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Stochastic higher-order independent component
analysis for hyperspectral dimensionality

reduction
Daniela Lupu1, Ion Necoara1,3, Joseph L. Garrett2 and Tor Arne Johansen2

Abstract—Hyperspectral imaging is a remote sensing
technique that measures the spectrum of each pixel in
the image of a scene. It can be used to detect objects or
classify materials based on their optical reflectance spectra.
Various methods have been developed to reduce the spectral
dimension of hyperspectral images in order to facilitate
their analysis. Independent Component Analysis (ICA) is
a class of algorithms which extract statistically independent
features. FastICA, is one of the most used ICA algorithms
because it is simple and fast. However, FastICA often finds
irrelevant stationary points (e.g., minima instead of max-
ima) and is not scalable as it uses at each iteration the whole
set of pixels. In this paper, we present a new stochastic
algorithm, called SHOICA, which smoothly approximates
the non-convex loss functions of ICA using higher-order
Taylor minorizers. Because SHOICA guarantees ascent of
its objective function, it identifies (local) maxima. Moreover,
because SHOICA is stochastic, it facilitates minibatching
and thus is scalable and appropriate for large datasets. The
quality of features extracted, as well as the time and epochs
required by both FastICA and SHOICA are compared on
dimensionality reduction and classification tasks of real
hyperspectral images.

I. INTRODUCTION

Hyperspectral imaging acquires information from the
electromagnetic spectrum by recording a continue of
wavelengths rather than a few discrete bands. It is
becoming a valuable tool for studying e.g. the Earth’s
surface, industrial product quality, and the human body,
with applications ranging from environmental monitor-
ing, healthcare evaluation, agriculture quality assurance
to astronomy and chemical imaging [1], [2]. In the
last two decades, many techniques have been proposed
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for hyperspectral image processing. The obstacles for
hyperspectral image processing are quite different from
those of color or greyscale images. Therefore, algo-
rithms designed for the latter have limited success when
they are applied to hyperspectral images. First, because
hyperspectral images are often about 50 times larger
than color images with the same number of pixels, they
inevitably require more memory to store. The memory
requirements to process them can exceed the needs of
greyscale images by an even larger factor if coupling
between the bands is considered. Second, because the
number of samples is often quite small relative to the size
of the feature space, the accuracy of classification can
actually decrease as the number of bands increases, in
what has been called the Hughes effect. Third, the large,
tagged online databases which have been so critical for
modern image processing with convolutional neural net-
works do not exist for hyperspectral images. Moreover,
hyperspectral images are often taken of complex scenes
in which the ground truth is sampled sparsely if at all.

Dimensionality reduction (DR) is a group of techniques
which can mitigate the difficulties associated with hyper-
spectral images [2]–[4]. First, by selecting only the most
information-rich data, DR reduces the size of the data to
be processed. Second, the decreased dimensionality of
the feature space helps to reduce the consequences of
the Hughes effect. The third difficulty is only partially
mitigated by DR. Many DR techniques present both a
spatial and a spectral representation for each dimen-
sion. The physical origin of different signals can then
be investigated by comparing each dimensions spectral
representation to spectra from compiled databases.

State of the art. Dimensionality reduction algorithms can
be partitioned into two groups depending on whether
they are optimization based or machine learning based
[5], [6]. Although both groups have an objective func-
tion, the optimization-based techniques are designed to
be applied to an image as a whole, undivided into a
training and test sets. Moreover, the machine learning



based approaches result in a trained network, which can
be immediately applied to additional images. Detailed
comparisons between these techniques and their per-
formances on classification tasks can be found e.g., in
[5], [7]–[9]. In this paper, we follow the optimization
based approach. The advantages of optimization based
techniques such as Principal Component Analysis (PCA)
[10], [11] and Independent Component Analysis (ICA)
[12], [13] include more interpretable output, invertibility,
and generality.

Among the optimization-based algorithms, PCA is one
of the most common techniques to reduce the number
of features. It consists of identifying the orthonormal
basis which decorrelates the bands, ordered according to
the variance of each [11], [14]. If the variables or spec-
tral signal under observation carry additive independent
normally distributed noise, PCA is an optimal method
for noise filtering. However, variance, which is used
to measure second-order statistics, may not effectively
characterize the signal when the noise is not normally
distributed. In particular, when the spectral data contains
subtle signals that cannot be captured by the second-
order statistics, PCA does not extract them [3], [10].

Independent Component Analysis (ICA) extracts subtle
signals that are undetected by PCA because it incorpo-
rates higher-order moments, such as kurtosis [12]. It at-
tempts to decompose a multivariate signal into indepen-
dent signals, i.e. a decomposition that provides statistical
independence between the estimated components. When
the statistical independence assumption is reasonable,
ICA separation of a mixed signal gives good results [3].
Due to this, ICA has good performance in reducing the
effects of noise and other forms of undesired interfer-
ence with the observed spectral signatures, enhancing
the classification and detection rate, see e.g. [3], [4],
[15]–[17]. The ICA problem is usually formulated as
the maximization of a non-convex finite sum objective
function subject to a simple quadratic constraint [12].
In the literature there are many optimization algorithms
available for solving this finite sum optimization prob-
lem, i.e. finding the independent components. Commonly
used one, including in industrial applications, is the
FastICA algorithm, see [12]. It maximizes the kurtosis
and is based on fixed point iterations derived from the
KKT conditions of the ICA optimization problem.

Other methods for computing the ICs include Joint
Approximation Diagonalization of Eigenmatrices
(JADE) [18], Infomax [19] and stochastic majorization-
minimization [20]. Infomax is based on a loss function
which is a non-convex log-likelihood. In [20], a
majorization-minimization optimization algorithm is

developed, which is adapted to the Infomax loss
function and guarantees a decrease of the objective
at each iteration. The different ICA algorithms have
varying sets of advantages and disadvantages. In [15],
a comparative study was conducted on different types
of ICA algorithms (FastICA, JADE and Infomax) for
dimensionality reduction of hyperspectral images. From
this study it appears that the JADE formulation is more
robust. The FastICA algorithm is comparable to JADE
from the perspective of accuracy/precision. However,
when more features are considered, JADE demands a
higher computational power than FastICA. Moreover,
FastICA, JADE, and Infomax are full batch methods
and consequently they can perform poorly for large
datasets, calling for more scalable algorithms.

Various strategies have been recently proposed to scale-
up inferential problems from big datasets. Besides par-
allelized and distributed approaches exploiting hardware
architectures, several variants of the stochastic gradient
descent method have been designed for accelerating
the optimization [21]–[23]. Additionally, FastICA, JADE
and Infomax do not always find optimal points (i.e.,
maxima). It is thus of great importance to develop ICA
solvers which are scalable, easy to use and with strong
convergence guarantees. The computational complexity
of ICA algorithms typically scales linearly in the number
of data points, the number of signals to be extracted,
and the number of iterations required to reach a given
accuracy [24]. A scalable algorithm requires either faster
convergence per iteration or minibatching, in which the
dataset is subsampled at each iteration.

