pliers for the studied marine industry. Similarly, the
upstream supply chains also means upstream sup-
pliers of the marine industries. For example, to pro-
duce one dollar of seafood, marine fishery industry
needs to purchase input products, such as aquatic
feed, petroleum products, electricity, machinery and
equipment and many other products, from its sup-
pliers, and these suppliers also need to purchase
products from their suppliers. All of these suppli-
ers are the upstream industries of the studied marine
industries. The output of the marine industries may
lead to economic outputs of their upstream suppliers
and associated carbon emissions from their upstream
suppliers.

We use environmentally extended IO model to
capture the effects of marine industries on their
upstream suppliers’ production and associated envir-
onmental impacts. A standard IO framework shows
the inter-sectoral flows among all industries in the
entire economy and by introducing the Leontief
inverse, we are able to estimate the total impacts of
the marine industries on their upstream industries
(Miller and Blair 2009). Therefore, the marine indus-
tries and non-marine sectors are inter-dependent on
each other and change in marine industries would
ultimately impact on the output of the sectors along
its upstream supply chain.

2.2.2. Inter-sectoral linkages of industries’ GHGs
emissions

BL(t)Ej
j={1,...,13}

=
n∑

i=1

(CoefGHGj · lij
i= {1, . . . ,n}
j= {1, . . . ,n}

) with

L=
[
lij
]
, L= (I−A)−1 (7)

FL(t)Ei
i={1,...,13}

=
n∑

j=1

CoefGHGj · gij
i= {1, . . . ,n}
j= {1, . . . ,n}

 with

G=
[
gij
]
, G= (I−B)−1 (8)

BL(t)Ej
j={1,...,13}

=

n∑
i=1

CoefGHGj · lij
i= {1, . . . ,n}
j= {1, . . . ,n}



(
1
n

)
·

n∑
j=1

n∑
i=1

CoefGHGj · lij
i= {1, . . . ,n}
j= {1, . . . ,n}


(9)

FL(t)Ei
i={1,...,13}

=

n∑
j=1

CoefGHGj · gij
i= {1, . . . ,n}
j= {1, · · · ,n}



(
1
n

)
·

n∑
i=1

n∑
j=1

CoefGHGj · gij
i= {1, . . . ,n}
j= {1, . . . ,n}


(10)

where CoefGHGj is the direct impact coefficient mat-
rix of GHG j emission, reflecting the fixed parameter
of the intensity of GHG emission produced by all sec-
tors. Compared with formulas (3)–(6), the only dif-
ference between formulas (7)–(10) and formulas (3)–
(6) is that they represent the relationship between
industries’ GHGs emissions rather than economic
output. Backward linkages, in terms of GHGs emis-
sions, represents the capacity of maritime sector j to
influence GHGs emissions in sectors providing direct
or indirect inputs to maritime sector j. Forward link-
age, in terms of GHGs emissions, represents the capa-
city of maritime sector i to stimulate the production
of other sectors, and thus the emissions of GHGs.

2.3. Total output and total emissions related to
marine industries[

xmarine

xnon-marine

]
= A ·

[
xmarine

xnon-marine

]
+

[
Ymarine

Ynon-marine

]
,

A=

[
Aii Aij

Aji Ajj

]
(11)

where xmarine and xnon-marine represent total output
of marine sectors and non-marine sectors (the same
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below), respectively. i and j represent non-marine sec-
tors and marine sectors (the same below), respect-
ively. Y is final demand.

The total output related to output of each marine
industry can be expressed as follows:[

xTotalmarine

xTotalnonmarine

]
=

i=1∑
n

[
(I−A)−1 ∗

̂[
xmarineq,1

op,1

]]
m×n

,

(12)

Wherem and n are both the number of all industries.
p and q are the number of non-marine sectors and the
number of marine industrues, respectively (the same
below).

The proportion of total output related to output
of each marine industry in national economy can be
expressed as follows:

Proportion xTotalmarine = xTotalmarine/

(
p∑

i=1

xp +

q∑
i=1

xq

)
.

