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ABSTRACT
The integrated nested Laplace approximation (INLA) is a deterministic approach to Bayesian inference on
latent Gaussian models (LGMs) and focuses on fast and accurate approximation of posterior marginals for
the parameters in the models. Recently, methods have been developed to extend this class of models
to those that can be expressed as conditional LGMs by fixing some of the parameters in the models to
descriptive values. These methods differ in the manner descriptive values are chosen. This article proposes
to combine importance sampling with INLA (IS-INLA), and extends this approach with the more robust
adaptive multiple importance sampling algorithm combined with INLA (AMIS-INLA). This article gives a
comparison between these approaches and existing methods on a series of applications with simulated
and observed datasets and evaluates their performance based on accuracy, efficiency, and robustness. The
approaches are validated by exact posteriors in a simple bivariate linear model; then, they are applied
to a Bayesian lasso model, a Poisson mixture, a zero-inflated Poisson model and a spatial autoregressive
combined model. The applications show that the AMIS-INLA approach, in general, outperforms the other
methods compared, but the IS-INLA algorithm could be considered for faster inference when good propos-
als are available. Supplementary materials for this article are available online.
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1. Introduction

The integrated nested Laplace approximation (INLA, Rue, Mar-
tino, and Chopin 2009) is a numerical method for approximated
Bayesian inference on a well determined class of models named
latent Gaussian models (LGMs). INLA focuses on providing
approximate marginal posterior distributions for all parameters
in the model. This is in contrast with the more traditional
Markov Chain Monte Carlo (MCMC, Gilks et al. 1996) based
inference that provides instead an estimate of the joint posterior
distribution. INLA has become a widely used method because it
is, in general, faster than MCMC while still providing accurate
estimates. Moreover, INLA is implemented as an R package
called R-INLA, that allows the user to do inference on complex
hierarchical models often in a matter of seconds.

Implementing INLA from scratch may be a difficult task,
therefore, fitting models with INLA is, in practice, restricted to
the classes of models implemented in the R-INLA package. How
to enlarge such selection has been the topic of many papers (see,
e.g., Bivand, Gómez-Rubio, and Rue 2014, 2015; Gómez-Rubio,
Bivand, and Rue 2020 and the references therein). One interest-
ing approach is the one taken in Gómez-Rubio and Rue (2018)
where they propose to combine INLA and MCMC methods.
The basic idea is that certain models, named conditional LGMs,
can be fitted with INLA, provided a (small) number of param-
eters are fixed to a given value. Gómez-Rubio and Rue (2018)
propose to draw samples from the posterior distribution of the
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conditioning parameters by combining MCMC techniques and
conditional models fitted with R-INLA. This is made possible
by the fact that INLA computes also the marginal likelihood of
the conditional fitted model. The marginal likelihood is used
in Gómez-Rubio and Rue (2018) to compute the acceptance
probability in the Metropolis–Hastings (MH) algorithm, which
is a popular MCMC method.

Combining INLA and MCMC allows to increase the number
of models that can be fitted using R-INLA. The MCMC algo-
rithm is simple to implement as only the conditioning parame-
ters need to be sampled while the rest of the parameters are inte-
grated out using INLA. The INLA-MCMC approach proposed
by Gómez-Rubio and Rue (2018) relies on the MH algorithm
and requires model fitting with R-INLA at every step. That may
be slow in practice because the sequential nature of the MH
algorithm makes parallelization difficult to implement. Gómez-
Rubio and Palmí-Perales (2019) provide some insight on how to
speed up the process of fitting conditional models with INLA,
but it requires a good approximation to the posterior mode of
the parameters of interest by relying, for example, on maximum
likelihood estimates.

In this article we propose a new method for fitting condi-
tional LGMs with INLA, similar in spirit to Gómez-Rubio and
Rue (2018) but based on the importance sampling (IS) algo-
rithm instead of on the MH one. The main advantage of the IS
algorithm over MH is that it is easy to parallelize, thus, allowing
for a great improvement in computational speed. The drawback
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is that, lacking the adaptive nature of the MH algorithm, the
performance of IS based inference relies on the choice of a
good proposal distribution. This can be hard to determine in
many practical cases. Therefore, we also propose an algorithm
that is based on an adaptive multiple IS (AMIS, Corneut et al.
2012) that, for a slightly higher computing time than IS, has the
advantage of requiring less human intervention.

By combining IS and AMIS with INLA it is possible to fit
models with INLA that are highly parameterized or that escape
the structure of a latent Gaussian Markov random field (GMRF)
such as mixture models and models that include a hierarchical
structure on the parameters of the likelihood or random effects.
Furthermore, given that IS and AMIS are not sequential algo-
rithms, it is possible to conduct model fitting in parallel in a
short time.

The rest of the article is organized as follows. The class of
models amenable to INLA is described in Section 2. A short
description of how INLA works is also given in the same Section.
Section 3 introduces IS while Section 4 shows how INLA and IS
can be combined. In this section we also discuss numerical and
graphical diagnostics to assess the accuracy of our algorithm. In
Section 5 an adaptive version of the algorithm is presented while
in Section 6 we show, in several examples, how our proposal
works in practice. We end with a discussion in Section 7.

2. The Integrated Nested Laplace Approximation

Let our response y = (y1, . . . , yn) form a vector of observations
from a distribution in the exponential family with mean μi. We
assume that a linear predictor ηi can be related to μi using an
appropriate link function:

ηi = g(μi) = α +
nβ∑

k=1
βkzki +

nf∑
j=1

f (j)(uji) + εi . (1)

Here α is a common intercept, zk indicate covariates with linear
effect βk to be estimated, εi is an independent noise term while
f (j)(·) indicates terms such as random effects, spatial effects,
nonlinear effects of the covariates, etc., defined by some indices
uj. The terms x = (η, α, β , f (1), f (2), . . . ) define a latent field.
The likelihood and the prior for x will depend on some hyper-
parameters θ and an appropriate prior π(θ) is assigned to these.