Contributions. In this paper we develop a new stochas-
tic higher-order Taylor-approximation based algorithmic
framework adapted to the loss functions used in ICA
in order to improve scalability and guarantee objective
function ascent. Our development starts from the obser-
vation that the loss functions in ICA have the second-
(third-) order derivatives bounded over the feasible set
and thus they can be minorized by a first- (second-)
order Taylor approximation with a proper regularization
term. For instance, the simplest variant of our method
in each iteration needs to compute only the first/second-
order derivatives of a single randomly selected function
from the finite sum. Hence, our stochastic framework is
based on the notion of stochastic first-/second order Tay-
lor lower bound approximations of the ICA finite-sum
objective function and minibatching, called SHOICA.

Our algorithm builds on the foundation of FastICA, but
provides two additional benefits which assist the pro-
cessing of hyperspectral data. First, due to its stochastic
nature, SHOICA is scalable and appropriate for large

2



datasets. Unlike FastICA, SHOICA works with any
batch size. Hence, our method is faster in terms of cpu
time than FastICA for large images. Second, theoretical
convergence guarantees are provided for SHOICA. This
is in contrast to FastICA, for which the updating rule is a
simplified Newton type iteration (see [12] for its deriva-
tion), for which there are no global converges guarantees
(see e.g., [25]). In particular, it is proved that SHOICA
algorithm guarantees ascent for the objective function
along iterations. FastICA, because it solves the KKT op-
timality conditions, does not, and sometimes may deter-
mine (local) minimal points instead of finding maximal
points. The solutions found by SHOICA are guaranteed
to be local maxima of the objective function. Hence, in
practice the extracted features yielded by SHOICA are
better than by FastICA (see also our numerical section).
Experiments on hyperspectral datasets demonstrate the
efficiency and performance of our method both for
dimensionality reduction itself and as pre-processing for
classification tasks. More specifically, we demonstrate
the superiority of our method against other state-of-
the-art dimensionality reduction algorithms on several
benchmark hyperspectral data sets.

Content. The paper is organized as follows. In Section
II we formulate the ICA problem and present one of
the most known algorithms for solving it, FastICA.
We continue in Section III by presenting our approach,
SHOICA, and provide convergence guarantees and im-
plementation details. In Section IV, we present detailed
experiments in order to emphasize the superior perfor-
mance of SHOICA and test the quality of the reduced
data in the context of classification.

Notations and preliminaries. We consider the Euclidean
space Rb and denote the unit sphere with B = {x ∈ Rb :
∥x∥ = 1}. For a p-multilinear form H in Rb, where p
is a positive integer, its value in x1, . . . , xN ∈ Rb is
denoted with H [x1, . . . , xN ] . The abbreviation H[x]p

is used when x1 = · · · = xp = x for some x ∈ Rb. The
norm of a symmetric p-multilinear form H is defined in
the standard way [26]:

∥H∥ := max
∥x∥=1

|H[x]p| .

We use the short notation i = 1 : p for i ∈ {1, · · · , p}.
For a p times continuously differentiable function G :
Rb → R, its derivatives of order i = 1 : p at some w ∈
Rb is denoted with ∇iG(w). The i-directional derivative
of a function G at w along the direction x ∈ Rb is
denoted by:

∇iG(w)[x]p for i ≥ 1.

Based on this, we can write the Taylor approximation of
the function G around v of order p as follows:

TG
p (w; v) = G(v)+

p∑
j=1

1

j!
∇jG(v)[w−v]j ∀w, v ∈ Rb.

Further, we introduce the p Lipschitz derivative notion.

Definition 1. Let G : Rb → R be p times continuously
differentiable. Then, the p derivative is Lipschitz contin-
uous on a set B if there exist LG

p > 0 such that the
following relation holds:

∥∇pG(w)−∇pG(w)∥ ≤ LG
p ∥w−v∥ ∀w, v ∈ B. (1)

Note that if the p+ 1 derivative of G is bounded, i.e

∥∇p+1G(w)∥ ≤ LG
p ∀w ∈ B,

then (1) holds, see [23]. It is well-known that if (1) holds,
then the following bounds on G are valid [23], [26]:

|G(w)− TG
p (w; v)| ≤

LG
p

(p+ 1)!
∥w − v∥p+1 (2)

∀w, v ∈ B. (3)

For a random variable x, E[x] denotes its expectation.

II. INDEPENDENT COMPONENT ANALYSIS

Independent component analysis (ICA) is a procedure
that solves the Blind Source Separation (BSS) problem
by recovering statistically independent signals from a lin-
ear mixture, see [12] for more details. ICA is motivated
by a model that consists of a set of observations X =
[x1 x2 . . . xN ] ∈ Rb×N , which is a linear combination
of separated independent signals U = [u1 u2 . . . ur] ∈
Rr×N , i.e.:

X = V U,

where V ∈ Rb×r is called the mixing matrix and is
unknown. The goal is to recover the source signals by
estimating the unmixing matrix W = V + (the pseudo-
inverse of V ), i.e.:

Û =WX.

The fundamental issue in formulating ICA is determining
how to describe statistical independence. Two signal u1
and u2 are statistically independent if and only if the
joint PDF can be expressed as:

p(u1, u2) = p1(u1)p2(u2),

where the joint probability density function (PDF) of
the signals is p(u1, u2) and the marginal PDF of a
signal is pi(ui), for i = 1, 2. However, this condition is
difficult to incorporate directly into an objective function
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because it involves computing the relationships between
signals. Because the central limit theorem states that the
distribution of a sum of independent signals with arbi-
trary distributions tends toward a Gaussian distribution,
a signal which is non-Gaussian should not be the sum of
many other signals. In this sense, a non-Gaussian signal
can be considered independent. A common metric for the
non-Gaussianity of a random signal u is kurtosis [12],
known as the fourth central moment:

κ(u) = E[(u− µu)
4
/σ4

u], (4)

where µu is the mean of u and σu is the standard
deviation (to make kurtosis dimensionless we need to
normalize it, dividing by σ4

u). Distributions with kurtosis
less than three are called sub-gaussian while those above
three are called super-gaussian. Hence, we maximize:

maxκ(u) = max
∥w∥=1

E[(wTx− µu)
4], (5)

where we consider u = wTx and unit variance. Note
that the problem is formulated for only one vector, i.e.,
finding only one row of W , denoted w, at a time. Be-
cause kurtosis is disproportionately sensitive to outliers,
other metrics of non-Gaussianity have been developed.
One of them, negentropy, estimates the fourth moment
in a way that is more insensitive to outliers.

From the information theory concept, entropy measures
the randomness of a signal. Because a Gaussian variable
has the largest entropy among all random variables of
equal variance, entropy can be used as a measure of
non-Gaussianity. In contrast, the entropy is small for
distributions that are concentrated on certain values. One
measure of non-Gaussianity that is zero for a Gaussian
variable and non-negative otherwise is called negentropy,
J , and is defined as follows:

J (u) = H (uG)−H(u),

where uG is a given random Gaussian signal with the
same covariance matrix as u and H is the entropy (see
Section 5.1.1 in [12].) Although negentropy is robust,
it requires an estimation of the PDF and thus some
approximations are used in practice. One approximation
of negentropy is:

J (u) ≈ (E[g(u)]− E[g(ϑ)])2 ,

where ϑ is a zero mean unit variance Gaussian variable
and the function g is some non-quadratic function which
leads to the approximation always being non-negative (or
zero if u has a Gaussian distribution). For the estimator
to be robust, it is necessary to choose a function that

grows less quickly than kurtosis with increasing u. Some
typical choices for g are:

g(u) =
1

α
ln cosh(αu), with 1 ≤ α ≤ 2,

g(u) = −e−u2

2 or g(u) = u3. (6)

Usually the first example is used in applications, but
if robustness is very important or if the independent
components are highly super-Gaussian, then we should
choose the second example for g, see [12].

