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Abstract
We consider optimization problems with manifold-valued constraints. These general-
ize classical equality and inequality constraints to a setting in which both the domain
and the codomain of the constraint mapping are smooth manifolds. We model the
feasible set as the preimage of a submanifold with corners of the codomain. The latter
is a subset which corresponds to a convex cone locally in suitable charts. We study
first- and second-order optimality conditions for this class of problems. We also show
the invariance of the relevant quantities with respect to local representations of the
problem.
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1 Introduction

The presence of constraints renders optimization problems not only more interest-
ing, but also more difficult to analyze and solve. Constrained nonlinear optimization
problems on Rm can be cast in the following form,

Minimize f (x), where x ∈ R
m

subject to (s. t.) g(x) ∈ K .
(1.1)

Here f : Rm → R denotes the objective function, and g : Rm → R
n represents the

constraint function. Moreover, K ⊂ R
n is a convex cone satisfying 0 ∈ K , i.e., it

induces a preorder on R
n defined by

y ≤K z ⇔ y − z ∈ K .

The constraint in (1.1) can thus be written as g(x) ≤K 0.
Problems of the form (1.1) include classical nonlinear programming problems with

equality and inequality constraints. These are described by g(x) = (gI (x), gE (x))T

and K = R
k− × {0}n−k ⊂ R

k × R
n−k , where Rk− is the non-positive orthant in Rk .

It is well known that—under appropriate constraint qualifications—local minimiz-
ers of (1.1) admit Lagrange multipliers, i.e., there exists μ ∈ R

n such that

f ′(x) +
n∑

i=1

μi g
′
i (x) = 0,

μ ∈ K ◦:={s ∈ R
n | sTv ≤ 0 for all v ∈ K },

μTg(x) = 0

(1.2)

holds. In short, we can write f ′(x) + μT g′(x) = 0 with μ ∈ K ◦ and μTg(x) = 0.
The set K ◦ is called the polar cone of K .

Equation 1.2 is known as generalized Karush–Kuhn–Tucker (KKT) conditions per-
taining to problem (1.1). We refer the reader to, e. g., [9, Ch. 9], [15, 18], [5, Ch. 5],
[16, Ch. 6], for results in this direction in finite and infinite-dimensional spaces.

In this paper, we generalize (1.1) to constrained optimization problems on man-
ifolds, replacing R

m and R
n by finite-dimensional, smooth manifolds M and N ,

respectively. Theory for the case of equality and inequality constraints g : M → R
n

has been considered in [2, 17] and some algorithmic approaches have been discussed
in [8, 12]. Theory and an algorithm for equality constraints of the form g(p) = q∗
with g : M → N were presented in [14]. Here we aim to incorporate equality and
inequality constraints for manifold-valued constraint mappings g : M → N .

Such an extension is not straightforward since there is no natural way to define a
cone (nor a preorder) on the manifold N which would take the role of the condition
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Fig. 1 A geodesic polygon on
the 2-sphere. Unlike in R

2, this
set cannot be described as the
intersection of half spaces.
Notice that, for instance, at the
tangent space at the light blue
point in the middle of the
horizontal geodesic, the image
of the upper half space under the
exponential map is the entire
sphere

g(x) ∈ K . We propose here to overcome this difficulty by requiring the constraint
function to have values in a submanifold with corners K ⊂ N , a mathematical object
that corresponds to a convex cone locally in adequate charts.

We thus consider the following class of problems,

Minimize f (p), where p ∈ M
s. t. g(p) ∈ K,

(1.3)

which generalizes (1.1). The description of the feasible set asF :={p ∈ M | g(p) ∈ K}
turns out to be convenient and relevant in a number of situations. Moreover, it will be
shown that this description is independent of possibly varying parametrizations of the
given problem.

Our formulation differs from other generalizations of equality and inequality con-
straints. Consider for instance a geodesic polygon as a feasible set F , defined on the
sphere M = S2, i.e.a set bounded by a set of geodesics. More generally, we can
also consider a geodesic polyhedron on Sm , i.e., a region bounded by a number of
geodesic hyperplanes. In other words, its boundary consists of totally geodesic sub-
manifolds, cf., e. g., [6, Ch. XI, §4]. An example of a geodesic polygon is given in
see Figure 1 in S2. F constitutes a submanifold of N = M with corners, so it can
be naturally parametrized as g(p) ∈ K with g = idM and K = F . By contrast, an
algebraic description of F in terms of classical inequalities runs into difficulties. In
the case of a vector spaceM = R

m , the analogue of F (an ordinary polygon) can be
easily represented as the intersection of finitely many closed half spaces, using linear
inequality constraints gi (x) = (x − yi , ni ) ≤ 0. A similar attempt to describe F
on Sm via inequality constraints of the type gi (p) = (logqi p, ni ) ≤ 0 can certainly
be used locally; however, the lack of injectivity of the exponential map on Sm , and
thus the lack of global well-definedness of its inverse, the logarithmic map, makes this
inequality constraint globally not well-defined.

This paper is structured as follows.Wedescribe our approach tomodelingmanifold-
valued constraints using manifolds with corners in Sect. 2. Constraint qualifications
are introduced and discussed in Sect. 3. Section 4 is devoted to the derivation of first-
order necessary optimality conditions. We show in Sect. 5 that equivalent conditions
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are obtained when the problem is pulled back to a tangent space, using a retraction. In
Sect. 6 we introduce the analogue of a Lagrangian function for (1.3). In preparation
for the formulation of second-order optimality conditions in Sect. 8, we define the
critical cone in Sect. 7. Finally, Sect. 9 presents an application of our theory to the
control of discretized variational problems.

We denote manifolds as well as subsets of manifolds by calligraphic letters. For
an introduction to differentiable manifolds, we refer the reader, e. g., to [7]. Points
on the manifold M are denoted by the letter p, while points on N are denoted by
q. Each manifold comes with a collection of charts (U , ψ), and each chart maps an
open subset U of M (or N ) onto an open set in R

m (or Rn), where m and n are the
dimensions of M and N , respectively. We say that a chart (U , ψ) is centered at a
point p if p ∈ U holds. For the purpose of this paper, since we will be pursuing a first-
and second-order analysis, we will mostly assume thatM andN are of class C2, i.e.,
the chart transition maps ψ2 ◦ ψ−1

1 are of this class. In chart space, we use the letters
x ∈ R

m and y ∈ R
n . We writeC j (M,N ) for the set of all mappingsM → N which

are j times continuously differentiable. The identity mappings on a vector space V or
on a manifold M are denoted by idV and idM, respectively. The zero element in the
tangent space TpM of a manifold M at p is denoted by 0p. We distinguish primal
elements v ∈ TpM and dual elements μ ∈ T ∗

pM and write dual pairings in the form
μv and compositions with linear mappings A into TpM as μ A.

2 Manifold-Valued Constraints

Our method of choice to generalize equality and inequality constrained problems to
manifolds is to replace the usual cone K that the equality and inequality constraints g
are mapping into by a submanifold with corners.

In the following we use 0 ≤ k ≤ n and write R
k × {0}n−k to denote the subset

of Rn consisting of those elements whose last n − k components vanish. We define
the map W : Rn → R

n−k by Wx = (xk+1, . . . , xn)T. Further, as usual, v ≤ 0 in R
�

means vi ≤ 0 for i = 1, . . . , �.

Definition 2.1 (Submanifold with corners [10]). Suppose that N is an n-dimensional
C2-manifold. A subset K ⊂ N is called a submanifold with corners of dimension k
if, for each q ∈ N , there exists a local chart (U , ψ) satisfying ψ(q) = 0, an index �

satisfying 0 ≤ � ≤ k, and a surjective linear operator

A : Rk × {0}n−k → R
�

such that

ψ(K ∩ U) = {x ∈ ψ(U) ∩ (Rk × {0}n−k) | A x ≤ 0}
= {x ∈ ψ(U) | A x ≤ 0, Wx = 0}

holds. In this case, (U , ψ) is termed an adapted local chart centered at q.
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We may identify A with a matrix [ Â 0 ] where Â ∈ R
�×k and 0 ∈ R

�×(n−k). For
x ∈ R

k × {0}n−k , we then have A x = Â (x1, . . . , xk)T.
We refer to q in Definition 2.1 as a corner of index �. It has been shown in [10]

that the index �, which may of course depend on q, however does not depend on the
particular choice of the adapted local chart centered at q. In terms of optimization, �
describes the number of active inequality constraints at q. This generalizes the notion
of vertices (� = k), edges (� = k − 1), and higher-dimensional facets.