From Equation (1), it is clear that the observations are condi-
tionally independent given the latent effect x and the hyperpa-
rameters θ so that the likelihood can be written as

π(y|x, θ) =
∏
i∈I

π(yi|xi, θ), (2)

where i belongs to a set I = (1, . . . , n) that indicates observed
responses.

In a Bayesian framework, the main interest lays in the poste-
rior distribution:

π(x, θ |y) ∝ π(x|θ)π(θ)
∏
i∈I

π(yi|xi, θ) (3)

This is usually not available in closed form, thus, several estima-
tion methods and approximations have been developed. INLA,
introduced by Rue, Martino, and Chopin (2009), is one of such

methods. INLA can be used for LGM provided the prior for
the latent field x is a Gaussian Markov random field (GMRF)
model (Rue and Held 2005). We assume the latent GMRF to
have 0 mean and precision (inverse of covariance) matrix Q(θ).
Equation (3) can then be rewritten as

π(x, θ |y) ∝ π(θ)|Q(θ)|1/2

exp

{
−1

2
xTQ(θ)x +

∑
i∈I

ln(π(yi|xi, θ))

}
. (4)

INLA does not seek to approximate the joint posterior distri-
bution π(x, θ |y), instead, it creates numerical approximations
to the posterior marginals for the latent field π(xi|y) and the
hyperparameters π(θj|y). To do this, the first step is to approx-
imate π(θ |y) by π̃(θ |y). Approximated marginal posteriors for
the hyperparameters π̃(θj|y) can then be derived from π̃(θ |y)

via numerical integration. Posterior marginals for the latent field
π(xi|y) can be written as

π(xi|y) =
∫

π(xi|θ , y)π(θ |y)dθ (5)

and approximated as

π̃(xi|y) =
∑

g
π̃(xi|θg , y)π̃(θg |y)�g , (6)

where θg are selected points and π̃(xi|θg , y) is an approximation
to π(xi|θg , y), see Rue, Martino, and Chopin (2009) for details.

As a by-product of the main computations, INLA provides
other quantities of interest. Of importance for this article is the
marginal likelihood π(y), which can be computed as

π̃(y) =
∫

π(y|x, θ)π(x|θ)π(θ)

π̃G(x|θ , y)

∣∣∣∣
x=x0(θ)

dθ . (7)

Here π̃G(x|θ , y) is a Gaussian approximation of π(x|θ , y) built
by matching the mode and the curvature at the mode and x0(θ)

is the posterior mode of x|θ . Hubin and Storvik (2016) have
investigated the performance of this approximation, finding
it very accurate for a large class of models. Several authors
(Bivand, Gómez-Rubio, and Rue 2014, 2015; Gómez-Rubio
and Rue 2018; Gómez-Rubio and Palmí-Perales 2019; Gómez-
Rubio, Bivand, and Rue 2020) have relied on the estimates of
the marginal likelihood provided by INLA for model estimation
and they have found them to be accurate enough in a number
of scenarios.

3. Importance Sampling

Importance sampling (IS) is a popular Monte Carlo method
where a mathematical expectation with respect to a target distri-
bution is approximated by a weighted average of random draws
from another distribution. IS relies on a simple probability
result, which is stated next.

Let π(x) be a probability density function for the random
variable X defined on D ⊆ R

d, d ≥ 1, and assume that we wish
to compute μπ defined as

μπ = Eπ [h(X)] =
∫
D

h(x)π(x)dx, (8)
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where h(·) is some function of X. Then for any probability
density g(x) that satisfies g(x) > 0 whenever h(x)π(x) > 0,
it holds that

μπ = Eg[h(X)w(X)], (9)

where the w(x) = f (x)

g(x)
and Eg[·] indicates the expectation with

respect to g(x). Independent draws
{

x(j)}N
j=1 from g(x) can then

be used to approximate μπ as

μ̂IS = 1
N

N∑
i=1

h(xi)w(xi). (10)

In many cases π(x) is only known up to a normalizing
constant, in these cases μ̂IS is replaced by

μ̃IS =
N∑

i=1
h(xi)w̄(xi) (11)

where the so-called self-normalizing weights

w̄(xi) = w(xi)∑N
i=1 w(xi)

, (12)

can be computed as the normalizing constant cancels out. The
estimator based on the self-normalizing weights is slightly
biased but it tends to improve the variance of estimates (Robert
and Casella 2004).

The performance of the IS estimator, both in its original and
self-normalizing form, depends on the choice of the proposal
distribution g(·), which should be as close as possible to π(·). In
fact, an improper choice, for example, lighter tails in g(·), might
lead to unbounded weights such that estimates only relies on few
samples.

A common measure of the efficiency of the algorithm is the
effective sample size (ESS). An estimate can be easily computed
as

ÊSS =
(∑n

i=1 wi
)2∑n

i=1 w2
i

. (13)

This quantity is useful to assess the correlation of the simu-
lated data and provides an overall estimate of the amount of data
obtained with sampling. Effective sample size and estimation
error are further discussed in Section 4.2.

4. Importance Sampling with INLA

In this Section we discuss how the class of models that INLA can
fit can be extended by combining INLA and IS. Our approach
follows the path presented in Gómez-Rubio and Rue (2018) with
the key difference that we use IS instead of the MH algorithm.

Similar to Gómez-Rubio and Rue (2018) we collect all
unknown parameters of the model in the vector z = (x, θ)

which is split into two subsets z = (z−c, zc), where z−c indicates
all parameters in z that are not included in zc. The vectors zc
and z−c are chosen such that the posterior distribution of z can
be written as

π(z|y) ∝ π(y|z−c, zc)π(z−c|zc)π(zc). (14)

Furthermore, we assume that this model cannot be fitted with R-
INLA unless the parameters in zc are fixed to some appropriate
values, that is, we model z−c given zc. Conditional on zc, R-
INLA can produce approximations to the conditional posterior
marginals π(z−c,k|y, zc) , where k indicates the kth element of
z−c, and to the conditional marginal likelihood π(y|zc), using
Equations (7) and (6), respectively.