Before formulating the optimization problem, some pre-
processing step of the data is necessary. The first step
consist in centring the data, i.e we subtract from x it’s
mean, E[x]. Then, the observed signals, X , will have
zero mean and implicitly U as well. The next step
requires to whiten the data, i.e., we apply a linear trans-
formation Q on X such that E[XXT ] = Ib. Thus, we
decorrelate the observed signals and make their variance
to be unity. Since the ICA framework is insensitive to the
variances of the independent components, we can assume
without loss of generality that the sources are white as
well, i.e., E[UUT ] = Ir. There are many options for
whitening, but for dimensionality reduction, whitening
by way of PCA is simple and general. Data can be
whitened by PCA by computing XXT = CΛCT with
either of these two alternatives (see Section 6.4 in [12]):

Q =

{
Q1 = CΛ− 1

2CT

Q2 = Λ− 1
2CT ,

(7)

and then Xw = QX , where we denoted with Xw

the whitened data. In what follows, we consider the
data preprocessed and still denote it with X . After
preprocessing, one searches for a maximal point of the
optimization problem:

argmax
∥w∥=1

J (wTx) = argmax
∥w∥=1

|E[g(wTx)]− E[g(ϑ)]|.

Taking into account the fact that most independent
components encountered in practice are super-Gaussian
(see Section 3.2.1 [27]), the following ICA optimization
problem is finally solved (see also (5)):

max
∥w∥=1

E[g(wTx)]. (8)

One popular choice for solving this problem is Fas-
tICA given in Algorithm 1 below, which is based on
Newton type iterations for the KKT conditions of the
ICA optimization problem (8), see [12], [27], [28].
Note that in Algorithm 1, the expectation in step 1
can be approximated with a finite sum using the em-
pirical data, see also (9). The procedure described in
FastICA finds only one unit, i.e finds one row w such
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that the projection wTx maximizes non-Gaussianity.
To estimate several independent components, we need
to find the maxima of optimization problem (8) using
several units (rows) with weight vectors w1, . . . , wr. To
prevent different vectors from converging to the same
maxima we must decorrelate the outputs wT

1 x, . . . , w
T
r x

after every iteration. There are two primary methods to
decorrelate, the symmetric scheme in which a Gram-
Schmidt-like decorrelation is applied to all the sources
simultaneously [12] and the deflation scheme based on
sequentially estimating the sources one by one [24].
After W = [w1; . . . ;wr] ∈ Rr×b is found, the reduced
data are obtained as:

Xreduced =WX ∈ Rr×N , with r ≪ b.

Algorithm 1 FastICA for one unit
Choose a random w0 and normalize it.
while δ ≥ ϵ :

1. Update:

w̃k+1 = E[xg′
(
wT

k x
)
]− E[g′′

(
wT

k x
)
]wk

2. Normalize: wk+1 ← w̃k+1/∥w̃k+1∥
3. Update stopping criterion δ = |wT

k+1wk − 1|
4. wk ← wk+1 and increase k.

Note that FastICA (Algorithm 1) is a full batch method
and consequently it can perform poorly for large
datasets. Additionally, FastICA may fail to find local
maxima due to the approximations used in the derivation
of the Newton iteration for solving the KKT system and
it is well-known that the convergence of the Newton
method may be rather uncertain outside of the quadratic
convergence ball. It is known that in order to guarantee
global convergence for a Newton type method, a proper
cubic regularization is needed [25].

III. A STOCHASTIC HIGHER-ORDER TAYLOR-BASED
ICA ALGORITHM

In this section we propose a stochastic higher-
order Taylor-based ICA algorithmic framework, called
SHOICA, that removes some of the drawbacks described
in the previous section. Our method makes use of the
structure present in the ICA formulation. First, given a
set of N i.i.d. samples [x1 x2 · · ·xN ] of the random vari-
able x one can approximate the stochastic optimization
problem (8) through the empirical risk formulation (also
called finite sum problem, see [23]):

max
∥w∥=1

G(w) :=
1

N

N∑
i=1

gi(w), (9)

where gi(w) = g(xTi w). Further, we assume that each
individual function gi is p times differentiable and has
the p derivative Lipschitz continuous with constant Lp on
the unit sphere B, for p = 1, 2. Note that all contraction
functions in (6) comply with our assumptions for p =
1, 2. In particular, the first three directional derivatives
along a direction ν are computed as:

∇g(xTj w) = g′j(x
T
j w) · xj

∇2g(xTj w)[ν] = g′′j (x
T
j w)x

T
j ν · xj (10)

∇3g(xTj w)[ν]
2 = g′′′j (xTj w)(x

T
j ν)

2 · xj .

For such functions g(xTi w), we only need to keep track
of scalar values, avoiding matrices or tensors storage
when computing higher-order derivatives. Further, for
p = 1, 2 the Lipschitz constants for the contraction
function examples from (6) are:

(I) For the function gi(w) = log cosh(xTi w), where for
simplicity we consider α = 1, the expressions of the first
three derivatives along a given direction ν are:

∇gi(w)[ν] = tanh(xTi w)x
T
i ν

∇2gi(w)[ν]
2 = sech2(xTi w)(x

T
i ν)

2

∇3gi(w)[ν]
3 = −2 sech2(xTi w) tanh(xTi w)(xTi ν)3.

Since tanh(·) ∈ [−1, 1] and sech(·) ∈ [0, 1], we can
bound the third derivative as follows:

∥∇3gi(w)∥ = max
∥ν∥≤1

|∇3gi(w)[ν]
3|

= max
∥ν∥≤1

2 sech2(xTi w)| tanh(xTi w)(xTi ν)3|

≤ max
∥ν∥≤1

2|xTi ν|3 ≤ 2∥xi∥3 ∀∥w∥ ≤ 1,

where in the last inequality we used Cauchy-Schwartz
inequality

∣∣xTi ν∣∣ ≤ ∥xi∥ ∥ν∥. Thus, the Hessian ∇2gi is
Lipschitz continuous with Lipschitz constant:

Lgi
2 = 2∥xi∥3.

Using the same reasoning as for p = 2, we can easily
show that the gradient ∇gi is Lipschitz continuous with
the Lipschitz constant:

Lgi
1 = ∥xi∥2.

(II) For the second example gi(w) = −e−
(xT

i w)2

2 , the
expressions of the first three derivatives along a given
direction ν are:

∇gi(w)[ν] = ϵ
(
wTxi

) (
xTi ν

)
∇2gi(w)[ν]

2 = ϵ
[
1−

(
wTxi

)2] (
xTi ν

)2
∇3gi(w)[ν]

3 = ϵ
[(
wTxi

)3 − 3
(
wTxi

)] (
xTi ν

)3
,
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where we denote ϵ = e−
(wT xi)

2

2 . Following a similar
reasoning as in the first example, we find the third
derivative bounded:

∥∇3gi(w)∥ ≤
(
3 ∥xi∥+ ∥xi∥3

)
∥xi∥3 ∀∥w∥ ≤ 1,

and implicitly an estimate of the Lipschitz constant of
the Hessian: Lgi

2 =
(
3 ∥xi∥+ ∥xi∥3

)
∥xi∥3 . We can

also show that the gradient is Lipschitz continuous with
the constant: Lgi

1 = (1 + ∥xi∥2)∥xi∥2.