The requirement � ≤ k is essential in this definition. In local charts, the description
of a corner satisfies the linear independence constraint qualification (LICQ), because
the rows of Â are necessarily linearly independent to guarantee surjectivity. Thus,
whenever (Ũ, ψ̃) is a (non-adapted) local chart onN such that ψ̃(K ∩ Ũ) is given by
the nonlinear constraint Ã(x) ≤ 0 with Ã(0) = 0, we can use the surjective implicit
function theorem to construct an adapted local chartψ such thatψ(K∩U) is described
by Ã′(0) x ≤ 0.

Definition 2.1 can be conceived as straightforward generalizations of the concepts

(i) of an embedded submanifold K ⊂ N , which is obtained when � = 0 holds for
all q ∈ K,

(i i) of a smoothly bounded subsetK ⊂ N with non-empty interior, which is obtained
when k = n and, for every q ∈ N , either � = 0 (interior point) or � = 1
(boundary point) holds,

(i i i) and of a convex polyhedron K ⊂ N = R
n , whose corners satisfy the above

regularity condition. In particular, the non-positive orthant K = R
n− ⊂ R

n is a
submanifold with corners of dimension n of Rn . For instance, the origin q = 0
is a corner of index n and it can be described by Â = idRn . As another example,
the point q = −e j (the negative j-th unit vector inRn), is a corner of index n−1
and a local description of K can be defined via Â ∈ R

(n−1)×n whose rows are
eTi with 1 ≤ i ≤ n, i �= j .

Next we discuss tangent spaces in the context of submanifolds with corners. Among
the various equivalent ways to define the tangent space for differentiable manifolds,
we use the one given in [6, 10]. Let q ∈ N and consider the set

{(ψ, v) | ψ : Uψ → R
n is a chart at q ∈ N , v ∈ R

n}.

For two charts ψ1, ψ2, we denote the transition map by T :=ψ2 ◦ ψ−1
1 . Define an

equivalence relation (ψ1, vψ1) ∼ (ψ2, vψ2) by

T ′(ψ1(q)) vψ1 = vψ2 .

We call any corresponding equivalence class a tangent vector v of N at q and vψ its
representative in the chart ψ . For fixed q ∈ N , the set of these equivalence classes is
a vector space TqN , termed the tangent space of N at q. The disjoint union of TqN
over all q ∈ N can be endowed with the structure of a manifold, more accurately a
vector bundle, termed the tangent bundle TN of N .

Suppose now that K is a submanifold with corners of N of dimension k. For
q ∈ K, we define the tangent space TqK as the set of all v ∈ TqN which possess a
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Fig. 2 Illustration of a
k = 2-dimensional manifold
with corners K (teal) as a subset
of the n = 2-dimensional sphere
N = S2. Due to k = n, the
tangent space satisfies
TqK = TqN for every q ∈ K.
At the particular point q, which
is a corner of index � = 2, the
cone of inner tangent vectors
T i
qK is shown in green

TqN = TqK

T i
q K

K

N = S2

q

representative vψ in an adapted chart ψ centered at q such that vψ is an element of
R
k × {0}n−k . In this case, all representatives of v in all adapted charts centered at q

satisfy the same relation. It is easy to verify that TqK is a linear subspace of TqN of
dimension k. Notice that the dimension of TqK does not depend on the index of q as
a corner of K.

Further, the set of inner tangent vectors T i
qK ⊂ TqK is defined as all v ∈ TqK

which satisfy, in addition, A vψ ≤ 0 for representatives in adapted charts centered
at q. As discussed in [10], T i

qK is well-defined and it is a polyhedral convex cone.
Similarly, we denote by T 0

q K the linear subspace of all elements v of TqK for which
the representatives in adapted charts centered at q satisfy A vψ = 0. We refer the
reader to Figure 2 for an illustrative example.

The following are our standing assumptions for the remainder of this paper.

Assumption 2.2 LetM andN be C2-manifolds of dimensionsm and n, respectively.
Moreover, let K be a submanifold with corners of N of dimension k. We further
suppose that f ∈ C2(M,R) and g ∈ C2(M,N ) hold and consider the following
problem:

Minimize f (p), where p ∈ M
s. t. g(p) ∈ K.

(2.1)

Notice that products of submanifolds with corners are again submanifolds with
corners. One can therefore easily combine several constraints, e. g., g1(p) ∈ K1 and
g2(p) ∈ K2, into one single constraint mapping into a product manifold. We re-
iterate that (2.1) generalizes classical nonlinear programming problems with equality
and inequality constraints. The latter are obtained in case M = R

m , N = R
n ,

K = R
k− × {0}n−k ⊂ R

k × R
n−k . At any p ∈ K, the adapted local chart centered at

a point p can be chosen as ϕ( p̃) = p̃ − p, and Â consists of the appropriate rows of
idRk .

Be aware that in general the feasible set F :=g−1(K) ⊂ M is not a submanifold
with corners even thoughK is. For example, consider p to be the tip of a pyramidP in
R
3, where � > 3 planes meet. Then, locally near p,P is described by � > 3 inequality

constraints, and thusP cannot be a submanifoldwith corners ofR3, because thiswould
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violate the condition � ≤ k = 3 in Definition 2.1. Nevertheless, with a suitable affine
mapping g : R3 → R

�,P canbedescribed locally asP = g−1(R�−). Thus, bymeans of
the constraint mapping g we can obtain feasible sets more general than submanifolds
with corners of M. Also in view of practical computational approaches, the set K
should have a simple structure, allowing, e. g., a local representation in computable
adapted charts.

Suppose that ϕ : M ⊃ Up → R
m is a chart centered at p and that ψ : N ⊃

Ug(p) → R
n is a chart centered at g(p). We may then define the following local

representations of f and g:

fϕ := f ◦ ϕ−1 : ϕ(Up) → R, gψ,ϕ :=ψ ◦ g ◦ ϕ−1 : ϕ(Up) → R
n

and obtain the following classical constrained optimization problem locally:

Minimize fϕ(pϕ), where pϕ ∈ ϕ(Up)

s. t.

{
A gψ,ϕ(pϕ) ≤ 0,

Wgψ,ϕ(pϕ) = 0.

(2.2)

As a general strategy, we will carry over results on first- and second-order optimality
conditions from (2.2) to (2.1) by formulations that are independent of the local repre-
sentation in charts.Wewill use rather straightforward andwell established strategies of
proof but highlight invariance considerations which arise in the differential geometric
context.

Example 2.3 Consider the standard case, i.e.N = R
nI+nE and

gI (x) ≤ 0 in RnI ,

gE (x) = 0 in RnE .

This fits into our general setting (1.3) if we define

K:=
{
y ∈ R

nI+nE

∣∣∣∣∣
yi ≤ 0 for i = 1, . . . , nI ,

yi = 0 for i = nI + 1, . . . , nI + nE

}
.

This setK is a submanifold ofN with corners of dimension k = nI . An adapted chart
at a point y ∈ K can be defined by ϕ(η) = η − y and by choosing the chart domain U
as an open ‖·‖∞-ball about y with radius r = min{|yi | | yi < 0}. The index � of any
point y ∈ K equals the number of components 1 ≤ i ≤ nI for which yi = 0 holds.
Then the linear mapping Â ∈ R

�×k consists of rows equal to eTi (the i-th unit vector
in R

k) for each index i with yi = 0. For any y ∈ K, the tangent space TyK (in its
representation w.r.t. the chart ϕ(η) = η − y) is given by R

nI × {0}nE . At the point,
y = (1, 0, . . . , 0)T ∈ K, for instance, the cone of inner tangent vectors is described
by R × R

nI−1
− × {0}nE , while the subspace T 0

y K is equal to R × {0}nI−1 × {0}nE .
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Example 2.4 Consider a geodesic polyhedron K ⊂ N on a Riemannian manifold N ,
i.e., a set whose facets are totally geodesic submanifolds as in Figure 1; cf., e. g., [6,
Ch. XI, §4]. We may use the logarithmic map logq : N → TqN ∼= R

n to construct an
adapted local chart at a point q ∈ K. Then K can be represented as A vψ ≤ 0 and K
is a manifold with corners, provided that A (which depends on q and ψ , of course) is
surjective at any q ∈ K.

Example 2.5 Given two mappings g�, gr : M → N , consider the equality constraint

g�(p) = gr (p).

SinceN in general is not a vector space, this constraint cannot be written in the usual
form g�(p)−gr (p) = 0. However, it can be formulated as g(p) ∈ K via the mapping

g : M � p �→ (g�(p), gr (p)) ∈ N × N

with K = {(q1, q2) ∈ N × N | q1 = q2} the diagonal submanifold of N × N .

Example 2.6 Consider a vector bundle π : N → B, where B andN are smooth mani-
folds and π is a smooth surjective map. In fact, the total spaceN of a vector bundle is
a manifold with special structure in the sense that, for each q in the base manifold B,
the preimages π−1(q) (called fibres) are linear spaces; see, e. g., [6, Ch. III].