Unconditional posterior marginal for the elements of z−c
could then be obtained integrating over zc as

π(z−c,k|y) =
∫

π(z−c,k, zc|y)dzc

=
∫

π(z−c,k|y, zc)π(zc|y)dzc. (15)

Here, the conditional posterior marginals π(z−c,k|y, zc) are
approximated with R-INLA.

A naïve Monte Carlo estimate of the integral in Equation (15)
is not a viable option; however, IS could be used to sample from
a raw approximation g(zc) of π(zc|y), the posterior marginal in
Equation (15) can be approximated as

π̃(z−c,k|y) �
n∑

j=1
wjπ̃(z−c,k|y, z(j)

c ), (16)

where z(j)
c are samples from a (multivariate) sampling distri-

bution g(·), π̃(z−c,k|y, z(j)
c ) are the approximated conditional

posterior marginals obtained by INLA and wj are the posterior
weights defined as

wj ∝ π(z(j)
c |y)

g(z(j)
c )

∝ π(y|z(j)
c )π(z(j)

c )

g(z(j)
c )

. (17)

Note that we use the self-normalizing version of the IS algo-
rithm as in Equation (17). When computing wj we need the
conditional marginal likelihood π(y|z(j)

c ) which, conveniently,
is one of the outputs from R-INLA. See Section 4.2 for a discus-
sion on this.

Finally, the joint posterior distribution of zc can be found
with

π(zc|y) =
n∑

j=1
wjδ(zc − z(j)

c ), (18)

where δ(·) is the Dirac delta function. This has also been noted
in Elvira, Martino, and Robert (2018). In a practical manner,
as Equation (18) would require n → ∞, the joint poste-
rior distribution, π(zc|y), is approximated using a weighted
nonparametric kernel density estimation (Venables and Ripley
2002). A similar approach is used to find the posterior marginals
π(zc,k|y) for the kth element of zc.

In practice, the choice of the zc set is problem dependent.
One should aim at having a set that is as small as possible
so that the heavy computational work is left to the efficient
INLA algorithm. Alternatively, one could choose zc such that
the complete model is split into a series of simpler, independent
models each of which can be fit with INLA. In Section 6 we
present examples from both cases.
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4.1. Choice of the Sampling Distribution

The sampling distribution g(zc) needs to be chosen with care
in order to have a good performance of the IS algorithm. In
principle, it should be as close as possible to π(zc|y) but this may
be difficult in practice.

We assume that zc is a vector of real valued parameters
(transformations might be applied if necessary), therefore g(zc)
is a multivariate distribution. A reasonable proposal could be
a multivariate Gaussian or Student’s-t with ν degrees of free-
dom. We indicate the location and scale parameters of both
the Gaussian and Student’s-t as λ = (μ, �). In the Student’s-t
case, for ν > 2 the covariance is defined as ν

ν−2�. We want to
choose λ such that the proposal is close to the target distribution.
Moreover, for the Student’s-t we want ν to be low to guarantee
heavy tails. We start therefore, from a preliminary proposal
g0(zc), with parameters λ0 = (μ0, �0). Then, N0 samples are
generated from g0(zc) and used to build a rough approximation
of the location and scale of the target as

μ1 =
N0∑
j=1

w̄(j)z(j)
c (19)

�1 =
N0∑
j=0

w̄(j)(z(j)
c − μ1)(z(j)

c − μ1)
	, (20)

where z(j)
c ∼ g0(zc) and w̄(j) is the normalized importance

weight of the jth sample calculated with Equation (12).
The initial N0 samples are then discarded and the new

(improved) proposal distribution has parameters λ1 =
(μ1, �1). Other distributions than the Gaussian and the
Student’s-t could be used. For example, correction for skewness
could be included in the previous approach or distributions with
fatter tails could be employed.

For discrete parameters other distributions are required. For
example, for binary random variables a Bernoulli distribution
could be used. This will allow the probabilities to depend on,
for example, a number of fixed effects, similarly as in a gener-
alized linear model. The coefficients of these fixed effect will
now take the role of the sampling distribution parameters to
conduct IS or AMIS, so that they can be estimated and updated
during the model fitting process if necessary. This approach can
be extended to the case of discrete variables with more than
two categories using a multinomial distribution, for example.
Owen (2013) discusses importance sampling in detail for both
continuous and discrete variables.

4.2. Estimation of the Error and Diagnostics

IS with INLA can be regarded as a particular type of IS in
which INLA is used to integrate most of the latent effects and
hyperparameter out, so that IS is applied to the low-dimensional
parameter space of zc. As a result, IS weights are based on the
conditional (on zc) marginal likelihood, which is estimated with
INLA.

Similarly to what Gómez-Rubio and Rue (2018) point out
in the case of INLA within MCMC, it may be difficult to
provide an accurate estimate of the estimation error of IS
with INLA. Instead, we will argue that the estimates of the

marginal likelihood provided by INLA are accurate, as several
authors have pointed out in a wide range of applications. In
particular, Hubin and Storvik (2016) conducted a thorough
analysis and found the estimates to be very accurate. See,
for example, Gómez-Rubio and Palmí-Perales (2019) and
Gómez-Rubio, Bivand, and Rue (2020) and the references
therein for other uses of the marginal likelihood estimated
with INLA to fit different types of spatial models with
success.

Hence, we may argue that the conditional marginal likeli-
hoods are estimated with a tiny error, and that this leads to
the error introduced when computing importance weights to
be small as well. Furthermore, as weights are computed by
averaging over a large number of values and then re-scaling, any
error introduced is likely to fade out. This should make inference
on zc accurate and reliable.

