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Determination of the permeability coefficient (K) of soil is considered as one of the essential steps to assess infiltration, runoff,
groundwater, and drainage in the design process of the construction projects. In this study, three cost-effective algorithms,
namely, artificial neural network (ANN), support vector machine (SVM), and random forest (RF), which are well-known as
advanced machine learning techniques, were used to predict the permeability coefficient (K) of soil (10~° cm/s), based on a set of
simple six input parameters such as natural water content w (%), void ratio (e), specific density (g/cm?), liquid limit (LL) (%),
plastic limit (PL) (%), and clay content (%). For this, a total of 84 soil samples data collected from the detailed design stage
investigations of Da Nang-Quang Ngai national road project in Vietnam was used to generate training (70%) and testing (30%)
datasets for building and validating the models. Statistical error indicators such as RMSE and MAE and correlation coeflicient (R)
were used to evaluate and compare performance of the models. The results show that all the three models performed well (R > 0.8)
for the prediction of permeability coefficient of soil, but the RF model (RMSE =0.0084, MAE = 0.0049, and R=0.851) is more
efficient compared with the other two models, namely, ANN (RMSE=0.001, MAE=0.005, and R~0.845) and SVM
(RMSE =0.0098, MAE = 0.0064, and R = 0.844). Thus, it can be concluded that the RF model can be used for accurate estimation of
the permeability coefficient (K) of the soil.

1. Introduction In geotechnical point of view, the soil permeability

depends on many factors such as the soil density, water

The permeability of soil is one of the most important factors
that govern the fluid flow characteristics of the soil. Gen-
erally, the permeability is represented by an amount of water
transmit via interconnected void of a soil mass in a certain
period, and it can be determined using field and laboratory
tests. It is accepted fact that determination of the soil per-
meability coeflicient is very crucial, and this task is difficult,
time-consuming, and expensive [1, 2].

content, void ratio, mineralogy, soil structures, and others.
The permeability coefficient is used in many geotechnical
problems such as slope stability, the failure of structures
related to the ground settlement, seepage, and leakage. Thus,
many authors have tried to establish empirical relationships
between influencing factors with the permeability coefficient
[3-5]. There are several direct relationships between grain
size and the permeability coefficient of soil. Hazen [6]
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indicated that the permeability is proportional to the square
of the effective grain size for the sand with uniform particles.
Other authors proposed a regression that considers porosity,
percentage of clay, and sand particle to estimate the per-
meability of soil [7]. Some other authors predicted soil
permeability based on bulk density and grain-size particle
and shape of the particle [8, 9]. As mentioned above, the
permeability of soil is strongly dependent on the particle size
distribution; however, it is not applicable for a wide range of
soil [1, 10]. The study indicated that these empirical rela-
tionships have certain limitations as well as uncertainties.

Nowadays, machine learning (ML) and artificial intel-
ligence (AI) techniques have been applied successfully in
many fields including civil engineering. The ML techniques
could enable engineers to estimate the unknown parameters
relating to these problems with superior approximation
abilities. Soft computer methods, for example, fuzzy logic,
artificial neural networks (ANNSs), and support vector
machine (SVM) are now being used in geotechnical engi-
neering for predicting soil compressive and shear strength,
load bearing capacity of foundation, and so on [11-13].
Several authors have used ML techniques to estimate tensile
strength of rock as well as flyrock caused by blasting [14]. Al
and ML techniques are also being used frequently for the
landslide studies, flood management, and infrastructure
development.

Regarding the prediction of the soil permeability coef-
ficient, there are several studies using the ML method, for
instance, ANN, adaptive neuro-fuzzy system (ANFIS), and
hybrid optimization model of genetic algorithm-ANFIS
(GA-ANFIS) [1, 2, 15-17]. Sezer et al. [17] used an ANFIS to
estimate the permeability of granular soil; they concluded
that the ANFIS algorithm is superior to estimate the per-
meability of granular soil considering grain-size distribution
and particle shape [2]. However, the hybrid model GA-
ANFIs outperformed in terms of prediction accuracy
compared with single ANN, ANFIS model, and hybrid GA-
ANN model [15]. In general, soft computing-based models
are great tools for the prediction of the properties of soil.

Random forest (RF) was firstly proposed by Breiman to
solve unsupervised learning, regression, and classification
problems [18-20], which is known as a powerful algorithm,
which has been successfully employed and applied in many
problems of geotechnical engineering field [21, 22]. For
example, RF has been utilized successfully in predicting soil
parameters such as prediction of shear strength of soil and
soil permeability coefficient [20, 23]. The RF algorithm has
important merits in handling with large databases, and it can
also deal with thousand input variables [24].

