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SUMMARY
CA1 and subiculum (SUB) connect the hippocampus to numerous output regions. Cells in both areas have
place-specific firing fields, although they are more dispersed in SUB. Weak responses to head direction
and running speed have been reported in both regions. However, how such information is encoded in CA1
and SUB and the resulting impact on downstream targets are poorly understood. Here, we estimate the tun-
ing of simultaneously recorded CA1 and SUB cells to position, head direction, and speed. Individual neurons
respond conjunctively to these covariates in both regions, but the degree of mixed representation is stronger
in SUB, and more so during goal-directed spatial navigation than free foraging. Each navigational variable
could be decoded with higher precision, from a similar number of neurons, in SUB than CA1. The findings
point to a possible contribution of mixed-selective coding in SUB to efficient transmission of hippocampal
representations to widespread brain regions.
INTRODUCTION

The hippocampus has a well-established role in mnemonic and

navigational functions of the brain (Hasselmo, 2012; Morris,

2007; O’Keefe and Nadel, 1978; Scoville and Milner, 1957;

Squire, 1992). Its interplay with other cortical regions is thought

to be indispensable for the formation and retrieval of episodic

and positional memories (Buzsáki, 1989; McClelland et al.,

1995; Squire, 1992; Squire et al., 2015; Winocur and Mosco-

vitch, 2011). The subiculum (SUB) has an important anatomical

position as an interface between the hippocampus and other

brain areas (Cappaert et al., 2015; O’Mara, 2006). It is the major

long-range projection area of the hippocampus, the origin of a

substantial part of the fornix, and the source of large parts of

non-fornical output reaching a range of cortical and subcortical

downstream areas. Along with the CA1 area, it sends outputs

to infralimbic, prefrontal, orbitofrontal, and medial and lateral

entorhinal cortices (MECs and LECs) and to subcortical struc-

tures, including the septal complex, the mammillary nucleus,

the hypothalamus, the thalamus, and the amygdala (Cappaert

et al., 2015; Cembrowski et al., 2018a; Ishizuka, 2001;

O’Mara et al., 2001). However, even though CA1 and SUB

have many overlapping target areas, their patterns of connec-

tivity are very different; the majority of CA1 neurons each

send collateral projections to at least two targets elsewhere

in the brain, whereas in the case of the SUB, such branching

is observed only in a minority of neurons (Bienkowski et al.,

2018; Cembrowski et al., 2018b; Naber and Witter, 1998; Wit-
This is an open access article under the CC BY-N
ter, 2006). This difference raises the possibility that the hippo-

campus uses CA1 and SUB outputs differentially to distribute

information to downstream brain regions.

Although neuronal representations in CA1 have been known

for half a century to show strong spatial selectivity, as ex-

pressed in place cells (O’Keefe and Dostrovsky, 1971; O’Keefe

and Nadel, 1978), data from SUB are scarce and it has re-

mained elusive what SUB adds to the hippocampal computa-

tion. Subpopulations of SUB neurons have broad spatial firing

fields (Sharp, 1997, 2006; Sharp and Green, 1994), of which

some, known as boundary-vector cells, are oriented in parallel

to elongated geometric boundaries (Lever et al., 2009; Stewart

et al., 2013). Vector trace cells fire at given distances and direc-

tions from discrete objects or boundaries, with firing fields that

may outlast the presence of the object or boundary (Poulter

et al., 2020). Yet, other SUB cells encode the animal’s axis of

movement (heading direction) when animals navigate on

elevated multidirectional tracks (Olson et al., 2017). In all tasks

in which SUB neurons have been recorded, they appear to be

more broadly tuned to features of behavior or environment than

neurons in other regions of the hippocampal formation. SUB is

likely to receive navigational input from narrowly tuned place

cells in CA1 (O’Keefe, 1976; O’Keefe and Dostrovsky, 1971);

from grid cells in the MEC and pre- and parasubiculum (Boc-

cara et al., 2010; Fyhn et al., 2004; Hafting et al., 2005); from

head direction cells (Taube and Burton, 1995; Taube et al.,

1990), border cells, and object vector cells (Høydal et al.,

2019; Solstad et al., 2008) in the same regions; and from speed
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cells in the hippocampus and MEC (Kropff et al., 2015). The

specificity of these putative inputs brings up the question of

what the broader representations in SUB add to the output of

the hippocampal formation.

Navigation-tuned cells in the hippocampal formation express

similar types of information in multiple environments. This is in

contrast to neuronal representations in many other brain areas,

where spatial selectivity is apparent only under task conditions

relevant to the brain region, such as in prefrontal cortex (Jung

et al., 1998; Padilla-Coreano et al., 2019; Pratt and Mizumori,

2001), posterior parietal cortex (Nitz, 2006; Whitlock et al.,

2012), primary visual cortex (Goltstein et al., 2018; Saleem

et al., 2018), amygdala (Peck et al., 2014), and nucleus accum-

bens (Lansink et al., 2012; Mulder et al., 2005). Navigational in-

formation in these regions may be derived from representations

in the hippocampus (Remondes and Wilson, 2013; Spellman

et al., 2015), but it remains unclear whether, and how, outputs

from hippocampus would be modified in a task-specific manner

before reaching these diverse regions. Given the potential role of

SUB in distributing hippocampal output towidespread regions of

the brain (Cappaert et al., 2015; Gigg, 2006; O’Mara, 2006), we

hypothesized that, rather than generating de novo representa-

tions, SUB modifies representations from upstream neural pop-

ulations in CA1, presubiculum, and entorhinal cortex to facilitate

decoding by downstream regions during hippocampal-depen-

dent behaviors.

It has been suggested that networks consisting of neurons

that encode multiple stimulus features simultaneously or

conjunctively, using a ‘‘mixed selectivity’’ (MS) code, have

several computational advantages over networks in which neu-

rons respond predominantly to single features (Miller et al.,

1996; Rigotti et al., 2013). Besides a high representational

capacity, networks with high-dimensional coding in individual

neurons have the advantage that a wide span of task-relevant

aspects is accessible to linear classifiers, as the number of clas-

sifications that can be performed by a linear readout grows

exponentially with the dimensionality of the information carried

by the neurons (Fusi et al., 2016). Increasing the level of MS in

SUBmight therefore be amechanism by which the hippocampal

formation makes relevant output more accessible to down-

stream target regions.

With these advantages of MS in mind, we asked if SUB mod-

ifies output from the hippocampus by combining, in individual

neurons, multiple features of the navigation experience in ways

that depend on current task goals. Considering that much of

the output from CA1 is also passed on to SUB, we performed

simultaneous in vivo electrophysiological recordings in these re-

gions in rats performing either random foraging or a spatial nav-

igation task. We compared representations in SUB and CA1 for

three navigational covariates, namely, position (P), head direc-

tion (H), and speed (S). We report that individual neurons in

SUB combine these behavioral covariates more extensively

than their counterparts in CA1 and more strongly during goal-

directed spatial navigation than during free foraging. This coding

scheme was paralleled by more accurate decoding of the navi-

gational covariates from SUB than from CA1, providing regions

downstream of SUB with broad spectra of information even

from limited numbers of SUB output cells.
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RESULTS

Anatomical location of recording electrodes
In order to understand what the SUB adds to the navigational

output of the hippocampus, we performed extracellular record-

ings in CA1 and SUB (Figure 1A). All tetrodes were placed in

the dorsal one-third of each region (see sectioning plane in Fig-

ure 1A). In Nissl-stained coronal sections, CA1 was identified

as the narrow, densely packed layer of small pyramidal cells

that extends from CA2 (with a less compact cell layer and

larger neurons) to SUB (defined as the thicker, more diffuse

layer of medium-sized neurons located dorsomedially to

CA1). Moving away from the septal pole, SUB gradually

widens, extending all the way medially until an additional

granule layer is added ventrally, almost at the midsagittal side

of the hemisphere. This additional layer belongs to the

retrosplenial cortex (RSC; area 29) in the septal part of the

hippocampal formation (RSC in Figure S1) and to the dorsal

presubiculum in more temporal parts of the structure (preSUB

in Figures 1B and S1A). At the septal pole, CA1 continues

medially into the fasciola cinereum (FC in Figures 1B and S1;

Boccara et al., 2015). Recordings from FC were not included

in our study. Recordings from nearby SUB were included if

the tetrodes were more than 50 um away from FC (SUB* in Fig-

ure 1B and Figure S1; see ‘‘Histology and reconstruction of

tetrode placement’’ in STAR Methods).

We isolated 760 putative principal neurons from recordings in

8 rats (see STARMethods; Table S1). Only cells with clear cluster

separation from other background and other neurons were

accepted (Figures S2A–S2C). Among the accepted neurons,

421 were located in SUB and 325 in CA1 (346 neurons in 3

rats, of which 96 in CA1 and 249 in SUB, were recorded in ses-

sions in which CA1 and SUB were recorded in parallel). In SUB,

the recording electrodes were distributed quite evenly along the

proximo-distal axis (from CA1 to FC, RSC, or preSUB), whereas

in CA1, therewas a bias for the electrodes to be positioned inmid

to distal parts of the subfield, i.e., nearer the SUB boundary (only

2 out of 18 tetrodes were located near the proximal end of CA1,

near CA2) (tetrodes 1 and 11 in animal 24101 in Figure S1). How-

ever, the number of neurons recorded was distributed more

evenly along the proximo-distal axis (approximate neuron

numbers in the respective regions: 35 in proximal CA1, 223 in

mid CA1, 49 in distal CA1, 292 in proximal , and 136 in distal

SUB; arbitrary boundaries dividing subfields in three equal

bands; Table S1).