The error when estimating the posterior marginals of the
elements in z−c is also difficult to estimate as this is obtained
by using a convex combination of some posterior marginals
obtained by conditioning on zc. Again, we do not expect the
error to be large as the conditional marginals are usually esti-
mated with a very small error by INLA, and the weights are likely
to have a tiny error, as discussed above.

The first example in Section 6 has been specifically conducted
to assess how accurate IS-INLA is when estimating the different
posterior marginals of the parameters in the model. As it can be
seen, the results provide compelling evidence as to the accuracy
of the estimates for the posterior marginals of the elements of zc
and z−c.

However, it is clear that the number of samples used in IS-
INLA is crucial. For this reason, a number of numerical and
graphical criteria should be used to assess that there is suffi-
cient sample size to provide accurate estimates. Owen (2013)
describes different ways to compute the effective sample size
using the importance weights, as we have stated at the end of
Section 3. Elvira, Martino, and Robert (2018) also discuss the
estimation of an effective sample size for IS and make a number
of important statements about how to compute this. First of all,
the effective sample size must be computed separately for each
function h(x) involved in IS, that is, the sample size cannot only
be computed based on the weights.

Most importantly, they state that the probability distribution
π(x) (i.e., the target distribution) is approximated by a random
measure based on the sampled values of x and their associated
weights. Hence, the discrepancy between the sampling distri-
bution g(x) and |h(x)|π(x) is directly related to the quality
of the IS estimators, with |h(x)| the absolute value of h(x).
This discrepancy should then be assessed in some way as well.
Note that this evaluations can be done for each element in zc
separately.

Similarly, Owen (2013) discusses different IS diagnostics
that can be used to assess that a sufficiently large sample
size has been achieved and states that sample size estimation
must include the h(x) function. He proposes an effective
sample size criterion dependent on h(x) based on the following
weights:

w̃i(h) = |h(xi)|π(xi)/g(xi)∑n
i=1 |h(xi)|π(xi)/g(xi)

.
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The effective sample size, dependent on h(x), is

ne(h) = 1∑n
i=1 w̃i(h)2 .

This can be computed for each of the elements in zc so that a
different per-variable effective sample size is obtained. In this
particular case, h(x) is taken as the identity function.

As stated above, Elvira, Martino, and Robert (2018) note that
the IS sample and weights are implicitly used to estimate the
joint posterior distribution of zc and their respective posterior
marginals. The estimation of these posterior marginals can be
regarded as the estimation of the quantiles of the posterior
marginal distributions, which may be difficult. For this reason,
we propose a graphical assessment based on a probability plot.
This is produced by computing the empirical cumulative prob-
ability function for each element of zc and comparing it to its
theoretical value, that is, the cumulative probability function
of a discrete uniform distribution between 1 and n, with n the
total number of samples. Departures from the identity line will
indicate that the posterior marginals are not correctly estimated.

The empirical cumulative distribution for kth element in zc is
obtained ordering in increasing order the simulated values, and
their associated weights in the same order. Then the empirical
cumulative distribution is simply the cumulative sum of the
reordered weights. These values can be compared with the
corresponding values of the theoretical cumulative distribution.
For example, the cumulative sum of the reordered weights up to
the lth value must be compared to value l/n.

5. Adaptive Multiple Importance Sampling with INLA

The nonadaptive nature of the IS algorithm makes the per-
formance of IS based inference heavily dependent on a good
choice of the sampling distribution. In Section 4.1 we suggest
one preliminary sample step that could help locate the proposal
close to the target distribution. In practice, such step might
require several trial-and-error rounds before reaching a satis-
factory proposal g1(·). Moreover, the N0 preliminary samples
are discarded, which might require significant computational
costs. It would be therefore, desirable to consider a more efficient
design both more automatic and less wasteful of potentially
valuable information.

To this end, we propose combining INLA with the adaptive
multiple IS algorithm (AMIS) proposed in Corneut et al. (2012).
This is one of several versions of adaptive IS algorithms pro-
posed in the literature (see, e.g., Bugallo et al. 2017 and refer-
ences therein) that has the advantage to employ a mixture of all
past sampling distributions in the calculation of the importance
weights such that samples can be kept after an adaptation. The
proposal is updated several times in an automated way, in order
to decrease the dissimilarity between target and proposal.

The algorithm starts with a proposal distribution gλ0(·) (here
we will use Gaussian or Student’s-t) with parameters λ0 =
(μ0, �0). At each iteration t = 0, 1, . . . , T, Nt samples are
produced and a new, updated proposal gλt (·) with parameters
λt = (μt , �t) is computed. The new parameters are computed
similarly to what is done in Section 4.1 by matching the esti-
mated moments of the target.

At each step, the proposal distribution ψt(zc) is then a mix-
ture:

ψt(zc) =
∑t

i=0 Nigλi(·)∑t
i=0 Ni

=
t∑

i=0
ρigλi(·). (21)

where ρi = Ni/
∑t

i=0 Ni is the fraction of samples generated in
iteration i. Let z(i,j)

c ∼ gi(·) be the jth sample generated in the ith
iteration; then, the corresponding importance weight is

w(i,j) ∝ π̃(y|z(i,j)
c )π(z(i,j)

c )

ψt(z(i,j)
c )

, (22)

where π̃(y|z(i,j)
c ) is the conditional marginal likelihood approx-

imated with R-INLA and π(z(i,j)
c ) the prior for zc evaluated

at z(i,j)
c .
Note that the mixture changes after every adaptation and,

thereby, the weighing must be updated for all prior samples
before estimating new moments for the sampling distribution.
To avoid unnecessary calculations a helper variable of the
numerator in Equation (21) is used in the implementation. The
full algorithm is shown in Algorithm 1.