Based on the literature survey, it can be concluded that
these ML techniques have many advantages in predicting soil
parameters. To the best of the authors” knowledge, there is no
study on estimating permeability coeflicient of soil using these
techniques in Vietnam condition. Main difference with earlier
studies is that here we have used different datasets to compare
the performance of different models to select the best model
for the estimation of permeability coefficient of soil (K).
Moreover, first time, the RF model has been used in the
determination of ‘K’ in the study area of Vietnam.

Mathematical Problems in Engineering

Therefore, main objective of this study is to apply popular
soft computing techniques (ANN, SVM, and RF) at the Da
Nang-Quang Ngai expressway project site of Vietnam for the
estimation of the permeability coefficient (K) of soil and to
select the best model for the prediction of “K.” Various
statistical evaluation indicators such as RMSE and MAE and
correlation coefficient (R) were used to validate and evaluate
the models. Matlab software was used for the data processing
and to simulate the models: ANN, SVM, and RF.

2. Materials and Methods

2.1. Data Used. The dataset consists of 84 soil samples
collected from the detailed design state investigations of Da
Nang-Quang Ngai expressway development project near Da
Nang, central Vietnam (Figure 1). To predict the “K” of soil,
the input data related to the permeability are selected, such
as water content (%), void ratio, specific density (g/cm3),
liquid limit (LL), plastic limit (PL), and clay content (%). All
these input data are highly related to permeability especially
void ratio which is the critical parameters for having a re-
lationship with hydraulic conductivity in both Darcy’s
equation and Kozeny-Carman’s equations (1) and (2).

Initial statistical analysis of the dataset is presented in
Table 1. The natural water content values vary from 15.1% to
99%. The void ratio varies from 0.46 to 2.63. The distribution
of the specific density ranges from 2.58 g/cm” to 2.74 g/cm”.
The liquid limit is from 18.9% to 88.93%, the plastic limit is
from 12.2% to 54.8%, and finally the clay content is from
5.7% to 64%. Figure 2 shows the histogram of the input
parameters.

2.2. Methods Used

2.2.1. Artificial Neural Network (ANN). ANN is known as a
common and powerful technique that imitates the activity
and performance of the human brain and nervous system
[15-17]. This technique has many crucial abilities such as
generalization and learning from data and can deal with a
large variable. It was reported that the major characteristics
of ANN comprises continuous nonlinear dynamics, high
fault tolerance, collective computation, self-learning, self-
organization, and real-time treatment [25]. Thus, this al-
gorithm has been widely employed and applied successfully
to solve many problems in geotechnical engineering. In both
linear and nonlinear patterns, ANN is generally adopted to
determine the hidden layer between output and input
neutrons; as a result, ANN could decide analyzing rela-
tionships and patterns by itself in data. In order to predict
the permeability coefficient of soil, a multilayer perceptron
(MLP) was adopted as a regression technique. To calculate
the weights of the input through the activation function, the
sigmoid function is used in neutrons.

1

h;=L;(x) = —x>
l1+e

(1)

where h; indicate the permeability coefficient (output) and
x=(x1, X5, ... x;) denote input parameters (i.e., affected
factors of permeability coeflicient).
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FIGURE 1: Location map of the studied site: Da Nang-Quang Ngai expressway project.

TABLE 1: Statistical analysis of the inputs and outputs in this study.

Parameters Notations Unit Minimum Maximum Average Std*
Natural water content w % 15.1 99.9 34.23 16.5
Void ratio e — 0.46 2.63 0.97 0.42
Specific density y g/cm’ 2.58 2.74 2.68 0.02
Liquid limit LL % 18.9 88.93 37.27 13.04
Plastic limit PL % 12.2 54.8 22.21 7.04
Clay content % 5.7 64 25.17 11.5
Permeability coefficient K 10° cm/s 0.3 7.1 1.45 0.94
* Standard deviation.
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FIGURE 2: Histogram of the input parameters used in the models: (a) water content vs. permeability; (b) void ratio vs. permeability; (c) liquid
limit vs. permeability; (d) specific density vs. permeability; (e) plastic limit vs. permeability; (f) clay content vs. permeability.

2.2.2. Support Vector Machine (SVM). SVM is known as a
statistical-based learning algorithm that was firstly proposed
by Vapnik to deal with the nonlinear problems with high
dimension such as regression and classification [26, 27]. The
concept of SVM is to build a hyperplane to separate the
dataset into different classes. In the SVM, the original input
space is transferred to a high-dimensional feature space
using the training dataset [28-30].

Then, the optimum plane is defined via optimizing the
class boundary. Thus, the support vectors are defined as the
trained points that are placed the most adjacent to the
optimal plane [28, 29]. SVM has been popularly used in
landslide prediction, and the results showed that this
technique has high accuracy [28, 31]. In this study, the SVM
was employed as a regression method by propositioning a
function of §-insensitive loss [32].