Position coding in CA1 and SUB
With the aim of investigating the neurophysiological properties of

SUB during active foraging and navigation, rats were trained in 2

tasks. First, 5 of the 8 rats were trained in an open field (OF)

foraging task in which rats searched for randomly scattered

cookie crumbs in a dimly-lit 1.5-m-wide square enclosure on a

floor consisting of a black even mat without incisions. A cue

card was attached on one of the walls. Second, all 8 rats were

trained in a spatial task (ST) adapted from Pfeiffer and Foster

(2013) in which the rats alternated between free search and

goal-directed memory-based navigation. The same enclosure

was used as for the OF but the floor mat was removed,



Figure 1. Recording locations in CA1 and

SUB

(A) Left side: Schematic of the hippocampal for-

mation, with the CA1 in red and the SUB in blue.

Right side: Nissl-stained section showing the

arrangement of CA1, with its dense layer of cell

bodies (underneath the dark red line following the

curvature of CA1), and the SUB, where neurons

are more loosely packed (underneath the blue

curved line).

(B) Reconstruction of the tetrode (TT) locations in a

representative animal (no. 21012). A micro-drive

with two parallel rows each of seven TTs (six

recording TTs and one reference TT) was im-

planted along the transverse axis of the hippo-

campus. For unambiguous reconstruction of TT

locations, the brain was sectioned at a 45-degree

angle between the sagittal and coronal planes,

parallel to the rows of TTs. Filled red arrows indi-

cate TT traces near the estimated recording

location (usually at the end of the TT track), and

empty red arrowheads indicate traces of TT tracks

that are visible in this section but are above (or

below) the recording locations. Dashed yellow

lines indicate borders between SUB and neigh-

boring regions (preSUB, presubiculum; FC, faciola

cinerata). For recording locations in SUB that were

dorsal to the FC (labeled with SUB*) or the border

between CA1 and SUB, we included data only

from neurons that could confidently be assigned

to be 50 mm or more away from the border. Scale

bar, 1 mm.
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uncovering a square grid of 1-cm-diameter holes in the floor. The

walls of the arena and their location in the roomwith respect to all

distal landmarks remained constant betweenOF and ST (Figures

S2D and S2E). During the ST, chocolate oat milk was provided

alternatingly at a fixed ‘‘home well’’ and in a randomly selected

well (‘‘random well’’) of the arena (Pfeiffer and Foster, 2013).

The animals memorized the home well location and learned to

navigate back to it straight after consuming the randomly placed

reward (Figure S2D), as reflected in their behavioral latencies

(Figure S2F). Training in OF and SFwas conducted on alternating

sessions.

We first compared the spatial tuning properties of CA1 and

SUB neurons. These analyses were performed on combined

data fromST andOF because nomajor differences in spatial tun-

ing were detected in separate analyses (Figures S3A–S3D). In

agreement with previous studies (Kim et al., 2012; Sharp and

Green, 1994), the average firing rate of principal neurons was

significantly higher in SUB (4.44 ± 0.14 Hz) than in CA1 (1.7 ±

0.12 Hz, p = 4.6e-53, Welch’s test; Figures 2A and S3A). Simi-

larly, as in previous studies (Sharp, 1997, 2006; Sharp and

Green, 1994), CA1 cells had sharply defined firing fields (Fig-

ure 2A; 95% of spikes in CA1 neurons fell into 25.7% ± 1.1%
of the spatial bins), whereas SUB neurons

tended to fire continuously across the

environment (Figure 2A; 95% of the

neuron spikes fell into 56.3% ± 0.7% of

the spatial bins), often expressing some
degree of boundary vector-like bias in activity, which is in line

with earlier findings (Lever et al., 2009; Stewart et al., 2013) (Fig-

ures 2A, S3A, and S5B). The information rate of the neurons, or

their amount of position information per time interval (Skaggs

et al., 1993), was similar in CA1 and SUB (Figures 2B and S5C;

medians and median absolute deviation [MAD] are 0.47 ± 0.27

bits/s in CA1 and 0.42 ± 0.26 bits/s in SUB; p = 0.02, Mann-Whit-

ney U-test), whereas information content, or the information a

neuron’s spikes provide about P (Skaggs et al., 1993), wasmark-

edly smaller in SUB (Figure 2C and S5D; median and MAD for

CA1: 0.84 ± 0.57 bits/spike, for SUB: 0.11 ± 0.16 bits/spike;

p = 1.1e�70, Mann-Whitney U-test).

The difference in information content but not rate between

CA1 and SUB raises the question of what benefits are conferred

by increasing the mean firing rate and therewith sacrificing infor-

mation per spike during the processing step from CA1 to SUB.

One possibility is that SUB, by integrating positional information

over longer timescales, might combine input fromCA1with infor-

mation from other sources (including inputs encoding variables

besides P). With this possibility in mind, we investigated whether

information about other behavioral variables is expressed in

spike trains of SUB neurons.
Cell Reports 35, 109175, May 25, 2021 3
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Figure 2. Difference in position coding in

CA1 and SUB

(A) Example path plots (left) and rate maps (right)

from neurons in CA1 (left column) and SUB. Path

of the animal during the entire session is shown in

gray with emitted spikes overlaid in red. Color bars

to the right indicate firing rate.

(B and C) Frequency distributions showing P in-

formation rate (B) and information content (C) for

all neurons recorded in CA1 (red) and SUB (blue) in

all animals. Dashed line, median of each distribu-

tion.
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Representation of multiple covariates including H and S
in SUB and CA1
Previous studies found that subsets of CA1 and SUB neurons

show some degree of modulation by navigational variables like

head direction (H) modulation and running speed (S). In CA1,

place cells may be tuned to H inside their place fields (Acharya

et al., 2016; Langston et al., 2010; Leutgeb et al., 2000). Weak

H tuning has also been reported for spatially modulated neurons

in SUB (Sharp and Green, 1994). Similarly, place cells in CA1

respond to some degree to running speed, whereas speed tun-

ing has not been reported in SUB to our knowledge (Czurkó

et al., 1999; Kropff et al., 2015; McNaughton et al., 1983).

Based on these observations, we set out to compare quantita-

tively, in the same recordings, the extent to which cells in CA1

and SUB represent navigational covariates besides P, like H

and S. The H tuning curves of the recorded neurons revealed

various degrees of modulation by H, in both CA1 (Figure 3A,

2nd column) and SUB (Figure 3B, 2nd column). Consistent with

previous reports in CA1 (McNaughton et al., 1983; Skaggs

et al., 1993), the information rate in CA1 neurons was lower for

H than for P (Figures 3C and 3D; median and MAD of the CA1

population was 0.47 ± 0.27 bits for P and 0.04 ± 0.04 bits for

H; p = 6.87e�67 Mann-Whitney U-test). In contrast, we found

that in SUB neurons, information rates for H and P were in the

same order of magnitude, albeit they were significantly different

(median and MAD for H: 0.22 ± 0.15 bits/s and for P: 0.42 ± 0.26

bits/s; p = 4.4e�13 Mann-Whitney U-test). CA1 and SUB neu-

rons showed similar levels of H information content (medians

and MAD 0.07 ± 0.06 bits/spike for CA1 and 0.06 ± 0.04 bits/

spike for SUB; p = 0.98 Mann-Whitney U-test).

A similar pattern could be seen for speed information rates and

contents (Figure 3E and 3F). CA1 and SUB neurons had similar

information content for speed (0.07 ± 0.07 bits/spike in CA1

versus 0.04 ± 0.04 bits/spike in SUB), whereas information rates

for speedwere higher in SUB than CA1 neurons (0.04 ± 0.04 bits/

s in CA1 and 0.10 ± 0.10 bits/s in SUB; p = 6.8e�9Mann-Whitney

U-test).

Modeling spike rate with a GLM reveals MS in SUB
Measuring information rate separately for each different covari-

ate (P, H, and S) entails some important limitations. These three

behavioral covariates are strongly interdependent, meaning that

an effect that is selectively tuned to one covariate might manifest

spuriously when measured in relation to a different covariate

(Acharya et al., 2016). This undesirable effect may result in

both false-positive and false-negative tuning outcomes. One so-

lution to this challenge is to use multiple-variable statistical

methods, such as the generalized linear model (GLM). The

GLM considers multiple covariates simultaneously and thus al-

lows the influences on a cell’s activity to be ascribed in a princi-

pled manner to the covariates that provide the strongest

prediction.

Therefore, we extended the analysis by using a Poisson GLM

framework (Hardcastle et al., 2017; McCullagh andNelder, 1989)

to investigate tuning of the neurons to P, H, and S, while account-

ing for any deceptive correlations between the covariates

induced by sampling (ST and OF still combined; Figures S3E–

S3G). Alongside the behavioral covariates (P, H, and S), we
also included two covariates representing basic influences on

neural activity, namely, ensemble activity (E), defined as the Z-

scored spike count summed over all other neurons on the

same tetrode as the cell in question; and the theta phase (T) of

the filtered local field potential (see STAR Methods). These two

covariates were treated as ‘‘internal covariates,’’ as their influ-

ence is exerted only in the local neuronal network and they are

themselves modulated by the animal’s behavior. They were

important, however, for accurately fitting the model to the spike

counts, as they remove a possible bias due to correlation be-

tween P, H, and S and the internal covariates. For analyzing

the functional properties of the two brain regions, we focused

our attention on the behavioral covariates P, H, and S (see

STARMethods). All the covariates (P, H, S, E, and T) were binned

along their respective dimension (303 30 bins for P; and 10 bins

for each H, S, E, and T), and continuity in the predicted tuning

curves was enforced by a smoothness prior (STAR Methods).

All models resulting from specific subsets of the covariates

(ranging from single-covariate models, e.g., only P, to the most

complex model containing all five covariates [PHSET]) were

trained and tested by 10-fold cross-validation for every cell.