(13)

The total emission of GHG j from each marine
industry can be expressed as follows:

GHGemission,j

=
n∑

j=1

[
coefGHGj · (I−A)−1 ·

̂[xmarineq,1

op,1

]]
m×n

.

(14)

The proportion of total emissions of GHG j from each
marine industry is expressed as follows:

Proportion GHGj

= GHGj/

(
p∑

r=1

GHGr +

q∑
s=1

GHGs

)
. (15)

2.4. Data sources
This study required two types of data: the IO table and
GHG emission data for China. The national IO table
for 2002, 2007, 2012 and 2017 were downloaded from
the website of the National Bureau of Statistics of
China (National Economic Accounting Department
of the National Bureau of Statistics 2006, 2010, 2015,
2019). Marine economic data was obtained from
China Marine Statistical Yearbook (State Oceanic
Administration of China 2004, 2009, 2014) andChina
Marine Economic Statistics Bulletin (Department of
Marine Strategic Planning and Economics, Ministry
of Natural Resources 2007, 2008, 2013, 2018, 2019),
including output data and value-added data of each
marine sector.

GHG emissions of 96 national economic sec-
tors are calculated based on existing environmental
account. The environmental account used for creat-
ing the extensions of IO table shall be collected at the
highest resolution practicable (De Koning et al 2015).
As MRIO databases are being fueled by increasingly

more detailed data (Bjelle et al 2020), it can offer high
quality information about IO table. The EXIOBASE
database stands out as one of the most popular Envir-
onmentally extended multi-regional IO (EE-MRIO)
databases. (a) It is compatible with multiple environ-
mental satellite accounts (Tukker and Dietzenbacher
2013, Merciai and Schmidt 2018, Stadler et al 2018,
Wood et al 2018). In our study, environmental emis-
sions include six major GHGs (i.e. CO2, CH4, N2O,
SF6, HFC, PFC). (b) Different types of GHGs emis-
sions come from different sources (CO2: combustion,
non-combustion, agriculture, waste; CH4: combus-
tion, non-combustion, agriculture, waste; N2O: com-
bustion, agriculture; SF6: air; HFC air; PFC air). Such
detailed emission inventories may effectively improve
the accuracy of the estimates. (c) Compared with
other global-scale databases such as GTAP, GRAM,
Eora and WIOD, EXIOBASE’s environmental and
economic activities data is the most sectorial detailed
with widely pollutants spectrum, thus increasing data
accuracy in the process of constructing OIOTs. The
updated EXIOBASE3 was released in 2019 with open
access (Stadler et al 2018). All GHG emissions are
converted to CO2 equivalence using 20 year time span
Global Warming Potential values.

3. Results

3.1. Inter-industrial linkage analysis between
marine and non-marine industries
The marine industries and non-marine sectors are
largely inter-linked through economics flows. A
detailed listing of the results on mutual economic
interconnectedness betweenmarine sectors and other
non-marine sectors is shown in figure 2. The back-
ward linkages show how a sector’s output change
impact on the outputs of the sector’s upstream sup-
plying industries (the pulling power), while the for-
ward linkages show that a sector supply inputs to
other sectors through the entire economy (the push-
ing power). The normalized backward linkages illus-
trate how a one unit rise in output influences a sec-
tor’s suppliers, while the normalized forward linkages
quantify the extent to which sectors supply inputs to
other sectors throughout the whole economy (Yu et al
2010). If the normalized backward linkage is greater
than 1, it denotes that one unit change in output of
one sector, will result in an above-average increase in
the output of all sectors in the entire economy. In con-
trast, if the normalized forward linkage is greater than
1, a unit change in all sectors’ output will lead to an
above-average increase in the output of that sector.
These sectors with the backward and forward linkage
indexes greater than 1 are key sectors in terms of out-
put through the whole supply chain.