6. Examples

In this section we present a series of examples to illustrate
the methods proposed in the previous sections. The first two
examples are taken from Gómez-Rubio and Rue (2018), while
the third is described in Gómez-Rubio, Bivand, and Rue (2020).
If not stated otherwise, the same strategy for running IS-INLA
and AMIS-INLA will be used: they both start from the same
preliminary proposal distribution, a Gaussian or Student’s-t dis-
tribution with 3 degrees of freedom with location μ0 and scale
�0. IS-INLA uses then 800 samples to update the proposal and
estimate the new parameters μ1 and �1. The preliminary 800
samples are then discarded and 10,000 samples are generated
from the new proposal distribution. AMIS-INLA generates a
total of 10,000 samples by adapting the proposal distribution
27 times, to have a high number of adaptation steps. The initial
number of samples is N0 = 250. At each adaptation step Nt
samples ( t = 1, . . . , T = 26) are produced. Nt varies from
250 and 500 (with steps of size 10). No sample is discarded.
For the MCMC-INLA algorithm, we collect 10,000 samples after
convergence has been reached (500 burn-in iterations).

Effective sample size has been computed using the
effectiveSize() function in the coda R-package (Plum-
mer et al. 2006) for MCMC samples. For IS and AMIS samples,
the effective sample size has been computed using expression
ne(h) as detailed in Section 4.2. Note that effective sample size
for MCMC is based on the actual samples and it will vary with
the parameter for which it is computed while for IS and AMIS it
is based on the weights so it will be the same for all parameters.
When computing the running sample size for MCMC (i.e., the
effective sample size after a given number of iterations) the value
reported is the minimum among all effective samples size for all
the parameters in the model.

For the examples in Sections 6.1–6.3, where we compare
running times, a computer with a total of 28 CPUs with 3.2
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Algorithm 1: A detailed description of the AMIS-INLA
algorithm

- Initialize N0, N1, . . . , NT , gλ0(·), π(zc)
for t from 0 to T do

for j from 1 to Nt do
- Generate sample z(t,j)

c ∼ gλt (·)
- Fit INLA to the model conditional on zc = z(t,j)

c .
This produces the quantities:

π̃(y|z(t,j)
c ) and π̃(z−c,i|y, z(t,j)

c ), ∀z−c,i ∈ z−c

- Compute:

γ (t,j) =
t∑

l=0
Nl · gλt (z(t,j)

c ) and

w(t,j) = π̃(y|z(t,j)
c )π(z(t,j)

c )[
γ (t,j)/∑t

l=0 Nl
]

if t > 0 then
for l from 0 to t − 1 do

for j from 1 to Nl do
- Update past importance weights:

γ (l,j) ← γ (l,j) + Ntgλt (z(l,j)
c ) and

w(l,j) ← π̃(y|z(l,j)
c )π(z(l,j)

c )[
γ (l,j)/∑t

k=0 Nk
]

- Calculate λt+1 using the weighted set of samples:

({z(0,1)
c , w(0,1)}, . . . , {z(t,Nt)

c , w(t,Nt)})
- Estimate π(zc|y) using kernel density estimation
- Estimate posterior marginals of z−c:

π̃(z−c,i|y) =
T∑

t=0

Nt∑
j=1

w(t,j)π̃ (z−c,i|y, z(t,j)
c )

/ T∑
t=0

Nt∑
j=1

w(t,j)

GHz clock speed, where a fixed number of 10 cores were used
to prevent any major deviations in the computation speeds
caused by the parallelization. The examples in Sections 6.4
and 6.5 have been run on a computer using 60 CPUs (out
of 64) with 2.10 GHz clock speed. All our implementations
and experiments are publicly available in the repository
(https://github.com/berild/inla-mc). Additional examples are
presented in the supplementary materials.

6.1. Bivariate Linear Model

In the first example, we repeat the simulated study in Gómez-
Rubio and Rue (2018) and consider a simple linear model. 100
responses are simulated from
yi = β0 + β1x1i + β2x2i + εi, εi ∼ N(0, τ), for i = 1, . . . , 100.
Covariates x1 and x2 are simulated from a uniform distribution
between 0 and 1 while the error terms εi are simulated from a

standard normal distribution (i.e., precision is τ = 1). More-
over, we set β0 = β1 = 1, and β2 = −1.

This model can be easily fitted using INLA, and since the like-
lihood is Gaussian, results are exact up to an integration error.
Gómez-Rubio and Rue (2018) use this example to compare the
MCMC-INLA approximations with the exact MCMC and INLA
results and to show how MCMC-INLA gives also access to some
joint posterior inference, for example the joint posterior of β1
and β2 that INLA cannot provide. We repeat this example to
show that both IS-INLA and AMIS-INLA can reach the same
results in just a fraction of the time used by MCMC-INLA.

For this model we have z = (β0, β1, β2, τ), and we set zc =
(β1, β2) and z−c = (β0, τ). As in Gómez-Rubio and Rue (2018),
the proposal in MCMC-INLA is a bivariate Gaussian with mean
equal to the previous state β(j) and variance of 0.752 · I. We
set β(0) = 0 as starting value. Both IS-INLA and AMIS-INLA
use as first proposal distribution a bivariate Gaussian with mean
μ0 = 0 and covariance �0 = 5·I. Figure 1 shows how the initial
proposal distribution for β1 changes after the preliminary step in
IS-INLA and during the adaptation process in AMIS-INLA. In
this case the preliminary step in IS-INLA seems to be sufficient
to correctly locate the target. The adaptation process in AMIS-
INLA could have been stopped earlier giving faster computing
time.

Figure 2 shows the approximated posterior marginals of β0,
β1, β2, and τ from the combined approaches, while Figure 3(a–
c) show the estimated joint posterior for (β1, β2). Posterior
marginals from INLA alone and true values of the parameters
are included for reference. All methods seem to be able to
recover the parameters. MCMC-INLA seems to be the method
most affected by Monte Carlo error, visible both in marginals
and joint distributions.

Figure 3(d) shows the running ESS, as in Equation (13) for
all combined approaches. Clearly, MCMC-INLA has achieved
fewer effective samples in longer time. IS-INLA, which in this
case is the most efficient method, achieved 49.2 effective samples
per second, AMIS-INLA 19.5 effective samples per second,
MCMC-INLA managed only 0.35 effective samples per second.

