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ABSTRACT During the last decade there has been a major shift towards renewable energy sources to fulfill
the increasing demand for energy in a sustainable manner. However, a major challenge with renewable
energy generation is its dependency on weather conditions. Energy storage is deemed instrumental to harness
renewable energy by providing a means to overcome stochasticity in renewable generation. Nonetheless,
the operation of energy storage is not trivial due to its energy limitation and degradation behavior. Many
works in literature consider forecasts as a cornerstone for effective management of energy storage for various
grid applications. However, little work has been devoted to studying the actual value of forecast for energy
storage management, which is highly dependent on the use case. This paper presents a review of the state of
the art in the use of forecasts for energy storage management, identifying the estimated value of forecast with
respect to baseline management approaches that do not rely on forecasts. The paper also discusses research
pathways that would focus on improving forecast only on the energy storage applications that can benefit
from it.

INDEX TERMS Energy storage, energy forecasting, control, battery.

I. INTRODUCTION
Global energy consumption has been growing in the past
few decades and is projected to grow even further in the
future. Electricity demand has been traditionally met by fossil
fuels, but sustainability concerns have driven a shift toward
renewable sources of energy. Renewables are expected to
grow by 2.3% each year [1], posing major operational chal-
lenges due to their stochastic nature [2]. Researchers and
industry agree that energy storage can help overcome these
challenges by storing excess energy and releasing it when
demand is high [3], effectively increasing the dispatchability
of a resource mix. Powered by this perception, as well as
regulatory incentives and other major industry drivers, energy
storage deployment has grown drastically and its cost has
decreased making it a feasible grid resource. The most com-
mon energy storage technologies based on batteries exhibit
high flexibility and speed. This results in added grid flexi-
bility and increased ability to integrate high penetration of
renewables [4]. Flexibility also implies that storage can be
deployed for a variety of applications on different levels of
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the power system, providing services for transmission, distri-
bution, and end-users. Demand-charge reduction [5], energy
arbitrage [6], frequency regulation [7], peak reduction [8],
renewable energy curtailment reduction [9], transmission
congestion relief [10] are widely studied and analyzed in
feasibility studies, as well as offered by technology vendors
and integrators. A study conducted by RockyMountain Insti-
tute [11] identifies thirteen fundamental services that can be
provided by energy storage devices for customers, utilities,
or independent system operators. It also identifies the benefit
of stacking multiple services to maximize the value provided
by the storage system. Apart from the flexibility that energy
storage systems provide, several studies have identified the
economic value of deploying storage [12], [13]. As a result,
energy storage adoption is on the rise and is expected to grow
further in the near future [4].

However, the key to cost-effective storage projects lies in
operation, this is, knowing when to charge and discharge to
increase the benefit to the grid and storage operator. There
has been extensive research onmanagement of energy storage
systems, and the majority of approaches rely on energy, load,
solar, or price forecasts as inputs to operational strategies.
Extensive review studies on forecast methodologies and their
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accuracy can be found in the literature. A detailed review
of solar power forecasting is presented in [14]. The paper
presents a complete review on solar forecasting techniques,
its economic impact, probabilistic and deterministic forecast,
as well as error metrics used in literature. Another detailed
review of solar forecasting techniques as well as their appli-
cations is presented in [15]. A comprehensive review of load
forecasting is presented in [16]. A review on wind speed and
wind power forecasting has been presented in [17]. The paper
discusses different methods of wind power forecasting found
in literature, however it does not discuss the impact of forecast
accuracy. In [18], the authors present the use of wind power
forecasting for onshore and offshore wind power farms and
their economic value. It presents a detailed analysis of various
methodologies found in literature for wind power forecasting.
Even though many studies present a state-of-the-art of fore-
casting techniques, not many quantify the effect of forecasts
and forecast quality on the performance of energy storage
operation. This creates a detachment between the storage
operation research and the forecast research regarding the
types of forecast that are more useful, and whether improving
them does generate actual value.

In this work, the goal is to explore the existing literature in
control and optimization applications of forecast, to under-
stand the benefits of using forecast for decision-making
and control, compared to more standard, less sophisticated
approaches. This work looks into various energy storage
applications found in the literature and how the authors
address the use or impact of energy forecasts. This paper does
not present a forecasting methodology, rather, it presents a
review of the impact of forecast accuracy on the performance
of energy storage applications.We start by identifying a broad
range of works on energy storage control and optimization
for different applications. Then, after grouping the papers in
different buckets according to their application, we identify
whether a value analysis of the use of forecast is being carried
out. Based on the value analysis presented in the reviewed
papers, we identify the general benefit of applying forecast
with respect to baseline scenarios that do not rely on forecast,
and whether forecast can be useful to improve the perfor-
mance of each storage application. This paper is organized
as follows. In Section II, an introduction to forecasting is
presented. In Section III, the importance of forecasting in
energy storage control is highlighted. Section IV, presents a
review of energy storage papers with a focus on the impact of
forecast. Section V presents a detailed analysis of the findings
and Section VI summarizes and contributions of the work.

II. INTRODUCTION TO FORECASTING
Forecast is the process of predicting an unknown signal,
e.g., electric demand [16], [19], generation [20]–[22], elec-
tricity prices [23], natural gas [24], among others, for the
next hour/day/week/month etc. Predicting a value in future
requires a well defined methodology that takes into account
the historical values, trend, and other variables that can
impact the value at a future time step. Figure 1 shows

FIGURE 1. Forecasting methodology.

a general methodology used for forecasting. The first step in
forecasting is to understand the application of the forecast.
This will define the data collection process and the method-
ology to be used. It is important to understand the forecast
horizon and forecast resolution based on the application.
Forecast horizon is the duration for which the forecast is to be
made. This can be very-short-term (minute ahead), medium-
term, or long-term (annual). Forecast resolution is the gran-
ularity of the data, defined as the period of time covered by
each sample of the forecast signal, for example, per-minute,
hourly, daily, weekly, etc. One hour granularity is the most
used one in the industry. Once this is decided, the first task is
gathering the data. This step involves approaching agencies
and getting hold of reliable data. The length of the data
should be enough for training and validating any forecasting
approach of interest. Also, the quality of the data will impact
the accuracy of the forecasting model. Next, the data must be
preprocessed. This task involves feature extraction, cleaning
and scaling the data, detecting and removing outliers, among
others. Finally, the learning stage of themodelmust be carried
out using the preprocessed training data. Once the training is
complete, the model performance is evaluated according to
some performance or error metrics. Validation process is an
optional phase for such data-driven forecastmodels. Themost
common performance metrics used to evaluate energy fore-
casting models are Mean Absolute Percentage Error (MAPE)
and Root-Mean Square Error (RMSE). Based on the model
performance and the desired outcome, the model is tuned.
This process of training and validating the model is repeated
until a ‘‘good-fit’’ is achieved in the learning process.