As illustrated in figure 2, marine industries gen-
erally show the high interdependency with other
national economic sectors. Among them, the forward
economic linkages (FL for short, the same below)

6
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Figure 2. Backward linkages and forward linkages of marine industries in 2002, 2007, 2012 and 2017. Note: lables with blue color
correspond to traditional marine sectors, while lables with green color correspond to emerging marine sectors (the same below).

changed over time but backward linages remained
almost no change, which indicates that the push-
ing power of marine industries is getting stronger
but the pulling power remains stable.Moreover, tra-
ditional marine sectors have strong forward link-
ages. Specifically, the forward economic linkage of
offshore oil and gas industry ranks top, followed by
marine chemical industry, and then marine mining
industry, which indicates that thesemarine industries
have more pushing effect. Coastal tourism involves
many industries such as tourism, catering, entertain-
ment and leisure, real estate development, etc, and
thus has a strong industrial driving force. The coastal
tourism industry has become one of the leading sec-
tors since 2017. In emerging industries, only mar-
ine power industry and marine chemical industry
dependent on interindustry demand obviously and
perform a relatively strong pushing effect. Seawater
utilization industry have high sensitivity of dispersion
only in 2002 and 2007. The increase in this sector’s
production would stimulate other sectors.

The backward economic linkages (BL for short,
the same below) of marine shipbuilding industry
ranks top with BL index of 1.267 in 2017, followed
by marine salt industry, coastal tourism industry,
marine chemical industry, marine biopharmaceut-
ics industry and offshore engineering construc-
tion industry with little difference in the index.
Futhermore, both BL and FL of marine chemical
industry and marine power industry are large than
1, which indicates that they have a high degree of
agglomeration and a high degree of integration in the

industrial chain, thus they are classified as key sec-
tors. Since 2017, the coastal tourism industry, as one
of the emerging industries, has also become a key sec-
tor. These industries highly depend on interindustry
supply. They had generally increased their connection
with other sectors and started playing critical roles
in national economic development by boosting other
related industries.

Figure 3 shows there is a strong pulling effect of
marine economy in GHG emissions. The offshore oil
and gas industry and marine mining industry in tra-
ditional industries, as well as marine biopharmaceut-
ics industry in emerging industries have strong back-
ward and forward linkages with both linkage indices
larger than 1, thus these industries are key sectors
for GHG emissions. In terms of CO2 emissions, sec-
tors shows similar linkage effects as GHG emissions.
While there are a big variation for non-CO2 GHG
emissions.

The GHGs emission FL and BL indices of sev-
eralmarine industries are greater than their economic
linakges. This denotes that these marine sectors play
a stronger role in driving and promoting GHG emis-
sions in other sectors than that their impacts on the
economy. In particular, the marine biopharmaceut-
ics industry, marine mining industry and offshore oil
and gas industry show weak linkage in economy and
strong correlation in emission. While the economic
linkages of marine transportation industry, marine
chemical industry, offshore engineering construction
industry, marine power industry, seawater utilization
industry, marine scientific research and education
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Figure 4. Direct output of marine industries and indirect output of marine-related economic output (in constant price, base
period= 2002). Percentages above column plots represent proportion of direct or total output from marine economy in total
output from national economy. Dish lines are used to separate the traditional and emerging marine industris.

management service industry are larger while the
emissions linkages are lower, because of their low total
emission intensity per unit of industry output. Fur-
ther development of thesemarine industries may lead
to higher economic output along the supply chain but
cause much lower GHG emissions. Therefore, from
the perspective of ensuring high economic growth
and low emissions, thesemarine industries need to be
vigorously developed.

It is worth noting that backward normalized link-
ages (BNL for short, the same below) of some mar-
ine industries on GHGs emissions reaches over 1 gen-
erally, which indicates their strong pulling effects on
their upstream suppliers’ emissions. For example, the
large BNL ofmarine biopharmaceutics sector on CO2

emissions is largely due to the high percentage inputs
from the carbon intensive power, thermal production
and supply sector sector, to produce one unit output
of the marine biopharmaceutics product. For marine
mining sector, the large BNL is on CH4 emissions
given that the inputs from its upstream suppliers are
mainly coal mining and washing industry with high
CH4 emissions intensity in their productions.