Bin size and smoothness were treated as hyperparameters

and selected by optimizing the cross-validated log-likelihood

(LLH) for each single covariate model (Figure S4). For each

neuron, the full-model GLM (PHSET) yielded tuning curves for

P, H, and S (Figures 4A–4C), which qualitatively reproduced

the tuning curve for the data (Figures 4A–4C).

Model selection was performed in a forward stepwise fashion,

starting from single-covariate models and adding one covariate

at a time by using a non-parametric test and a 5% significance

level (see STAR Methods). Except in Figure S3G, models con-

taining internal covariates E and/or T were pooled with corre-

sponding models without this covariate (e.g., neurons best

modeled by the PHT, PHE, and PHTE were counted to the group

of the PHmodel). For every neuron, we determined which model

provided the best fit to the neuron’s firing properties in the data

(Figure 4D), which in turn allowed us to assess model perfor-

mance at the population level (Figure 4E). The proportion of

neurons for which the most complex model (PHS) performed

significantly better than any simpler model was higher for SUB

than CA1 (53.7% in SUB versus 46.5% in CA1, percentages of

each region; Figure 4E; difference, >99.9 percentile of a distribu-

tion of shuffled data in which cells were randomly assigned to

anatomical region). Conversely, the proportion of neurons from

one region best fitted by the PS model was significantly lower

in SUB than in CA1 (25.9% in CA1 and 8.8% in SUB; difference,

>99.9 percentile of a shuffled distribution; Figure 4E). These find-

ings may suggest that both CA1 and SUB cells express high

levels of MS, but the degree of mixing is stronger in SUB. To

confirm that our GLM framework correctly picked up neurons

with combined tuning properties, we simulated synthetic neu-

rons by using inhomogeneous Poisson spike trains that were

either purely tuned to P, H, or S or expressed knownmixed com-

binations of the three. Classifying these synthetic cells with our

GLM showed that the model selection procedure is not prone

to overfitting by including spurious covariates (Figure S4F).

One caveat of themodel selection analysis is that it only allows

us to conclude that a number of CA1 and SUB neurons were
Cell Reports 35, 109175, May 25, 2021 5
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Figure 3. Information rate for H and S is

higher in SUB than CA1

(A and B) Example neurons from CA1 (A) and SUB

(B). Representative firing rate maps (first column;

as in Figure 2), H tuning curves (second column;

polar plots showing firing rate FR as a function of

H), S tuning curves (third column; linear plots

showing firing rate as a function of S), and H versus

S rate maps (fourth column; firing rate color coded

as a function of H and S). Peak firing rates (pFRs)

are indicated for rate maps and H tuning curves. In

the second column, the black curve shows firing

rate, and purple shows occupancy time. Peak

occupancy time (pOT) is indicated.

(C and D) Frequency distribution showing scores

for H information content (in C) and information

rate (in D) across all neurons recorded in CA1 (red)

and SUB (blue). Dashed lines, median of each

distribution.

(E and F) Distribution of S information content (in E)

and information rate (in F) across all neurons re-

corded in CA1 (red) and SUB (blue). Dashed lines

indicate medians.
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modulated by P, H, and S in a statistically significant manner. It

did not inform us about how strong this modulation was. As a

next step, we therefore investigated how strongly each neuron’s

firing rate was determined by either an individual covariate (P, H,

or S) or a combination of them. Using the GLM framework, we

quantified the relative contribution of every single covariate
6 Cell Reports 35, 109175, May 25, 2021
(rSCC) by taking the difference between

the LLH of the selected model and the

LLH of the model with the respective

covariate removed. This term was then

divided by the square root of the sum of

the squares of all differences. The

contributions of covariates not used in

the selected model were set to zero

(see equation in STAR Methods section

‘‘Relative single covariate contribu-

tions’’). rSCC was in many cases

correlated with information rate for the

respective covariate (Figure 4F), although

occasionally there were large differences.

Although the measure of information rate

is biased due to correlations between co-

variates, rSCC is derived from the GLM

framework, allowing us to simultaneously

quantify the contribution of multiple cova-

riates. This leads to a more differentiated

estimate of the contribution of individual

covariates to the cell’s firing rate (Fig-

ure 4F, see rSCC versus information

rate in the two SUB neurons).

At the population level, plotting the

rSCC for CA1 and SUB neurons sepa-

rately (Figure 4G) revealed that CA1 neu-
rons were largely distributed along the axis for P, showing very

little contribution of H and S to their firing pattern, despite the

fairly large number of cells that selected the PHS model in the

above analyses. In contrast, SUB neurons were scattered

throughout the entire space, indicating the differential combina-

tions of the three covariates determining the firing of the neurons.
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(legend on next page)
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Similarly, wide scatter was seen in both proximal and distal SUB

(Figure S5G). These observations suggest that, despite showing

a high level of MS in terms of model selection, CA1 neurons

singled out one covariate—P—that dominated their tuning prop-

erties, whereas SUB neurons more strongly combined multiple

covariates, expressing a conjunctive code. The internal covari-

ates E and T were an important factor for determining the firing

rates of neurons in both regions. E was represented similarly in

both populations, whereas T was the more important covariate

in spike trains of the SUB than of the CA1 population (Figure 4H).

In order to quantify this coding difference between CA1 and

SUB, we introduced a MS score. The MS score is the product

of all rSCCs in each neuron (see STAR Methods section ‘‘Mixed

selectivity score (MS-score)’’). This results in a maximal score for

neurons that have equal contributions of P, H, and S to their firing

rate. The average MS score for SUB neurons was 5.8e�3 ±

7.1e�4, which is one order of magnitude larger than that for

the CA1 neurons, which had an MS score of 3.8e�4 ± 1.2e�4

(Figure 4I; Wilcoxon rank-sum test, p = 6.86e�9). MS scores

were comparable between proximal and distal parts of SUB (Fig-

ure S5H). Thus, in contrast to CA1 cells, SUB neurons integrate

information regarding P, H, and S through a highly mixed-selec-

tive code in which every neuron expresses differential contribu-

tions of the three covariates.

MS in SUB is task modulated
To better understand the function of MS during navigation, we

next compared the neural representations of behavioral covari-

ates between the two tasks (ST and OF). Although tuning to P,

H, and S (Figures S3A and S3B), as well as information rate

and information content (Figures S3C and S3D), Figures S3failed

to show much difference between OF and ST, we hypothesized

that the level of MS in the network is more strongly dependent on

task factors. Using the previously introduced GLM, we found

that, for CA1, the distribution of selected models was similar be-

tweenOF and ST (Figure 5A; no changes inmodel selection were

higher than the 99.9th percentile of a shuffled distribution). How-

ever, the proportion of SUB neurons for which the most complex

model (PHS) performed significantly better than the others

increased fromOF to ST (Figure 5A). Other changes in model se-

lection between OF and ST were not significant; however, the in-
Figure 4. Modeling the data with a generalized linear model (GLM) sho

(A–C) Spatial rate maps and tuning curves for H and S for three example neuron

produced with the GLM (bottom panels labeled with MODEL). Symbols as in Fig

(D) Log-likelihoods (black circles) resulting from fitting the spike train of each neuro

models containing two or more covariates. Models that performed significantly be

across 10 cross-validation folds. Log-likelihoods frommodels containing ensembl

simpler models containing P, H, and/or S (for example PE is collapsed with P).

(E) Bar graphs showing fractions of neurons fromCA1 (red bars) and SUB (blue bar

models were not selected at significantly different frequencies by the two popul

neurons and PHS was selected by 46.5% of the neurons in CA1 as compared

distribution).

(F) Information rate (info rate; top panels) and relative single-covariate contributio

even if all three neurons in (D) select the most complex model (PHS), the rSCCs

animal’s position, whereas the firing of the two SUB neurons is determined by P

(G) 3D plot of the rSCCs of P, H, and S. Each neuron is represented by one datapoi

values for more than one rSCC.

(H) rSCC mean and SEM across the populations of neurons in CA1 (red) and SU

(I) Mixed selectivity score (MS score) defined as the product between rSCC(P), r
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crease from 39.4% to 55.9% of neurons best fitted with the PHS

model was significantly beyond the 99.9th percentile of a distri-

bution of shuffled data (Figure 5A). A total of 2.3% and 1.4% of

the neurons in SUB and CA1, respectively, were tuned to P

only during ST and not in OF. In SUB, 6.9% and 15.4% more

principal neurons were tuned to H and S, respectively, in ST

but not in OF. In CA1, 5.8% of the neurons lost their tuning for

S after transitions from OF to ST (Figure 5B). When considering

tuning to E and T (which were always fitted in parallel to the other

three covariates), it was apparent that the activity in the largest

proportion of SUB neurons (35.6% in OF and 51.6% in ST)

was best fitted by all five covariates (Figure S3E), whereas in

CA1, the largest proportions of neurons (42.5% in OF and

41.5% in ST) were best fitted by a four-covariate model (Fig-

ure S3E), in most cases PHET or PSET (see Figure S3G). The

task change did not affect the overall likelihood of the best-per-

forming model (Figure S3F), indicating that the fitting procedure

performed similarly in both behavioral situations.

The increase in MS in SUB was reflected in the relative contri-

bution of each single covariate to the firing rate of the neurons.

When we plotted the rSCC separately for OF and ST, it appeared

that during the ST condition the SUB datapoints are more

dispersed in the 3D plot, indicating a more equal contribution

of the three covariates to the firing pattern of the cells (Figure 5C).