Finally, the different numerical and graphical diagnostics dis-
cussed in Section 4.2 have been computed to assess the quality of
the estimates provided by IS with INLA. The sample sizes ne(h)

are 9138 for IS-INLA and 9618 for AMIS-INLA. For MCMC,
the minimum sample size achieved among all the parameters
is 1121. Similarly, the probability plots (not shown) provide a
curve that is very close to the identity line, which points to a
very good estimate of the posterior marginal distributions.

6.2. Bayesian Lasso

The Lasso is a popular linear regression method that also pro-
vides variable selection (Tibshirani 1996). For a model with
Gaussian likelihood, the Lasso tries to estimate the regression
coefficients by minimizing

N∑
i=1

⎛⎝yi − α −
nβ∑
j=1

βjxji

⎞⎠2

+ λ

nβ∑
j=1

|βj|, (23)

where yi is the response variable, and xji the associate covariates.
N is the number observations and nβ the number of covariates.

https://github.com/berild/inla-mc
https://doi.org/10.1080/10618600.2022.2067551
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Figure 1. A visual representation of the initial search in IS-INLA ( , left) and the adaptation of proposal distribution in AMIS-INLA ( , right) for β1 in the bivariate
linear model. The x-axis is the number of adaptations of the proposal distribution. The lines ( , ) are the proposal distributions and the filled area

( )
denotes the

target density.

Figure 2. Posterior marginals of all parameters in the bivariate linear model approximated with AMIS-INLA ( ), IS-INLA ( ), MCMC-INLA ( ), and INLA ( ). The
line

( )
is the value of the parameter chosen for the simulation of data.

The shrinkage of the coefficients is controlled by the regular-
ization parameter λ > 0. Larger values of λ result in larger
shrinkage that is, coefficients tend more toward zero. Using λ =
0 would yield the maximum likelihood estimates.

In a Bayesian setting, the Lasso can be regarded as a standard
regression model with Laplace priors on the variable coeffi-
cients. The Laplace distribution is

f (β) = 1
2σ

exp
(

−|β − μ|
σ

)
,

where μ is a location parameter and σ > 0 a scale parameter
corresponding to the inverse of the regularization parameter
σ = 1/λ. The Laplace prior is not available for the latent field

in R-INLA, but the model is simple to fit if we condition on the
values of the β coefficients.

We use the Hitters dataset (James et al. 2013), available
in the ISLR R package (James et al. 2017), that contains several
statistics about players in the Major League Baseball, including
salary in 1987. Following Gómez-Rubio and Rue (2018), we
want to predict the player’s salary in 1987 based on nβ = 5
covariates, see Gómez-Rubio and Rue (2018) for details on the
model and the choice of priors.

MCMC-INLA uses a multivariate Gaussian proposal distri-
bution for β(j) with mean equal to the previous sample β(j−1)

and precision 4·X	X, as Gómez-Rubio and Rue (2018) reported
good acceptance rates using this proposal. Here, X is the model
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Figure 3. The joint posterior distribution of β in the bivariate linear model obtained using AMIS-INLA ( , a), IS-INLA ( , b), MCMC-INLA ( , c), and the running
effective sample size (d) of the respective methods. The ( ) denotes the values of β chosen for the simulation of data.

Figure 4. Approximate posterior marginals of the coefficients of the Bayesian Lasso model (a–e) fitted with AMIS-INLA ( ), IS-INLA ( ) and MCMC-INLA ( ), and
the Lasso estimates of the coefficients

( )
. The running effective sample sizes of the respective methods are shown in (f ), where runtimes are presented in a logarithmic

scale.

matrix with the individual observations as rows and the different
covariates as columns. We set the initial state to β(0) = 0. For
the IS-INLA and AMIS-INLA methods, we use a multivariate
Student’s-t proposal with ν = 3 and initial parameters μ0 = 0
and �0 = (X	X)−1.

Figure 4(a)–(e) shows the estimated posterior marginals for
the five coefficients. MCMC-INLA and AMIS-INLA provide
similar estimates of the coefficients, with the posterior mode
closely matching the Lasso regression estimates. On the con-
trary, IS-INLA does not provide accurate results. The problem
here is that the preliminary 800 samples are not enough to
correctly locate the proposal density. Figure 5 illustrates the
problem occurring when the dimensionality of zc is high, as few

good samples are obtained in the preliminary steps the variance
of the estimator for the mean and variance in Equation (20) is
large and, thus, the estimated proposal distribution is poor. We
could have used more samples in the preliminary step and make
the IS-INLA work, but our point here is to show that AMIS-
INLA requires less tuning in order to work well.

Figure 4(f) shows the running effective sample size. We get
an effective sample size of 2784 for MCMC and one of 4321 for
AMIS based on their 10,000 generated samples.

Effective sample sizes ne(h) for IS-INLA are about just 4, very
low compared to the 4321 for AMIS-INLA. This points to the
fact that AMIS-INLA provides more accurate estimates in this
case. Note that in this way it is possible to assess the quality of
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Figure 5. A visual representation of the initial search in IS-INLA ( ) and adaptation of the proposal distribution in AMIS-INLA ( ) for HmRun in the Bayesian lasso
model. The x-axis is the number of adaptations of the proposal distribution and the fill

( )
is the target density.

Figure 6. Probability plots for Runs and RBI parameters in the Bayesian lasso model obtained with IS-INLA ( ) and AMIS-INLA ( ). The comparison line
( )

denotes equivalent empirical and theoretical cumulative distributions.

the different IS estimates. Figure 6 shows the probability plots for
β4 and β5 for IS-INLA and AMIS-INLA to assess the estimate
of their posterior marginals from the weights and sample. This
confirms that AMIS-INLA should be preferred in this case and
illustrates the use of the IS diagnostics introduced in Section 4.2.