2.2.3. Random Forest (RF). RF is known as a prevailing
algorithm, which was firstly suggested by Breiman to solve
classification, regression, and unsupervised learning prob-
lems [18, 22]. This algorithm is being employed commonly
in different fields of civil engineering containing geotech-
nical engineering [21, 33, 34]. This machine learning

comprises several merits such as high performance with
complex datasets using small calibrating and can deal with
high noise variables [35, 36]. In addition, it was reported that
this algorithm is very user-friendly because it has only two
parameters (including a number of variables and trees) and
it is usually not sensitive to their values [22].

In a random forest, the bagging technique is always used
to randomly select the variables from the whole dataset for
model calibration. In this study, two kinds of errors, in-
cluding reduction in Gini and reduction in accuracy, and an
Out-of-Bag (OOB) were computed because these error
factors can be employed to rank and choose variables
[37, 38]. For each variable, when the values of the variable
are transferred over the OOB observations, the error of the
estimable model will be decided by the function.

2.2.4. Relief F for Attribute Importance. In general, evalu-
ating attribute quality (feature quality) is known as a crucial
task for both regression and classification problems in
machine learning such as constructive induction, regression
and decision tree, and feature selection [39, 40]. Each input
variable in a huge number of a learning problem is governed
by thousands of attribute (feature). Generally, many learning
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techniques cannot deal with this situation because of lack of
information of features or variables with many irrelevances.
An attribute (feature) selection is known as a task to choose a
small subset, which is adequate to pronounce the target
purpose. In order to decide which features need to be kept
and which ones need to be removed, it is necessary to have a
practical and reliable method for evaluating the related
information to the target goal.

In recent years, many researchers have paid much
effort to evaluate feature estimation. There exist many
methods for estimating the quality of attributes. For the
regression problem, mean square and mean absolute error
[41] and Relief F [39] are used as estimation heuristics.
Almost the heuristic methods used for evaluating the
attribute quality of the attributes made the assumption of
the conditional independence of the features. These
methods are thus less suitable for problems that have much
feature interaction. In opposite, Relief F does not assume
the condition for the attribute. This algorithm is effective,
to understand the circumstantial information, and can
appropriately predict the attribute quality of problems
with a high dependence between features [42]. It was
reported that Relief F has been widely considered as an
attribute selection method, which is used as the pre-
processing step beforehand the model is learned and
trained [43]. This method is known as one of the most
effective algorithms until now [44]. Finally, Relief F could
provide a unified assessment on evaluating the quality of
features in regression problems. The detail of this algo-
rithm can be found in the previous studies [39, 40].

2.2.5. Validation Indices. In this research, to assess, com-
pare, and validate the performance of the model, RMSE,
MAE, and R were employed. Generally, RMSE can be used to
measure the mean squared difference between actual and
estimated values, while MAE is used to determine the av-
erage error amplitude. When the values of RMSE and MAE
are smaller, the model will have higher predictive ability. By
contrast, higher values of R indicate the higher prediction
ability of the model. These indicators (RMSE, MAE, and R)
are usually applied for the regression problem that can be
determined by using the following formulas [45, 46]:

(2)

1 M
MAE =37 ) Ja: - 4l 3)
R=\l1- Zg (ql - qz)z (4)

Zg (91 - E)z’

where q; and g, correspond to the measured and modeled

values, ¢; indicates the average permeability coeflicient
value, and M is the summation of input.

2.3. Methodology. In this research, there are few main steps
carried out to predict the “K” of soil as indicated in Figure 3.

Step 1. First, the input dataset is generated and loaded,
and then these datasets are randomly divided into
testing (30%) and training (70%) groups. The split of
this dataset in 70 : 30 ratio was done for the training and
testing of the models, respectively, based on the ex-
perience of authors and similar studies carried out by
other researchers for obtaining the best performance of
the models [47]. In this step, the Relief F feature se-
lection method was applied to validate the importance
of the input variables on which the important pa-
rameters were selected for the generation of final
training and testing datasets after removing irrelevant
parameters.

Step 2. In this step, a training dataset was used to train
the soft computing-based models (ANN, SVM, and
RF). To get the best performance of these models, the
optimization of the hyperparameters used in each
model was carried out using the trial-error process. In
this study, the ANN was trained with 10 hidden layers
with sigma loss function, the SVM was trained with
Radial Basis Function (RBF) kernel function using the
gamma value of 0.25, and the RF was trained with 100
iterations.

Step 3. Validation of the models (ANN, SVM, and RF)
was done in this step using testing dataset. Various
statistical indicators (RMSE, MAE, and R) were cal-
culated using both training datasets. While the values of
these indicators using the training dataset indicate the
goodness of fit of these models with the data used, the
one using the testing dataset indicates the predictive
capability of these models.