(III) Finally, for the function gi(w) = (xTi w)
3, proceed-

ing in the same manner as above, we find that:

∥∇3gi(w)∥ ≤ max
∥ν∥≤1

|∇3gi(w)[ν]
3|

≤ max
∥ν∥≤1

|6(xTi ν)3| ≤ 6∥xi∥3 ∀∥w∥ ≤ 1.

Thus, the Lipschitz constants for the Hessian and for the
gradient are in this case:

Lgi
2 = Lgi

1 = 6∥xi∥3,

respectively. Finally, the overall Lipschitz constant of the
p derivatives of function G in (9), for p = 1, 2, is:

Lp =
1

N

N∑
i=1

Lgi
p .

Our algorithmic approach consists of finding a lower
bound for each function gi which is simpler to maximize
than the original one. For functions gi that have the p
derivative Lipschitz continuous we can use the Taylor
approximation plus a proper regularization to bound
from below the objective function (see (2)):

gi(w) ≥ ϕi(w; v) (11)

:= T gi
p (w; v)− Mp

(p+ 1)!
∥w − v∥p+1, p = 1, 2,

where the constant Mp ≥ Lp. Summing for i = 1 : N ,
we obtain a lower bound on G:

G(w) ≥ ϕ(w; v) := 1

N

N∑
i=1

ϕi(w, v). (12)

Now, we are ready to derive a new Stochastic Higher
Order ICA-based optimization algorithm for (9), which
we call SHOICA, that is based on the Taylor approxi-
mations of the individual functions gi, see also [23].

Note that for the contraction functions from (6) it is easy
to compute the higher-order derivatives (see the discus-

sion above) and consequently we can update the model
of the subproblem ϕ(w; ŵk) in an efficient manner as:

ϕ(w; ŵk) =
1

N

N∑
i=1

ϕi(w;w
i
k) (13)

= ϕ(w; ŵk−1) +

∑
i∈Sk

ϕi(w;wk)− ϕi(w;wi
k−1)

N
.

Algorithm 2 SHOICA for one unit

Given w0, compute functions ϕi(w;w
i
0) of gi near

wi
0 = w0 ∀i = 1 : N .

while δ ≥ ϵ :
1. Chose uniformly random a subset (minibatch)
Sk ⊆ {1, · · · , N} of size τ ∈ [1, N ].

2. For each i ∈ Sk, compute ϕi(w;wk) of gi
near wk as in (11) and keep the previous
minorizers for i /∈ Sk

3. Find:

wk+1 ∈ argmax
∥w∥=1

ϕ(w; ŵk) :=
1

N

N∑
i=1

ϕi(w;w
i
k)

such that the following increase holds

ϕ(wk+1; ŵk) ≥ ϕ(wk; ŵk), (14)

where ŵk = [wi
k]i=1:N is defined by

wi
k =

{
wk, i ∈ Sk.

wi
k−1, i /∈ Sk.

4. Update stopping criterion δ = |wT
k+1wk − 1|

5. wk ← wk+1 and increase k.

Moreover, regardless of the convexity properties of gi, in
our algorithm it is sufficient to compute only a wk+1 that
satisfies the ascend property ϕ(wk+1; ŵk) ≥ ϕ(wk; ŵk),
see (14). Hence, we do not need to solve the sub-
problem max∥w∥=1 ϕ(w; ŵk) exactly. Consequently, our
algorithm is simple to implement. Moreover, one can see
that for τ = N , the algorithm becomes a deterministic
one. However, our algorithm is flexible as it allows
to work with minibatches of any size τ ∈ [1 : N ].
Finally, our algorithm is an ascent method in expectation,
i.e., E[G(wk+1)] ≥ E[G(wk)]. Hence, compared to
FastICA our method generally yields (local) maxima.
This property is proved in Theorem 1 below and it is also
supported by the numerical experiments from Section
IV. It is important to note that we can also use a line
search procedure in SHOICA in step 3. To preserve
the ascent property of our algorithm it is sufficient
to choose for the stepsize Mp an adaptive one, Mk

p ,
that ensures at each iteration k the increase condition:

6



G(wk+1) ≥ ϕ(wk; ŵk). More precisely, at each iteration
k we can apply the following line search procedure to
find wk+1 in step 3:

i. Let β > 1, Mk,0
p < Mp and l = 0.

ii. Until G(wk+1) ≥ ϕ(wk; ŵk) holds, do:
Set Mk,l+1

p ←βMk,l
p and find corresponding wl+1

k+1.
Increment l← l + 1.

iii. Set wk+1 = wl
k+1

This procedure finishes in a finite number of steps (12).

A. Solving SHOICA’s subproblem

Our algorithmic framework depends on the choice of p =
1, 2 and requires computing the solution of a subproblem
at each iteration, see step 3 of Algorithm 2 (SHOICA).
In this section, we provide implementation details for
this step. Let us consider first the deterministic case, i.e.
when τ = N . Then, for p = 1, the subproblem becomes:

wk+1 ∈ argmax
∥w∥=1

ϕ(w; ŵk),

= argmax
∥w∥=1

⟨∇G(wk), w − wk⟩ −
M1

2
∥w − wk∥2

= argmin
∥w∥=1

∥∥w − (wk +M−1
1 ∇G(wk)

)∥∥2 ,
where the last expression is just a term rearrangement
and ∇G(wk) =

1
N

∑N
i=1∇gi(wk). Hence, the solution

is just a gradient step projected on the set B, which has
an explicit expression:

w̃k+1 = wk +M−1
1 ∇G(wk), wk+1 = w̃k+1/∥w̃k+1∥.

Let us compare our previous iteration (i.e., the update in
SHOICA with p = 1 and τ = N ) with the FastICA iter-
ation. Approximating the expectation with the empirical
risk, we get that the update in FastICA has the following
expression after rearranging the terms:

w̃k+1 = wk +

(
− 1

N

N∑
i=1

g′′
(
wT

k xi
))−1

∇G(wk).

The only difference between SHOICA (with p = 1
and τ = N ) and FastICA iterations consists in
the choice of the stepsizes, i.e. M−1

1 versus(
− 1

N

∑N
i=1 g

′′ (wT
k xi
))−1

, respectively. Note that
we can also use a line search procedure at iteration k of
SHOICA (see previous section), i.e., we can replace M1

with some adaptive step Mk
1 that ensures the increase

condition G(wk+1) ≥ ϕ(wk; ŵk). This condition is
sufficient for SHOICA to converge and identify local
maxima, while the stepsize choice in FastICA does not
guarantee any convergence for its iterations (see also

Section IV).

