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Abstract 

Aggregating flexibility from residential electric water heaters (EWHs) is fast gaining 
commercial interest. Flexibility modeling of an EWH involves highly precise and quick 
simulation of EWH water temperature using the EWH thermal dynamics model for 
various flexibility control actions. Since EWH tank water temperature data is usually 
unavailable or costly to obtain, developing an accurate and computationally inexpen-
sive EWH thermal dynamics model with limited sensor data is essential for devising 
advanced control strategies for EWH flexibility aggregation. In this paper, we present a 
novel recursive training-based unsupervised physics-informed neural network (PINN) 
model for predicting tank water temperature which requires only historical EWH power 
consumption data to train the model. PINN models enable the integration of domain 
knowledge from traditional physical processes and methods into neural network (NN) 
models. Single-zone thermal grey-box differential equation model (DEM) is used as the 
basis to develop and demonstrate proof-of-concept of the proposed approach. Phys-
ics from the single-zone model is encoded into the PINN loss function to incorporate 
domain knowledge and the PINN architecture is structured to mimic the single-zone 
DEM. The recursive training approach enables the use of previous-step water tem-
perature as an input to the simulation model. Two separate models for EWH ON- and 
OFF-states are developed and trained with real-world EWH power consumption data. 
Water temperature prediction results indicate that the proposed approach has similar 
performance as the traditional single-zone DEM model, thereby demonstrating the 
ability of the proposed model to learn the underlying physics behind the single-zone 
model without water temperature data. The proposed model has high accuracy and 
performs well outside the control set point temperatures indicating its suitability for 
simulating load shifting and other DR events. Additionally, EWH simulation results 
for two different scenarios with different water demand compositions are presented 
to study the effects of propagation errors on temperature prediction. The proposed 
approach paves the way for developing advanced EWH flexibility modeling tools for 
the aggregator to precisely control a large portfolio of EWHs considering user comfort 
and rebound effects.
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Introduction
To reduce greenhouse gases and achieve carbon emissions reduction targets, many 
governments are rapidly increasing the share of highly intermittent renewable energy 
sources in their country’s energy mix. These resources are distributed over the grid as 
opposed to the centralized generation units. Due to their inherent nature and distrib-
uted setup, renewable generation will pose considerable challenges to grid stability in 
the future. This calls for increased power system flexibility for the reliable operation of 
modern smart energy systems.

Power system flexibility needs are expected to increase by 66% in the EU from 2018 
to 2040 under sustainable development scenarios (Iea 2022). The required flexibility 
will increase significantly once the renewable energy shares increase above 30 percent 
of annual electricity production in Europe (Huber et  al. 2014). Traditional flexibility 
sources like conventional generators alone will not suffice to meet increasing flexibility 
requirements. Digitalization of the electricity grid resulting in smart grids presents an 
opportunity to tap more flexible resources from the demand side. Demand-side flexibil-
ity (DSF) is seen as one of the key contributing factors to tackling increasing flexibility 
needs. IEA estimates a global DSF potential of 4000 TWh/year or 15 percent of global 
electricity demand (Zhongming et al. 2017). A study estimates 12–23 GW of DSF in the 
northern European system with a total peak load of 77 GW (Söder et al. 2018). Addi-
tionally, DSF can provide various ancillary services such as frequency regulation, reac-
tive power management, etc., to the grid at a lower cost. However, technical challenges 
involved in harnessing and realizing the full potential of DSF should be addressed first in 
order to develop appropriate solutions.

In the domestic sector, Electric Water Heaters (EWHs) have a great potential for pro-
viding DSF as they are power-intensive devices with thermal storage capabilities. A basic 
analysis commissioned by NVE shows that EWHs in Europe have an approximate daily 
flexibility capacity of 20 GW (Norges vassdrags-og energidirektorat 2021) which is equal 
to the total installed capacity in Czech Republic and more than the generation capacity 
in Finland. Aggregated flexibility potential of EWHs from 50% of Norwegian households 
is estimated to be around 1000 MWh/h (Lakshmanan et al. 2021). Aggregated control 
and operation of distributed EWHs can significantly address the flexibility needs at both 
distribution and transmission levels. Thus, it is of great importance to develop tools that 
can aggregate flexibility from EWHs for providing grid solutions.