3. Results

3.1. Attribute Importance Using Relief F. We evaluated the
importance of the input parameter by using the Relief F
technique for the six input parameters including the water
content, void ratio, specific density, liquid limit, plastic limit,
and clay content (Table 2). The clay content was found to be
the less important variables of the permeability with the
weight value of merely 0.025. The weights of the other index
parameters including plastic limit, liquid limit, and specific
density are 0.0753, 0.0762, and 0.0877, respectively. Finally,
the water content and void ratio are shown to be the most
important parameters with a weight of 0.096 and 0.0942,
correspondingly.

3.2. Validation and Comparison of the Models. Validation of
the models (ANN, SVM, and RF) was done using both
training and testing datasets as indicated in Figures 4-6 and
summarized in Table 3. With respect to the training dataset,
the RF has the highest value of R (0.972), followed by the
ANN (0.948) and the SVM (0.861), respectively. In contrast,
the RF has the lowest value of RMSE (0.0035) and MAE
(0.0023), followed by the ANN (0.0047 and 0.0027) and the
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FIGURE 3: Methodological flowchart used in this study.
TaBLE 2: Importance of input parameters using Relief F.
No. Input parameters Weights
1 Natural water content 0.096
2 Void ratio 0.0942
3 Specific density 0.0877
4 Liquid limit 0.0762
5 Plastic limit 0.0753
6 Clay content 0.025
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FiGure 4: Correlation analysis of actual and predicted outputs: (a) ANN with training dataset, (b) ANN with testing dataset, (c) SVM with
training dataset, (d) SVM with testing dataset, (e) RF with training dataset, and (f) RF with testing dataset.

SVM (0.0078 and 0.0056), respectively. These results on the
training dataset show that the RF has the highest goodness of
fit with the data used compared with other models (SVM and
ANN). In terms of the testing dataset, similarly, the RF has the
highest value of R (0.851), followed by the ANN (0.845) and
the SVM (0.844), respectively. However, the ANN has the

lowest value of RMSE (0.001), followed by the RF (0.0084) and
the SVM (0.0098), respectively, and the RF has the lowest
value of MAE (0.0049), followed by the ANN (0.005) and the
SVM (0.0064), respectively. Figure 5 shows the visualization
of the actual and predicted values of the permeability coef-
ficient of soil through experiments and models, respectively.
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TaBLE 3: Validation and comparison of the ANN, SVM, and RF.

Indicators ANN SVM RE

Training Testing Training Testing Training Testing
RMSE 0.0047 0.001 0.0078 0.0098 0.0035 0.0084
MAE 0.0027 0.005 0.0056 0.0064 0.0023 0.0049
R 0.948 0.845 0.861 0.844 0.972 0.851

4. Discussion and Conclusion

In the geotechnical study, the permeability coefficient (K) of
soil is an important factor for designing civil engineering
structures on soil. However, determining the “K” in the
laboratory or in the field is time-consuming and expensive.
Indirect estimation of “K” using empirical equation and
correlating with other engineering properties of soils may
not be accurate [3-5]. Moreover, they may be applicable to
specific soil only. Therefore, in this study, we have applied
three popular cost-effective soft computing-based models
such as ANN, SVM, and RF to predict “K” of the Da Nang-
Quang Ngai expressway development project site soil by
using six soil parameters, namely, water content, void ratio,
specific density, liquid limit, plastic limit, and clay content as
input in the studied models.

The Relief F feature selection method results showed that
the void ratio and the water content were found to be the
most important input variables (parameters) in the pre-
diction of the “K” of the soil. It is reasonable because the void

ratio is highly correlated to the permeability in several
studies [48]. On the other hand, the water content represents
the level of saturation, which directly links to the fluid flow
in the porous media [49].

The validation results showed that all three models are
good at estimating the prediction of soil coeflicient of
permeability. However, the RF is found to be the most
accurate method to predict the “K” of soil in comparison
with SVM and ANN. This can be attributed to the ability of
the RF algorithm in processing large databases with a large
number of input parameters also [49]. The results of this
study also are in a good agreement with the results of other
studies on estimating the shear strength of soil where
performance of the RF model was the best in comparison
with other ML models [20, 23].

In general, the soft computing-based models developed
in this study contribute a powerful tool to estimate the
permeability coeflicient of the soil accurately. However, the
performance of the model depends on the input parameters,
so it is necessary to carry out the various strategies to
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improve the input samples to improve the performance of
the model. In addition, it is necessary to consider the over-
fitting problem [50]. Therefore, the data for the training are
crucial for accurate prediction. Once need to make sure that
the data are required to be reliable and sufficient to apply the
machine learning technique into practice. In this study, we
have used 70% of the total data as training data for obtaining
optimum results based on the earlier studies [51-53].

Development and improvement of the performance of
models are a continuous process. The findings of this study
are that the RF model can be used to estimate accurate
permeability coefficient of the soil using limited soil pa-
rameters but more studies at different sites are required for
confirming its wider applicability.
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