For p = 2, the objective function in the subproblem of
step 3 of SHOICA has the expression:

ϕ(w;wk) = ⟨∇G(wk), w − wk⟩

+
1

2
⟨∇2G(wk)(w − wk), w − wk⟩ −

M2

6
∥w − wk∥3,

where ∇G(wk) is defined as before and ∇2G(wk) =
1
N

∑N
i ∇2gi(wk). For finding wk+1 in this case we can

use (augmented) Lagrangian methods. For example, we
can search for a scalar multiplier λ, corresponding to the
constraint wTw−1 = 0, that minimizes the convex dual
function d(λ) obtained from the Lagrangian:

d(λ) = max
w∈Rb

L(w, λ)

:= −λ
2
+ ⟨∇G(wk)−∇2G(wk)wk, w⟩

+
1

2
⟨(∇2G(wk) + λIb)w,w⟩ −

M2

6
∥w − wk∥3,

using e.g., the bisection method for minimization in
λ, minλ∈R d(λ), and the numerical scheme in [25] for
maximization in w, maxw∈Rb L(w, λ). An alternative
algorithm for solving the subproblem in this case is
given in the Appendix and it is based on the alternating
direction method of multipliers (ADMM) [29].

SHOICA becomes scalable in the stochastic case, i.e.
τ < N . In this setting, for p = 1 the subproblem in step
3 of SHOICA has the expression:

wk+1 ∈ argmax
∥w∥=1

1

N

N∑
i=1

ϕi(w;w
i
k)

= argmax
∥w∥=1

1

N

N∑
i=1

⟨∇gi(wi
k), w − wi

k⟩ −
M1

2
∥w − wi

k∥2

= argmin
∥w∥=1

N∑
i=1

∥∥w − (wi
k +M−1

1 ∇gi(wi
k)
)∥∥2

= argmin
∥w∥=1

∥∥w − (w̄k +M−1
1 ∇̄G(ŵk)

)∥∥2 ,
where we denoted w̄k = 1

N

∑N
i=1 w

i
k and ∇̄G(ŵk) =

1
N

∑N
i=1∇gi(wi

k). Hence, the solution of this subprob-
lem is a stochastic gradient step projected on the set B,
which has the explicit expression:

w̃k+1 = w̄k +M−1
1 ∇̄G(ŵk), wk+1 = w̃k+1/∥w̃k+1∥.

Hence, in the stochastic settings, there are differences be-
tween SHOICA and FastICA updates in both, stepsizes

(M−1
1 versus

(
− 1

N

∑N
i=1 g

′′ (wT
k xi
))−1

) and directions

7



(∇̄G(ŵk) versus ∇G(wk)). Note that in SHOICA the
average sequence w̄k and the average gradient ∇̄G(ŵk)
are updated in an efficient manner:

w̄k = w̄k−1 +

∑
i∈Sk

(wk − wi
k−1)

N

∇̄G(ŵk)=∇̄G(ŵk−1)+

∑
i∈Sk

(∇gi(wk)−∇gi(wi
k−1))

N
.

Recall that we can easily compute the gradients of the
gi functions since we only need to keep track of scalar
values (see (10)). It follows that the stochastic variant
of SHOICA (with p = 1 and τ < N ) is indeed
scalable (since computing ∇̄G(ŵk) in SHOICA is much
easier than computing ∇G(wk) =

1
N

∑N
i=1∇gi(wk) in

FastICA, when N is large).

Finally, for p = 2 and τ < N the objective function of
the subproblem becomes:

ϕ(w; ŵk) =
1

N

N∑
i=1

(
⟨∇gi(wi

k), w − wi
k⟩ (15)

+
1

2
⟨∇2gi(w

i
k)(w − wi

k), w − wi
k⟩ −

M2

6
∥w − wi

k∥3
)
.

First, recall that we can easily compute the higher-order
directional derivatives along a direction (see (10)) and
we only need to keep track of scalar values. Further,
for solving the subproblem (15) one can use stochastic
methods that are based on proximal operators [26] or
variant-reduced types methods [30], since the objective
function of the subproblem, ϕ(w; ŵk), has Lipschitz
gradient over the compact set B.

B. Convergence properties of SHOICA

In this section we provide convergence guarantees for
SHOICA under quite general assumptions on the objec-
tive function G of the finite sum problem (9). In partic-
ular, our algorithm is an ascent method in expectation
and consequently it finds (local) maxima.

Theorem 1. Assume that the individual objective func-
tions gi (possibly nonconvex), with i = 1 : N , of problem
(9) have the second and third derivatives bounded over
B = {w ∈ Rb : ∥w∥ = 1}. Additionally, assume that G
is bounded from above by G∗ <∞. Then, the sequence
(wk)k>0 generated by SHOICA satisfies:

G(wk+1) ≥ϕ(wk+1; ŵk) ≥ ϕ(wk; ŵk−1) ≥ G(w0),

G∗ ≥ E[G(wk+1)] ≥ E[G(wk)],

and consequently the sequence (E[G(wk)])k>0 con-
verges. Moreover, any limit point of (wk)k>0 is a
stationary point of (9) and the sequence (G(wk+1) −
ϕ(wk+1; ŵk))k≥0 converges to 0 almost surely.

Proof. First, let us note that the approximation model
ϕ is bounded from above by the objective function G,
when both are evaluated in wk+1:

ϕ(wk+1; ŵk) =
1

N

N∑
i=1

ϕi(wk+1;w
i
k)

(11)
≤ 1

N

N∑
i=1

gi(wk+1) = G(wk+1). (16)

Further, note that for i ∈ Sk, we have:

ϕi(wk; ŵk) = ϕi(wk;wk) = gi(wk) ≥ ϕi(wk; ŵk−1).

Similarly, for i /∈ Sk, we get the following relation:

ϕi(wk; ŵk) = ϕi(wk; ŵk−1).

Therefore, summing all these inequalities, we obtain:

ϕ(wk; ŵk−1) ≤ ϕ(wk; ŵk) ≤ ϕ(wk+1; ŵk), (17)

where the last inequality comes from the ascent prop-
erty of wk+1 in SHOICA. Also note that G(w0) =
ϕ(w0; ŵ0). Hence, the first set of inequalities is proved.
Furthermore, using (17) and basic properties of condi-
tional expectation, we have:

E[ϕ(wk+1; ŵk)] ≥ E[ϕ(wk; ŵk)] = E[E [ϕi(wk;wk)|Sk]]

= E[E [gi(wk)|Sk]] = E[G(wk)]. (18)

Taking expectation w.r.t. the whole set of minibatches
{S0, · · ·Sk} in (16) and combining with (18), we also
get E[G(wk+1)] ≥ E[G(wk)], i.e. the second set of
inequalities is proved. It follows that the sequence
(E[G(wk)])k≥0 is monotonically nondecreasing and
bounded above, since by our assumption G is bounded
from above. Consequently, (E[G(wk)])k≥0 converges to
a finite value.