III. IMPORTANCE OF FORECAST IN ENERGY STORAGE
CONTROL
The value of a storage system depends on how it is operated.
Given that storage is an energy-limited resource, present
actions affect the ability to carry out potentiallymore valuable
actions in the future. Forecast becomes a critical part of
storage management in the process of deciding the course
of action over the lifetime of the system. To maximize the
economic benefits of storage control, the storage operator
may also need energy price forecast to compute (dis)charging
schedule for the storage system. However, on system opera-
tor/utility side, the load forecast would be needed to man-
age supply and demand at a given node. If no overload
is expected, the system can be used for other applications,
being able to accrue more value.Without forecast, the storage
system would be operated sub-optimally without realizing
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FIGURE 2. Forecasting timeline for different use cases.

its full potential, unable to provide additional services to
the grid. Renewable generation forecast allows the operator
to optimize charging times, getting maximum benefit from
renewable generators.

As discussed in Section II, depending on the storage appli-
cation, forecast of market prices, load, or renewable genera-
tion can take different forms. These forms are mainly deter-
mined by the time granularity (step size) and forecast horizon.
For example, it has been theorized that a sufficiently accurate
forecast at a high time granularity and short time horizon
(1-minute step size for the next 15 minutes) could be used
to predict renewable ramping [25], making it easier for the
storage system controller to dispatch and correct undesirably
large variability. Moreover, energy storage used for customer
tariff management can benefit from 15 or 30-minutes step
size to perform real-time charge/discharge, trying to reduce
the customer’s demand charge, which applies to the peak
load of the month. An accurate forecast may help an opti-
mization algorithm to calculate the maximum demand charge
reduction possible, and the charge/discharge profile needed to
achieve it. In this case, the forecast horizon is generally longer
than one period of the load signal, typically one day. In both
of the mentioned applications, the forecast for a given time
period can be generated using the latest measurements of the
signal, which should help increase the forecast accuracy.

Strategies for market participation use market price fore-
cast, and the forecast type depends on the market struc-
ture. If the storage system participates in a Day-ahead (DA)
market, the forecast generally has 1-hour time step and a
time horizon of one day. If the resource participates in the
Real-time (RT) Market, the time step is generally between
5 and 15 minutes time-step and between 15 minutes and one
hour time horizon. It is worth reminding the reader that the
forecast for market applications is generated for a time period
relatively distant in the future (e.g., for DAmarket the forecast

must be generated several hours before midnight, and for
RT market it must be generated more than one hour before
the performance hour). In this case, latest samples of the
forecasted signal at the time of performance are not available
when forecast is generated, which may lead to inaccuracy.
Figure 2 shows the different timelines for forecasts for differ-
ent applications.

The key to determine the benefit of using forecast is the
concept of ‘‘sufficiently accurate.’’ For many applications
that could have great benefits from sufficiently accurate fore-
casts, it is unclear if the actual attainable forecast is suffi-
ciently accurate to improve the control performance. Load
and renewable generation can be very difficult to predict if
one tries to capture short-term changes, or for small loads or
generators. For example, estimating a renewable generation
ramp from two power samples collected one minute apart
can act as a derivative filter, which is known for amplifying
high-frequency noise, and can lead to a wrong estimation
of the ramp and a deteriorated control performance. In the
case of demand charge reduction, when dealing with small
loads, even if one tries to use forecast with 15-minutes step
size, it can fail to foresee the maximum demand, yielding a
detrimental effect in the customer’s bill.

IV. ENERGY STORAGE USE CASES
There is a consensus in industry about the flexibility of energy
storage as a grid asset capable of supporting a broad range
of grid tasks that operators need to cover in order to provide
safe, reliable, and affordable electricity to customers. For
example, battery storage exhibits a fast response to power set-
point changes, which translates in a more effective response
to supply/demand imbalances. This leads to battery storage
to be theoretically more beneficial for frequency response
applications than traditional resources with slower response
time. The (Pennsylvania, New Jersey, and Maryland)

114692 VOLUME 9, 2021



V. Sharma et al.: Use of Forecasting in Energy Storage Applications: A Review

TABLE 1. Summary of the energy storage applications addressed in this review.

PJM market pioneered the inception of battery storage
for secondary frequency response exploiting its flexibility
through the development of the REG_D signal. Another
high-value application is providing capacity for genera-
tion, transmission, or distribution. Southern California Edi-
son (SCE) has deployed large battery systems to replace a
gas peaker in the aftermath of a major gas leak in Southern
California [26]. Other utilities intend to use battery storage
to manage power overloads in transmission and distribution
equipment to avoid expensive infrastructure upgrades. On the
electricity customer side, the acquisition of battery systems
is mainly driven to supply power in the event of an outage,
while reducing the customer cost of electricity via energy
arbitrage, demand charge management, and participation in
demand response programs.

This section will extend on different applications of energy
storage in the literature where forecasts have been used.
Wewill analyze the forecast methodology, the storage control
and management approach, and the benefits associated with
the use of forecast. The review is divided into distribution
applications, degradation management, storage sizing, stor-
age as operating reserves, renewable integration, microgrids,
and behind the meter(BTM) storage. The various energy
storage applications are summarized in table 1.