In applications, a constraint mapping g : M → N of the form

g(p) = 0π(g(p))

arises frequently, in particular when N = TB or N = T ∗B is the tangent bundle or
cotangent bundle over B, respectively. Since the mapping q �→ 0π(q) is well-defined
and smooth on vector bundles, this constraint is of the form discussed in Example 2.5.

If the fibres π−1(q) of N are equipped with preorder cones Kq ⊂ π−1(q), then
also inequality constraints of the form

g(p) ≤ 0π(g(p)), i.e., g(p) ∈ −Kπ(g(p))

can be included under suitable assumptions on the choice of cones.

3 Constraint Qualifications

We recapitulate the definition of the tangent cone of a subset F ⊂ M and generalize
basic results, known for optimization problems on vector spaces, to the case of mani-
folds with corners. We recall that tk ↘ 0 denotes a sequence of strictly positive real
numbers that converges to 0.

Definition 3.1 (Tangent cone). Let p ∈ F and (U , ϕ) be a chart centered at p. A
tangent vector v ∈ TpM is said to belong to the tangent cone CpF ⊂ TpM at p if
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there exists a representative vϕ in the chart ϕ and sequences tk ↘ 0 and xϕ,k ∈ R
m

such that

xϕ,k → vϕ and tk xϕ,k ∈ ϕ(F ∩ U) (3.1)

holds. We then call xϕ,k a feasible tangential sequence for vϕ .

The following result shows that Definition 3.1 does not depend on the chosen
chart. Indeed, the tangent cone can alternatively be defined without the use of a chart;
compare [2, Def. 3.2].

Lemma 3.2 Property (3.1) holds for one representative of v ∈ TpM if and only if it
holds for every representative of v.

Proof Consider two local charts ϕ1 and ϕ2 centered at p and their smooth transition
map T = ϕ2 ◦ ϕ−1

1 , defined in a neighborhood U of 0 = ϕ1(p) = ϕ2(p) = T (0).
Then the corresponding representatives vϕ1 and vϕ2 of a tangent vector v ∈ TpM are
related by vϕ2 = T ′(0) vϕ1 . By differentiability of T we obtain (for sufficiently large
k so that tk xϕ1,k ∈ U):

xϕ2,k :=
T (tk xϕ1,k) − T (0)

tk
→ T ′(0) vϕ1 = vϕ2

for any pair of sequences xϕ1,k → vϕ1 and tk ↘ 0. Hence, vϕ1 satisfies (3.1) if and
only if vϕ2 does. ��

Obviously, CpF is a cone and 0 ∈ CpF . Furthermore, it is closed. To see this,
consider a sequence vi ∈ CpF which converges to v ∈ TpM with v �= 0. Using a
chart, we have sequences t ik ↘ 0 and xiϕ,k → viϕ . From these, appropriate diagonal
sequences can be chosen to verify v ∈ CpF .

The following simple lemma can be proved as in the standard case:

Lemma 3.3 Let f ∈ C1(M,R) and assume that p is a local minimizer of f on a
set F ⊂ M. Then f ′(p) v ≥ 0 holds for all v ∈ CpF .

Proof Consider v ∈ CpF and a corresponding tangential sequence tk vk ∈ F with
representatives xϕ,k . Then, by optimality, t−1

k ( fϕ(tk xϕ,k) − fϕ(0)) ≥ 0 holds for
k ∈ N sufficiently large. Since xϕ,k → vϕ we obtain f ′(0) xϕ,k → f ′(0) vϕ , but since
t−1
k ( fϕ(tk xϕ,k) − fϕ(0)) − f ′(0) xϕ,k → 0 by differentiability, this limit has to be
non-negative. ��

The following result shows that the tangent cone to a submanifold with corners has
a particularly simple structure since it agrees with the cone of inner tangent vectors
defined in Sect. 2:

Proposition 3.4 Suppose thatK is a submanifold with corners ofN and q ∈ K. Then

CqK = T i
qK.
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Proof Let v ∈ TqK. Consider an adapted local chart ψ of K ⊂ N , centered at q, and
defined on a neighborhood U of q, and vψ the corresponding representative of v. Since
both CqK and T i

qK are cones, wemay assumew.l.o.g. that λψ(K∩U) ⊂ ψ(K∩U) and
λvψ ∈ ψ(U) for λ ∈ [0, 1]. Two cases can occur. If vψ ∈ ψ(K), then v ∈ T i

qK holds
by definition, and v ∈ CqK follows because tk vψ ∈ ψ(K ∩ U) is clearly a tangential
sequence. By contrast, if vψ /∈ ψ(K), then v /∈ T i

qK by definition. Moreover,

distψ(K∩U)(vψ):= inf
w∈ψ(K∩U)

‖vψ − w‖ > 0

because ψ(K ∩ U) is closed in ψ(U). Then we can compute

distψ(K∩U)(λ vψ):= inf
w∈ψ(K∩U)

‖λ(vψ − w)‖ = λ distψ(K∩U)(vψ) for all λ ∈]0, 1].

Hence, there is no feasible tangential sequence for vψ . ��
In the following we consider the linearization

g′(p) : TpM → Tg(p)N

of g at p. Its representation in a local chart ϕ, centered at p, and an adapted local chart
ψ , centered at g(p), reads:

g′
ψ,ϕ(0):=(ψ ◦ g ◦ ϕ−1)′(0) : Rm → R

n .

Definition 3.5 (Linearizing cone). The linearizing cone at a point p ∈ F is defined as

Lp(g,K):={
v ∈ TpM

∣∣ g′(p) v ∈ T i
g(p)K

} = g′(p)−1(T i
g(p)K

) ⊂ TpM.

Lemma 3.6 We have CpF ⊂ Lp(g,K).

Proof Consider v ∈ CpF , its representation in a chart vϕ and corresponding sequences
tk ↘ 0 and xϕ,k → vϕ , where gψ,ϕ(tk xϕ,k) ∈ ψ(K). We obtain:

A gψ,ϕ(tk xϕ,k) ≤ 0, A gψ,ϕ(0) = 0.

It follows that

tk A g′
ψ,ϕ(0)(vϕ) = A g′

ψ,ϕ(0)(tk xϕ,k) + tk A g′
ψ,ϕ(0)(vϕ − xϕ,k)

= A gψ,ϕ(tk xϕ,k) + O(tk),

and thus

1

tk
A gψ,ϕ(tk xϕ,k) → A g′

ψ,ϕ(0)(vϕ).

Since every row of the left hand side is non-positive, its limit cannot be positive. Thus,
A g′

ψ,ϕ(0)(vϕ) ≤ 0 and similarly Wg′
ψ,ϕ(0)(vϕ) = 0. This implies v ∈ Lp(g,K). ��
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Definition 3.7 The (description of the) feasible set F is called transversal over K
at p ∈ F if

image g′(p) − Tg(p)K = Tg(p)N .

It is said to satisfy the Zowe–Kurcyusz–Robinson constraint qualification (ZKRCQ,
compare [18]) at p ∈ F if

image g′(p) − T i
g(p)K = Tg(p)N . (ZKRCQ)

It is said to satisfy the linear independence constraint qualification (LICQ) at p ∈ F
if

image g′(p) − T 0
g(p)K = Tg(p)N . (LICQ)

Clearly, since T 0
g(p)K ⊂ T i

g(p)K ⊂ Tg(p)K holds, (LICQ)implies (ZKRCQ), which
in turn implies transversality. If the index � of g(p) satisfies � = 0, i.e.g(p) is not
a corner of positive index, then all above notions are equivalent, because T 0

g(p)K =
Tg(p)K holds in this case.

Proposition 3.8 If (ZKRCQ) holds, then CpF = Lp(g,K).

Proof As above, consider a chart ϕ ofM centered at p and an adapted chart ψ of N
centered at g(p). Then the feasible set is represented locally as follows:

Fψ,ϕ :={x ∈ ϕ(U) |Wgψ,ϕ(x) = 0, A gψ,ϕ(x) ≤ 0},

while the representation of the linearizing cone is:

Lp(g,K)ψ,ϕ :={x ∈ R
m |Wg′

ψ,ϕ(0) x = 0, A g′
ψ,ϕ(0) x ≤ 0}. (3.2)

Then (ZKRCQ) can be written as:

image g′
ψ,ϕ(0) − {y ∈ R

n |Wy = 0, Ay ≤ 0} = R
n . (3.3)

Under assumption (ZKRCQ), we can apply [18] to conclude that Lp(g,K)ψ,ϕ coin-
cideswith the tangent cone ofFψ,ϕ at 0 inRn , which is, byLemma3.2, a representative
of CpF . Since both sets are representatives of subsets of TpM, we conclude the result
as claimed. ��

Using the local representation (3.2), where our constraints are split into equality
and inequality constraints, we can formulate the Mangasarian–Fromovitz constraint
qualification (MFCQ) in the following way:

The mapping Wg′
ψ,ϕ(0) is surjective.