3.2. Total output and GHGs emissions of marine
industries
3.2.1. Direct and indirect economic output of the
marine economy
The direct and total output of marine industries are
shown in figure 4. We can see that the direct out-
put of marine industry accounts for a relatively small
proportion of the national economy, ranging from
4.5% to 5.2% between 2002 and 2017. However,

there are close economic interdependencies between
specific marine industry and other national eco-
nomic sectors, and marine economy generally show
the characteristics of strong driving force of national
economy. When all the upstream driving influences
are added together, the economic scale and eco-
nomic impact will be at least doubled. Specifically,
the development of marine economic sectors have
driven 1.3–1.8 times of their economic output in non-
marine economic sectors. Among them, emerging
marine industries like marine shipbuilding industry
(321.1 billion yuan) and marine chemical industry
(302.4 billion yuan) and offshore engineering con-
struction industry (275.0 billion yuan) are the top
three industries with the largest indirect driving force,
up to 2.6 times, 2.6 times and 2.5 times of direct out-
put. Andmarine biopharmaceutics industry, offshore
engineering construction industry and marine power
industry may lead to higher upstream industrial out-
put but still have space for growth. The share of the
total economic output (both direct and indirect) of
marine industries in the national economic increased
from 10.4% in 2002 to 13.2% in 2017 with potentially
continuing growth in the future, according to China’s
next 5 year plan. Therefore, both direct and supply
chain effects need to be taken into account when ana-
lyzing the potential economic contribution of the fur-
ther development of marine industries.

3.2.2. Direct and indirect GHGs emissions of 13
marine industries
High GHGs emissions are basically consistent with
high industrial output except for some specific

9



Environ. Res. Lett. 16 (2021) 054061 M Li et al

Figure 5. Direct and indirect GHGs emissions of marine industries. Percentages above column plots represent proportion of
direct or total GHGs emissions from marine economy in total GHGs emissions from national economy. Dish lines are used to
separate the traditional and emerging marine industris.

industries. Direct and total impact of production
activities of marine sectors on GHGs emissions are
shown in figure 5. The top three industry, in terms
of direct GHG emissions, are coastal tourism and off-
shore oil and gas industry in traditional industries,
as well as marine scientific research and education
management service industry, which accounted for
only 1.0%, 0.3% and 0.2% of the national total in
2017, respectively. The indirect GHG emissions of
major marine economy embodied in the upstream
supply chains is on average 3.5 times of direct emis-
sions from marine industries. For different types of
GHG emissions, the ratio of indirect emission to dir-
ect emission are 6.2 (CO2), 3.3 (CH4), 4.7 (N2O),
2.1 (SF6), 3.0 (HFC), 10.2 (PFC) and 4.5 (GHG)
of direct emissions, respectively. Furthermore, the

total emissions of each major GHGs are increasing
over 2002–2017, up to 11.3 times of direct emission.
That is to say, when taking into account the supply
chain emissions, the share of marine economy in the
national total emissions increased to more than 10%.
The top three marine industries contributed to about
57.5% of the total marine economy related GHG
emissions in average. Additionally, the marine fish-
ery industry is an important source of N2O, and the
marine chemical industry is an important source of
HFC. Therefore, ignoring the supply chain emissions
of the marine economy would significantly underes-
timate the impacts of marine economy development
on the national total GHG emissions. The emissions
transfer along the supply chains of marine industries
can be tracked in figure S3.
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With regard to CO2, almost all sectors increased
their emissions over time (figure 5). Firstly, direct
emissions from coastal tourism industry has obvious
characteristics of high consumption. It ranks the first
in total direct emissions with the amount of 341.6
Gt CO2, followed by marine scientific research and
education management service industry and offshore
engineering construction industry (149.0 Gt/CO2),
accounting for 3.4%, 1.8% and 1.5% of CO2 emission
respectively. As the market forces and R&D invest-
ment continues to increase, the manufacturing capa-
city of the manufacturing industry represented by the
marine engineering construction industry remains
high. However, when taking into account their supply
chain emissions, the growth rate of total CO2 emis-
sion is larger than economy and GHG emission. and
it can increase up to 7.2 times the direct emissions.
The 13 marine industrial activities take up to 11.3%
(1137.4 Gt/CO2) share of total emissions, which is up
to 7.2 times of that of direct emission.