A. ENERGY ARBITRAGE/LOAD SHIFTING
Energy arbitrage refers to using a storage system to collect
energywhen the price of electricity is low or there is an energy

surplus, and discharging this energy when prices are high
or energy generation is scarce. Typically in the U.S system,
demand varies during the day, reaching its lowest during the
night, and reaching a peak sometime around 6 pm. Conse-
quently, shifting the load can help accommodate the changing
demand as well as change in generation. Load shifting can be
done for intraday load as well as for seasonal load [27].

In [28], the authors propose an offline planning-based
control for energy storage for peak demand reduction in a
low voltage distribution network. The paper uses day ahead
forecasts to plan the charging discharging of the energy
storage device. However, the authors do not incorporate
real-time adjustments or control. The idea is to rely on
day-ahead planning based on day-ahead forecasts which are
preprocessed using historical load data to save on added
costs due to real-time control. The proposed methodology
reduces the peak demand by 19%, which is compared to a
case with perfect forecast, which reduces the peak by 24%.
On a 5-week testing period, the peak-demand is reduced
97 times out of 100. The methodology is also tested on a
larger data set which consisted of 500 aggregations. The
results show that the system does not reach its maximum
demand-reduction capacity due to multiple peaks in the sys-
tem. The uncertainty in low-voltage system is very high
as the demand is difficult to forecast. In certain situations,
a negative demand reduction was seen where a peak was
caused due to the storage system charging. The offline model
is also compared to a set-point control algorithm with the
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same forecasts and the offline system resulted in more neg-
ative peaks. Forecast methodology: Since the authors did
not have access to the location of the data, they could not
find numerical weather prediction data to develop traditional
forecasting methodologies. The paper uses multiple weekly
profiles to generate forecasts. The forecast is obtained by
using half-hourly data from the same day of the previous
weeks. The model was trained on 14 weeks of data and
tested on 5 weeks. The paper presents a pre-processing step
to minimize the impact of forecast error. The preprocessing
stage uses a set of rules to tries to search for a filter to widen
and increase the magnitude of the forecast peak to increase
the robustness.

In [29] the authors propose an online control-based
methodology for load-shifting using real-time load forecasts.
The day-ahead stage of the control algorithm uses average
load curves from similar days for planning and the real time
on-line stage uses linear regression to predict the load based
on real time data. The average load curve, the real-time
regression-based load forecast, SOC, and battery inputs are
used to optimize the battery dispatch using dynamic program-
ming. The average load curve based on historically similar
days yields a MAPE of 0.36 for a day while the on-line fore-
casting model yields a MAPE starting from around 0.12 for
the first hour of the day and reduces to 0.01 by the end of the
day. In terms of variance, the similar-day average load curves
have a variance of 42.32 at the beginning of the optimization
period while the forecast from on-line model has a variance
of 15.29. If the system uses only the average forecast, there is
over charging and over-discharging due to error in forecast,
and the variance of the peak-shifted load curve is 4.85 while
the peak-shifted load curve variance after using regression
is decreased to 4.18. Forecast methodology: Weighted least
squares based linear regression is used to forecast load. His-
torical load as well as real time load is used in the forecasting
model. Days are categorized based onwhether it is a weekday,
weekend or a holiday as well as based on weather if it is a
sunny day or a cloudy day.

In [30] the authors propose a Model Predictive Con-
trol (MPC) based control strategy to smoothen the overall
load at a substation with energy storage and Renewable
Energy Sources (RES). The MPC controller uses day ahead
and short-term RES forecasts to optimize the dispatch from
the energy storage system (ESS). The day-ahead RES fore-
casts are updated once a day for day-ahead planning while
short-term RES forecasts are updated at each iteration of the
MPC loop. Three cases have been discussed in the paper.
In the first case, short-term RES forecasts are assumed to
not be available, thus only relying on day-ahead forecasts.
In this case, the day-ahead forecast uncertainty is modeled
using a Gaussian curve with a variance of 4. Since this is
an artificial forecast, it could miss out on some of the real
world scenarios. The mismatch in forecast is partly covered
by ESS by discharging and charging, but mostly by the
grid, and it may cause a large power exchange at the node.
In the second scenario, short-term RES forecasts are made

available to the system. Perfect short-term RES forecasts
along with 1000 different short-term forecasts with varying
errors are simulated. It is observed that due to the availability
of short-term forecasts, the changes in RES generation are
met by the storage system rather than the grid. RES fore-
cast outperforms the benchmark scenario where short-term
forecasts are not considered. In the third case, real data along
with real forecast has been considered to analyze the system.
A case with large forecast error is considered, where the
actual RES generation is less than the forecast. The results
show that the proposed control strategy is able to cope with
the skewed forecast uncertainty and absorbs the fluctuation in
generation. Forecast methodology: The forecasting strategy
used in the work is not explained in the paper. The paper
considers day ahead as well as short-term RES forecasts, but
there is no discussion as to how the forecasts are done.

In [31], the paper presents four different strategies to
smoothen the demand of a small electricity network con-
sisting of residential customers, each with PV and energy
storage. The first strategy, used as a base case for compar-
ison, is a rule-based approach to set the charge-discharge
dispatch of the battery based on PV generation and demand.
The following three approaches make use of load and
PV forecasts and proper optimization algorithms to con-
trol the battery. The second strategy is a centralized MPC
control strategy. A central hub runs the control algorithm
using information such as each household’s load forecast,
PV generation forecast, etc with the aim to reduce the over-
all variation in demand. Next, a decentralized MPC-based
strategy is presented where each individual household runs
the optimization algorithm to reduce its variation in demand.
Fourth, a distributed control approach is presented. In this
scenario, each customer runs the optimization problem and
communicates that information to a central hub termed as the
marketmaker. Themarketmaker looks at the overall load pro-
file to update the prices and broadcast them to all customers.
This process is repeated until the distributed optimiza-
tion algorithm converges. Since each customer’s load and
PV forecasts are fixed, the overall demand from the algo-
rithm’s perspective is also fixed. To assess the performance
of the proposed strategies, the prediction horizon and the
accuracy of forecasts are varied. Root-mean-square (RMS)
deviation and peak-to-peak (PTP) variation from the average
demand are used to evaluate the performance of the sys-
tem. As the prediction horizon is varied from 3h to 24h,
the accuracy of forecasts deteriorates. In general, the cen-
tralized approach and the distributed approach have similar
RMS deviations and perform better than the decentralized
approach. Shorter forecast horizons (3h and 6h) have signifi-
cant effect on the performance, while the system performance
is almost the same for 12h and 24h horizons. The accuracy of
the forecast is varied by introducing noise to the forecast time
series. The performance is compared to the base case and the
results show that the proposed control strategies are not very
sensitive to forecast accuracy. Forecast methodology: The
paper does not discuss the process of obtaining the forecasts.
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The accuracy of the forecasts in terms of any error metrics is
not discussed.