There exists x̂ ∈ R
m such that Wg′

ψ,ϕ(0) x̂ = 0

and A g′
ψ,ϕ(0) x̂ < 0 holds (in each component).

⎫
⎪⎬

⎪⎭
(MFCQ)
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Proposition 3.9 (MFCQ) and (ZKRCQ) are equivalent.

Proof Let (MFCQ) hold and y ∈ R
n be arbitrary. Define ŷ:=g′

ψ,ϕ(0) x̂ ∈
image g′

ψ,ϕ(0). In addition, since Wg′
ψ,ϕ(0) is surjective, there is x̃ , such that

Wg′
ψ,ϕ(0) x̃ = Wy and we define ỹ:=g′

ψ,ϕ(0) x̃ . Then we can write for any α > 0:

y = (α ŷ + ỹ) − (α ŷ + ỹ − y),

where α ŷ + ỹ ∈ image g′
ψ,ϕ(0). By construction, W (α ŷ + ỹ − y) = 0 holds, and

choosing α sufficiently large we also obtain A(α ŷ + ỹ − y) ≤ 0, because Aŷ < 0.
This shows (3.3) and thus (ZKRCQ).

If (ZKRCQ) holds, then for any y ∈ R
n there is ŷ ∈ image g′

ψ,ϕ(0), such that
W ŷ = Wy and Aŷ ≤ Ay, because y = ŷ − (ŷ − y) with W (ŷ − y) = 0 and
A(ŷ − y) ≤ 0. Thus, since W and A are surjective by definition of manifolds with
corners,Wg′

ψ,ϕ(0) is surjective as well, and we find y such thatWy = 0 and Ay < 0,
and thus also ŷ = g′

ψ,ϕ(0) x̂ with the same properties. So (MFCQ) holds. ��

Proposition 3.10 F satisfies (LICQ) at p ∈ F if and only if, for every representation
in charts, the following linear mapping is surjective:

B g′
ψ,ϕ(0) : Rm → R

� × R
n−k, where B:=

(
A
W

)
.

Proof Let v ∈ Tg(p)N with representative vψ ∈ R
n . If B g′

ψ,ϕ(0) is surjective, thenwe

findwϕ ∈ R
m , such that B g′

ψ,ϕ(0) wϕ = −B vψ . This implies that v0ψ :=g′
ψ,ϕ(0) wϕ+

vψ ∈ ker B andwemaywrite vψ = g′
ψ,ϕ(0) wϕ −v0ψ . Thus, we have foundw ∈ TpM

and v0 ∈ T 0
g(p)K, such that v = g′(p)w − v0.

If, conversely, (LICQ) holds, then we can write vψ = g′
ψ,ϕ(0) wϕ − v0ψ for any

v ∈ Tg(p)N with v0ψ ∈ ker B and thus B g′
ψ,ϕ(0) wϕ = B vψ . Hence the surjectivity

of B g′
ψ,ϕ(0) follows from the surjectivity of B, which holds by Definition 2.1 of a

submanifold with corners. ��

4 First-Order Optimality Conditions

In this section we address the first-order necessary optimality conditions for (2.1)
under the constraint qualification (ZKRCQ). To this end, we recall that

S◦ = {v∗ ∈ V ∗ | v∗ s ≤ 0 for all s ∈ S}

denotes the polar cone of an arbitrary set S ⊂ V of a normed vector space V .
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Theorem 4.1 Suppose that p∗ ∈ F is a local minimizer of (2.1) such that (ZKRCQ)
holds at p∗. Then there exists a Lagrange multiplier μ ∈ T ∗

g(p∗)N such that the
following KKT conditions hold:

f ′(p∗) + μ g′(p∗) = 0 on T ∗
p∗M, (4.1a)

μ ∈ (
T i
g(p∗)K

)◦
. (4.1b)

The set of all possible Lagrange multipliers, Λ(p∗) = {μ ∈ T ∗
g(p∗)N | (4.1) holds} is

compact. If (LICQ) holds, then Λ(p∗) is a singleton.
Proof By Lemma 3.3 we have f ′(p∗) ≥ 0 on Cp∗F and thus, by Proposition 3.8 on
Lp∗(g,K). Hence v = 0 is a minimizer of the following linear problem:

Minimize f ′(p∗) v, where v ∈ Tp∗M
s. t. g′(p∗) v ∈ T i

p∗K.

Due to the (ZKRCQ) regularity condition, we can once more apply the results of [18]
to this problem to conclude the existence of a Lagrange multiplier μ such that the
KKT conditions (4.1) hold, so Λ(p∗) is non-empty. Being the intersection of closed
sets, Λ(p∗) is also closed.

In order to prove the boundedness ofΛ(p∗), we proceed by contradiction. Consider
a sequenceμk of Lagrange multipliers with ‖μk‖ → ∞ and a corresponding bounded
sequence λk :=(μk − μ1)/‖μk‖ with μ1/‖μk‖ → 0. By picking a subsequence we
may assume that λk converges to a limit λ∗ with ‖λ∗‖ = 1. Due to (ZKRCQ), every
v ∈ Tg(p∗)N can be written as v = w − u, where w ∈ image g′(p∗) and u ∈ T i

g(p∗)K.
Then we compute

λ∗ v = lim
k→∞ λk v = lim

k→∞

(
1

‖μk‖ (μk − μ1) w − μk u

‖μk‖ + μ1 u

‖μk‖
)

.

Since (μk − μ1) w = 0, μk w ≤ 0, and the last addend in the sum tends to 0, as
k → ∞, it follows that λ∗ v ≥ 0 holds for all v ∈ Tg(p∗)N and thus λ∗ = 0, which is
in contradiction to ‖λ∗‖ = 1. Hence, Λ(p∗) is bounded and therefore compact.

Now consider two solutions μ1 and μ2 of (4.1). Then μ1 − μ2 ∈ (
T 0
g(p∗)K

)◦

and (μ1 − μ2) g′(p∗) = 0. Hence, for all v ∈ image g′(p∗) − T 0
g(p∗)K, it follows

that (μ1 − μ2) v = 0. If (LICQ) holds, then this implies (μ1 − μ2) v = 0 for all
v ∈ Tg(p∗)N and thus μ1 = μ2. ��

In the following,wederive a representationμψ ∈ R
n ofμ ⊂ (

T i
g(p)K

)◦ with respect
to an adapted local chart ψ centered at g(p). Recall that, by definition, v ∈ T i

g(p)K
holds if and only if Wvψ = 0 and A vψ ≤ 0.

Proposition 4.2 μ ∈ (
T i
g(p)K

)◦
holds if and only if its representationμψ in an adapted

chart is of the following form:

μψ =
(
ATλI

WTλE

)
∈ R

n,
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where λI ≥ 0 ∈ R
� and λE ∈ R

n−k . Hence, in local charts, (4.1) reads:

f ′
ϕ(p) + λTI A g′

ψ,ϕ(p) + λTEWg′
ψ,ϕ(p) = 0,

λI ≥ 0.

Proof Consider a representative vψ of an element of T i
g(p)K and μψ of the claimed

form:

μψ vψ = ATλI vψ + λE 0 = λI A vψ ≤ 0.

Hence, μ ∈ (
T i
g(p)K

)◦.
For the converse, assume that (λI )i < 0 for some 1 ≤ i ≤ �. Since A is surjective,

choose vψ such that A vψ = −ei holds, which implies ATλI vψ = −(λI )i > 0, so
μ /∈ (

T i
g(p)K

)◦. ��

We return back to Example 2.3 and recall that the rows of Â ∈ R
�×k consist of

those unit vectors eTi for which gI (x∗)i = 0 holds. We observe the representation

μψ =
(

ηI

ηE

)
, where ηI =

∑

{i | gI (x∗)i=0}
λi ei with some λi ≥ 0.

Thus we obtain the classical complementarity result:

ηI ≥ 0, gI (x∗) ≤ 0, ηI gI (x∗) = 0,

together with the well-known dual equation:

f ′(x∗) + ηTI g
′
I (x∗) + ηTEg

′
E (x∗) = 0.

After transposition, it takes the more familiar form

∇ f (x∗) + g′
I (x∗)TηI + g′

E (x∗)TηE = 0.