To quantify this phenomenon, we calculated the MS score intro-

duced before. Taking the product between all rSCC s of the three

covariates showed that, after transitions from OF to ST, there

was a significant increase in MS in the SUB (from 1.3e�3 ±

0.58e�3 in OF to 2.8e�3 ± 0.42e�3 in ST, p = 0.00018,Wilcoxon

rank-sum test). In CA1, the MS score was low under both task

conditions (0.02e�3 ± 0.02e�3 in OF to 0.07e�3 ± 0.01e�3 in

ST, p = 0.47, Wilcoxon rank-sum test, Figure 5D). In summary,

even if there is no obvious remapping between OF and ST

(neither in CA1 nor in SUB), the population decoding improved

in the ST condition.

High decoding accuracy for P, H, and S in SUB
The previous analyses established that a statistical model re-

quires the mix of P, H, and S covariates to best explain the

data and more so in SUB than CA1 and in ST than OF. However,

it is not straightforward to directly translate these results into
ws contribution of P, H, and S to firing rates of individual neurons

s generated from data (top panels labeled with DATA) or from spike trains re-

ure 3. Note minimal tuning to H in the CA1 neuron (pFR, ~0.3 Hz).

n in (A)–(C) with models encoding one covariate—P, H, or S—or with combined

tter than all less-complex models are indicated in red. Error bars indicate SEM

e activity (E) or theta (T) as additional covariates (Figure S3) were collapsedwith

s) selecting the differentmodels. With the exception of the PHS and PSmodels,

ations. PS, however, was selected by 25.9% CA1 compared to 8.8% of SUB

to 53.7% in SUB (difference, >99.9 percentile of a model-selection shuffled

n (rSCC; bottom panels) for the neurons shown to the left in (A)–(D). Note that

indicate that the firing of the CA1 neuron is predominantly determined by the

and H or P and S, respectively.

nt in red for CA1 and in blue for SUB. Note abundance of SUB neuronswith high

B (blue) for all covariates, namely, P, H, S, E, and T.

SCC(H), and rSCC(S). Error bars indicate SEM.
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Figure 5. SUB neurons exhibit more mixed selectivity in the spatial task (ST) than during random foraging in the open field (OF)

(A) Model selection in CA1 (red bars) and SUB (blue bars) for recordings in OF (filled bars) and ST (empty bars). In SUB but not CA1, the population of neurons best

fitted by the PHS model is significantly increased, in response to the task change from OF to ST.

(B) Percentage of neurons that add or remove the covariates P, H, and S after the task change.

(C) rSCC for P, H, and S for each neuron in the OF (left graph) and the ST (right graph) for the CA1 (red datapoints) and the SUB (blue datapoints).

(D) MS score in CA1 (red bars) and SUB (blue bars) in the OF (full bars) and the ST (empty bars). Error bars indicate SEM.
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what can actually be read out from these codes in upstream cell

populations. In order to understand what the large amount of MS

in SUB might add to the hippocampal output, we therefore tried

to decode P, H, and S simultaneously from cell populations in

either CA1 or SUB.

Methodological constrains limited the number of simulta-

neously recorded neurons in SUB (the recording range was three

to five neurons per SUB tetrode). In order to study decoding per-

formance as a function of population size and extrapolate the de-

coding power of the two regions across tasks for a large number

of neurons, we exploited the GLM framework to resample all the

recorded neurons over two concatenated sessions for ST and

OF, respectively (see STAR Methods section ‘‘Resampling of

neurons’’). To attain population sizes large enough for decoding,

we randomly assembled populations of neurons that had not

been simultaneously recorded in the first place. This allowed de-

coding of P, H, and S at the same time. Decoding of all three co-

variates wasmore accurate when using data from SUB than CA1

(Figures 6A and 6B). To assess the significance of this difference,

we shuffled the neural populations with respect to their anatom-

ical origin and computed the differences between two sets of

randomized selections of neurons (ensuring equal probability

to select neurons from the CA1 or the SUB cell population; Fig-

ure S6). This shuffling analysis showed that the difference in de-

coding accuracy deviated significantly from a distribution of

shuffled differences (p < 10e�3) for decoding P, H, and S in

the OF and the ST. Although smaller decoding errors for SUB

than for CA1 were found across all population sizes, these differ-
ences were only significantly different from the differences in a

shuffled distribution for population sizes larger than 100 neurons

for P, larger than 20 neurons for H, and larger than 50 neurons for

S (for population sizes of 5, 20, 50, 100, and 150, respectively,

significance values were, for P: p = 0.66, 0.61, 0.32, 0.005, and

0; for H: p = 0.02, 0, 0, 0, and 0 and for S: p = 0.595, 0.240,

0.042, 0.033, and 0.009).

To better understand the difference in coding in SUB versus

CA1, we also estimated the relative amount of perfectly decoded

bins (PDBs). The PDB is the number of time bins in the time series

for which the decoder settled on the exact bin of P, H, or S where

the animal was in during that time bin. For all three covariates,

namely, P, H, and S, the amount of PDB was higher when using

SUB as opposed to CA1 neurons (Figure 6C; these differences

were significantly different from randomized distributions; Figure

S6A). Figure S7A shows furthermore that in same-length time

windows, the decoder reaches bin size decoding of P, H, and

S in SUB whereas in CA1 it does not. This finding indicates

that, for all three covariates, the neural code in SUB allowed

more accurate decoding than the one from CA1, suggesting

that the code of the SUB is an effective way of transmitting sig-

nals to downstream target regions.

Comparing decoding accuracies across the two tasks showed

that the decoding error for P, H, and S was significantly reduced

in the ST versus OF (Figures 6A and 6B; p < 10e�3 compared to

a shuffled distribution; Figure S6B). Decoding accuracy was

higher in the ST than the OF also when counting the number of

PDBs (Figure 6C). Although this was true for both CA1 and
Cell Reports 35, 109175, May 25, 2021 9
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SUB, overall, the SUB reached a significantly lower number of

decoding errors as well as higher proportions of PDB for P, H,

and S (Figures 6A and 6B; p < 10e�3 in shuffling test of signifi-

cance; Figure S6B). In order to ensure that the improved decod-

ing in the ST did not result from a behavioral bias, we plotted

confusion matrices displaying decoding accuracies for the

different bin identities (Figures 6D and 6E). For H and P, the

confusion matrices did not show any bias toward disproportion-

ally better decoding in certain bin clusters of the data than

others. For speed decoding, however, we observed a bias to-

ward better decoding in the lowest speed bins (0–0.1 m/s).

This bias was present for decoding from CA1 and SUB and for

the OF and ST and might be a result of the disproportionally

high sampling in these bins. Furthermore, even though the

average speed was similar between OF and ST, the distribution

was skewed toward lower and higher values (meaning that in the

ST, the animal would be more often entirely immobile in order to

consume the reward and then run faster to the next well). We

therefore tested if decoding was affected by these differential

speed distributions. By sampling the speed equally for decoding

from OF and ST, we could show that decoding of all three cova-

riates—P, H, and S—was still improved in the ST over the OF

(Figures S7B–S7D).

Decoding was more accurate in the ST for both SUB and the

CA1 data (see Figure 6A). Even if decoding accuracy from SUB

outperforms the one from CA1 data for every behavioral covar-

iate and session type, the improved decoding cannot be solely

attributed to higher levels of MS of SUB neurons. As correla-

tions between behavioral covariates (independent of the neural

spiking) might affect decoding results, we estimated the mutual

information (MI) between P, H, and S. This analysis shows that

MI between behavioral covariates tends to be higher in ST than

in OF (MI in ST versus OF between P and H: 1.25 bit versus

0.58 bit; between P and S: 0.76 bit versus 0.51 bit; between

H and S: 0.01 bit versus 0.02 bit). Because our decoder

maximizes its likelihoods for all three behavioral covariates

simultaneously, the higher MI between behavioral covariates

likely affects decoding accuracy independently of MS coding

in SUB (even if the conjoint covariate activity is nowhere part

of the model). Higher decoding accuracies will therefore be a

combination of higher levels of MS in SUB neurons and a better

readout due to stronger correlated behavioral covariates in the

ST.

One might argue that the superiority of decoding in the SUB

data might be affected by our choice of GLM as a modeling

framework, as the goodness-of-fit of a model always depends

on the choice of the measure used. However, in our data, neural
Figure 6. More accurate decoding of P, H, and S from a fixed number

(A) Decoding of P (top panel), H (middle panel), and S (bottom panel) for differen

smaller in SUB (blue) than CA1 (red) and smaller in the ST (full lines) than in the O

(B and C) Decoding error (B) and percentage of perfectly decoded bins (the numb

roamed at this instance; C) in a population of 150 neurons, shown separately for P

error for position in SUB than CA1. Error bars correspond to 1 SEM over 20 sam

(D and E) Confusion matrices for decoding in CA1 (D) and SUB (E). Columns show

namely, OF (top) and ST (bottom). Within each confusion matrix C, rows identify

data, such that position confusion matrices are 900 3 900 and H or S matrices ar

fraction of time bins for which the decoded covariate bin is i given that the actual

dark-blue colors indicate no overlap between decoded and actual covariate.
activity in CA1 and SUB is equally well modeled by the GLM

when the goodness-of-fit is measured by the difference in the

likelihood of the best model and the average firing rate model

(Figure S7E). Furthermore, when the goodness-of-fit is

measured with explained deviance, the model fit is even better

in CA1 than in SUB neurons (Figure S7F). Additionally, the task

choice does not appear to affect the model performance. We

therefore consider it unlikely that the decoding results should

be merely a consequence of our choice of the GLM as a

modeling framework.