Estimating near-term flexibility available from EWHs requires the prediction of future 
water temperature for different control actions considering future hot water demand. It 
is crucial to maintain the tank water temperature within a range, both for the user’s com-
fort and to avoid legionella bacteria growth. Various control strategies for EWH have 
been explored in the literature and can be classified into model-based control (Ahmed 
et al. 2018; Nehrir et al. 2007; Vrettos et al. 2012) and model-free control (Ruelens et al. 
2016; Cao et  al. 2020; Kazmi et  al. 2016). As the name suggests, model-based control 
requires an EWH model for finding optimum control action as opposed to model-free 
control. Most approaches in the model-based control use a simplified model with low 



Page 3 of 22Pandiyan and Rajasekharan ﻿Energy Informatics  2022, 5(Suppl 4):58	

accuracy or assume access to data that is not possible/expensive in real world or use a 
complex model with high computational complexity. Most popular model-free control 
techniques such as reinforcement learning require a temperature sensor for online train-
ing or a simulator model for offline training. In-built temperature sensor from EWHs 
usually does not provide data and it is expensive to install and collect data from a new 
sensor. Therefore, an EWH model is required for developing model-free control. Thus, 
the control strategy for scheduling domestic EWHs for flexibility activation without 
affecting user comfort and severe rebound effect requires precise knowledge of appli-
ance thermal dynamics and hot water usage profile.

EWH modeling can be classified into white-box, grey-box, and black-box based mod-
els. White-box or physics-based modeling of EWHs requires complete individual system 
information of each EWH which is either very difficult to obtain or unavailable to aggre-
gators (Hossain et al. 2021). These models are developed using detailed knowledge of the 
underlying physical processes (Farooq et al. 2015) with few or no assumptions and do 
not require input-output data. However, they require significant effort to develop and 
tune the parameters such as friction parameter, mixing ratio, thickness of tank wall, etc. 
Even though white-box based models have good generalization capabilities, they have 
low accuracy compared to data-driven models (Farooq et al. 2015).

The grey-box differential equation model (DEM) based on energy flow analysis is a 
less complex approach compared to white-box modeling. Grey-box models use sim-
plified mathematical structure from white-box models and require input-output data 
to estimate parameters such as thermal capacity and thermal resistance. Most studies 
use single-zone grey-box model for EWH modeling due to its simplicity and analytical 
tractability (Paull et al. 2010; Xiang et al. 2019; Ahmed et al. 2018). Single-zone models 
assume uniform tank water temperature which is quite simplistic. A DEM for single-
zone EWH that uses only power consumption for parameter estimation and average 
water usage estimation is proposed in Shad et al. (2015).  Despite its simplicity, accuracy 
of single-zone model is not suited for precise control of EWHs (Xu et al. 2014). Some 
grey-box approaches include thermal stratification effects in their models, assuming two 
or more thermal zones inside the EWH (Farooq et al. 2015; Nel et al. 2016; Alvarez et al. 
2019; Zuñiga et  al. 2017) and need more than one first-order differential equation for 
each thermal zone. While multiple-zone grey-box models have higher accuracy than sin-
gle-zone models, they are computationally expensive.

Alternatively, data-driven black-box models can model non-linear dynamics and 
provide faster computation during temperature estimation but require expensive and 
extensive data collection (Han and Jentzen 2018). Moreover, black-box models cannot 
guarantee learning underlying EWH physical processes (Karniadakis et al. 2021). There-
fore, there is a need for computationally efficient models that require limited data but 
also capture the detailed physics of EWH operation.

Scientific machine learning (SML) is an emerging field that seeks to integrate tradi-
tional engineering methods into machine learning-based techniques to utilize prior 
domain knowledge and physical phenomena in the learning process (Rackauckas et al. 
2020). SML-based physics-informed neural networks (PINN) have been explored for 
modeling building thermal dynamics (Drgoňa et al. 2021; Gokhale et al. 2022) and for 
estimating battery state of charge (Luzi et al. 2019). PINN is gaining popularity across 
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many fields and their application in power systems are discussed in Huang and Wang 
(2022).

SML-based approaches replacing traditional methods are gaining interest due to their 
speed and comparable performance. A recursive training based unsupervised PINN is 
proposed in this paper for developing EWH water temperature prediction model where 
the current water temperature is used as an important variable for accurate prediction 
of future water temperature. This paper provides proof-of-concept for applying SML-
based approaches for developing data-driven temperature prediction models for EWHs 
when only historical power consumption data is available. The goal is to replace DEM 
with computationally efficient PINN models that can achieve similar or better perfor-
mance. In addition to learning the physics of EWH operation, results from the proposed 
approach provide plenty of scope and insights for further developing advanced high-
precision PINN-based EWH models for large-scale flexibility aggregation. The proposed 
model can also be easily extended to multiple-zone stratified model as the physics of 
each zone is similar to the single-zone model.