5 Retractions and LinearizingMaps

Numerical solution algorithms frequently employ retractions to pull back optimization
problems on manifolds to the corresponding tangent spaces. In this section we will
consider reformulations of the KKT conditions (4.1) in terms of these objects. This is
an alternative to our approach via local charts employed in Sect. 4 and it allows us to
argue more conveniently in some cases. Moreover, retractions are also the approach
we take for the second-order analysis in Sect. 8.

We will use the following definitions:

Definition 5.1 Let V0p ⊂ TpM be a neighborhood of 0p ∈ T0 pM. A C2-mapping
Rp : V0p → M is called a local retraction at p if it satisfies:
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(Ri) Rp(0p) = p,
(Rii) DRp(0p) = idTpM.

Let Uq ⊂ N be a neighborhood of q ∈ N . A C2-mapping Sq : Uq → TqN is
called a local linearizing map at q if it satisfies:

(Si) Sq(q) = 0q ,
(Sii) DSq(q) = idTqN .

We call Sq adapted to K if Sq(Uq ∩ K) = Sq(Uq) ∩ T i
qK holds.

Every chart ϕ on M, centered at p, induces a local retraction at p via
Rp(v):=ϕ−1(vϕ). Moreover, every adapted chart ψ on N , centered at q, induces
an adapted linearizing map: for any η ∈ Uq we define v:=Sq(η) ∈ TqN by the equiv-
alence class of vψ :=ψ(η). If K is a geodesic polyhedron on a Riemannian manifold
N as in Example 2.4, then logq yields an adapted linearizing map at q.

Remark 5.2 Retractions are widely used in optimization algorithms on manifolds; see,
e. g., [1]. Linearizing maps for constrained problems were introduced in [14], but a
similar concept has been used in a different context in [3] under the name “generalized
logarithmic map”.

The concept of adapted linearizing maps may be useful for the implementation of
numerical algorithms in this setting. As we will see below, it allows us to write down
a local optimization problem at p∗ in a way that resembles a classical formulation
without the need of further linearization of Sg(p∗)(Ug(p∗) ∩ K).

Let p be a feasible point of (2.1) and Rp : V0p → M and Sg(p) : Ug(p) → Tg(p)N
be a given local retraction and adapted linearizing map, respectively. Choosing their
domain of definition sufficiently small, we may assume without loss of generality that
Rp and Sg(p) are injective with g(Rp(V0p )) ⊂ Ug(p). We can now locally pull back
our problem as follows:

f := f ◦ Rp : V0p → R,

g:=Sg(p) ◦ g ◦ Rp : V0p → Tg(p)N ,

K :=Sg(p)(K ∩ Ug(p)) = T i
g(p)K ∩ Sg(p)(Ug(p)),

and formulate a local optimization problem on the tangent space at p:

Minimize f (v), where v ∈ V0p ⊂ TpM
s. t. g(v) ∈ K ⊂ Tg(p)N ,

(5.1)

since K is the intersection of a polyhedral convex cone and a neighborhood of 0g(p).
It can thus be described by finitely many linear equality and inequality constraints on
Tg(p)N . Neglecting the local neighborhoods, (5.1) is locally a classical constrained
optimization problem of the form:

Minimize f (v), where v ∈ TpM
s. t. AI g(v) ≤ 0

and AE g(v) = 0

(5.2)
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with linear mappings AI : Tg(p)N → R
� and AE : Tg(p)N → R

n−k . Notice that the
data of problem (5.2) is, of course, not uniquely defined. For instance, we may pre-
multiply AI by a positive diagonal matrix, and AE by any invertible matrix. However,
the viable choices for AI and AE do not depend on the choice of Sg(p).

Theorem 5.3 Suppose that p∗ is a feasible point of (2.1). Then p∗ is locally optimal
for (2.1) if and only if v∗ = 0 ∈ Tp∗M is a local minimizer of (5.1). In this case,
when (ZKRCQ) holds at p∗, then there exists μ ∈ T ∗

g(p∗)N such that

f ′(0p∗) + μ g′(0p∗) = 0 in T ∗
p∗M,

μ ∈ (
C0p∗ K

)◦ = (
T i
g(p∗)K

)◦
.

Proof Clearly, 0p∗ ∈ Tp∗M is a local minimizer of (5.1) if and only if p∗ is a local
minimizer of (2.1). Moreover, by the chain rule, using property (Rii) of Rp∗ and
property (Sii) of Sg(p∗):

f ′(0p∗) = f ′(p∗), g′(0p∗) = g′(p∗), C0p∗ K = T i
g(p∗)K.

Thus, our conditions directly follow from (4.1). ��
As an alternative approach, we can apply a classical theorem on KKT conditions

to (5.2) and obtain

f ′(0p∗) + λTI AI g′(0p∗) + λTE AE g′(0p∗) = 0,

λI ≥ 0,
(5.3)

with λI ∈ R
� and λE ∈ R

n−k , which depend on the choice of AI and AE . By
invariance, the first row equivalently yields:

f ′(p∗) + λTI AI g
′(p∗) + λTE AE g′(p∗) = 0

and thus by comparison,

μ = λTI AI + λTE AE ∈ (
T i
g(p∗)K

)◦
.

Weemphasize that the number of rows in AI , which is equal to the index � of the corner
g(p∗), depends on g(p∗). Thus, there is no further distinction necessary between active
and inactive constraints, because this is already built into the local representation of
K.

The formulation (5.3) allows us to split the given constraints into individual com-
ponents and to distinguish strongly active and weakly active constraints, according to
the structure of λI .

Definition 5.4 We call the i-th constraint (AI )i g ≤ 0 weakly active at (p∗, λI , λE )

if (λI )i = 0 holds, and strongly active in case (λI )i > 0.
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Observe that this definition does not depend on the particular choice of AI . If AI

is premultiplied by a positive diagonal matrix, then the notion of weak and strong
activity of (AI )i is not changed.

6 Lagrangian Functions

When N = V is a normed linear space with dual space V ∗ and g : M → V , then a
Lagrangian function for our problem (2.1) with Lagrange multiplier μ ∈ V ∗ can be
defined as usual:

L : M × V ∗ � (p, μ) �→ L(p, μ):= f (p) + μ(g(p)) ∈ R.

However when N is a nonlinear manifold, then μ cannot be defined as a linear func-
tional on N . Rather, we need to replace it with a function h ∈ C1(N ,R) and define

L : M × C1(N ,R) � (p, h) �→ L(p, h):= f (p) + h(g(p)) ∈ R

as a Lagrangian function. In the following we will consider h fixed and regard the
mapping p �→ L(p, h) : M → R as a function in p. Its derivative L ′ is given by

L ′(p, h):= d

dp
L(p, h) = f ′(p) + h′(g(p)) g′(p).

For these derivatives to bewell-defined at a point p, it is enough thath is defined in some
neighborhood of p. We can observe two things. First, μ:=h′(g(p)) ∈ T ∗

g(p)N can be
interpreted as a Lagrange multiplier; second, L ′(p, h) only depends on μ = h′(g(p))
and not on the particular choice of h.

The paragraph above explains how to obtain μ from h. Conversely, let p∗ ∈ M be
fixed and q∗ = g(p∗). In view of the KKT-conditions (4.1) we would like to extend a
Lagrange multiplier μ ∈ T ∗

q∗N locally to a nonlinear function h on a neighbourhood
of q∗ such that h′(q∗) = μ holds. This can be achieved by using a linearizing map Sq∗
about q∗ and defining h:=μ ◦ Sq∗ . Then we obtain a Lagrangian function of the form

LSq∗ (p, μ):=L(p, μ ◦ Sq∗) = f (p) + μ ◦ Sq∗◦ g(p).

Since h′(q∗) = μ ◦ DSq∗(q∗) = μ, we obtain with this definition of h:

L ′
Sq∗ (p∗, μ) = f ′(p∗) + μ g′(p∗) = L ′(p∗, h). (6.1)

Alternatively we may define Lagrangian functions near p∗ with q∗ = g(p∗) via
pull-backs:

L : Tp∗M × T ∗
q∗N → R

(v, μ) �→ L(v, μ):= f (v) + μ(g(v)) = ( f ◦ Rp∗)(v) + (μ ◦ Sq∗◦ g ◦ Rp∗)(v)

123



Journal of Optimization Theory and Applications (2022) 195:596–623 613

with derivative

L′(v, μ) = f ′(v) + μ g′(v) and thus L′(0p∗ , μ) = f ′(p∗) + μ g′(p∗).