The higher decoding accuracy in SUB is somewhat surprising

given that the tuning curves of SUB neurons are broader and

have a more slowly changing visual appearance than tuning

curves from CA1 neurons (see tuning curves for P, H, and S in

Figures 2 and S5). A possible explanation for this would be

that at the population level, neural activity in SUB is fluctuating

at a shorter spatial scale than in CA1. The visual appearance of

the spatial autocorrelations for all neurons recorded in SUB

and CA1 (Figure S7G) seems to suggest that the two population

vectors change at different scales. Plotting the average popula-

tion vector autocorrelation as a function of distance between

spatial bins (Figure S7H) shows that the peak in SUB is narrower

than that in CA1. The more accurate P decoding from SUB data

might therefore reflect a faster change of the population code

between nearby spatial locations in SUB than that in CA1. This

therefore points to an important role of SUB at integrating multi-

ple information streams from the hippocampal formation and

providing an accurate navigational code to downstream regions.

DISCUSSION

Downstream regions of the hippocampal formation rely on

output from the CA1 and SUB subfields during behaviors when

navigational and mnemonic information is relevant. Although

spatial coding in CA1 has been investigated extensively in place

cells, it has remained elusive how SUB transforms the positional

code. Here, we record neural activity during two different spatial

behaviors and show that SUB provides a mixed selective code,

from which three correlates of navigation—P, H, and S—can

each be decoded at higher accuracies, from a similar number

of neurons, than from the CA1 output. The presence of MS is

consistent with an early report of place and H tuning in the

same SUB cells (Sharp and Green, 1994) but takes the finding

further by quantifying the mixing of three navigational variables

and by showing that decodability is enhanced compared to

that in CA1. Our experiments further demonstrate that MS in

SUB increases with navigational task demands, suggesting a
of cells in SUB compared to CA1

t numbers of resampled neurons. For all three covariates, decoding errors are

F (dashed lines).

er of time bins in which the decoded was the exact same as where the animal

(top panels), H (middle panels), and S (bottom panels). Note smaller decoding

ples of the identities of the resampled cells.

decoded covariates, namely, P (left), S (middle), and H (right); rows show tasks,

decoded covariate bins, wehreas columns identify bins for the covariate in the

e 10 3 10. The color-coded element Cij of the confusion matrix represents the

covariate bin was j. Bright-yellow colors indicate a maximum overlap, whereas
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behaviorally dependent information transfer to downstream

regions. The activity of individual SUB neurons, which are infor-

mative on a broader spatial scale (and consequently, a longer

temporal scale) than CA1 cells, may represent an integration of

inputs fromCA1with information from other areas. In the present

work, the combination of covariates into a mixed representation

is demonstrated for three navigational parameters, namely, P, H,

and S. However, it has been shown that hippocampal neurons

respond also to other covariates like odors (Dusek and Eichen-

baum, 1997), texture (Wood et al., 2000), and time (Eichenbaum,

2017; Fortin et al., 2002; Hampson and Deadwyler, 2003; Kesner

et al., 2002). This raises the possibility that SUB neurons

combine a wide range of covariates, resulting potentially in a

behavior-dependent mixed code for retrieval of a broad spec-

trum of experiences in downstream regions.

In an information theoretical analysis, Kim et al. (2012) showed

that SUB is well suited to transmit information about the animal’s

position by using fewer neurons than the CA1 region. We show

here, with experimental data, that we can indeed decode P at

a higher accuracy from SUB data than from CA1 data, when

the number of cells is the same. A similar enhancement was

seen in SUB for decoding H and S. For P, decoding can also

be extremely accurate in CA1 when a high number of neurons

is available (Pfeiffer and Foster, 2013; Wilson and McNaughton,

1993), but it is unclear if the density of connectivity to distant

downstream regions is high enough to integrate over such large

arrays of inputs. As SUB is the major recipient of CA1 output

(Cappaert et al., 2015), projection density to this region might

allow SUB to integrate over a large array of neurons in order to

translate the sparse code from CA1 into a code that can be de-

coded accurately from a lower number of neurons at the next

stage. Neurons in CA1 have been shown to combine different

behavioral covariates in tasks for which multiple factors, such

as olfactory, tactile, and positional cues, are salient to the animal

(Komorowski et al., 2009). This type of MS has high similarities

with later defined non-linear MS in other systems (Fusi et al.,

2016; Rigotti et al., 2013). In contrast, the SUB neurons we

show in the present study are highly mixed-selective even

in situations in which the cognitive map is primarily concerned

with representing spatial parameters. The GLM seems to be

picking up both non-linear and linearMS. Although themodel se-

lection process appears to be sensitive to even small contribu-

tions of different covariates to the firing rate of the neurons

(non-linear mixing), the MS score is sensitive to the degree at

which a given covariate modulates the firing rate (linear mixing).

SUB neurons appear to combine the different covariates by

extensive linear mixing, allowing it to broadcast the hippocampal

output in a manner that is complementary to CA1 and may facil-

itate efficient readout in distant brain areas.

Although P, H, and S are represented in both CA1 and SUB

neurons, the combinatorial expression of those variables was a

lot more common in SUB neurons. MS neurons have previously

been found in a number of cortical and subcortical brain areas

(Asaad et al., 1998; Freedman and Assad, 2009; Hardcastle

et al., 2017; Meister et al., 2013; Rigotti et al., 2013; Rishel

et al., 2013), including the hippocampal areas CA1 and CA3

(Acharya et al., 2016; McKenzie et al., 2014; Wood et al.,

2000). Here, we provide additional evidence that CA1 neurons
12 Cell Reports 35, 109175, May 25, 2021
encode multiple variables simultaneously, but we show further

that representations in this subfield are dominated by P, whereas

other navigational covariates have a less predominant influence

on the firing rates. So even if from the perspective of the model

selection process, MS exists in both CA1 and SUB, SUB dis-

plays a more evenly mixed code, as expressed in the MS score.

Our recordings in the ST further show that neurons in SUB

change their level of MS depending on the task in which the an-

imal is involved. Although it has been observed that SUB neurons

change their strength of tuning to movement direction depend-

ing on the animal’s behavior (Olson et al., 2017), we show here

that task-dependent changes in tuning strength, in environments

with high visual similarity, are not limited to direction (H in our

case) but also encompass S and P. Higher cortical areas like

the prefrontal and the posterior parietal cortex have previously

been shown to adapt their mixed selective neural response to

different task demands (Mante et al., 2013; Parthasarathy

et al., 2017; Raposo et al., 2014; Stokes et al., 2013). The present

findings suggest that, in the hippocampal formation, navigational

output is modified by increasing the level of MS through a

processing step in SUB. This is accompanied with improved de-

coding accuracies in both the OF and the ST. As the decoding

accuracies in the ST also increase when compared to OF for

CA1 data, these improvements cannot be explained solely at

the level of neuronal representation but likely result from a com-

bination of increased MS and a higher correlation between

behavioral covariates. In concrete terms, this means that in

SUB, in which H and S are highly expressed in the firing patterns

of the cells, these covariates might help improve decoding accu-

racy for P and vice versa. This likely serves a mechanism for

downstream regions to obtain access to a broad spectrum of

hippocampal information when it is behaviorally relevant. How-

ever, although mixed-selective coding of P, H, and S proved to

be effective at predicting variation on these variables, we cannot

claim that these variables constitute the only neural code of SUB.

The models compare only the covariates that are put into them.

As SUB has been shown to be important for learning and mem-

ory (Cembrowski et al., 2018a; Morris et al., 1990; Roy et al.,

2017), it is likely that its activity relates also to behavioral or

cognitive variables that were absent from our analysis of naviga-

tional behavior.

Previous theoretical work has shown that mixed-selectivity

coding schemes offer certain computational advantages over

single-variable selectivity. When multiple covariates are com-

bined in various quantities in the population of neurons projec-

ting to a downstream target region, a downstream neuron can

linearly combine an arbitrary subset of the inputs in order to

reconstruct the value of a single covariate (Fusi et al., 2016;

Ganguli and Sompolinsky, 2012). This means that, with no

need for precise prepatterned connections, all the information

can be transmitted, allowing downstream regions to integrate

different covariates without having to repattern connections.

Keeping in mind that neurons from SUB may consist of geneti-

cally compartmentalized subpopulations with each projecting

to only a few selected target areas (Bienkowski et al., 2018;

Cembrowski et al., 2018b; Naber and Witter, 1998; Witter,

2006), the mixed code from SUB may be specifically tailored to

ensure that a wide range of covariates computed in the
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hippocampal formation is accessible to distant projection areas,

despite the limited number of SUB cells that may project there.

Although the widespread projections from CA1 provide position

information to a large array of downstream areas, the SUB output

ensures the inclusion of a broader spectrum of task-relevant in-

formation in the hippocampal output, which is encoded in ways

that can be integrated efficiently by downstream target regions.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Data were collected from eight male Long Evans rats, which were experimentally naive and 3–5 months old (350–600 g) at the time of

implantation. The rats were group housed with 3–8 of their male littermates prior to surgery and were singly housed in large Plexiglas

cages (453 443 30 cm) thereafter. The rats were kept on a 12 h light/12 h dark schedule, and humidity and temperature were strictly

controlled. The experiments were performed in accordance with the Norwegian AnimalWelfare Act and the European Convention for

the Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes. All experiments were approved by the

Norwegian Food Safety Authority.

METHOD DETAILS

Electrode implantation and surgery
Tetrodes were constructed from four twisted 17-mm polyimide-coated platinum-iridium (90%/10%) wires (California Fine Wire). The

electrode tips were plated with platinum to reduce electrode impedances to between 120–300 kU at 1 kHz.
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Anesthesia was induced by placing the animal in a closed Plexiglas box filled with 5% isoflurane vapor. Subsequently, the animal

received a subcutaneous injection of buprenorphine (0.03 mg kg�1), atropine (0.05 mg kg�1) and meloxicam (1.0 mg kg�1) and was

mounted on a stereotactic frame. The animal’s body rested on a heat blanket to maintain its core body temperature during the sur-

gical procedure. Anesthesia wasmaintainedwith isoflurane, with air flow at 1.0 liters/min and isoflurane concentration 0.75%–3%, as

determined according to breathing patterns and reflex responses.