Interestingly, the direct CO2 emission fells by
13.9% from 2012 to 2017, which is driven by offshore
oil and gas industry, marine shipbuilding industry,
offshore engineering construction industry, marine
transportation industry, coastal tourism and mar-
ine scientific research, and education management
service industry. It is consistent with national res-
ults of datasets including China Emission Accounts
andDatasets (i.e. CEADs)andMulti-resolution Emis-
sion Inventory for China (i.e. MEIC) (Shan et al
2020). The total CO2 emission shows an increase
trend by 6.1%. Coastal tourism holds the top posi-
tion of CO2 emission from 2007. It is worth noting
that although direct and total emissions frommarine
power industry have soared 35.5-fold and 46.3-fold
in 15 years respectively, their growth rate has slowed
down since 2012, which can be partly attributed to
the rapid growth of using of renewable energy. Direct
and total CO2 emissions from marine transportation
industry and marine salt industry all have decreased.
As to offshore engineering construction industry, its
direct instead of indirect emissions decrease.

Non-CO2 GHGs emissions in various sectors
induced by each marine industry are shown in
figure 5. There are large differences in non-CO2

GHGs emissions from different marine indus-
tries. The HFC emission from 13 marine industries
increase gradually, with the rate of rise decreasing.
The total emissions are 2.6–3.7 times that of direct
emissions, and the gap is narrowing over time. The
marine chemical industry is always the largest emis-
sion industry, and its indirect emissions are up to
7.6% of all industries. Direct and total HFC emissions
from marine salt industry all have fallen the most.
The total PFC emissions are much higher than direct
emissions, reaching 11.3 times of direct emission, and
it is mainly driven by development of coastal tour-
ism (698.1 Mt/CO2-eq, 12.9%), marine shipbuilding

industry (367.8 Mt/CO2-eq, 6.8%) and marine sci-
entific research and education management service
industry (344.2 Mt/CO2-eq, 6.4%).

Except for SF6, for all other GHGs, the promo-
tions of direct emissions to total emissions are greater
than those of direct output to total output. This could
be explained by strong linkages and large-scale emis-
sions. (a) For these GHGs emissions, their BL and FL
linkages are higher than those of economy linkage. (b)
The large scale of CO2 and CH4 emissions plays an
important role in GHG emissions.

GHGs emissions from non-marine sectors caused
by inter-industry linkages are also important sources
of emissions. The indirect emissions of marine indus-
tries has nearly quadrupled from 2002 to 2017. Next,
we elaborate the sectors that cause high indirect emis-
sions in detail.

Marine sectors have imposed a huge amount
emissions to their upstream supplier (text S4). As can
be seen in figures 6, figures 4 and S3–S5, in addi-
tion to itself, the upstream high emissions of mar-
ine industry are concentrated in non-marine sectors,
rather than other marine industries. Among mar-
ine industries, marine chemical industry in emerging
industries, marine fishery industry, marine trans-
portation industry and coastal tourism industry in
traditional industries, as well as marine scientific
research and education management service industry
cause the largest number of indirect high-emission
sectors. The production of themarine power industry
and seawater utilization industry may lead to relat-
ively small economic output in their upstream sup-
ply chain but cause much more emissions. By con-
trast, the marine shipbuilding industry and offshore
engineering construction industry have more indir-
ect output and less emissions along the upstream sup-
ply chains. For offshore oil and gas industry, mar-
ine mining industry, marine salt industry and mar-
ine biopharmaceutics industry, their indirect output
and indirect emissions are all relatively small. The
high indirect emissions of other GHGs caused by
marine industries are mainly concentrated in agricul-
ture industry, animal husbandry industry, coal min-
ing and washing industry, inland oil and gas extrac-
tion industry and mining ancillary services and other
mining products. Almost all marine sectors have sig-
nificant indirect emissions from power sectors and
coalmining andwashing industry, due to large energy
demand for their production.