6.3. Spatial Autoregressive Combined Model

The next example is taken from Gómez-Rubio, Bivand, and Rue
(2020) and deals with spatial econometric model (SEM; see,
LeSage and Pace 2009 for a thorough account). In particular,
we consider the spatial autoregressive combined (SAC) model

proposed by Manski (1993), where the response y is modeled
by an autoregressive term on the response:

y = ρWy + Xβ + WXγ + u. (24)
Here, the data is collected over n areas and X are the covariates
with effect β , W is the adjacency matrix of the n areas, ρ

is a spatial autocorrelation parameter and WX are the lagged
covariates with effect γ . Finally, u is an error term modeled with
a spatial autoregressive term on the error term as

u = λWu + ε1, (25)
where λ is another spatial autocorrelation parameter and ε1 is
Gaussian noise term with zero mean and precision τ I.
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Figure 7. Posterior marginals of the intercept β0 (a), coefficient of log GDP per capita β1 (b), and the precision of the noise τ (c), and joint posterior distribution of the
autoregressive terms ρ and λ (d) in the SAC model approximated with AMIS-INLA, IS-INLA, and MCMC.

The n × n adjacency matrix W is constructed such that if
the areas i and j are neighbors, the element (i, j) in W is 1. The
matrix is then standardized so that every row sums to one. This
makes the spatial autocorrelation parameters ρ and λ bound to
the interval (1/λmin, 1), where λmin is the minimum eigenvalue
of W.

Equation (24) is then rewritten as

y = (I − ρW)−1(Xβ + WXγ ) + ε2, (26)

with the revised error term:

ε2 ∼ N
(

0, τ(I − ρW	)(I − λW	)(I − λW)(I − ρW)
)

.
(27)

Note that, because of the nonadditive term (I − ρW) in Equa-
tion (26) and the complex structure in Equation (27), the model
cannot be fit with INLA unless we condition on zc = (ρ, λ).

As in Gómez-Rubio, Bivand, and Rue (2020), we consider
the turnover dataset described in Ward (2008). This contains
election turnovers in Italy from the 2001 elections, together with
the GDP per capita (GDPCAP) from 1997 for n = 477 areas
(collegi or single member districts). We apply the SAC model
using turnover as response and log(GDPCAP) as covariate. See
Gómez-Rubio, Bivand, and Rue (2020) for details about the data,
the model and the choice of the priors.

Here we compare IS-INLA and AMIS-INLA with a stan-
dalone MCMC algorithm for SAC models available in the
R package spatialreg (Bivand, Pebesma, and Gómez-Rubio
2013; Bivand and Piras 2015). After burn in, 10,000 MCMC
samples are produced thinning a longer chain to reduce
auto-correlation.

IS-INLA and AMIS-INLA algorithm use a bivariate Student’s
t proposal with initial parameters μ0 = 0 and �0 = 2 · I. The
posterior marginals of the intercept β0, the effect of log GDP per
capita β1, the precision of the noise τ and the joint posterior of
the spatial autoregressive terms in zc are shown in Figure 7. All
estimates seem to agree very well.

The effective sample size obtained with the MCMC algo-
rithm was 250 for the ρ parameter and 290 for the λ parameter
in 99 sec a 2.52 effective sample size per second. Note, that
the MCMC implementation in spatialreg is highly optimized
for the SAC model. The IS-INLA method found 3222 effective
samples in 62 min, 0.86 effective samples per second, and AMIS-
INLA 4999 in 75 min, resulting in 1.1 effective samples per
second.

MCMC-INLA has been omitted here because of its low per-
formance. It managed to obtain just 64 effective samples in more
than 8 hr.
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6.4. Zero-Inflated Poisson

Excess of zeroes is a common problem when modeling count
data. Zero-inflated distributions account for this excess of zeroes
by including a mixture between a probability mass function with
all its mass at zero (observed with probability p) and another dis-
tribution, usually a Poisson, from which a value is observed with
probability 1 − p. The probability p may depend on additional
covariates, so that each observation has a different probability
in the mixture. The R-INLA software includes different types of
zero inflated distributions, including the zero-inflated Poisson
(ZIP) distribution. However, while the mean of the Poisson
distribution can depend on covariates or random effects, p is a
common parameter, which means that all observations have the
same probabilities of being a zero.

Here, we model the number of fishes yi, i = 1, . . . , 250
caught by 250 groups of people that went to a park (data from
https://stats.idre.ucla.edu/r/dae/zip/). The dataset includes, for
each group: the number of children (childi), the number of peo-
ple (peoplei), and whether or not the group brought a camper
into the park (camperi).

We assume the following model:

yi|zi, μ ∼ ZIP(pi, μi), i = 1, . . . , 250
logit(pi) = γ0 + γ1peoplei
log(μi) = β0 + β1childi + β2camperi
γ0, γ1 ∼ N(0, 0.001)

β0, β1, β2 ∼ N(0, 0.001)

Here, pi represents the probability of observing yi = 0. Other-
wise, with probability 1−pi, yi comes from a Poisson with mean
μi. Note that both pi and μi are modeled in the appropriate scale
by using suitable link functions. Vague priors are used for the
intercepts and the coefficients of the covariates.

We take zc = (γ0, γ1). Conditional on these two parameters,
the model can be fitted in R-INLA using a different likelihood
for each data point. In this way it is possible to modulate the
pi parameters according to the covariates and we use IS/AMIS-
INLA to estimate the full model.

To sample γ0 and γ1 we use a Normal distribution centered
at the maximum likelihood estimates, with standard deviation
equal to the ML estimate multiplied by three to allow for ample
variation in the samples. ML estimates have been obtained with
the zeroinfl() function from the pscl package (Zeileis,
Kleiber, and Jackman 2008). In particular the parameters (mean
and standard deviation) of the sampling distributions for γ0 and
γ1 have been (1.30, 1.20) and (−0.56, 0.48), respectively.

Table 1 shows the estimates of the model parameters using
10000 iterations of IS using the sampling distribution stated

Table 1. Summary of estimates for the zero-inflated model.