The scalpmidline was subcutaneously injected with the local anesthetic lidocaine (0.5%) prior to incision. After removal of the peri-

ost, holes were drilled vertically in the skull, into which screws (M1.4) were inserted. Two screws positioned over the cerebellumwere

used as the electrical ground. Craniotomies were drilled anterior to the transverse sinus. Subsequently, the animal was implanted

with either a hyperdrive containing 14 independently moveable tetrodes (seven animals), or a microdrive, containing a single bundle

of eight tetrodes. Hyperdrive implants were always on the left side. Hyperdrive tetrodes were implanted perpendicular to the long axis

of the HPC (at a 45 deg angle) between�5.5 to�5.7 mm AP and 1.2 to 1.8 ML. Each tetrode was immediately advanced by 940 mm.

Microdrive tetrodes were inserted in the right HPC at�6.9 AP (from right sinus) and 2.0ML. The tetrodeswere immediately inserted to

a depth of 1.5 mm. Implants were secured with dental cement (Meliodent). 8–12 h after the beginning of the surgery, the animal was

treated with an additional dose of buprenorphine (0.03 mg kg�1).

Recording procedures
Over the course of 1–3 weeks, tetrodes were lowered in steps of 320 mm or less, until high-amplitude theta-modulated activity ap-

peared in the local field potential at a depth of approximately 2.0mm. In hyperdrive experiments, at least one of the tetrodeswas used

to record a reference signal from white matter areas. The drive was connected to a multichannel, impedance matching, unity gain

headstage. The output of the headstage was conducted via a lightweight multiwire tether cable and through a slip-ring commutator

to a Neuralynx data acquisition system (Neuralynx, Tucson, AZ; Neuralynx Digital Lynx SX, for all hyperdrive-implanted animals) or via

a counterbalanced lightweight multiwire cable to an Axona acquisition system (Axona Ltd., Herts, UK, for the one microdrive-im-

planted animal). Both cables allowed the animal to move freely within the available space. Unit activity was amplified by a factor

of 3,000–5,000 and bandpass filtered 600–6,000 Hz (Neuralynx) or 800–6,700 Hz (Axona). Spike waveforms above a threshold set

by the experimenter (50–80 mV) were timestamped and digitized at 32 kHz (Neuralynx) or 48 kHz (Axona) for 1 ms. In some Neuralynx

recordings, the raw signals were also recorded (32 kHz). Local field potential (LFP) signals were recorded from one per tetrode for the

hyperdrives and one in total per Axona microdrive. LFP signals were amplified by a factor of 250–1,000, low-pass filtered at 300–

475 Hz and sampled at 1,800–2,500 Hz. The LFP channels were recorded referenced to the ground screw positioned above the an-

imal’s cerebellum (Neuralynx andNeuropixels) or against an electrode from onemicrodrive tetrode (Axona). For Neuralynx and Axona

recordings, LEDs on the headstage were used to track the animal’s movements at a sampling rate of 25 Hz (Neuralynx) or 50 Hz

(Axona).

Behavioral procedures
The rats were food restricted, maintaining their weight at a minimum of 90% of their free-feeding body weight, and were food

deprived 12–16 h before each training or recording session. During the 3–6 weeks prior to surgery and testing, the animals were

trained to find the wells filled with chocolate oat milk and alternate between targeted search and direct run toward the home well

(ST). When animals achieved a success rate higher than 90% in the ST they were also introduced to random foraging in the open

field (OF) (approximately 1 to 1.5 weeks prior to implantation). The arenawas a 1503 150 cm square box with a black floormat during

the OF and a rubber-spray covered plastic plate with 37 small hemisphere incisions of 1 cm diameter arranged in a regular lattice. A

cue card (a white A4 paper) on one of thewalls indicated orientation. The two environments were located in the exact same placewith

all distal cues constant and surrounded by the same 50-cm-high black walls. As a reward, vanilla or chocolate biscuit crumbs were

randomly scattered in the OF condition and in the ST, chocolate oat milk was provided via the wells in the floor. Curtains were not

used, and abundant visual cues were available to the foraging rat. Between sessions in the OF and ST, the rat was placed next to the

arena on an elevated flowerpot lined with towels.

Each recording day consisted of two OF and two ST sessions of each roughly 30min. The ST was run such that all 36 randomwells

had to be visited at least once, resulting in 36 to 38 home run trials. Care was given that all the arena floors and walls were clean prior

to beginning each recording. Data from multiple sessions of the same type was concatenated for analysis purposes. Recordings

were generally performed during the dark phase of the 12 h/12 h light cycle.

Histology and reconstruction of tetrode placement
Rats were anesthetized with isoflurane (5%) and then received an overdose of sodium pentobarbital. They were subsequently

perfused intracardially with saline followed by 4% formaldehyde. The brains were extracted, stored in 4% formaldehyde to be later

frozen and cut in coronal sections (animals 20360, 22295, 23783, 24101 and 24116) and para-coronal sections (animal 20382, 21012

and 22098; sections were 45 degrees offset of coronal and sagittal sections in order to align with the angle of drive implantation).

Sections of 30 mmwere subsequently stained with cresyl violet (Nissl) and the relevant parts of CA1 and SUBwere collected for anal-

ysis. For hyperdrive implants, all tetrodes from the 14-tetrode bundle were individually identified from digital photomicrographs by

comparing tetrode traces from successive sections.
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The depth of the recording sites was determined post hoc by comparing the deepest visible electrode trace in the tissue with the

distance the electrodes were moved between the recording day and the day the animal was perfused. E.g. in Figure 1B tetrode 5 is

visible in two images: the leftmost and themiddle image in the second row. The track in themiddle image, indicatedwith an empty red

triangle (second triangle from the left), is the lowest point in the brain sections where the electrode track could be observed. Between

the day the animal was perfused and the last day a neuron had been recorded on tetrode no. 5 the electrode had beenmoved 270 mm.

We therefore assume that the recording sites for this electrode had been approximately 270 mmabove this point. This is located in the

proximal SUB which at this proximo-distal level extends above the CA1 cell layer. For tetrode no. 12 in animal 20382 the electrode

was 100 mm above the recording end point and in animal 20360 the last recordings of tetrodes 8, 9 and 11 have been 100, 210 and

300 mm above the location of the electrode-tip on the day of perfusion. For four-tetrode microdrives, the tetrode bundle as a whole

was localized with a similar method.

In order to approximate the anatomical distribution of the recorded cells along the proximo-distal axis, the respective regions were

subdivided into proximal, middle and distal CA1 and proximal or distal SUB, respectively. The boundary between the respective

subregions was approximated by dividing the region in every section into three or two (for CA1 or SUB, respectively) equally large

subregions (see black dashed lines in sections of Figure S1).

QUANTIFICATION AND STATISTICAL ANALYSIS

Spike sorting and single-unit selection
Spike sorting was performed offline using manual cluster cutting methods with MClust (A. D. Redish, http://redishlab.neuroscience.

umn.edu/MClust/MClust.html). Spike rate autocorrelation and cross-correlation were used as additional tools for separating or

merging spike clusters. Single units were discarded if more than 0.5% of their inter-spike interval distribution was comprised of in-

tervals less than 2 ms or if they had a mean spike rate less than 0.5 Hz. Additionally, interneurons were separated and excluded from

the dataset by removing clusters with narrow waveforms and high firing rates during manual spike sorting.

Tracking, rate maps and tuning curves
Animal position was estimated by tracking the LEDs or reflective markers mounted on the implant. Only time epochs in which the

animal was moving at a speed above 2 m s�1 were used for spatial analyses.

To generate 2D rate maps for the open-field arena, position estimates were binned into a 5 3 5 cm square grid. The spike rate in

each position bin was calculated as the number of spikes recorded in the bin, divided by the time the animal spent in the bin. The

resultant 2D rate map was smoothed with a Gaussian kernel with s = 1.5 bins.

The animal’s head direction was determined from the relative positions of LEDs or reflectivemarkers on the implant. Head direction

tuning curves were calculated by binning the head direction estimates into 6� bins. The spike rate in each angular bin was calculated

as the number of spikes recorded in the bin divided by the time the animal spent in the bin. The resultant tuning curve was smoothed

with a Gaussian kernel with s = 1 bin, with the ends of the tuning curve wrapped together.

Spatial correlation across session type
For the spatial correlations across session types (i.e., spatial memory task (ST) versus open field (OF) the data from open field and

foster maze were concatenated, respectively. Half of the session was chosen by taking 5 minutes intervals of the data which then

were shifted forward n times with 30 s intervals. For each shifted sub-portion of the data, the rate map was calculated and correlated

with the other half of the data. The number of shifts needed to get a stable value was determined in a saturation process where for

every cell increasing number of shifts were used until three consecutive values of the correlation were below 0.5 standard deviations.

Calculating information rate and information content
Information rate (Irate) and information content (Icontent) were calculated as described in Skaggs et al. (1993). Briefly, every covariate

space was binned (900 bins of 5 X 5 cm for position, 10 bins for head direction and 10 bins for speed) and the neurons spikes were

allocated to the respective bin the animal was occupying while they were emitted. The total number of spikes in every bin was then

divided by the total session time to receive lðxÞ, the average firing rate in bin x. Using l, the mean firing rate of the neuron across the

entire session and P(x), the probability of the animal to occupy bin x, information rate for each neuron across the entire session was

calculated by:

Irate =

Z
x

lðxÞlog2

lðxÞ
l

PðxÞdx

To calculate information content per spike, Irate was divided by the average firing rate of the neuron across the entire session l.