It is therefore justified to define the derivative of the Lagrangian function in the fol-
lowing way:

L ′(p∗, μ):= f ′(p∗) + μ g′(p∗) = L′(0p∗ , μ) = L ′
Sq∗ (p∗, μ) = L ′(p∗, h)

for μ = h′(q∗),
(6.2)

independently of the choice of the retraction Rp∗ , linearizing map Sq∗ , and h, as long
as μ = h′(q∗). Utilizing the identifications μ:=h′(g(p∗)) and h:=μ ◦ Sg(p∗), we find
that the KKT conditions (4.1) can equivalently be written in the familiar way:

L ′(p∗, μ) = 0 on T ∗
p∗M, (6.3a)

μ ∈ (
T i
g(p∗)K

)◦
. (6.3b)

7 The Critical Cone

To derive second-order optimality conditions, we need a definition of the critical cone
at a KKT point p∗ as a subset of the tangent cone Cp∗F . Suppose that (p∗, μ) satisfies
the KKT conditions (4.1). We define the critical cone at p∗ as

CcritM :={v ∈ Tp∗M | g′(p∗) v ∈ T i
g(p∗)K and f ′(p∗) v = 0}

= {v ∈ Tp∗M | g′(p∗) v ∈ T i
g(p∗)K and μ g′(p∗) v = 0}.

We also introduce the definition

CcritN :=g′(p∗) CcritM = {w ∈ T i
g(p∗)K | μw = 0}

= {w ∈ T i
g(p∗)K | (AI ) jw = 0 for all j = 1, . . . , � such that (λI ) j = 0},

where (AI ) j are the components of the mapping AI : Tg(p∗)N → R
� used in (5.2).

Then we can write μ ∈ (
span CcritN

)◦ for any Lagrange multiplier μ ∈ Λ(p∗).
The following considerations will be useful for the discussion of second-order

conditions:

Lemma 7.1 Suppose that X is a normed linear space and U, V are open neighbor-
hoods of 0 ∈ X. Consider a diffeomorphism Φ : U → V such that Φ(0) = 0 and
Φ ′(0) = idX hold. Let K be a polyhedral cone of the form

K = {v ∈ X | AI v ≤ 0, AE v = 0}
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with linear maps AI : X → R
nI and AE : X → R

nE . Suppose that

Φ : K ∩U → K ∩ V

is bijective. Select a row a j = (AI ) j and define the facet

K j = {v ∈ X | AI v ≤ 0, AE v = 0, a jv = 0}.

Then there are neighborhoods Ũ and Ṽ of 0 such that

Φ : K j ∩ Ũ → K j ∩ Ṽ

is also bijective.

Proof Wemay assumew.l.o.g. that Ũ = U = Br (0) is an open ball of radius r about 0.
Since Φ is a homeomorphism and thus preserves boundaries of sets, we conclude in
particular that

Φ : ∂K ∩U → ∂K ∩ V

is also a homeomorphism. Consider now the “open” facet

K̃ j = {v ∈ K j | (AI )� v < 0 for all � �= j},

which is a relatively open subset of ∂K . Then U ∩ K̃ j is a connected set, because U
and K̃ j are both connected and convex. The continuity ofΦ implies thatΦ(U ∩ K̃ j ) is
connected as well. However, the arbitrary union of two (or more) distinct open facets
is not connected because each K̃ j is a relatively open subset of this union. Hence,
Φ(U ∩ K̃ j ) is a subset of an open facet K̃� and it remains to show j = �. Since
Φ ′(0) = idX holds, we find that

Φ ′(0) : K̃ j → K̃ j

is bijective. Using the differentiability ofΦ this implies that there exists x0 ∈ K̃ j such
that Φ(x0) ∈ K̃ j holds. We thus conclude that Φ(U ∩ K̃ j ) ⊂ K̃ j .

Picking some Bρ(0) ⊂ V we can show by the same argumentation

Φ−1(Bρ(0) ∩ K̃ j ) ⊂ K̃ j ∩U

and thus Bρ(0) ∩ K̃ j ⊂ Φ(K̃ j ∩ U ). Thus, Φ(U ∩ K̃ j ) can be written as K̃ j ∩ Ṽ ,
where Ṽ is a neighborhood of 0. ��

This lemma can be applied recursively also to subfacets of K . Hence, after finitely
many steps of application, we conclude in particular that there are neighborhoods U
and V of 0 such that Φ maps CcritN ∩U bijectively onto CcritN ∩ V .
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Lemma 7.2 Consider two adapted linearizing maps Sq,1 and Sq,2 and the transition
map Θ:=Sq,1 ◦ S−1

q,2. Then

v ∈ T i
qK ⇒ Θ ′′(0q)[v, v] ∈ TqK,

v ∈ CcritN ⇒ Θ ′′(0q)[v, v] ∈ span CcritN .

Proof Consider any cone K ⊂ TqN such that Θ maps K into K . Since Θ(0q) = 0q
and Θ ′(0q) = idRn hold, we can compute

Θ ′′(0q)[v, v] = lim
t→0

t−2(Θ(t v) − Θ(0q) − Θ ′(0q) t v
) = lim

t→0
t−2(Θ(t v) − t v) .

Since both Θ(t v) and t v belong to K , Θ(t v) − t v belongs to span K and thus so
does the limit. By definition, Θ maps K ⊂ T i

qK into T i
qK and thus Θ ′′(0q)[v, v] ∈

span T i
qK = TqK for v ∈ T i

qK, proving our first assertion. Our second assertion
follows similarly, because Θ maps CcritN into CcritN by Lemma 7.1. ��

8 Second-Order Optimality Conditions

Compared to the case in vector spaces, the formulation of second-order conditions on
manifolds exhibits an additional difficulty. On a vector space V the second derivative
of a real-valued function σ : V → R at x ∈ V can be represented as a bilinear form
σ ′′(x) : V × V → R, whose definiteness properties can be studied. In contrast, for
σ : M → R we have σ ′ : TM → R and thus σ ′′ : T(TM) → R. The required
representation of σ ′′(p) as a bilinear form on TpM, i.e.σ ′′(p) : TpM× TpM → R,
is not given canonically. A connection, or equivalently, a covariant derivative, has to
be specified for this purpose. However, at a stationary point p∗ ∈ M, i.e.σ ′(p∗) =
0, second derivatives of scalar-valued functions can be represented canonically by
bilinear forms on Tp∗M without the help of a covariant derivative, as shown in the
following lemma.

Lemma 8.1 Suppose that σ ∈ C2(M,R). At a point p∗ ∈ M satisfying σ ′(p∗) = 0,
the second derivative σ ′′(p∗) : Tp∗M × Tp∗M → R is a well-defined symmetric
bilinear form, i.e., a symmetric (2, 0)-tensor.

Proof Consider two charts ϕ1 and ϕ2 centered at p∗ so that ϕ1(p∗) = ϕ2(p∗) = 0
holds. Then σ has representations σϕ1 :=σ ◦ ϕ1

−1 and σϕ2 = σ ◦ ϕ2
−1 in charts, and

σϕ1 = σϕ2 ◦T with T = ϕ2◦ϕ−1
1 . Let vϕ1 and vϕ2 be the representatives of v ∈ Tp∗M.

Then vϕ2 = T ′(0) vϕ1 holds and we have

σ ′
ϕ1

(0) vϕ1 = σ ′
ϕ2

(0) T ′(0) vϕ1 = σ ′
ϕ2

(0) vϕ2 .
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Using σ ′(p∗) = 0 we find

σ ′′
ϕ1

(0)[vϕ1, vϕ1 ] = σ ′′
ϕ2

(0)[T ′(0) vϕ1 , T
′(0) vϕ1 ] + σ ′

ϕ2
(0) T ′′(0)[vϕ1, vϕ1 ]

= σ ′′
ϕ2

(0)[T ′(0) vϕ1 , T
′(0) vϕ1 ].

This implies the well-definedness of σ ′′(p∗) on Tp∗M×Tp∗M. Its symmetry follows
from the theorem of Schwarz. ��

As a consequence of Lemma 8.1, second-order optimality conditions for uncon-
strained optimization problems on C2-manifolds can be formulated without recourse
to covariant derivatives. Even for constrained problems for which the constraint target
manifoldN = V is a linear space, we can applyLemma8.1 to theLagrangian function
L : M × V ∗ → R, i.e.σ(p):=L(p, μ), at a KKT point p∗ with Lagrange multiplier
μ ∈ V ∗ and obtain awell-defined second derivative L ′′(p∗, μ) : Tp∗M×Tp∗M → R,
because of σ(p∗) = L ′(p∗, μ) = 0.