The main contributions of this paper are:

•	 Developing an unsupervised PINN-based temperature prediction model for EWHs 
when only historical power consumption data is available.

•	 Formulating a recursive training approach to model previous temperature as an 
input parameter in unsupervised learning setting.

•	 Demonstrating that the proposed model performs comparably with traditional sin-
gle-zone DEM.

The rest of the paper is organized as follows. “Background” section provides theoretical 
background on single-zone DEM and summarizes parameter and water-rate estimation 
steps. Under the “Methodology” section, the loss functions, the PINN architecture and 
the recursive training procedure are discussed. Simulation results are presented, com-
pared and discussed in “Results and discussion” section and the conclusion and future 
work are summarized in “Conclusion and future work” section.

Background
Thermostat temperature settings determine the ON/OFF states of the EWH. When 
water temperature reaches a lower threshold temperature Tlo , the in-built controller 
turns on the heater and vice-versa when the temperature reaches a higher threshold 
temperature Thi . The evolution of water temperature profile depends upon EWH charac-
teristics, current water temperature T(t), future hot water demand, ambient temperature 
Tamb , inlet water temperature Tin , etc. This section presents the theory behind single-
zone EWH model and also summarizes the steps involved in parameter estimation and 
water rate estimation when only power consumption data is available.

Single‑zone DEM

The single-zone DEM assumes that water inside the EWH is perfectly mixed and 
the water temperature is uniform. It also assumes that the EWH has a single heating 
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element. The schematic representation of single-zone DEM model is shown in Fig. 1. 
The energy balance equation representing single-zone DEM is calculated as follows.

where C = ρ cp V is the thermal capacity(Ws/◦C), ρ represent the water density 
(1000 kg/m3), cp is specific heat capacity (4196 Ws/Kg◦C ) of water. Qflow represents 
energy loss due to hot water demand and is a function of the water demand and the 
temperature difference between T(t) and Tin . Qloss represents natural heat loss to the 
atmosphere due to the temperature difference between T(t) and Tamb . QH represents 
the energy gain due to the heating element converting electrical energy into thermal 
energy. Water temperature can be obtained by solving Eq. (1).

The Ordinary Differential Equation (ODE) describing temperature rate Ṫ (t) in the 
single-zone thermal model (Shad et al. 2015) is given in Eq. (2).

where G = A/R is the thermal conductance(W/◦ C) of the tank, V is the volume of the 
tank, A is the surface area of the tank, and R is the thermal resistance of the tank. Wd(t) 
denotes the hot water demand.

Q(t) is the rate of energy input and is a function of water temperature in a ther-
mostatically controlled water heater as described in Eq. (3). Q0 denotes the nomi-
nal power rating of the EWH and Q(t − δ t) denotes the previous value of consumed 
power.

(1)Ṫ (t) =
1

C
[Qflow + Qloss + QH ].

(2)Ṫ (t) =
1

C
[Q(t)− G(T (t)− Tamb(t))− ρcpWd(t)(T (t)− Tin(t))],

Fig. 1  Schematic representation of the energy flow in single-zone model
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Analytical solution to Eq. (2). is given as:

where t and t0 represents current and initial time step and T (t0) represents temperature 
at initial time-step. Eq. (4) can be used estimate water temperature at any time-step.

Parameter and water rate estimation

There are multiple parameters in the single-zone DEM model that needs to be estimated. 
Tamb and Tin are assumed to be constant for simplicity. Thermostat set-points Thi and Tlo 
are assumed based on literature review (Lakshmanan et al. 2021). These values are easily 
available for a particular geographical area and from the EWH’s technical specifications 
sheet.

Physical parameters C and G need to be estimated solely from power consumption 
data. Using the method proposed in Shad et al. (2015), C and G in Eq. (2) are estimated 
and the steps are summarized as follows.

•	 It can be fairly assumed that maximum OFF duration Maxoff and minimum ON 
duration Minon happen when hot water demand is zero.

•	 Maxoff and Minon can be obtained from the power consumption data and water 
demand is assumed zero.

•	 Replacing (t − t0) in Eq. (4) using Maxoff and Minon and solving the pair of the 
obtained equation provides an estimated value for C and G.