The effect of forecasting uncertainty on peak shaving
and time-of-use applications for battery storage system has
been studied in this work [32]. First an Artificial Neural
Network (ANN) based load forecasting model is developed.
Next, four scenarios are modeled to understand the effect
of forecast accuracy on the system. First, a scenario without
any forecast is modeled. Next a scenario using the proposed
ANN with 10.02% mean absolute error (MAE) is simulated.
Two more scenarios with 2% and 0.02%MAE are also simu-
lated. The more accurate forecasts are generated by adding
white noise to the actual load. It is observed that all the
scenarios with predictions performed better than the one with
no prediction. The proposed ANN model with high MAE
performed better than the no prediction scenario 64% of the
time whereas scenarios with lower MAEs performed better
every time. Hence, it has been concluded that improving the
forecasting accuracy has a significant effect on designing a
reliable battery dispatch strategy, especially on days where
the actual load does not follow a smooth curve and is abrupt.
Forecast methodology:ANN has been used as the learning
algorithm in this work. A two-layer feed-forward ANN is
trained using Levenberg-Marquardt backpropagation algo-
rithm, with one hidden layer containing 6 neurons. Historical
load along with dummy variables such as day of the week are
used to train the model.

B. ENERGY STORAGE AS OPERATING RESERVES
The paper [33], puts forth an operation technique for a dis-
tribution load aggregator that provides an improved energy
storage management strategy. Furthermore, a communication
and control structure has been provided to supplement the
functioning of ESS in an event of loss of load in bulk power
system, improving the overall reliability of the power system.
Finally, a structure to analyse impacts of energy storage
reliability on bulk power system based on sequential Monte
Carlo simulation has been presented. The author highlights
the fact that this study can provide with better business
model strategies for the deployment of energy storage. Even
though the study uses perfect forecasts, the authors discuss
the effect of forecast on the optimality of the operation.
Forecast methodology: Forecasts are used in the proposed
system, however, the forecast information is assumed to be
available without any discussion on the methodology used to
obtain the forecasts.

In [34] the authors assess the value of energy storage in
the context of electric system security. The work studies the
cost of operating a system with significant intermittent gen-
eration covered by standing reserves. In the proposed model,
a priority ranking method for generating unit commitment
is developed using wind profiles and net demand forecast.
Imbalances are introduced in wind forecasts and realized
wind using random walk method with the resulting fore-
casting errors representing forecast uncertainties. Further-
more, allocation of spinning reserve is established to forecast

uncertainties using statistical methods. Various studies were
developed using the method and it was concluded that storage
adds value to the overall operation of the system for all
levels of wind penetration. Different wind penetration levels
are assessed ranging from 16 GW to 56 GW. Using storage
reduces the need for additional reserves that comes from the
additional renewable penetration and the ensuing power bal-
ance uncertainty. C02 emissions also follow a similar trend,
thus emphasising the benefit of storage in wind uncertainty.
Forecast methodology: Forecasts are made by introducing a
random normal distribution to the historical wind time series.

The work in [35] explores the impact of forecast error
and uncertainties in wind power generation on storage-based
standing reserves considering high wind penetration. Fore-
cast methodology: Importance of wind power forecasts has
been discussed in detail. The paper focuses on the effect of
forecast horizon on the accuracy of the forecast and its effects
on standing reserves. A random-walk methods is used to
model the imbalance in net forecast (demand and generation).

C. RENEWABLE INTEGRATION
Renewable sources of energy such as wind power and
PV power are highly dependent on weather conditions. The
major challenge for the integration of renewable sources of
energy is their intermittent and variable generation. From the
grid operational standpoint, this challenge can be observed in
two different time scales. First, the fast variation of renew-
ables leads to fast power imbalances that translate into a
higher need for frequency response reserves. To mitigate
these effects, storage systems are used for smoothing and
ramp rate control of renewable generation, ensuring that
the generation seen by the grid is slow-varying enough that
frequency response reserves can act more effectively. The
other side of tackling intermittent renewables is the ability
to use them as firm capacity when offering energy to the bulk
system. Storage systems are used in this case to compensate
for sudden power drops ensuring than a firm amount of power
is delivered during a market period.

In [36], the authors propose to use wind power forecasts to
determine when frequency deviation will occur and regulate
the energy storage dispatch accordingly. The inaccuracy in
wind forecasts is handled by a feedback loop to take care of
the steady state frequency deviation based on real-time infor-
mation. The proposed methodology is tested on a real-time
digital simulator (RTDS). Forecast methodology: The paper
comments on the importance of wind power forecasts and the
uncertainty associated with it. They also introduce additional
steps in their methodology to incorporate the error in wind
power forecasts. However, they do not discuss the methodol-
ogy used to produce the wind power forecasts, nor do they
mention the quality of the forecasts in terms of error metrics.

In [37], the authors look into the effect of stochastic fore-
cast error on the state of charge (SOC) of ESS, i.e., the
overcharging and undercharging of the ESS with RES in the
form of wind and solar. An MPC based strategy with two
hierarchies, one to deal with small forecast errors and another
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to deal with larger forecast errors along with a real-time
feedback loop to constrain the SOC to stay within limits.
Forecast methodology: In this work, the authors concentrate
on stochastic forecast error (SFE), which is described using
a probability distribution function with normal distribution.
Load, solar and wind forecasts for day ahead are calculated
mathematically. They are combined to get the net load of the
system. The variance of the individual forecasts is summed
to get the variance of the net load. In order to test the system
under different levels of SFE, the system is injected with
small and large SFE based on confidence bands. The authors
observe a significant impact on SOC, operation costs and
lifetime of ESS due to SFE.