For the general case of manifold-valued constraints, the situation is more complex,
since, as we have seen, a classical Lagrange multiplier μ cannot be used directly
to define a Lagrangian function due to lack of linearity of N . Instead, a nonlinear
function h ∈ C2(N ,R) was used to define L(p, h). Although L ′(p, h) only depends
on μ:=h′(g(p)), the situation is different for the second-order derivative. Let p∗ be
a KKT-point, q∗ = g(p∗), and μ ∈ T ∗

q∗N the corresponding Lagrange multiplier
such that h′(q∗) = μ and L ′(p∗, h) = 0 hold. Then we can apply Lemma 8.1 to
σ(p):=L(p, h) = f (p) + h(g(p)) and obtain a well-defined bilinear form at p∗:

L ′′(p∗, h) : Tp∗M × Tp∗M → R.

Unfortunately, L ′′(p∗, h) still depends on the particular choice of h and not only on
μ = h′(q∗). This can be seen most clearly when M and N are linear spaces. Then
we can compute L ′′(p∗, h) as follows:

L ′′(p∗, h)[v, v] = f ′′(p∗)[v, v] + μ g′′(p∗)[v, v] + h′′(q∗)[g′(p∗) v, g′(p∗) v],
and we observe that the third term on the right hand side depends on the second
derivative of h. Of course, these second derivatives can be avoided whenN is a linear
space by taking the canonical choice h = μ, but such a canonical choice is not possible
when N is nonlinear.

However, suppose we use an adapted linearizing map Sq∗ about q∗ to define h =
μ ◦ Sq∗ and thus LSq∗ (p, μ) = L(p, h) holds. In that case, as we will show now,
L ′′(p∗, h)[v, v] = L ′′

Sq∗ (p∗, μ)[v, v] is independent of the particular choice of Sq∗
on the critical cone, i.e., for v ∈ CcritM . This is all we need in order to formulate
second-order optimality conditions in an invariant way.

Proposition 8.2 Suppose that p∗ is a KKT point, q∗ = g(p∗) holds and μ ∈ T ∗
q∗N is

a corresponding Lagrange multiplier so that (6.3) is satisfied. Let Sq∗,1 and Sq∗,2 be
adapted linearizing maps about q∗. Then

L ′′
Sq∗,1

(p∗, μ)[v, v] = L ′′
Sq∗,2

(p∗, μ)[v, v] for all v ∈ CcritM . (8.1)
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In view of (6.2), we therefore also refer to L ′′
Sq∗,i

(p∗, hi ) simply as L ′′(p∗, μ). More-
over, for any pullback with retraction Rp∗ and adapted linearizing map Sq∗ , the
relation

L ′′(p∗, μ)[v, v] = L′′(0p∗ , μ)[v, v] for all v ∈ CcritM

holds.

Proof DefiningΘ:=Sq∗,1 ◦ S−1
q∗,2, we observeμ◦ Sq∗,2 = μ◦Θ ◦ Sq∗,1. Consequently,

for w ∈ Tp∗M and p = Rp∗(w), we have

LSq∗,2(p, μ) − LSq∗,1(p, μ) = μ ◦ (idTq∗N − Θ) ◦ Sq∗,1 ◦ g(p)

= μ ◦ (idTq∗N − Θ) ◦ g(w).

The first derivatives read

L ′
Sq∗,2

(p, μ) v − L ′
Sq∗,1

(p, μ) v = μ ◦ (
idTq∗N − Θ ′(g(w))

) ◦ g′(w) v.

Since p∗ is stationary, second derivatives of LSq∗ (p, μ) are well-defined and can be
computed as follows, using the fact that Θ ′(0q∗) = idTq∗N holds:

(
L ′′
Sq∗,2

(p∗, μ) − L ′′
Sq∗,1

(p∗, μ)
)[v, v]

= μ ◦ (
idTq∗N − Θ ′(0q∗)

)
g′′(0p∗)[v, v] − μ ◦ Θ ′′(0q∗)[g′(0p∗) v, g′(0p∗) v]

= −μ ◦ Θ ′′(0q∗)[g′(0p∗) v, g′(0p∗) v].

For v ∈ CcritM we conclude g′(0p∗) v ∈ CcritN and thus we find by Lemma 7.2, using that
the linearizing maps are adapted:

Θ ′′(0q∗)[g′(0p∗) v, g′(0p∗) v] ∈ span CcritN .

By stationarity and by definition of CcritN , we infer μ|span Ccrit
N

= 0 and thus

μ ◦ Θ ′′(0q∗)[g′(0p∗) v, g′(0p∗) v] = 0 for all v ∈ CcritM , (8.2)

which yields the desired result. ��
Remark 8.3 The conclusion of Proposition 8.2 can be extended slightly beyond the
class of adapted linearizing maps: let us call Sq∗,1 and Sq∗,2 second-order consis-
tent, if their transition map Θ:=Sq∗,1 ◦ S−1

q∗,2 satisfies Θ ′′(0q∗) = 0. Clearly, (8.2)
holds for second-order consistent linearizing maps, even for all v ∈ Tp∗M. Hence,
(8.1) extends to linearizing maps each of which is second-order consistent with some
adapted linearizing map.
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Remark 8.4 The restriction to adapted linearizing maps in Proposition 8.2 is natural,
taking into account the definition of a manifold with corners via adapted local charts.
To illustrate that this restriction is also essential (up to Remark 8.3), consider M =
N = R

2 with p = (p1, p2)T, f (p) = −p1, g = idM and K = {p ∈ M | p1 ≤ 0}.
Then 0 is a local minimizer of f , CcritM = CcritN = {v ∈ M | v1 = 0} hold, and

0 = L ′(0, μ) v =
(−v1

0

)
+ μ

(
v1
v2

)
implies μ =

(
1
0

)
.

Using the adapted linearizing map S0,1 = idM, we obtain μ ◦ S0,1(p) = p1 and
L ′′
S0,1

(0, μ)[v, v] = 0, but using the non-adapted linearizing map S0,2(p):=(p1 +
α p22, p2) would yield μ ◦ S0,2(p) = p1 + α p22 and L ′′

0,2(0, μ)[v, v] = 2α v21.

In general, it is also not possible to extend (8.1) beyond v ∈ CcritM . Using the adapted
local linearizing map S0,3(p):=(p1 + p1 p2, p2)T (when |p2| < 1, then p1 + p1 p2 ≥
0 ⇔ p1 ≥ 0),we obtainμ◦S0,3(p) = p1+p1 p2 and thus L ′′

S0,3
(0, μ)[v, v] = 2 v1 v2,

which coincides with L ′′
S0,1

(0, μ)[v, v] = 0 on CcritM but not on all of R2.

Having achieved an invariant definition of L ′′ on the critical cone, second-order opti-
mality conditions for manifold-valued constraints can now be reduced to the classical
vector-valued case. Suppose that p∗ ∈ M is a KKT point with Lagrange multiplier
μ. For any choice of retraction at p∗ and adapted linearizing map at g(p∗), we con-
sider the second derivative of the pullback L′′(0p∗ , μ), which—as we have seen—is
invariant on the critical cone CcritM .

Invoking well-known results from the literature, we obtain the following second-
order sufficient optimality conditions:

Theorem 8.5 Assume that p∗ ∈ M andμ ∈ T ∗
g(p∗)N satisfy the KKT conditions (4.1).

Moreover, suppose that

L ′′(p∗, μ)[v, v] > 0 holds for all v ∈ CcritM \ {0p∗}.

Then p∗ is a strict local minimizer of problem (2.1).

Proof It is clear that this result holds for L′′(0p∗ , μ) and thus, by invariance, it also
holds for L ′′(p∗, μ); see, e. g., [11, Thm. 12.6]. ��

Concerning second-order necessary optimality conditions, a wide variety of con-
straint qualifications can be found in the literature (cf., e. g., [4] and references therein),
leading to second-order conditions of various strength. We restrict our discussion here
to the simplest case:

Theorem 8.6 Assume that p∗ ∈ M is a local minimizer of problem (2.1) and that
(LICQ) holds at p∗. Then p∗ satisfies the KKT conditions (4.1) with some Lagrange
multiplier μ ∈ T ∗

g(p∗)N . Moreover,

L ′′(p∗, μ)[v, v] ≥ 0 holds for all v ∈ CcritM .
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Proof It is clear that this result holds for L′′(0p∗ , μ) and thus, by invariance, it also
holds for L ′′(p∗, μ); see, e. g., [11, Thm. 12.5]. ��

9 Application to the Control of Discretized Variational Problems

Suppose that Y and U are smooth manifolds and consider the following energy mini-
mization problem, parametrized (or controlled) by u:

Minimize E(y, u), where y ∈ Y,

which we replace by its stationarity condition:

0∗
y = c(y, u):=∂y E(y, u) ∈ T ∗

yY .

Such a situation occurs frequently in the infinite-dimensional context of variational
problems, where occasionally Y and/or U are nonlinear, smooth manifolds. Also the
principle of stationary action, which is applied, e. g., in classical mechanics, leads
to problems of a similar form. After discretization, a similar problem on finite-
dimensional manifolds is obtained.