Icontent =
Irate
l

e3 Cell Reports 35, 109175, May 25, 2021

http://redishlab.neuroscience.umn.edu/MClust/MClust.html
http://redishlab.neuroscience.umn.edu/MClust/MClust.html


Article
ll

OPEN ACCESS
In order to ensure that the information values are minimally affected by any biases, we subtracted from all information measures the

mean of the value obtained for the same measure for 100 shuffled spike distributions. The values reported in the text are with these

biases removed, although our results do not qualitatively change if we do not remove the bias.

Preparation of the data for the Poisson GLM
Spike time stamps obtained from the spike sorting procedure were binned using bins of length dt = 20 ms to get a spike count train

vector n= fnðtÞgTt = 1 per each cell, where n(t) is the spike count in time bin t, while T is the total number of time bins. The behavioral

covariates taken into account are:

P xy-position of the rat on the horizontal plane;

H head direction of the rat on the horizontal plane;

S running speed of the rat;

while the internal covariates consist of:

T theta phase, i.e., the phase of the band-pass filtered (5 to 12 Hz) and Hilbert-transformed local field potential.

E ensemble spike signal, defined as the z-scored sum of the spike counts of all neurons simultaneously recorded at the same

tetrodes.

All covariates were interpolated at the centers of the time bins to achieve the same temporal resolution of the spike counts. By

means of an optimization procedure over the entire population of neurons (see section Hyperparameters optimization) we chose

to bin each covariate C in to NC bins. Finally for each covariate C in each time bin t we built a binary state vector XCðtÞ of length
NC, with entries XC

i ðtÞ= 1 if the animal behavioral state at time t fell in the i-th bin for the covariate C, while XC
i ðtÞ= 0 otherwise. Unless

explicitly stated the OF and ST sessions were concatenated.

Poisson GLM
We adopted a Poisson GLM to explicitly model the stochastic response of each neuron to the covariates C. The choice of a Poisson

random component as used in Hardcastle et al. (2017) is further motivated in subsection ‘Poissonian spiking’. The models M we

consider, are combinations of behavioral and internal covariates C = P, H, S, T, E. For a given model M the probability of recording

k spikes in time bin t of length dt is Poissonian:

Prob
�
k
���XCðt��

C˛M
�
bC
�
C˛M

�
= exp

�� FR
��

XCðt��
C˛M

�
dt
� �FR��XCðt��

C˛M
�
dt
�k

k!
(Equation 1)

where FRðfXCðtÞgC˛MÞ is the expected firing rate in time bin t, and

FR
��

XCðt��
C˛M

�
= exp

 X
C˛M

X
i

bC
i X

CðtÞi
!,

dt (Equation 2)

depends on the behavioral/internal state vectors XC in time bin t and the vector of predictors bC for all covariates C˛M. The predic-

tors are estimated by the learning procedure explained in section ‘‘Learning.’’

Poisson spiking
We selected the Poisson distribution to fit the stochasticity of the firing process after explorative analysis of our data and rigorous

testing. First, we observed that the spiking data are not binary for time bin lengths dt R 1 ms. This indicated that the Bernoulli dis-

tributionmay not be a suitable choice. Second, we verified that the inter-spike-interval (ISI) distribution is well fitted by an exponential

up to 60 ms (the deviations at 1-2 ms can be attributed to the refractory period). The ISI distribution expected for Poisson firing is

indeed exponential.

In addition, we looked at the Fano Factors of the spike count N for each cell, defined as:

PFano FactorðNÞ = varianceðNÞ
meanðNÞ (Equation 3)

This analysis indicated that the variance(N) versus mean(N) plots are well fitted by the line that bisects the first quadrant of the co-

ordinate system for time bin lengths dt R 40 ms. The coefficient of determination of the fit R� square is an indication of how

much the spiking process deviates from a homogeneous Poisson process, for which a Fano Factor of 1 is expected in the long run.

Notice that the Poisson GLM in Equation 1 is not a homogeneous Poisson process (the firing rate of Equation 1 depends on the

covariates which vary in time), it becomes homogeneous Poisson once the covariates in Equation 1 are fixed. We used the asymp-

totic distribution of the Fano Factor for the homogeneous Poisson (Eden and Kramer, 2010) to test how poissonian the spike counts

are at fixed covariates. We run the test after conditioning the spike counts on the covariate position in a 30 times 30 grid superim-

posed to the recording box. The number of position bins was optimized for this test and bins with occupancy shorter than 250 ms

were excluded by this analysis. The test with 5% significance level resulted in an average fraction of position bins rejected by cell of

0.0589 ± 0.0009. Finally, instead of conditioning on position, we conditioned on time, by testing the Fano Factor of the spike count in

500 ms time windows. The conditioning in time is motivated by slow varying covariates which enforce to the firing rate a different
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timescale from the spiking timescale. This approach resulted into an even smaller average rejection rate, suggesting that position

may not be the only covariate modulating the activity of this cells. The average fraction of 500 ms time windows in which the Poisson

hypothesis has to be rejected with a 5% confidence is 0.0152 ± 0.0002.

Testing performance of GLM framework with synthetic cells
We simulated pure position, head-direction and speed tuned inhomogeneous Poisson spike trains and mixed combinations of the

three to validate the performance our GLM framework.

Learning
In order to determine the selectivity of a neuron to the covariates C = P, H, S, T, E, given the recorded spike count train vector k and

the vectors of covariates XCðtÞ in each time bin t, we optimized the predictors bCi of the Poisson GLM in Equation 1 for eachmodelM
to minimize the cost function:

L

"�
bC
�
C˛M

���XCðtÞ�
C˛M;g;k

�
= �

X
t

lnProb
�
kðtÞj�XCðtÞ�

C˛M;
�
bC
�
C˛M

�
+
1

2

X
C˛M

gC
X
i

�
bC
i � bC

i�1

�2
(Equation 4)

such that the learned parameters are fb CgC˛M = argminfNgC˛ML½fbgC˛M
���fXCðtÞgC˛M;g; k�. The first term in the loss function of

Equation 4 is the negative log-likelihood of the spike count train vector k, while the second term is a penalty on large differences

in parameters between nearest neighboring covariate bins and therefore enforces smoothness in the model predicted tuning curves.

The smoothness hyperparameter gC controls the strength of the smoothness penalty for the covariate C and was optimized a priori

on the entire population of neurons, as explained in section Hyperparameters optimization. The minimization of the function

L½fbgC˛M
���fXCðtÞgC˛M;g;k� in the parameter space was performed using the MATLAB minunc function. The learned parameters

b were used for estimating model performance, constructing model predicted tuning curves (see section Tuning curves predicted

by the model) and decoding.

In addition to the models containing the behavioral/internal covariates we also fitted a model with only the bias term ðFRðb0Þ =

expðb0Þ =dtÞ, which we term the average firing rate model. Model performance for each cell was assessed in a 10-fold cross-valida-

tion setup: of the whole spike count train one tenth was held out as test set, while the rest constituted the training dataset, on which

parameters were learned. The difference in log-likelihood of the test spike count train between the model M and the average firing

rate Poissonmodel (also learned on the training data) was taken and then divided by the number of time bins in the test set. The cross-

validation procedure was repeated for 10 non-overlapping test sets, resulting in 10 values of the log-likelihood increase over the

average firing rate model per time bin fLLHiðMÞg10i = 1 . Their average across cross-validation folds LLHðMÞ= 1
10

P
i

LLHiðMÞ was re-

garded as the main indicator of model M performance.

Hyperparameters optimization
For optimizing the hyperparameters (Figure S4), number of bins NC and smoothness hyperparameter gC for each covariate C = P, H,

S, T, E, we computed the model performance LLH(C) on a grid in the hyperparameters space (NC = {2,5,10,20,30,40,50,60,70}, gC =

f0:08; 0:8 ;0 ;80 ;800gÞ, for each of the single covariate model M=C separately and for each cell independently. The values of

LLH(C) at fixed hyperparameters were then averaged over all cells in the population, and the values of the hyperparameters at its

maximum on the grid were taken as candidate optimal hyperparameters. To compare model performance at the maximum to its

neighboring vertices on the grid in the hyperparameters space, we employed the one tailed Wilcoxon signed-rank test between

the population vector of LLH(C) at the maximum and the same vector in its nearest neighbors on the grid. The values of the hyper-

parameters including the smallest number of covariate bins NC, whose corresponding vector of average normalized log-likelihoods

was not significantly different from the maximum (p > 0.05 in the Wilcoxon signed-rank test), were chosen as new candidate optimal

hyperparameters. This procedure was then iterated until all neighboring models with smaller numbers of covariate bins were signif-

icantly different in model performance according to our test. The hyperparameters were then held fixed during learning on the entire

population of neurons and for all models.

The optimal number of bins and smoothness hyperparameters are respectivelyNP = 30 (along each edge of the squared enclosure,

900 in total) and gP = 8 for position, NH = 10 and gH = 800 for head direction, NS = 10 and gS = 800 for speed, NT = 10 and gT = 800 for

theta, NE = 20 and gE = 80 for ensemble activity.