Hot water demand Wd(t) is stochastic to some extent and can not be assumed constant. 
The duration for which EWH stays on or off depends upon the hot water demand during 
that duration. The average water rate during a particular event is also estimated using 
the method proposed in Shad et al. (2015) and is summarized as follows.

•	 From the power consumption data, the duration of each ON event and OFF event 
can be obtained. ON/OFF event represents the operation/non-operation of EWH 
between two control commands (turn-on and turn-off).

•	 Calculated duration along with estimated parameters C and G can be used in Eq. (4) 
to obtain the average water demand during a particular event.

Methodology
Prior knowledge from EWH thermal dynamics can be employed in PINN loss functions 
and in designing PINN architecture. Two separate temperature prediction models with 
one-minute prediction intervals for ON- and OFF-events of an EWH are developed. 

(3)Q(t) =
Q0 T (t) ≤ Tlo

0 T (t) ≥ Thi

Q(t − δt) otherwise.

(4)T (t) = T (t0)e
−(t−t0)/τ + K (1− e−(t−t0)/τ ),

τ =
C

G + ρcpWd
, K =

GTout + ρcpWdTin + Q

G + ρcpWd
,
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This section describes data preparation, setting up physics-based loss functions, PINN 
architecture, and recursive training steps for the proposed approach.

Data preparation

The training data set used in this work contains minute-wise continuous power con-
sumption data. The number of ON/OFF events and their duration can be inferred from 
power consumption data. From the data set, ON and OFF events are separated for train-
ing ON- and OFF-dynamics models respectively. Average water rates are estimated for 
randomly selected events and used for training.

Loss functions

Custom loss functions developed to train the neural network (NN) are explained here. 
Since temperature data is unavailable, it is necessary that developed loss functions well 
represent the physics of EWH in order for the NN to learn. Multiple loss functions that 
represent the physics are developed and listed here.

Temperature range

In a thermostat-controlled EWH, under normal operation, the water temperature will 
not exceed Thi and will not drop below Tlo . This knowledge is modeled as a loss function 
L1 and is shown in Eq. (5).

Loss function L 1 penalizes the network during training when the predicted temperature 
is not between Thi and Tlo.

Temperature change

When the EWH is OFF, water temperature continues to decrease until Tlo before the 
EWH turns on. So in the OFF-dynamics model, the difference between two consecutive 
predictions for two consecutive time steps of an event should be positive. For the OFF-
dynamics model, this information is modeled as a loss function Loff2  as shown in (Eq. 6).

When the EWH is ON, water temperature will increase when water rate is sufficiently 
low or will decrease/stay the same when water rate is sufficiently high. Since the esti-
mated average water rate is used in this model, water temperature will not decrease at 
any instant when EWH is ON according to DEM. For the ON-dynamics model, this 
information is modeled as loss function Lon2  as shown in Eq. (7).

(5)L1 =







(Tprd(t)−
(Thi+Tlo)

2
) Tprd(t) > Thi

or Tprd(t) < Tlo

0 Tlo < Tprd(t) < Thi.

(6)L
off
2 =

{

(Tprd(t)− Tpred(t − 1)) Tprd(t) ≥ Tprd(t − 1)

0 otherwise.

(7)Lon2 =

{

(Tprd(t − 1)− Tpred(t)) Tprd(t − 1) ≥ Tprd(t)
0 otherwise.
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Total temperature change per event

The water temperature at start (Tstart ) and end of an event (Tend ) is known for a particu-
lar event. T start and T end are equal to thermostat control set-points Thi and Tlo for OFF 
events. T start and T end are equal to Tlo and Thi for ON events. Time t end can be inferred 
from the power consumption data. This information is modeled as loss function L 3 as 
shown in Eq. (10).

Tspd and Tprd
spd  represent actual and predicted set points difference. L3 loss function 

ensures that the predicted temperature tend is equal to the set-point temperature for a 
particular event.

Relevant‑ODE

L1-L3 loss functions do not reflect the influence of water temperature T(t) on the rate of 
change in water temperature Ṫ (t) . Temperature change is continuous in the real world. 
Hence, Ṫ (t) also changes continuously. The predictions can have constant Ṫ (t) and still 
satisfy L1–L3 losses. For a constant water rate, Ṫ (t) will decrease when T(t) moves closer 
to Thi when EWH is ON and Ṫ (t) will decrease when T(t) moves closer to Tlo when EWH 
is OFF.