Using the control variable u, an optimal control problem or a parameter identifica-
tion problem may then be formulated as follows:

Minimize f (y, u), where (y, u) ∈ Y × U
s. t. 0∗

y = c(y, u).

A simple concrete example, which has been considered in e. g., [13, Ch. 6], is the
optimal control of a static inextensible flexible rod. Here y : [0, 1] → R

3 is the
configuration of the rod, u is an applied force, and E(y, u) is the total energy of the
rod. Inextensibility ismodelled by requiring y′(t) ∈ S

2 for all t ∈ [0, 1], the unit sphere
inR3, which rendersY a nonlinear manifold. An appropriate objective function f may
comprise the distance of y to some desired configuration and a Tychonov term for u.
For details we refer to [13, Ch. 6] and [14].

Setting p:=(y, u), M:=Y × U , N :=T ∗Y , and taking K to be the zero-section of
T ∗Y , i.e., the pairs (y, 0∗

y) ∈ T ∗Y , which can be identified with K = Y , we observe
that this problem fits into our theoretical framework, where the constraint mapping is
defined as follows:

g : Y × U → T ∗Y � p = (y, u) �→ g(p):=(y, c(y, u)).

To formulate first-order optimality conditions, we calculate the derivative at a feasible
point:

g′(p) = (idM, c(y, u))′(y, u) : TyY × TuU → T(y,0∗
y)

(T ∗Y).
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At 0y we can utilize the canonical splitting (a connection or covariant derivative is not
required here) of the cotangent’s tangent space

T(y,0∗
y)

(T ∗Y) ∼= TyY × T ∗
yY

into the tangent space of the base manifold and a fibre. This allows us to write g′(p)
as a pair:

g′(p) : TyY × TuU → TyY × T ∗
yY

δ p = (δy, δu) �→ g′(p) δ p = (
δy, c′(y, u)(δy, δu)

) ∈ TyY × T ∗
yY

and the tangent space of K as:

T i
(y,0∗

y)
K = TyY = TyY × {0∗

y} ⊂ TyY × T ∗
yY .

Thus the linearized constraints can be split into two parts, the first of which is redun-
dant:

g′(p) δ p ∈ T i
(y,0∗

y)
K ⇔ δy ∈ TyY, c′(y, u)(δy, δu) = 0∗

y .

Constraint qualifications are fulfilled at p, provided that image g′(p)−TyY ×{0∗
y} =

TyY × T ∗
yY holds. This is the case if and only if c′(y, u) : TyY × TuU → T ∗

yY is
surjective.

A Lagrange multiplier μ is an element of

(T i
(y,0∗

y)
K)◦ = (TyY)◦ = (TyY × {0∗

y})◦ = {0∗
y} × (TyY)∗∗ = {0∗

y} × TyY,

where the last identity is the canonical identification of the bidual spacewith the primal
space. A Lagrange multiplier thus is a pair

μ = (0∗
y, λ) ∈ T ∗

yY × TyY .

These splittings yield μ g′(p) δ p = (
0∗
yδy, λc

′(y, u)(δy, δu)
) = λc′(y, u)(δy, δu)

and thus the KKT-conditions read

0 = f ′(y, u)(δy, δu) + λ c′(y, u)(δy, δu) for all (δy, δu) ∈ TyY × TuU .

Since c(y, u) = ∂y E(y, u) is a linear form on TyY , c′(y, u) can be interpreted as a
bilinear form on (TyY × TuU) × TyY and we have (notice that ∂yy E(y, u) is well-
defined by Lemma 8.1, since ∂y E(y, u) = 0 holds):

λ c′(y, u)(δy, δu) = (∂y E)′(y, u)(λ,δy,δu) = ∂yy E(y, u)(λ,δy) + ∂yu E(y, u)(λ,δu).
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Then the KKT conditions read in more detail:

∂y f (y, u) δy + ∂yy E(y, u)(λ, δy) = 0 for all δy ∈ TyY,

∂u f (y, u) δu + ∂yu E(y, u)(λ, δu) = 0 for all δu ∈ TuU ,

∂y E(y, u) δy = 0 for all δy ∈ TyY .

To write down a Lagrangian function and second-order conditions, we need adapted
linearizing maps on the zero section of T ∗Y at a KKT-point p∗ = (y∗, u∗) with
q∗ = g(p∗) = (y∗, 0∗

y∗). Utilizing the above splitting, these are those mappings
Sq∗ : T ∗Y → TyY × T ∗

yY which map the zero section K = Y to the first factor of
the product, i.e.0η �→ (δy(η), 0y). For a specific example, consider a C2-retraction
Ry∗ : Ty∗Y → Y with derivative DRy∗(v) : Ty∗Y → TRy∗ (v)Y . Then an adapted
linearizing map can be given as:

Sq∗(y, w):=(v,w DRy∗(v)), where v = R−1
y∗ (y) ∈ Ty∗Y .

Since w ∈ T ∗
yY holds, it follows that w DRy∗(v) ∈ T ∗

y∗Y , and Sq∗(y, 0
∗
y) = (v, 0∗

y∗),
as required. With the help of this linearizing map, the Lagrange multiplier μ can be
extended locally to a function h ∈ C2(T ∗Y,R) as follows:

h(η,w) = μ Sq∗(η,w) = 0∗
y∗ v + w DRy∗(v)λ = w DRy∗(v)λ

and thus the Lagrangian function near p∗ reads:

LSq∗ (p, μ) = f (y, u) + ∂y E(y, u) DRy∗(v)λ, v = R−1
y∗ (y).

Its first derivative at a feasible point, where ∂y E(y, u) = 0 holds, is given by

L ′
Sq∗ (p, μ)(δ p)= f ′(y, u)(δy, δu) + (∂y E)′(y, u)(DRy∗(v)λ, δy, δu), v= R−1

y∗ (y).

For a the KKT point p∗ we observe L ′
Sq∗ (p∗, μ) = 0, since DRy∗(0y∗) = idTy∗Y .

Since T i
(y,0∗

y)
K is a linear subspace in our setting, the critical cone CcritM is given as

the preimage of CcritN = Ty∗Y × {0∗
y∗} under g′(p∗), so it is the set

CcritM = {(δy, δu) | c′(y∗, u∗)(δy, δu) = 0}
= {(δy, δu) | ∂yy E(y∗, u∗)(v, δy) + ∂yu E(y∗, u∗)(v, δu) = 0 ∀v ∈ Ty∗Y}.

Finally, the second derivative of the Lagrangian at p∗ is well-defined on CcritM and can,
at least formally, be written as:

L ′′
Sq∗ (y∗, u∗, λ)[δ p, δ p] = ( f ′′(y∗, u∗) + (∂y E)′′(y∗, u∗)(λ))[(δy, δu), (δy, δu)]

for all (δy, δu) ∈ CcritM .
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As a consequence of the restriction (δy, δu) ∈ CcritM and the fact that Sq∗ is adapted,
terms containing DDRp∗ are not present in this formula, which reflects Proposition
8.2.

10 Conclusion and Outlook

In this paper we have extended the analysis of optimization problems on manifolds
from vector space-valued constraints to the much more flexible case of manifold-
valued constraints. We have seen that such problems arise naturally when constraints
are formulated in a geometricway, and in the optimal control of variational problemson
manifolds. We generalized the polyhedric structure required for inequality constraints
by using submanifolds with corners and adapted local charts.

First-order optimality conditionswere derived, which directly generalize the known
cases. An appropriate definition of the Lagrangian function and the formulation of
well-defined second-order optimality conditions, however, revealed the significance
of the above-mentioned polyhedric structure, reflected by the important role played by
adapted linearizingmaps.We emphasize that in order to derive the theory, Riemannian
metrics or connections were not needed.

Most of the stated results may be generalized to infinite-dimensional Banach man-
ifolds. However, we expect additional technical difficulties. First, it seems to be an
open problem how to generalize Definition 2.1 to the infinite dimensional case, i.e.,
to define corners of infinite index � = ∞ in a useful way. Second, already in infinite-
dimensional Banach spaces, optimality conditions exhibit a couple of topological
subtleties, which have to be tackled in the case of Banach manifolds, as well.

Further, algorithmic approaches for this class of optimization problems are still to
be developed, even in the finite-dimensional setting. An idea would be to extend SQP
methods to this setting. At every iterate xk we perform a local pull-back of the given
problem to tangent spaces, using retractions and adapted linearizing maps. Locally,
we end up with a problem of the form (5.2). A QP step may then be computed for this
pull-back, and an update can be defined via a retraction. A detailed realization of this
basic idea is, however, subject to future research.
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