Moreover, from (17) it follows that the sequence
(ϕ(wk+1; ŵk))k≥0 is monotonically nondecreasing and
bounded above with probability 1, since ϕ is lower
bounded by G, which by our assumption is bounded
from above. Taking expectation w.r.t. the whole set
of minibatches {S0, · · ·Sk}, we obtain that the non-
decreasing sequence (E[ϕ(wk+1; ŵk)])k≥0 converges.
Further, let us prove that the nonnegative quantity

8



E [gi (wk+1)− ϕi (wk+1;wk)] is the summand of a con-
verging sum. Indeed:

0 ≤ E

 ∞∑
k=0

∑
i∈Sk+1

gi(wk+1)− ϕi(wk+1;wk)


=

∞∑
k=0

E

 ∑
i∈Sk+1

gi (wk+1)− ϕi (wk+1;wk)


=

τ

N

∞∑
k=0

E [gi (wk+1)− ϕi (wk+1;wk)]

=
τ

N

∞∑
k=0

E [G(wk+1)− ϕ (wk+1; ŵk)] ,

where we used the Beppo-Lèvy theorem to interchange
the expectation and the sum in front of nonnegative
quantities. Combining this with (18), we further get:

E

+∞∑
k=0

∑
i∈Sk+1

gi (wk+1)− ϕi (wk+1;wk)


≤ τ

N

+∞∑
k=0

E [G(wk+1)−G(wk)]

≤ τ

N
(G∗ −G(w0)) <∞,

where for the last inequality we used that G is assumed
upper bounded by the constant G∗ < ∞. As a result,
the nonnegative sequence (G(wk+1)−ϕ(wk+1; ŵk))k≥0

converges to 0 almost surely.

From the previous theorem we see that SHOICA is an
ascent method in expectation. Moreover, in the determin-
istic case (i.e., τ = N ) one can easily see that

G(wk) = ϕ(wk;wk) ≤ ϕ(wk+1;wk) ≤ G(wk+1),

and consequently SHOICA is a pure ascent method:

G(wk) ≥ G(wk−1) ≥ · · · ≥ G(w0),

yielding local maxima. On the other hand, FastICA does
not enjoy this important property (see also next section).

IV. NUMERICAL EXPERIMENTS

In this section experiments on hyperspectral image
feature reduction are shown to evaluate the performance
of SHOICA algorithm relative to FastICA in terms
of both quality of the solution (i.e., identifying
correctly maximal points), and scalability and speed
of convergence. We also validate the quality of the
SHOICA solution by using the reduced hyperspectral
data in classification tasks and compare the performance
with other dimensionality reduction techniques such

as PCA and FastICA. For experiments we use three
hyperspectral images from [31]:

I.) Indian Pines: The spatial dimensions of this
hyperspectral image are 145 × 145 (N = 21025). It
has 220 bands with 20 water absorption bands being
discarded, hence b = 200. In Figure 1, we display
a colour image of Indian Pines and the groundtruth,
from which we can differentiate 16 classes. See also
Table I for the number of samples available in each class.

II.) Pavia University: The spatial dimensions of
this hyperspectral image are 610 × 340 (N = 207400)
and the number of bands is b = 103. The groundtruth
image differentiates 9 classes (see Figure 2) and one can
find in Table I the number of samples for each class.
III.) Pavia: The spatial dimensions of this hyperspectral
image are 1096× 715 (N = 783640) and the number of
bands is b = 102. This image is used in the first set of
experiments to show the scalability of SHOICA.

Fig. 1. Colour image and the ground truth of Indian Pines dataset.

Fig. 2. Colour image and the ground truth of Pavia University dataset.

In our experiments, we work with the matrix representa-
tion of the hyperspectral cube, denoted by X ∈ Rb×N .
For all the methods we implement, a preprocessing step
(whitening) as described in Section II is applied before
using the data. For the optimization problem (9), we
choose from (6) the following contraction function:

g(wTxi) = ln(cosh(wTxi)) ∀i = 1 : N.

Similar behaviours were observed for the algorithms
discussed in this paper when using the other contraction
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TABLE I
NUMBER OF SAMPLES BY CLASS USED IN THE EXPERIMENTS.

Data Set No. Class Samples

1 Alfalfa 46
2 Corn-notill 1428
3 Corn-mintill 830
4 Corn 237
5 Grass-Pasture 483
6 Grass-Trees 730
7 Grass-pasture-mowed 28

Indian Pines 8 Hay-windrowed 478
9 Oats 20
10 Soybean-notills 972
11 Soybean-mintills 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265
15 Buildings-Grass-Trees-Drives 386
16 Stone-Steel-Tower 93

1 Asphalt 6631
2 Meadows 18649
3 Gravel 2099
4 Trees 3064

Pavia University 5 Metal sheets 1345
6 Bare Soil 5029
7 Bitumen 21330
8 Bricks 3682
9 Shadows 947

functions in (6), when considering other initializations
w0 (including random initial points) or when different
values for the reduced dimension r are considered. The
algorithms are implemented in Matlab and all experi-
ments are conducted on an Intel Core i7 and 16GB RAM.
In particular, for FastICA algorithm we use the Matlab
package from [28].

A. Dimensionality reduction experiments

As FastICA is the state of the art dimensional reduction
method for the ICA formulation, in this section we
compare our new algorithm with this method. We first
evaluate the scalability of SHOICA and FastICA on
previous three datasets, with dimensions ranging from
N ≈ 104 to N ≈ 106, by inspecting the CPU time
and the number of epochs (i.e., the number of passes
through all the pixels N of the given dataset). First, the
data is whitened and then standardised. After removing
the mean, we whitened the data using both approaches
described in (7). For SHOICA we consider three choices
for the minibatch size: τ = 1, a minibatch variant
τ∗ ∈ (1, N) (we choose different values depending on
the dataset) and τ = N (i.e., deterministic variant),
respectively. Both algorithms, SHOICA and FastICA, are
initialized with the same random point and stopped with
ϵ = 10−6. The results given in Tables II and III are for
one row in W . From these tables, one can notice that
SHOICA with p = 1, 2 and appropriate minibatch size
τ is superior to FastICA in terms of both, number of

epochs and cpu time. In particular, for small data the
two methods are comparable, while when the data size
increases, our algorithm is considerable faster.

TABLE II
SHOICA P=1 AND FASTICA PERFORMANCE IN TERMS OF TIME

AND NUMBER OF EPOCHS FOR THREE DIFFERENT DATASETS.

Data set Perf. SHOICA p=1 FastICA
τ = 1 τ∗ τ = N

Inidian Pines time(s) 5.12 0.695 1.707 1.21
N ≈ 104 epochs 8 14 149 84
Pavia U time(s) 76.65 21.93 28.59 35.82
N ≈ 105 epochs 14 297 320 549

Pavia time(s) 338.17 109.8 137.9 148.91
N ≈ 106 epochs 9 108 282 598

TABLE III
SHOICA P=2 AND FASTICA PERFORMANCE IN TERMS OF

NUMBER OF EPOCHS FOR THREE DIFFERENT DATASETS.

Data set Perf. SHOICA p=2 FastICA
τ = 1 τ∗ τ = N

Inidian Pines time(s) 7.39 1.09 1.57 1.21
N ≈ 104 epochs 9 11 83 84
Pavia U time(s) 69.56 20.05 31.95 35.82
N ≈ 105 epochs 12 145 295 549

Pavia time(s) 299.71 129.4 146.19 158.91
N ≈ 106 epochs 7 89 227 598

10 20 30 40 50
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k
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FastICA

DHOICA p=1

DHOICA p=2

SGA

SHOICA p=1

SHOICA p=2

Fig. 3. Behavior of SHOICA (τ = 145) and DHOICA for p = 1, 2,
FastICA and SGA for the starting point w0 = e1 along epochs (data
whitened by Q1).