In a supervised PINN model, generally relevant ODE is used to model an additional 
loss function to incorporate prior scientific knowledge. ODE used in this work is given 
in Eq. (2). The goal is to minimize the difference between the gradient of the network’s 
output with respect to its inputs and the gradient calculated using DEM. This ensures 
that PINN solutions are consistent with the known physics. The modeled loss function 
L 4 is shown in Eq. (11).

dT (xi)
dt

 is calculated using Eq. (2). L4 loss function ensures that for a constant water rate, 
Ṫ (t) will decrease when T(t) moves closer to Thi when EWH is on and Ṫ (t) will decrease 
when T(t) moves closer to Tlo when EWH is off.

All loss values are scaled and combined together for training the PINN.

Network architecture

A simple feed-forward artificial neural network is used to develop the proposed archi-
tecture. A priori knowledge from single-zone model is used to define the network 

(8)Tspd = | (Thi − Tlo) | .

(9)
T

prd
spd = | (T (tstart)− Tpred(tend)) |

tstart =0 Ton(tstart) = Tlo Toff (tstart) = Thi.

(10)L3 =

{

| (Tspd − T
prd
spd ) | T

prd
spd �= Tspd

0 otherwise.

(11)L4 =

(

dTDEM(xi)

dt
−

dNN (xi)

dt

)

,
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architecture. More precisely, the initial layers are structured to mimic the differential 
equation defined in Eq. (2). This ensures that physics from single-zone model is embed-
ded in the NN architecture and inputs are processed according to it before feeding it to 
neural layers. The schematic representation of the proposed architecture for the ON- 
and OFF-dynamics model is shown in Fig. 2. The number of layers and neurons in the 
figure does not reflect the actual model. NN parameters such as the number of layers, 

Fig. 2  Schematic representation of the proposed architecture for PINN for learning EWH ON- and 
OFF-dynamics . The difference in network architecture between ON- and OFF-dynamics model is shown 
using the zoomed-in view of the initial layers of PINN using different colors. The green view represents initial 
layers of ON-dynamics model and the black view represents initial layers of OFF-dynamics model
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neurons, activation functions, etc., were selected heuristically. The inputs to the models 
are previous time step temperature, average water rate, and other relevant inputs to Eq. 
(2) which are assumed constant. The output is current water temperature.

There is also another constant input representing the time step (60s) of the predic-
tion. This input is constant for all predictions and yet relevant to training the network. 
Without the time input, there is no time reference in the network. The time input is also 
required to calculate the L 4 loss function as it requires a gradient of NN with respect to 
the input time-step.

The proposed architecture mimicking the DEM requires previous step temperature 
as an input. However, the goal is to learn the underlying EWH thermal dynamics in 
the absence of temperature data. A recursive training approach is selected to train the 
network.

Recursive training

In time series data, the current value is highly correlated with the immediate past val-
ues. Hence, previous step temperature is highly relevant for current temperature predic-
tion model. Recursive training is an iterative training approach in which the next input 
is created based on the output from the previous training input. During training, new 
input is created recursively after processing the previous input. In this case, the previous 
step temperature input is created based on the PINN output to the previous input. The 
pseudo-code for recursive training approach is given as follows.

First, the network weights are initialized randomly. For each event, the initial point for 
previous step temperature is required and is available. It is known that the initial tem-
perature for an event is equal to Thi or Tlow depending upon whether it is an OFF or ON 
event. Thi or Tlow will act as an initial point for previous step temperature. The next input 
is created based on the output predicted by PINN. This process repeats until the end of 
an event. Since the event duration is known, once an event ends, the input is reset to Thi 
or Tlow for the next event and the steps are repeated. Once all events are completed, the 
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loss value is calculated for the epoch and the weights are updated. The same procedure is 
repeated for the next remaining epochs.

The flow chart summarizing the entire model development is shown in Fig. 3. Once 
the NN is trained to reduce total custom loss function, ON- and OFF-dynamics models 
can be used recursively to predict the water temperature and power consumption can be 
inferred from the Tprd(t) for the future events. The schematic representation of the pro-
cedure to use the trained model is shown in Fig. 4. The model requires an initial point 
for starting the prediction. If the initial point is the beginning of the ON-event, it will 
continue to use the ON-dynamics model until Tprd(t) reaches Thi , after which it switches 
to the OFF-dynamics model. This continues till the end of the simulation period.