D. MICROGRIDS
Providing service reliability to electricity customers with
highly sensitive loads, e.g., military bases, airports, and other
critical infrastructure, is a major application of battery storage
reflected in the growing interest for microgrid deployment,
mainly comprised of storage and renewable generation. This
has become especially important since natural events (hur-
ricanes in the U.S. east coast and fires in the west coast)
have led to periodic and prolonged outages. Forecast plays
a fundamental role in the operation of microgrids for longer
time periods. Adequate predictions of the critical load and
the available renewable resource allows a better use of the
storage system capacity, potentially reducing the DER size
needed to meet the critical load, while allowing to address
more extended outages. Tertiarymicrogrid control would per-
form economic dispatch using decision-making algorithms
informed by the forecast to decide if it is beneficial to run
a diesel generator or discharge the battery system, given
the availability of solar resources and the magnitude of the
critical load for the following few hours. Improved forecasts
would reflect in less capacity needed to address uncertainty
and reduced renewable curtailment.

In [38], the authors present the influence of the load fore-
casting error and the availability of energy storage in a micro-
grid with a wind turbine, photovoltaic plant, diesel engine and
amicroturbine. This work presents a Stochastic Programming
Unit Commitment (SUC) model to optimally operate isolated
microgrids in short term. A three-stage methodology is pro-
posed where a demand forecast is obtained from historical
demand data using ARMA technique, followed by solving
the SUC problem by taking spinning reserves into account to
offset the uncertainty associated with demand. Finally, a case
study has been provided where an optimization problem is
solved to study the power flow from generators and battery
management by simulating the demand estimation error.Min-
imization of the microgrid’s total operation cost has been
observed by the authors. Forecast methodology: Renewable
generation is assumed to be known or in other words a perfect
forecast is considered for wind and solar power. An ARMA
based 24 hours ahead load forecasting approach is used
in this work. Two years of hourly historical load data is
used to determine the p (order of the Auto-Regressive part)

and q (order of the Moving-Average part) coefficients. The
found values for p and q are 6 and 5 respectively.

In [39], an MPC controller is deployed to dispatch an
ESS to reduce the overall cost, which includes electricity and
natural gas consumption costs. The first scenario considers
forecast uncertainty in the load forecast while the solar fore-
cast is assumed to be perfect. The second scenario considers
uncertainty in renewable forecast. The effect of both the
scenarios are observed and it is seen that an MPC controller
between the day-ahead planning stage and real-time dispatch
stage helps reduce the cost of operating the system. The
impact of forecast error is addressed by deploying an MPC
to control the dispatch of an energy storage device as and
when needed to compensate the error in forecast. The paper
presents the impact of forecast uncertainties on the system
by inducing different levels of load forecast errors (5%, 10%
and 15%). As the forecast error increases, it is observed that
the average cost of operating the system increases. Forecast
methodology: The paper does not present a traditional fore-
casting methodology. Forecast error is obtained by adding a
normal distribution on to the base load or renewable profile
with varying standard deviation and percentage.

The work in [40], proposes an energy management system
operation strategy for a single family home with PV and
battery storage. The paper presents an MPC based model
considering probabilistic forecasts and the uncertainties asso-
ciated with them. A deterministic optimization problem is
formulated considering the quantiles from the probabilis-
tic forecasts. Considering energy storage as a manageable
source, a mathematical model was proposed for determin-
istic optimization using probabilistic predictions where the
dependency on current state and operating point of the energy
storage device is evaluated and obtained a guaranteed band to
compensate for the forecast errors. Forecast methodology:
Demand and PV time series data is injected with a randomly
generated time series with normal distribution, zero mean and
0.2 standard deviation to mimic probabilistic forecast.

In [41], using a forecast of the microgrid’s net electric-
ity demands, a linear optimization model is introduced for
coordinated optimal dispatch of energy storage units in a grid
tied microgrid with renewable assets to reduce the electricity
costs. The electricity cost was calculated considering local
and grid components of microgrid net power with respective
local and grid electricity rates. Results of numerical calcula-
tions were carried out for various energy sharing strategies on
a rolling horizon basis with real electricity and solar produc-
tion data and demonstrated the coordinated optimal energy
storage dispatch can significantly minimize the microgrid
electricity costs. Forecast methodology: There no discussion
on the methodology used for forecasting in this work.

E. BEHIND THE METER STORAGE
Electric utilities are building tariff rates that encourage elec-
tricity customers to modify their load shapes to reduce the
stress on the power grid. This is done through time of
use (TOU) energy charges that encourage consumption via

114696 VOLUME 9, 2021



V. Sharma et al.: Use of Forecasting in Energy Storage Applications: A Review

low prices when system capacity is high and discourage con-
sumption via high prices when capacity is scarce. In addition,
for some commercial and industrial customers, tariffs are
endowed with a demand charge that penalizes the highest
demand in the billing period. This encourages customers to
reduce their load factor making their load flatter. Managing
BTM resources, including flexible loads, and storage, pro-
vides electricity customers the ability to reduce their elec-
tricity bill. However, this management needs knowledge of
the customer’s load and site generation, which is generally
renewable. Moreover, as some storage resources have been
deployedwith the primary goal of providing backup to critical
loads, secondary use for bill reduction requires advanced
prediction of the critical load to ensure that the secondary use
does deplete the energy reserve needed for backup.

The study in [42] looks into a BTM case with Photo-
voltaic (PV) and storage. The authors present a methodology
for load and PV forecasting that is fed into a linear opti-
mization problem that outputs an optimal schedule for the
battery to maximize economic benefits by buying less when
the price is more and buying more when the price is low.
The model considers PV, grid, load, and battery parameters.
The paper very well demonstrates the effect of forecast accu-
racy on the system. Forecast methodology: Artificial neural
network (ANN) based load and PV forecasting models are
developed. The forecasts are made for 24 hours ahead with
hourly resolution. Two separate models are trained, one for
PV forecasting and one for load forecasting. The ANNmodel
for PV prediction is made up of one input layer with three
input neurons namely, air temperature, global irradiance, and
relative humidity, one hidden layer, and one output layer. The
load forecastingmodel is alsomade up of three layers but with
a single neuron in the input layer. Both models use sigmoid
as the transfer function. The forecasts are made on a 24-hour
rolling horizon. The authors have used forecast skill (s) and
relative RMSE as the error metrics to validate the models.The
models are compared with other models found in literature
which use the same data.