Next, we analyze the speed of convergence of several
optimization algorithms for solving the ICA optimization
problem (9) on the Indian Pines dataset: SHOICA,
the deterministic variant of SHOICA (called DHOICA),
Stochastic Gradient Ascent (called SGA) and FastICA.
The results in terms of epochs (number of passes through
data) for data whitened by the matrix Q1 from (7) are
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Fig. 4. Behavior of SHOICA (τ = 145) and DHOICA for p = 1, 2,
FastICA and SGA for the starting point w0 = eb along epochs (data
whitened by Q2).

shown in Figure 3, while by the matrix Q2 from (7)
in Figure 4, respectively. Figures 3 and 4 display the
behaviour of SHOICA (with a minibatch size τ = 145)
and DHOICA for p = 1, 2, FastICA, and SGA, in terms
of epochs. For both p = 1 and p = 2, both algorithms,
SHOICA and DHOICA, are comparable to FastICA
when low accuracies are required, but our methods with
p = 2 perform better when we target high accuracies.
SGA performs poorly. Therefore, these tables and figures
show the scalability feature of SHOICA.

We further analyze the quality of the solution given by
SHOICA and FastICA, using different initialization for
w0. First, we use the matrix Q1 from (7) to whiten the
data. One can notice from Figure 5 that FastICA some-
times finds local minima, i.e., it minimizes the objective
function G instead of maximizing it (see bottom plot).
On the other hand, our ascent algorithms will always find
a local maxima. In Figure 6, we display two independent
components (ICs) found by SHOICA and FastICA with
the initialization w0 = 1

∥1∥ . Note that FastICA’s IC is just
noise and we can’t distinguish any structure in the image,
unlike the IC provided by SHOICA p = 2. Hence,
typically the extracted features yielded by SHOICA are
better than by FastICA. Then, we use the matrix Q2

from (7) to whiten the data. For this whitening procedure
we observe the same behaviour as before, see Figure
7. Hence, our algorithm is also robust with respect to
different preprocessing procedures. Finally, in Figure 8
the first 5 most important components by PCA, FastICA
and SHOICA on Indian Pines data set are depicted.
Because PCA calculates components in the order of
descending variance, we likewise sort the components
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SHOICA p=2
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DHOICA p=2
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SHOICA p=1
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Fig. 5. Objective function G along epochs: comparison between
SHOICA and DHOICA with p = 1, 2, FastICA and SGA on Indian
Pines dataset for different initializations: top w0 = e1, bottom
w0 = 1/∥1∥. In the bottom plot we observe that FastICA minimizes
G instead of maximizing it (data whitened by Q1).

from ICA according to descending objective function
values.

Fig. 6. Two ICs found for w0 = 1/∥1∥ on the Indian Pines dataset:
FastICA on the left and SHOICA p = 2 on the right.

B. SVM Classification experiments

As ICA is a linear feature extraction method, when
exploring the quality of the reduced data in a classifica-
tion task, we consider another dimensionality reduction
technique from the same category for comparison, i.e.
PCA. Hence, in this section, we explore the quality of
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Fig. 7. Objective function G along epochs: comparison between
SHOICA and DHOICA with p = 1, 2, FastICA and SGA on Indian
Pines dataset [31] for different initializations: top w0 = eb, bottom
w0 = 1/∥1∥. In the bottom plot we observe that FastICA minimizes
G instead of maximizing it (data whitened by Q2).

the reduced data obtained with SHOICA, FastICA, and
PCA for Indian Pines and Pavia University
datasets in a classification problem. For PCA procedure
the reduced whitened data is Xreduced = Λ− 1

2 [1 : r, 1 :
r]C[:, 1 : r]TX , see (7). From our numerical experiments
we observed that whitening in PCA, i.e., multiplication
with the term Λ− 1

2 , is also beneficial in classification as
in ICA. We chose for this task a supervised technique
called Support Vector Machine (SVM) classifier and use
the Python’s scikit-learn library [32] for the experiments.
For a training set with M samples of dimension b, i.e
xi ∈ Rb with i = 1 :M , each sample has an associated
label yi that can take the values {−1 , 1}. Then, the linear
SVM problem is formulated as:

min
t,z,ζ≥0

1

2
∥t∥2 + C

M∑
i=1

ζi (19)

s.t.: yi
(
tTψ(xi) + z

)
≥ 1− ζi ∀i = 1, . . . ,M,

where in linear SVM ψ is the identity function and t and
z are the hyperplane parameters that separates the data
and ζi are slack variables that account for nonseparable
data. The regularization parameter C controls the penalty

Fig. 8. First 5 most important components for Indian Pines dataset.
From left to right: PCA, FastICA, SHOICA

assigned to misclassified samples. Nonlinear SVM uses
a kernel formulation to map the data into a higher
dimensional feature space using a transformation ψ in
(19) so that the separation between the two classes which
share a nonlinear boundary can be reduced to the linear
case. The kernel method in the dual formulation of SVM
problem is written as (19):

min
0≤α≤C

1

2
αTQα− 1Tα

s.t.: yTα = 0,

where α ∈ RM is the vector of Lagrange multipliers,
Q ⪰ 0 with Qij ≡ yiyjK (xi, xj) and K (xi, xj) =

ψ (xi)
T
ψ (xj) is the so-called kernel function. Note that

one does not need the explicit form of ψ, just a kernel
function. A common kernel function is the Radial Basis
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TABLE IV
QUANTITATIVE COMPARISON OF DIFFERENT REDUCTION TECHNIQUES IN TERMS OF OA,AA, κ, τ ON THE INDIAN PINES DATA SET

Class SVM Linear SVM RBF
No Full PCA ICA SHOICA Full PCA ICA SHOICA
1 86.66 68.88 68.88 60.86 84.44 83.33 86.66 88.88
2 82.79 50.41 52.37 54.20 78.67 76.50 77.86 78.04
3 56.20 6.50 6.62 5.78 64.15 70.36 72.10 78.97
4 61.48 0.85 0.85 1.69 76.59 70.85 69.78 72.55
5 93.09 69.89 71.44 76.85 94.12 94.63 94.53 94.43
6 98.21 97.32 96.91 97.53 98.97 97.05 97.87 96.36
7 76.00 64.00 74.00 64.28 94.00 92.00 90.00 88.00
8 99.68 99.37 98.75 99.58 99.89 99.68 99.79 99.58
9 72.50 25.00 32.50 50.00 47.50 77.50 77.50 70.00
10 70.87 32.62 30.92 33.33 74.74 76.54 75.72 81.59
11 82.11 83.80 85.11 85.09 89.42 87.39 86.74 86.49
12 81.42 4.78 4.11 4.71 83.78 75.54 74.45 75.88
13 99.02 98.53 97.80 98.03 98.04 96.34 96.58 96.34
14 96.24 97.74 97.98 96.99 97.74 98.10 97.31 95.49
15 76.23 31.16 29.35 33.67 64.80 59.87 58.57 62.46
16 96.31 94.73 93.68 93.47 95.26 92.10 90.52 90.00
OA 83.00 62.50 62.88 63.68 85.46 84.49 84.41 85.41
AA 83.05 57.85 58.83 59.75 83.88 84.23 84.12 84.69
κ 0.8053 0.5573 0.5616 0.5722 0.8249 0.8226 0.8217 0.8336

time(s) 7.25 0.17 0.17 0.17 2.99 0.90 0.92 0.91

Function (RBF):

KRBF (xi, xj) = e−γ∥xi−xj∥2

.