Results and discussion
The proposed approach was tested using real-world power consumption data for an 
EWH available from the open-source data set Pecan Street Dataport (Dataport 2022). 
The frequency of power measurements is 1 min. An EWH was chosen randomly and 
was assumed to have a single heating element and uniform water tank temperature. 
The predicted temperature profiles were compared with temperature profiles esti-
mated by single-zone DEM as true temperature data is unavailable in the data set. The 

Fig. 3  The flow chart summarizing the entire model development procedure to model EWH dynamics 
without water temperature data

Fig. 4  The schematic representation of the procedure to use the trained model to simulate EWH over a 
certain period
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presented discussions are still relevant as the goal is to demonstrate that PINN can 
replace DEM methods and can have similar performance.

Maxoff  and MINon were obtained from power consumption data and the parame-
ters were estimated. The estimated parameters were used in the loss function L 4 . The 
obtained values are presented in Table 1.

50 random events each for ON- and OFF-dynamics model were selected. The dura-
tion of events were obtained from power consumption data and the average water 
demand for selected events were estimated using the duration and estimated param-
eters. The duration and water demand of selected events are presented in Figs.  5 
and 6. The selected events well reflect the actual distribution of the water demand and 
the duration of EWH operation. It can be observed from Fig. 6 that water demand is 
higher during ON events than during OFF events. It is fair to assume that this is due 
to major activities such as taking showers, washing clothes, etc. This also indicates 
that temperature will fall quickly during demand response and supports the goal of 
this work.

The duration and water demand were used to create inputs to the NN. The mod-
els were built in Python using the Keras library and Adam optimizer was used for 

Table 1  The estimated parameters for single-zone DEM and the maximum and minimum duration 
of OFF and ON events found in the dataset

Parameter C G Maxoff Minon

Value 1,167,000 (Ws/◦C) 2.05 (W/◦C) 959 min 21 min

Fig. 5  EWH operation duration during ON and OFF events found in the training dataset

Fig. 6  Estimated average water demand for OFF and ON events found in the training data set
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training. The proposed approach is generic and applies to any EWH with power con-
sumption data.

The models were trained and their performance for the training dataset was ana-
lyzed first. Different error metrics were calculated and presented in Table  2 and 
Table  3 for both models. For the OFF-dynamics model, the mean absolute error 
(MAE) for training dataset shows that PINN predictions differ on average only by 
0.15 ◦ C from DEM predictions. OFF-dynamics model predictions for three different 
events with different water demands are shown in Fig.  7. It shows that PINN pre-
dictions are similar to DEM predictions. However, event-1 predictions seem to be 
inaccurate compared to events 2 and 3. This can be explained by the fact that water 
demand is very high for event 1 and high water demand is not well represented in the 
OFF-training dataset as can be seen in Fig. 6. This shows the importance of having an 
evenly distributed dataset for training.
Table 2  Prediction performance of trained OFF-dynamics PINN model for the training dataset 
compared to DEM

Metric MSE RMSE MAE

Value ( ◦C) 0.13 0.36 0.15

Table 3  Prediction performance of trained ON-dynamics PINN model for the training dataset 
compared to DEM

Metric MSE RMSE MAE

Value ( ◦C) 0.37 0.61 0.25

Fig. 7  OFF-dynamics model predictions for three different OFF-events with different water demands 
compared with DEM predictions
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Similarly, predictions for three different ON events with different water demands by 
the ON-dynamics model are shown in Fig. 8. It can also be seen in Table 3 that the error 
is higher (MAE =  0.25  ◦ C) for ON-dynamics model compared to the OFF-dynamics 
model. However, in Fig. 8, the predictions for events 1 and 2 appear almost accurate. The 
inaccurate prediction for events with very high water demand like event-3 is the reason 
for high error in ON-dynamics model predictions. This can again be explained by the 
non-uniform distribution of water demands in the ON-training dataset and can be seen 
in Fig. 6.

In general, performance analysis for individual events from the training dataset indi-
cates that the proposed model is capable of modeling the thermal dynamics of EWH 
between control set-points fairly accurately. However, during Demand response (DR), 
EWH operates outside control set-point temperatures. Thus it is important to assess the 
model’s performance outside the thermostat control range. It was assumed that there 
was no thermostat-based control and the evolution of the temperature profile pre-
dicted by PINN was examined for the case when EWH was not turned ON/OFF when 
it reaches T lo/Thi . The results were compared with the temperature profile provided by 
DEM and are shown in Figs. 9 and 10. It can be seen that PINN is able to capture the 
non-linear temperature evolution for both ON and OFF events without thermostat con-
trol. This shows that the proposed model can be used for flexibility modeling of EWH 
for load shifting during a DR event.