In [43], the authors propose an electricity price forecasting
methodology with BTM energy arbitrage. The aim is to use
electricity price forecasts as an input to an optimization algo-
rithm that aims to maximize economic benefits by charging
the battery during off-peak hours and discharging during peak
hours to save energy costs. The optimization routine gives
the battery schedule for each hour. The experiments are run
with different number of market clearing prices. Forecast
methodology: The authors present an interesting approach
to conduct electricity price forecasts. Unlike the commonly
used rolling horizon, the authors propose an intra-hour rolling
horizon approach, where they consider the time taken to cre-
ate the forecasts. Thus, a fraction of the hour is used to get the
forecasts. The forecasting steps starting from data preprocess-
ing, feature selection, and model selection used in the paper
are explained in great detail. An auto-regressive model with
exogenous variables (ARX) is used as the forecasting model.
The model is validated on the basis of Spike Prediction

Accuracy (SPA). One model is created for high-resolution
data and another one for low-resolution data. The high res-
olution model gives one hour ahead forecast whereas the
low-frequency model provides hourly forecasts for the day.

The work in [44] proposes a methodology for BTM energy
storage with PV to reduce demand charges. The authors
propose a two-level control strategy with different timescales
to deal with uncertainties and error in forecasts efficiently.
The first control algorithm runs on a 15 minute timescale and
suggests optimal energy storage operation to reduce demand
charges. The second control part considers real-time data
and tries to reduce the error caused by forecast inaccuracies.
Three different scenarios are studies, namely, low PV pen-
etration, medium PV penetration, and high PV penetration.
Forecast methodology: For this control strategy, day-ahead
PV generation and electricity demand at the feeder are fore-
casted. An auto-regressive moving average (ARMA) is used
to build the forecasting model with one year of training data.
However, the paper does not talk about the accuracy of the
forecasts developed in the work.

In [45], the authors present an interesting approach
whereby the forecast error metric is customized to improve
the output of the control algorithm. The controller’s objec-
tive is to minimize the monthly electricity bill. An MPC
based controller is designed to schedule the charge-discharge
times for the battery to reduce demand charges by reducing
peak demand. The authors point out issues with commonly
used forecast error metrics and propose two error metrics,
namely, Parametrized Earth Mover’s Distance (PEMD), and
the Parametrized Forecast Error Metric (PFEM). Forecasts
are created by minimizing traditional as well as proposed
errormetrics. It is observed that the controls providedwith the
best forecast by minimizing the proposed error metrics have
better performance than the ones that get forecasts minimized
with traditional error metrics. Forecast methodology: Feed
forward neural network (FFNN), Seasonal Auto-Regressive
Moving Average (SARMA) and naive daily periodic model
are used to build the forecasting models. The hyperparam-
eters of the models were found by grid search by testing
the performance of the models on validation data. For the
SARIMA model, it was found that AR of order 3 and a
seasonal component of order 1 gave the best results. For the
FFNN model, it was found that a network with one hidden
layer with 50 neurons over a training period of 200 days gave
the most accurate results.

F. MARKET APPLICATION
In [46] the authors propose a way for the owners of ESS
to increase their revenue by participating in the day ahead
market using a two-levell model, with arbitrage in one level
and market market-clearing process simulation in the other
level. The paper proposes to use the prices generated in
the lower level to adjust the energy storage operation in
the upper level, instead of price forecasts. Different wind
uncertainty scenarios are generated and the arbitrage revenue
is calculated for the proposed bi-level model as well as the
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conventional model. The bi-level model is able to smoothen
the effect of forecast uncertainty and yield less revenue
than the conventional model for all scenarios. Forecast
methodology: A Generalized Autoregressive Conditional
Heteroscedasticity (GARCH) model is used to get wind
power forecast along with a forecast-bin based error model to
create different wind scenarios. The forecast errors in terms
of MAPE or RMSE have not been calculated.

The work in [47] proposes a methodology for reducing
the generation peak, while satisfying the load requirements.
The proposed system is tested on a testbed consisting of a
generator, secondary storage, and load. The storage device
charges prior to the peak hours and supplies power during
peak hours to reduce the peak at the generator. Generation
power is kept in a specific band and the power is optimized
by taking the shortest path within the energy band. Forecast
methodology: Load profile is assumed to be known, thus no
forecasting methodology has been discussed.

The work in [48], proposes an operation scheme to mini-
mize energy purchasing costs for a distribution system load
aggregator using price and renewable forecast information.
AnMPC based operation strategy using load forecast, renew-
able forecast and price information is proposed and imple-
mented on both grid-tied mode and islanding mode to eval-
uate the impact of reliability and economy and provided
insights on how it can be impacted by energy storage capacity
and power limits. Forecast methodology: The paper assumes
perfect forecasts, hence no forecasting methodology is
provided.

The work in [49] presents an operating strategy for load
aggregator with electric energy storage to minimize their
electricity cost in day-ahead and real-time markets under
load and price forecast uncertainty. The paper presents an
MPC based operating frameworkwhichmakes use of forecast
information as well as real-time information to minimize the
operating cost of the system under different price and load
uncertainties. For the day-ahead price uncertainty, three sce-
narios are generated with 5%, 15% and 30% maximum devi-
ation from the day-ahead price. Since load forecasts are gen-
erally more accurate than price forecasts, 2%, 5% and 10%
maximum deviation from the actual load in the day-ahead
forecast is considered. Real-time price and load forecasts are
fed into the model as well. The proposed strategy is compared
with a no storage strategy and a day-ahead scheduling strat-
egy. It is observed that as the uncertainty in load and price
increases, the cost of electricity goes up drastically for the
two strategies, while the proposedMPC-based strategy is able
to cope with the increase in price and load uncertainty. With
the increase in price uncertainty and fixed load uncertainty,
the MPC-based strategy is able to leverage energy arbitrage
opportunities and reduce the cost. Forecast methodology:
The day-ahead forecasts are modeled by adding error to
the actual time series. Real-time forecasts are generated by
multiplying the actual value by the maximum forecast error
percentage and a random number. Since the forecast in the
near term is more accurate then long-term, the maximum

forecast error percentage is low for short-term forecasts and
higher for long-term forecasts.