4. Discussions

By compiling detailed sectors, time series, and con-
sistent Chinese Environmentally ExtendedMarine IO
Tables, this study emphasizes the important role of
marine economic development in the overall eco-
nomic system and climate change mitigation. Our
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Figure 6. GHG and CO2 emissions in sectors induced by each marine industry in 2017. The 96 non-marine economic sectors are
classified to 20 sectors according to Classification of Marine and Related Industries (GB/T 4754-2017), which is shown in ordinate.

results show that there is a high degree of inter-
dependence between marine industry and other
national economic sectors. One unit economic out-
put of marine economymay lead to up to 1.8 times of
the total economic output in the upstream industries.
In terms of emissions, the direct emission of mar-
ine industries in 2017 is 386.9million tonnes CO2-eq.
The marine sectors play a greater role in promoting
GHGs emissions in their upstream sectors. Specific-
ally, the indirect emissions of major marine economy
embodied in the upstream supply chains is 3.5 times
of direct emissions from marine industries. The total
emissions of marine economy increased by 2.3 times
from 2002 to 2017, and the share of that in national
total emissions increased by 43.3%. This study also
provides a methodological reference for the compila-
tion and application of provincial, municipal and bay
area IO tables with different resource endowments
and economic development characteristics with lim-
ited data.

Our study reveals the contradictory situation by
emphasizing the significance role of marine economy
as future development supports for national econom-
ies and critical sources for climate change. Accord-
ing to the report by the IPCC High Level Panel
for a Sustainable Ocean Economy, five ocean-based
climate action areas like marine renewable energy,
marine transportation, marine fishery, aquaculture
industries may reduce GHGs emissions by one fifth.55

However, our findings indicate that to effectively con-
trol global warming in the coming decades, the mar-
ine sector is still faced with challenges. Today the
blue economy has gradually become a new economic
growth point. Even in the Post-COVID-19 world,
China’s marine economy still have a recovery growth
under the government’s positive fiscal and monet-
ary policies (Chen 2020). Therefore, while achieving

high-quality development and adjusting the struc-
ture of marine industries, attentions should also be
given to advanced intervention as well as smooth
transition from ‘blue economy’ to ‘green economy’ to
ensure high speed and green sustainable development
of marine economy.

Although blue carbon ecosystems play an import-
ant role in mitigating and adapting to climate change
(Macreadie et al 2019), the adjustment and optimiz-
ation of the marine industrial structure also cannot
be ignored. The marine economy should bear cer-
tain responsibilities for the attribution ofGHGs emis-
sions. Marine industry emissions account for 12.9%
of China’s GHGs emissions. This reminds policy
makers to incorporate targeted emission reduction
measures for marine industries into the climate gov-
ernance system and actively explore the low-carbon
development mode characterized by low emissions
while paying attention to the energy consumption
decline of traditional industrial unit added value.

Critically, our results also show that the indir-
ect production relationship which has a significant
impact on GHGs emissions cannot be ignored. As
to the marine fishery, marine transportation and
coastal tourism in the traditional marine industry,
their indirect GHGs emissions are on average 3.5
times, 2.6 times and 2.1 times that of direct emissions,
respectively. The emerging marine industries are new
growth point for the future marine economy. How-
ever, they also bring great pressure on indirect GHGs.
Among them, for ocean chemical industry and ocean
scientific research, education, management and ser-
vice industry, their indirect GHGs emissions are 10.5
times and 5.2 times that of direct emissions, respect-
ively.

Therefore, while exploring negative emission
technology for marine sectors and developing blue
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carbon sinks, it is necessary to implement more sus-
tainable supply chain management by identifying
alternative upstream suppliers with lower emission
intensity. To be specific, first, research and develop of
low-carbon technologies for marine sectors, includ-
ing marine renewable energy technologies, marine
fishery for carbon sink and comprehensive utiliz-
ation of seawater, and accelerate the development
of modern marine industries characterized by low-
carbon consumption. Second, it is important to cul-
tivate and form a low-carbon industry supply lay-
out in coastal tourism industry that is more reply-
ing on marine renewable energy. Last but not least,
because the indirect emissions of marine industry are
mainly from transportation, warehousing and postal
services industry, electricity, heat, gas and water pro-
duction and supply industry, manufacturing industry
and mining industry industries, there is a win-win
solution between marine sectors and energy sectors
by promoting low carbon energy technologies related
to the structural transformation of the energy sector.
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