The combined performance of OFF-dynamics and ON-dynamics models in simu-
lating EWH for future events is evaluated through two constructed scenarios. Sce-
nario 1 consists of three ON and OFF events each. Scenario 2 consists of five ON and 
OFF events each. Water demands during events for scenarios 1 and 2 are presented in 
Tables 4 and 5. Water demands were carefully selected to be different from the data 

Fig. 8  ON-dynamics model predictions for three different ON-events with different water demands 
compared with DEM predictions
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present in the training dataset. Since PINN is based on a single-zone DEM model, 
the same is used for comparison purposes. The temperature predicted by PINN and 
DEM models for both scenarios are presented in Figs. 11 and 12. The plots show that 
for both scenarios, temperature predicted by PINN is fairly similar to the temperature 
predicted by DEM at least in the first few events. A lag in PINN predictions compared 
to DEM predictions can be observed in the later stages of the scenarios. This is due 

Fig. 9  OFF dynamics model performance outside thermostat control region

Fig. 10  ON dynamics model performance outside thermostat control region

Table 4  Scenario-1

Event 1 2 3 4 5 6

Operation ON OFF ON OFF ON OFF

Water demand (L/min) 0.60 0.13 0.33 0.3 0.76 0.42
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to the effect of error propagation from initial stages occurring in recursive prediction 
strategy and is a very well-known phenomenon.

Different error metrics were calculated for both scenarios to compare the performance 
of PINN with DEM and are shown in Table 6. The MAE for scenario-1 with the simu-
lated duration of almost 7.5 h shows that PINN predictions can differ on average only by 
0.22 ◦ C from DEM predictions. For scenario-2 with the simulated duration of almost 12 
h, MAE is 0.47 ◦ C. This clearly shows the impact of error propagation from initial stages. 

Fig. 11  The temperatures predicted by the PINN for the scenario-1 compared to DEM predictions

Fig. 12  The temperatures predicted by the PINN for the scenario-2 compared to DEM predictions

Table 5  Scenario-2

Event 1 2 3 4 5 6 7 8 9 10

Operation ON OFF ON OFF ON OFF ON OFF ON OFF

Water demand (L/min) 0.48 0.18 0.66 0.27 0.58 0.45 0.76 0.13 0.39 0.3
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Also, mean error metrics can be misleading as they can not explain the impact of the 
propagated error. Though the error values are small, the plots show that the error for a 
single point will be large when the time step is further from zero. This would cause the 
entire event to lag by large time-steps if not corrected. This is not desirable for DR pro-
grams as the aggregator would have to pay a huge penalty for not fulfilling contractual 
obligations in terms of flexibility delivered or user comfort. However, the more accurate 
predictions for the first few events in initial stages is promising since aggregator partici-
pating in DR programs usually requires shorter simulation periods.

Power consumption for scenarios 1 and 2 can be inferred from predicted temperatures 
and is presented in Figs.  13 and  14. The plots show that inferred power consumption 
using PINN model closely matches the actual power consumption. The lag in output 
observed for PINN model is due to an error in the time step at which the model switches 
between the ON- and OFF-dynamics model. This in turn is due to the propagating error 
from initial stages as explained earlier. Precision, Recall, and F1 scores were calculated 
based on the correct prediction of EWH ON and OFF states using inferred power con-
sumption data and are presented in Table 7. The results for scenario-1 show that PINN 
can infer 92% of actual ON states correctly and 95% of total inferred ON states are actual 
ON states. The performance degrades for scenario-2 as the values are 82% and 85%, 
respectively. This is expected as scenario-2 is simulated for a longer period.

This analysis emphasizes the impact of propagating error from initial stages on flex-
ibility modeling if not corrected. For example, consider two cases where EWH power 