ML IS-INLA AMIS-INLA MCMC

Parameter Estimate SE Mean SD Mean SD Mean SD

γ1 1.297 0.374 1.323 0.408 1.330 0.386 1.354 0.390
γ2 −0.564 0.163 −0.579 0.184 −0.585 0.170 −0.592 0.172
β1 1.598 0.086 1.597 0.086 1.596 0.086 0.755 0.177
β2 −1.043 0.100 −1.045 0.100 −1.048 0.100 −1.053 0.099
β3 0.834 0.094 0.835 0.094 0.835 0.094 0.839 0.095

above (i.e., there is no initial adaptation), 10,000 iterations of
AMIS (2000 initial simulations plus 4 adaptive steps with 2000
simulations each) and MCMC (using a burn-in of 10,000 itera-
tions, plus 50,000 iterations of which only 1 in 10 has been kept).
For completeness, we have also included the ML estimates (esti-
mate and standard error). The results illustrate that IS and AMIS
provide accurate estimates for all model parameters except β1
when compared to the MCMC results. We can only argue that
this difference may be due to the parameterization of the model
in JAGS as the IS and AMIS results are also close to the ML
estimates.

6.5. Poisson Mixture

Zucchini, MacDonald, and Langrock (2016) analyze the number
of major earthquakes (magnitude equal to 7 or greater) per year
in the period 1900–2006 using a Poisson mixture. The aim is to
classify each year as “low rate” or “high rate.”

The number of major earthquakes yi can be regarded as an
observation from a mixture of two Poisson distributions with
means μ1 and μ2 that represent low and high rate, respec-
tively. Hence, it can be assumed that μ1 < μ2, and this
will be encoded in the model by using appropriate priors (see
below).

The model can be stated by using discrete indicator variables
zi ∈ {1, 2} as follows:

yi|zi, μ ∼ Po(μzi), i = 1, . . . , n
Pr(zi = j) = 0.5, j = 1, 2

μ1 ∼ N(10, 0.01)

μ2 ∼ N(30, 0.01)

For given values of the indicator variables, the model simply
consists of two separate models (one for each group) and can be
easily fit with R-INLA using two likelihoods.

We set therefore, zc = (z1, . . . , zn) and use IS to sample
values of the indicator variables. The sampling distribution
is:

g(zi = j) ∝ wjPo(yi|μ′
j); j = 1, 2

with μ
′
1 = 14.60, μ

′
2 = 26.18, and w1 = w2 = 0.5. Note that

the values of the means have been obtained with the k-means
algorithm for two groups and that this probably provides a close
approximation to the posterior distribution of the mixture. Also,
note that the AMIS algorithm will update the parameters of the
sampling distribution at each adaptive step.

IS has been run for 10,000 iterations (with no previous
adaptation step) to achieve an effective sample size ne(h) of
313. Similarly, AMIS with INLA has been run for 10,000
iterations (using an initial 2000 iterations plus 4 adaptive
steps with 2000 iterations each) to achieve an effective sample
size ne(h) of 1077. MCMC estimates are based on 1000
samples obtained after 10,000 burn-in samples followed by
another 10,000 samples (of which only 1 in 10 has been kept)
obtaining 2517 effective samples for μ1 and 2807 for μ2. The
summary estimates of the model parameters can be seen in
Table 2.

https://stats.idre.ucla.edu/r/dae/zip/
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Table 2. Estimates of parameters of the mixture Poisson model fit to the earth-
quake data.

IS-INLA AMIS-INLA MCMC

Parameter Mean SD Mean SD Mean SD

μ1 14.72 0.60 14.64 0.64 14.61 0.67
μ2 24.99 0.86 24.84 0.91 24.82 0.91

7. Discussion

The integrated nested Laplace approximation is a suitable
approach for approximate Bayesian inference for latent Gaus-
sian models, as described in Rue, Martino, and Chopin (2009).
Extending the use of INLA to other classes of models has
been considered by several authors using INLA together with
numerical integration or MCMC methods. Here, we have
illustrated a novel approach to extend the models that INLA can
fit by combining importance sampling and adaptive multiple
importance sampling with INLA.

This new approach has a number of advantages over other
similar approaches. First of all, importance sampling is a very
simple algorithm that can also be easily parallelized, leading to
a huge computational speed up. This means that, in practice,
times for model fitting remain small. In the examples devel-
oped in this article we have illustrated how IS and AMIS with
INLA are able to fit a wide range of models. Furthermore, the
numerical experiments conducted show that the approxima-
tions of the posterior marginals obtained with IS and AMIS
with INLA are also accurate and close to the actual posterior
marginals.

This article also discusses numerical and graphical diagnos-
tics to assess the accuracy of IS/AMIS when used in combination
with INLA to fit models. We have observed that the different cri-
teria usually agree, with small effective sample sizes associated
to poor estimates of the posterior marginal distribution of some
the model parameters. Hence, these criteria can effectively be
used to critically assess the quality of the estimates produce by
IS/AMIS with INLA. In this sense, in the examples developed in
the paper AMIS seemed to provide better estimates when used
in combination with INLA for model fitting.

Supplementary Materials

INLA-IS-supplementary.pdf: Additional examples not included in this
paper (Imputation of missing covariates and Bayesian quantile regression).
IS-INLA-code: A folder containing the computer code used in this
article. Within this folder you find the IS-INLA, AMIS-INLA, and INLA-
MH algorithm within the inlaMC folder. The code for the respective
examples are found in toy, zip, sem, pqr, pois−mix, missing, and lasso.
All functions creating the figures and datasets that are not found in R-
libraries are also available within. The figures used in the article are
found in the figures folder and the results of the simulations are found
in sims. Also included is a readme.md(readme.html) file explaining the
code in more detail. This exact code is also publicly available in the GitHub
repository https://github.com/berild/inla-mc which we have linked to in the
article.
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