G. DEGRADATION MANAGEMENT
Managing degradation is a major need for economically fea-
sible battery storage projects. The health of a battery dete-
riorates with time [50], but also according to how the bat-
tery is operated. The depth and number of charge/discharge
cycles have a significant impact on the capacity retention
of the battery [51]. In optimized operations, therefore, it is
important to determine the value of executing each cycle,
to understand whether it exceeds the cost of degradation. The
role of forecast for this application is to allow a more accurate
estimate of the operational value of an action before it is
carried out, avoiding ineffective cycles.

The work in [52] presents a two-layer energy manage-
ment system with the upper layer minimizing the operating
costs and the lower layer minimizing the fluctuations caused
by forecast uncertainty in a microgrid with a hybrid ESS
made up of battery and supercapcaitors. The model consid-
ers a degradation cost model to take into account long-tern
costs associated with battery degradation. An MPC based
framework with a feedback to compensate forecast uncer-
tainty is proposed with the upper layer running every 1 hour
and the lower layer running every 5 minutes. The effect of
forecast horizon is presented and it is observed that as the
forecast horizon increases from 6 h to 96 h, the operational
costs almost remain the same, however, there is significant
decrease in the battery degradation cost. Next, the effect of
forecast accuracy on the system is simulated. The forecast
error is increase 10% to 40%. It is observed that the effect
of forecast is less on the battery operation and more on
the supercapacitor as it is responsible to take care of the
fluctuations caused by the forecast error. Since most of
the fluctuations caused by the forecast error are taken care by
the supercapacitors, no significant effect of forecast uncer-
tainty is observed on the total operational cost and the battery
degradation cost.Forecast methodology: The authors discuss
the impact of forecast horizon and forecast accuracy on the
proposed system and model different forecast errors but do
not discuss the methodology used to obtain the forecasts.

H. STORAGE SIZING
The size of an energy storage system directly depends on the
application of interest, and it greatly affects the economics
of the storage project. All factors that affect the operation,
including load, renewable resources, pricing, and power con-
straints, also affect the optimal size of a storage system [53].
Sizing also involves dealing with the uncertainty in operation
which is driven by load, renewable generation, or electricity
prices. With design methodologies that optimize the size
of a storage system either to meet a capacity requirement
or maximize owner’s benefit, uncertainty leads to requiring
increased size to accommodate uncertainty. If the forecast
helps reduce the unstructured uncertainty in modeling a use
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case of storage, it will lead to reduced capacity and conse-
quently to lower capital costs.

In [54], the authors present an optimal battery sizing prob-
lem using dynamic programming that aims to reduce the
customer’s demand charges by performing peak shaving. The
idea is to reduce the peak or peak-shaving for industrial cus-
tomers whose demand peaks for short time intervals, which
increases their demand charges. The optimization algorithm
maximizes the profit from peak shaving. The impact of
forecasts and the forecast accuracy is not discussed in the
paper. The study could have benefited from using demand
forecasts to understand the impact of forecast error on the
system. Forecast methodology: No forecast methodology is
used. It is assumed that demand for the next day is available.
In [55], the authors employ a two-stage stochastic program-
ming approach for optimal sizing of energy storage device for
intra-hourly economic dispatch. The wind forecast errors are
included in the optimization problem as a chance constraint,
with a selected level of probability of error. Using the output
obtained from the 2 stage optimization problem, the amount
of distribution lying beyond the energy storage limits was
calculated and ensured to be between the chanced constraints.
Forecast methodology:Wind forecast is simulated using nor-
mally distributed random variables.

In [56], the authors solve the problem of ESS sizing by for-
mulating a chance-constrained optimization problem, where
wind power constraints, loading shedding constraints, power
balance constraints and network constraints are one-sided
chance constraints. The ESS is deployed for hourly dispatch
to the power system. They concluded that consideration of
forecast errors was necessary for high operational reliability
in ESS sizing problems. The total optimal energy capaci-
ties and the total optimal power capacities sized consider-
ing uncertainties are larger Forecast methodology: For wind
power constraints, forecast wind power is modeled using PDF
with a multivariate normal distribution. The correlation of
forecast errors of different wind farms is also considered.
Similarly, the load demand is modeled using a multivariate
normal distribution at different buses.

V. ANALYSIS
This section analyses and summarises the findings from the
work. One of the more significant findings to emerge from
this study is that forecast and its accuracy play an impor-
tant role in energy storage applications. However, it is of
interest to analyse how forecasts are generated in differ-
ent energy storage applications found in literature. Improve-
ments in machine learning and artificial intelligence tech-
niques have been applied to improve forecasts in energy
applications [57], [58]. Contrary to expectations, we have not
found a significant number of studies that deploy the state-
of-the-art energy forecasting techniques for energy storage
applications. Several studies mention the importance of fore-
cast accuracy and the effect of forecast uncertainty but fail
to report the forecast methodology used in their work. For
example in [52], the authors discuss the effect of forecast

uncertainty without mentioning the forecast methodology.
Some papers such as [47], [48] assume the forecast to be
known or perfect, which never happens in reality, making
their assumption and any conclusion coming from the studies
unreal. A widespread practice found in the papers studied,
is the use of artificial forecasts [34], [40], [49], [55]. Arti-
ficial forecasts are forecasts made by synthetically inducing
random noise to the actual data or persistence to mimic a
forecast. In [49], the authors go into great detail to simulate
artificial day-ahead load and price forecast. Random noise is
added keeping in mind the fact that error is less for recent
hours and more for later hours, since the short-term fore-
casts are, in general, more accurate than long-term forecast.
However, they do not use actual forecasts. Artificial forecasts
mimic the uncertainty caused by errors in forecasting to
some extent, however they are not a true representation of
actually forecast uncertainty. For example, a load forecasting
model can perform fairly well in general but not so well on
holidays due to the unpredictable behaviour of customers
during holidays. The forecast can be off on the day of the
holiday, the previous day as well as the next day. This could
greatly affect the performance of the system in a month with
more holidays (e.g. December) compared to another month
(e.g. January). This real-life scenario could be completely
missed if the forecasts are generated artificially using random
noise. Few papers present real forecasting methods [29], [32],
[38]. Figure 3 shows a pie chart with the various forecasting
methodologies found in this study. Around 31% of the papers
use artificial forecasts for their studies while 15% do not do
any forecasts and assume perfect forecasts. Approximately
35% of the papers use either a statistical or amachine learning
based forecasting technique. Around 19%of the papers do not
mention any forecasting technique.