Table 6  Simulation performance of PINN for different scenarios compared to DEM

- Metric MSE RMSE MAE

Scenario-1 Value ( ◦C) 0.11 0.33 0.22

Scenario-2 Value ( ◦C) 0.44 0.66 0.47

Fig. 13  The power inferred from the predicted temperatures from PINN for the scenario-1 compared to 
actual power consumption
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consumption data is available after simulation in one case and not available in another 
case. EWH power consumption data can be used to correct the lag in predicted events 
simulation since the true power consumption of a simulated event is available after 
sometime. Non-intrusive load monitoring (NILM) can be used as a correcting strat-
egy for the case where EWH power consumption data is not available after simulation. 
NILM is a technique to disaggregate individual appliance power consumption from total 
power consumption from household smart meter measurements (Garcia et  al. 2020; 
Zufferey et al. 2020). As aggregators can have access to total consumption through smart 
meter data, it is possible to infer EWH consumption to a good extent from total power 
consumption using NILM techniques. An aggregator can compare the NILM output and 
PINN simulation. The PINN simulation model can be readjusted for the accounted error 
and EWH can be simulated again. For example, consider an aggregator simulated EWH 
for the next 24 h. After 12 h, the aggregator can use NILM to infer EWH consumption 
for the past 12 h from total consumption data. PINN results and NILM results can be 
compared for these 12hrs and any observed deviation can be noted. The aggregator can 
then reset PINN simulation for the next 12 h based on NILM results as it can provide 
the actual time-step of recent event start/end. It should be noted that such approaches 
are suitable only for short-term decision-making problems.

To summarize, individual event analysis and simulation beyond control set-points 
indicate that the proposed model learns the physics described in Eq. (2) and the trained 
model has high prediction accuracy for individual events. Average water demand in the 

Fig. 14  The power inferred from the predicted temperatures from PINN for the scenario-2 compared to 
actual power consumption

Table 7  Performance of PINN in predicting EWH operational states compared with actual states

Metric Precision Recall F1-score

Scenario-1 0.95 0.92 0.93

Scenario-2 0.85 0.82 0.83
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training set should be uniformly distributed. The propagating error is of concern for 
simulating EWH for longer periods using the proposed approach.

The advantages of the proposed approach are:

•	 The proposed approach is generic and can be used for any water heater.
•	 Neural network based EWH temperature prediction model can be developed with-

out having actual temperature data.
•	 Recursive approach allows previous step temperature as input and thus NN can 

mimic the differential equation.
•	 Can easily be integrated into decision support tools for DR programs. This is mainly 

because the previous temperature input allows starting point of the simulation from 
any point in the temperature range of interest. This makes it convenient to simulate 
DR event without additional steps required.

The disadvantages of the proposed approach are:

•	 Temperature stratification effects in the water tank are not captured.
•	 The average water demand doesn’t reflect real-world scenarios making the pro-

posed approach slightly less accurate for flexibility modeling. However, the proposed 
approach can be easily modified to adapt to stochastic water demand input.

•	 It is not possible to predict the time-step of interest directly. Recursively moving 
towards the time-step of interest might not be desirable at sometimes.

Conclusion and future work
This paper presents a framework for developing PINN based EWH simulation model 
with only historical power consumption data. The proposed approach is generic and 
can be applied to any EWH. Training dataset preparation involving thermal parameter 
estimation and water demand estimation is described. The PINN architecture is struc-
tured to mimic DEM and physics-based custom loss functions are designed to facilitate 
unsupervised learning. A recursive training procedure supporting previous time-step 
temperature to be modeled as a PINN input is introduced for learning EWH thermal 
dynamics. Two different models representing EWH ON and OFF states are trained with 
real-world EWH power consumption data from open-source data set available in Pecan 
Street Dataport.

The temperature prediction results for individual events show that the proposed 
approach has comparable performance to traditional single-zone-DEM. The results 
promise the possibility of employing unsupervised learning for advanced thermal mod-
eling of EWH using PINN. The trained model also showed considerably good results 
when the EWH was simulated outside the thermostat control range. The proposed 
model was also used to simulate EWH for two scenarios with different event composi-
tions. The usability of the proposed approach for EWH simulation during a DR event 
is demonstrated through these two analyses. However, the recursive prediction strat-
egy introduces propagation errors into the prediction results necessitating measures to 
reduce or correct propagating errors.
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This work demonstrates the application of PINN for developing an EWH simulation 
model based on single-zone DEM. The proposed approach can serve as a stepping 
stone for building advanced PINN-based thermal dynamics models that could poten-
tially result in less computationally intensive, high accuracy model that can help the 
aggregator to develop effective control strategies for precisely controlling EWH port-
folio without causing user discomfort and rebound effects.

Future work will focus on (1) incorporating EWH stratification effects into PINN 
and comparing the results with actual temperature measurements, (2) improving loss 
function and PINN architecture for better performance, (3) evaluating the developed 
model for EWH flexibility modeling and aggregation and (4) methods to reduce prop-
agation errors.
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