Through the γ parameter, the influence of individual
training samples on the overall algorithm can be con-
trolled based on their proximity. In our experiments, we
consider both linear SVM with parameter C = 10 and
nonlinear SVM with the RBF kernel keeping the default
value provided by Python for γ. For the multiclass
case a one against one strategy is adopted. A total of
T (T −1)/2 binary classifiers are trained, where T is the
number of classes. The final decision is made on winner
takes it all approach. Furthermore, the datasets are di-
vided randomly into 80% samples from each class for the
training and the remaining 20% for testing. Additionally,
to reduce the influence of samples random selection,
the classifier runs 10 times and we display the average
results. To quantify the quality of the classifiers, we
consider the average accuracies for each class, the total
average accuracy (AA), the overall accuracy (OA) (see
Table 2 in [33], the average training time, and the kappa
coefficient (κ), which quantifies the level of agreement
between the SVM output and the class labels relative to
how many would be labelled correctly by chance. In our
experiments we consider three dimensionality reduction
techniques, PCA, FastICA and SHOICA, and the number
of bands is reduced to r = 15 in all three approaches
(see also [34], [35] for similar choices).

Tables IV and V provides a quantitative comparison

of the two SVM classifiers (linear and RBF) in terms
of the quality measures OA, AA, κ and τ , using Full
(i.e., the original data for Indian Pines and Pavia Uni-
versity, respectively) and reduced data (PCA, FastICA
and SHOICA). For linear SVM the best performance
on both datasets is achieved when one uses the full
data. However, the training time for this classifier is
much longer for full data than for reduced features
data. Moreover, nonlinear SVM classifiers perform better
than linear SVM on both datasets. More specifically, for
nonlinear SVM the best performance on both datasets
is achieved when one uses reduced features data based
on SHOICA. Moreover, the training times for the RBF
classifiers based on data features reduction are com-
parable and much smaller than the training time for
RBF classifier based on full data. Better overall per-
formance is achieved on Pavia University dataset than
on Indian Pines dataset (see also Figures 9 and 10,
which display the classification maps for Indian Pines
and Pavia University, respectively). We attribute this to
the fact that on Pavia University dataset the classes are
more balanced in terms of number of samples than on
Indian Pines dataset. In conclusion, the training time and
performance accuracies are better for SHOICA feature
reduction approach, making our numerical algorithm
a reliable framework for dimensionality reduction and
classification of hyperspectral images.
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TABLE V
QUANTITATIVE COMPARISON OF DIFFERENT REDUCTION TECHNIQUES IN TERMS OF OA, AA, κ AND TIME ON PAVIA UNIVERSITY

DATASET

Class SVM Linear SVM RBF
No Full PCA ICA SHOICA Full PCA ICA SHOICA
1 88.22 91.70 93.46 92.35 96.06 95.17 94.57 95.92
2 97.14 97.16 97.32 97.34 98.52 97.75 97.22 97.95
3 70.11 66.66 66.10 67.80 82.04 67.80 70.54 77.92
4 87.87 79.17 82.73 80.68 96.49 92.10 95.82 94.56
5 99.92 100.0 99.94 100.0 99.96 99.85 99.86 99.81
6 44.96 33.32 23.07 35.86 91.45 89.02 77.71 92.19
7 38.87 8.72 13.87 19.51 88.12 77.14 82.21 88.23
8 65.19 68.38 61.37 70.47 91.11 91.41 88.77 91.05
9 98.73 95.99 98.77 99.89 99.89 99.78 99.68 99.94

OA 83.19 80.86 79.84 83.10 94.87 92.37 92.05 95.04
AA 76.78 71.23 70.74 73.77 93.74 90.00 89.06 93.86
κ 0.7703 0.7359 0.7214 0.7535 0.9398 0.9118 0.8939 0.9328

time(s) 25.31 0.50 0.49 0.45 45.48 2.97 3.12 2.89

Fig. 9. Classification maps for Indian Pines, from left to right: groundtruth, PCA, ICA, SHOICA for SVM linear; PCA, ICA, SHOICA for
SVM RBF.

V. CONCLUSIONS

Independent Component Analysis is a quick and effec-
tive way to extract signals from hyperspectral data. Fas-
tICA is an often-used optimization algorithm for solving
the ICA problem, which is an efficient technique to
reduce the dimension of hyperspectral images. However,
FastICA can find irrelevant stationary points and is not
scalable as it uses at each iteration the whole set of
pixels. In this paper, we have designed a new stochas-
tic higher-order Taylor approximation-based algorithm
adapted to ICA problem. Our algorithm guarantees as-
cent, hence it able to identify local maxima. Moreover,
the algorithm, since it is stochastic, is scalable. Detailed
numerical simulations have shown the superior perfor-
mance of our method compared to FastICA on both,
dimensionality reduction and classification tasks.

VI. APPENDIX

In this appendix we show that ADMM algorithm can be
applied easily for solving the subproblem appearing in
step 3 of ScaleICA for p = 2 and τ = N . Note that
[29] shows the efficiency of ADMM on orthogonality

constraint problems through numerical results. Recall
that the objective function of subproblem in this case is:

ϕ(w; ŵk) = ⟨∇G(wk), w − wk⟩

+
1

2
⟨∇2G(wk)(w − wk), w − wk⟩ −

M2

6
∥w − wk∥3.

The subproblem can be reformulated equivalently as:

max
w,u∈Rb

ϕ(w;wk) + 1B(u) (20)

s.t.: w = u,

where 1B(·) is the indicator function of the set B. Let us
denote the augumented Lagrangian for subproblem (20)
with:

Lρ(w, u, λ)

= ϕ(w; ŵk) + ⟨λ,w − u⟩ −
ρ

2
∥w − u∥2 + 1B(u),

where ρ > 0 is a penalty term. Then, ADMM iterations
are as follows:
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Fig. 10. Classification maps for Pavia University, from left to right: groundtruth, PCA, ICA, SHOICA for SVM linear, PCA, ICA, SHOICA
for SVM RBF.

Algorithm 3 ADMM
Given w0,u0, λ0, ρ, ϵ.
while δ ≥ ϵ:

1. wk+1 = argmaxw Lρ(w, uk, λk)
2. uk+1 = argmaxu Lρ(wk+1, u, λk)
3. λk+1 = λk − ρ(wk+1 − uk+1)
4. Update stopping criterion
δ = max(∥wk+1 − uk+1∥, ∥uk+1 − uk∥)

5. Increase k.

Let us show that steps 1 and 2 in ADMM can be
performed efficiently. More precisely, if we denote v =
w − wk, then step 1 requires solving the following
unconstrained problem:

max
v∈Rb

1

2
vTQv + qT v − M2

6
∥v∥3,

where Q = ∇2G(wk) − ρIb and q = ∇G(wk) + λk +
ρ(uk − wk). Note that the objective is a sum between
a quadratic term and a cubic term and this can be
solved very efficiently using e.g. the technique from [25].
Moreover, step 2 can be computed explicitly, since it is
just a projection onto a sphere:

uk+1 = argmax
uTu=1

−ρ
2
∥wk+1 − u∥2 − ⟨λk, u⟩

= argmin
uTu=1

ρ

2
∥u− wk+1 − λk/ρ∥2

=
ρwk+1 + λk
∥ρwk+1 + λk∥

.
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