Model selection
Learning was performed for all 31 modelsM, i.e., the single covariate models P,H, S, E, T, the two covariate models PH, PS,HS, PE,

PT..., all the three, the four covariate models up to the five covariates model PHSET. The learning method is described in section

‘‘Learning.’’ We adopted a forward model selection procedure (Hardcastle et al., 2017) aiming at selecting the model with the highest

performance and the smallest number of covariates. As a starting point we used the average firing rate model (only bias). So, we

considered the model with the largest performance LLHðMÞ among the single covariate models, e.g., M1 = S. The vector of log-

likelihood increases over the average firing rate model fLLHg10i =1 across cross-validation folds for the selected single covariate model

M1 was compared to the same vector for the average firing rate model (a vector of zeros), by means of the one-tailed Wilcoxon
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signed rank test. If significantly different (p<a in the one tailed Wilcoxon signed rank test), then the single covariate model became

the new candidate selected model, otherwise the average firing rate model was selected and the search in the model space inter-

rupted. In the former case, the model with the largest LLHðMÞ among the two covariate models, including the covariate selected in

the former step, e.g.,M = PS;HS;TS;SE, was considered, e.g.,M2 = PS. In full analogy with the previous selection step, the vector

of log-likelihood increases over the average firing rate model fLLHg10i = 1 across cross-validation folds for the single covariate model

M1 was compared to the same vector for the two covariate modelM2, by means of theWilcoxon signed-rank test. If the mean of the

vector for M2, LLHðM2Þ, was significantly larger than the mean of the vector for M1, LLHðM1Þ,(p<a in the one tailed Wilcoxon

signed-rank test) the model M2 was identified as candidate model. If not significant the search in the model space was interrupted

and the single covariate model M1 became the selected model. The forward search was carried on in this fashion by including one

covariate at each step to the candidate selected model, up to the selected model resulting in a not significantly different outcome in

the Wilcoxon signed-rank test. We checked the sensitivity of the model selection procedure to the significance level a.

Splitting between external and brain internal variables
In the current study wewere interested in howCA1 and SUB neurons compare in their mapping of navigational covariates P, H and S.

The covariates E and T (ensemble firing and theta) were treated as brain internal states which helped fitting the model but did not

directly explain the behavior of the animal. We therefore used them as auxiliary variables which helped to get the best possible fit,

by on the one hand ‘explaining away’ spikes that otherwise would have been attributed to position, head direction or speed and

on the other reducing the level of noise in the spike trains such that other spikes could be better attributed to the correct navigational

covariate. For example, it might be conceivable that a neuron has a higher firing rate always when the the other neurons at the tet-

rodes (E) have a high firing rate because the neuron is not well enough isolated from the ensemble. In a scenario in which the

ensemble responds to speed, including E in our model will attribute some spikes of that neuron to ensemble firing and less to the

speed response. For an extended graph with all models displayed separately, see Figure S3G.

Relative single covariate contributions (rSCC)
The model selection procedure is highly sensitive to individual covariates. Even very small influences of covariates on the firing rates

of the neurons are classified as significant. In subsequent analyses we therefore investigated how strongly each neuro�ns firing rate is

determined by either an individual covariate. Wemeasured the contribution of a single covariate C included in the selectedmodelM�a

in explaining the firing rate of a neuron in terms of the difference in model performance between the selected model and the model

resulting from removing the covariate C from the selected model,M�a;C. We therefore defined the rSCC ðCÞ for covariate C˛M�a as

LLHðM�aÞ � LLHðM�a;CÞ normalized by ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
C˛M+

LLHðM�aÞ � LLHðM�a;CÞ2
s

where LLHðMÞ is the normalized log-likelihood of themodelMon the held-out data averaged across cross-validation folds ofPHS,C

refers to the two-covariate model that does not include the covariate C. Single covariate contributions of covariates not included in

the selected model were set to zero.

Mixed selectivity score (MS-score)
The MS-score was defined as the product of rSCC of position, head direction and speed:

MS =
Y

CεfP;H;Sg
rSCCðCÞ

The product of rSCC is ameasure that maximizes at the point where different covariates contribute equally to the firing rate of the cell.

As a measure of mixed selectivity, it was therefore preferred over the sum of rSCC or the maximal Euclidean distance from zero as

both of these options would be similar for two neurons with either a large contribution of an individual covariate and small contribu-

tions the two other, or similarly large contributions of the three covariates.

Tuning curves predicted by the model
Model predicted tuning curves were constructed on the basis of the model including all covariates,M = PHSTE, whose parameters

bwere learned as explained in section ‘‘Learning.’’ A tuning curve is the average firing rate of a neuron as a function of relevant stim-

ulus parameters, in our case covariate bins; for the model predicted tuning curves the average is taken over the distribution of the

other covariates. In case of uniform sampling and assuming independence between covariates, the expected value of the firing

rate in the i-th bin of covariate C� for Poisson neurons as defined in Equation 4 is:
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Goodness of fit
In order to assess the goodness of fit of the GLM, in addition to LLH(M), the average of the explained deviance across cross vali-

dation folds exDðMÞ was estimated (Brown et al., 2002; Guisan and Zimmermann, 2000; Kraus et al., 2015; Pillow, 2009). The ex-

plained deviance of model M in cross-validation fold i is defined as exDiðMÞ= LLHiðMÞ
LLHiðSÞ where S is the so-called saturated model, a

maximum-likelihood PoissonGLMoptimized on the test data (in practice the firing rate FR in Equation 2 is set equal to the spike count

k(t) in each time bin t). Then ex DðMÞ= 1
10

P10
i = 1

exDiðMÞ quantifies the fraction ascribable to model M of log-likelihood increase with

respect to the average firing rate model of the best Poisson model.

Testing for significance in model selection between CA1 or SUB and between OF or ST
For Figures 4E and 5B we used a shuffling procedure to test whether the type of model selected for a proportion of neurons was

significantly affected by the anatomical location of the neurons or the task in which the neurons were recorded. For the pair of con-

ditions being compared (either CA1 versus SUB, or OF versus ST), each neuron was randomly assigned to one of the two conditions

with equal probability, and for each model (e.g., PH or PHS) the absolute difference was calculated between the proportion of neu-

rons selecting it in the two conditions. This process was repeated 10000 times, yielding a distribution of shuffled differences for each

model. If the actual difference between the two groups was outside the 99.9th percentile of 10000 such shuffled differences, we

considered the difference for a given model (e.g., PH or PHS) to be significant.

Decoding
We exploited the Poisson GLM framework defined in section Poisson GLM for decoding simultaneously position P, head direction H

and speed S. We employed the model including all behavioral covariates P, H, S and the internal covariate theta T. Given the learned

parameters bC with C = P;H;SWI, the vectors of spike counts kn, for cells n = 1,.N and the internal observed covariates XIðtÞ, the
decoded covariates at time t, fXCðtÞgC˛PHS, were chosen as those maximizing the objective function:

G
��

XCðt��
C˛PHS

��kn
N
n= 1;X

Iðt�� = X3s
s=�3s

KðsÞ
XN
n=1

og Prob
�
knðt + sÞ���XCðt��

C˛PHS;X
IðtÞ;�bC

�
C˛P;H;SWI

�
: (Equation 6)

In Equation 6 K(s) is a Gaussian kernel of zero mean and standard deviation s, while Probðknðt + sÞ
���fXCðtÞgC˛PHS;XIðtÞ; fbCgC˛P;H;SWIÞ

is the probability of observing the spike count kn at time t + s, given the covariatesfXCðtÞgC˛PHS;XIðtÞ according to the Poissonmodel in

Equation 2 with parameters. fbCgC˛P;H;SWI

Decoding is then maximizing the weighted log-likelihood of the spike counts of all cells in a time window of size 6s+ 1 centered at

the time point t. The parameter s has been optimized for the entire dataset (both regions and both tasks).

Maximization of the objective function Gwas performed by grid search on the covariates lattice defined by the binning adopted for

learning, where the number of bins has been optimized as explained in Section ‘‘Hyperparameters optimization.’’

Resampling of neurons
For decoding we sampled differently sized subpopulations (from 5 to 150 neurons) and maximized the likelihood of the spike

counts in the space of all three behavioral covariates. Within the selected population, resampled neurons were randomly assem-

bled from different sessions without consideration of whether they had been recorded in parallel or not in the first place. From

each neuron we used the parameters Learned using the GLM model with covariates PSTH (sec. ‘‘Encoding’’) and generated Pois-

son spikes using the model predicted firing rates for Poisson spikes. All the combinations of position, head direction, speed and

theta were realized during a recorded session of one of the animals in this study. To differentiate between OF and ST we re-

sampled neurons recorded in the OF and in the ST separately and only employed ST recorded neurons for decoding the ST ses-

sion and OF recorded neurons for decoding the OF session. This allowed us to decode the three covariates P, H and S simulta-

neously at every time bin t (while theta was given) by optimizing the likelihood of the weighted spike counts from Gaussian filtered

time window t � Dt to t +Dt (where 2Dt is the size of the decoding window: 400 ms). The GLM used for encoding provides an

estimate of the tuning curves in the 6-dimensional covariate space (2 dimensions for P and 1 for each H, S, E and T), assuming

that each covariate contributes multiplicatively to the instantaneous firing rate. In absence of this (or alternative) assumptions on

how covariates combine to contribute to the firing rate of a cell, a reliable estimate of the tuning curves in this 6 dimensional

behavioral space would require much higher coverage.

Randomization of decoding
The randomized decoding distributions for Figure S6, are built by taking the difference between two means from decoding 20 times

from a randomly selected subpopulation of neurons, while ensuring equal probability to select CA1 or SUB neurons. The randomi-

zation runs over 1000 iterations and it is assessed whether the difference between decoding error of CA1 and SUB population is

larger than the 99th percentile of the randomized differences.
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Statistical testing
The experimenters were not blind to subject treatments and no statistical methods were employed to predetermine sample size. De-

tails regarding data distributions, statistical tests and sample size are presented in the main text, figures, and figure legends. Data

presented as mean ± standard error of the mean (SEM), unless otherwise specified. All data was analyzed with custom-written MAT-

LAB scripts (https://se.mathworks.com/). Nonparametric tests were used to analyze data violating normal distribution assumptions

(Mann–Whitney U test), and all statistical tests performed were two-tailed with significance level set at p < 0.05 while P-values where

always provided as numerical values.
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