FIGURE 3. Pie chart showing the forecasting methodologies used.

Another important factor to take into consideration apart
from the forecasting technique is the effect of different levels
of forecast uncertainty in the energy storage application. Few
studies present such an analysis [30], [39], [49], [52]. [32] is
a good example of a paper that considers all the important
points considered in this study. The authors first present
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TABLE 2. Table shows the summary of the papers reviewed in the study.
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TABLE 2. (Continued.) Table shows the summary of the papers reviewed in the study.

a real forecasting model using ANN. In-order to analyse
the performance of the system under varying forecast errors,
the authors use artificially created forecasts with varying
accuracy. They also present a case which simulates the system
without forecast information. Such a well presented study
helps understand the effect of forecast on energy storage
applications in detail.

One of the most significant findings to emerge from this
study is that forecast and its accuracy play an important
role in some energy storage applications. Our main interest
is to understand how forecasts are generated in different
energy storage applications found in the literature, and what

impact those forecasts have on the operation of storage assets,
according to the results presented by different authors. Mul-
tiple factors affect the impact of forecast accuracy on a given
system. Some papers also design the system in a way that
it is capable of absorbing the impact of forecast uncertainty
and still function efficiently. Nevertheless, from the papers
reviewed in this study, it can be concluded that forecasts are
useful for most energy storage applications. In the case of
energy arbitrage or load shifting, the ESS is used to store
energy during low cost or off-peak hours and use it during
peak hours. Forecasts such as load forecast and electric-
ity price forecast are critical in designing control systems
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for energy arbitrage. It can be concluded that for energy
arbitrage, forecasts are crucial and add value. Moreover,
the accuracy of forecasts directly impacts the performance
of the system [29], [31], [32]. The authors in [32] compare
the performance of their proposed system with forecasts of
varying accuracy as well as a case with no forecasts to high-
light the benefit of using forecasts. As operating reserves,
energy storage offers great potential in terms of flexibility
and reliability. Reserve requirement is estimated based on
the difference between the forecast and the actual power and
generation. The papers reviewed in this study identify the
importance of using forecasts, however, they fail to quantify
the value of forecasts for energy storage as operating reserves.
In the case of using energy storage devices for renewable inte-
gration, forecasts play an important role in estimating future
renewable generation and operating the system accordingly.
The work in [37] highlights and quantifies the importance of
using forecasts for RES integration. The authors observe the
significant impact on SOC, operation costs and lifetime of
ESS due to forecast accuracy. In microgrids, forecasts play
a fundamental role in the control of energy storage devices.
The authors in [38] study and highlight the value of forecasts
with a case study.

Forecasts play an important role in the control of BTM
energy storage devices. Load and BTM generation forecasts
provide prosumer control over their energy storage devices
as well as their electricity bill. The study in [42] looks into
a BTM case with PV and storage. The paper very well
demonstrates the effect of forecast accuracy on the system.
In market applications of energy storage devices, forecasts
of electricity price, renewable generation and load are used
in the optimal control of storage devices, however, from
the papers reviewed in this study, the value of forecasts in
market applications could not be quantified. Forecasts play
an important role in the sizing of storage devices. The authors
in [56] conclude that the consideration of forecast errors
was necessary for high operational reliability in ESS sizing
problems.

Table 2 shows a summary of each paper reviewed in this
study. It presents a summary of the application, forecast
methodology, forecast horizon, and forecast resolution, and
whether the authors conduct an uncertainty analysis,

Based on the work reviewed, the following recommenda-
tions are made to assist future research:
• Use a standard performance metrics: Depending on the
application or use case of the ESS, different parameters
can be used to evaluate the performance of the system.
However, when using forecasts,MeanAbsolute Percent-
age Error MAPE) and Root Mean Square Error (RMSE)
should be used as the error metrics. MAPE and RMSE
are the most common error metrics used to evaluate
energy forecast models.

• Benchmark forecastingmodels:When presenting a fore-
casting methodology, the authors should use benchmark
forecastingmodels available in literature to compare and
assess their models.

• Use real forecasting methodology if applicable: In any
work that evaluates the uncertainty caused by forecasts
and its impact on the entire system, at least one analysis
of the uncertainty caused by a real forecasting model
should be considered.

• Use a realistic forecast horizon based on the use case:
The use case will dictate which forecast will be used,
from one hour ahead to day-ahead, which will vary the
uncertainty in the forecast.

• Authors must present a complete overview of the fore-
castingmethodology used in the work. This includes any
preprocessing done to clean the data, the inputs used to
train the forecasting models, and the hyper-parameters
of the models.

VI. CONCLUSION
Joint use of energy forecasting and ESS provides promising
opportunities as enabler technologies for creating new forms
of flexibility options. The use of energy and pricing forecast
for energy storage management applications has the potential
to enable the use of energy storage flexibility and optimiza-
tion of its value. Realistic uncertainty analysis of forecasts
play an important role to determine the value of ESS usage,
quantify the operational risks, and create new next generation
business models. The present study has been one of the
first attempts to thoroughly examine the impact of forecast
uncertainty on energy storage applications found in literature.
The papers present a comprehensive overview of the state-of-
the-art of energy storage applications and how they incorpo-
rate energy forecasts into their study. It is expected to observe
new combined utilization of ESS and energy forecasting
while both domains are evolving. Distributed, federated and
hierarchical energy forecasting using new AI algorithms like
explainable or responsible AI can be considered among the
most promising new dimensions in the field.
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