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Abstract: As part of the strive for a carbon neutral energy production, biomass combustion has
been widely implemented in retrofitted coal burners. Modeling aids substantially in prediction of
biomass flame behavior and thus in boiler chamber conditions. In this work, a simple model for
devolatilization of biomass at conditions relevant for suspension firing is presented. It employs
Arrhenius parameters in a single first order (SFOR) devolatilization reaction, where the effects
of kinetics and heat transfer limitations are lumped together. In this way, a biomass particle can
be modeled as a zero dimensional, isothermal particle, facilitating computational fluid dynamic
calculations of boiler chambers. The zero dimensional model includes the effects of particle aspect
ratio, particle density, maximum gas temperature, and particle radius. It is developed using the
multivariate data analysis method, partial least squares regression, and is validated against a more
rigorous semi-2D devolatilization model. The model has the capability to predict devolatilization
time for conditions in the parameter ranges; radius (39–1569 µm), density (700–1300 kg/m3), gas
temperature (1300–1900 K), aspect ratio (1.01–8). Results show that the particle radius and gas
phase temperature have a large influence on the devolatilization rate, and the aspect ratio has a
comparatively smaller effect, which, however, cannot be neglected. The impact of aspect ratio levels
off as it increases. The model is suitable for use as stand alone or as a submodel for biomass particle
devolatilization in CFD models.

Keywords: biomass devolatilization; partial least squares regression (PLS); suspension firing;
devolatilization model; biomass pyrolysis

1. Introduction

An increased awareness of the need for a carbon neutral energy production has
led to a corresponding increase in biomass combustion. The world’s primary energy
consumption in 2019 amounted to 584 EJ of which coal constituted 27% and renewables
(including biofuel) to 5%. In the European Union, the numbers are 69 EJ, 11%, and 11%,
respectively [1]. Combustion of biomass can be regarded as a carbon neutral source for
energy [2]. Coal releases approximately 93 × 106 tons CO2/EJ, depending on coal type
and origin [3,4]. Byutilizing suspension firing technology in existing coal power plants
rebuilt to combust biomass particles, a decrease in carbon emissions can be obtained,
which enables the European Union’s Green deal of no net emission of green house gasses
by 2050. In combined heat and power plants, up to 90% of the energy stored in woody
biomass can be recovered as heat and electricity [2]. Thus, with this aim, the interest
in retrofitting suspension firing units to combust biomass instead of coal has increased
over the past decades. Suspension firing of biomass is typically done with small particle
sizes (dp = 0.1–3 mm), [5] at high temperatures (T > 1000 K), [6], and at high heating rates
(>103–105 K/s) [7].
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In order to predict biomass flame behavior and boiler chamber conditions, modeling
of biomass suspension firing is used [8,9]. A reasonably accurate representation of the
devolatilization process is crucial in obtaining correct modeling results. Flame character-
ization and, consequently, flame attachment to the burner quarl in full sized industrial
burners is dependent on the time for onset of devolatilization and the amount of volatiles
released [8]. A better flame characterization will allow for higher fuel flexibility and plant
efficiency. These challenges can be investigated through CFD combustion modeling.

Modeling a suspension firing unit often involves CFD simulations [10]. To avoid
too high computational costs, subprocesses in the particle combustion modeling in CFD
require simplifications. Coal particles have historically been modeled as isothermal in
CFD combustion simulations, and this approach has sometimes been extended to also
include modeling of biomass pyrolysis [11–13]. However, model work validated against
experimental data [14,15] shows that biomass particles at sizes and temperatures relevant
for suspension firing cannot be regarded as thermally thin, i.e., isothermal. Some thermally
thick particle conversion models exists in CFD focusing on efficient use of computational
power [16,17], which with some limitations adequately predicts biomass devolatilization
at fluidized and fixed bed conditions. More complicated particle models are not feasible in
CFD for industrial modeling purposes, due to high computational costs [9].

Simplified devolatilization models [9,15,18], which account for the complicated pro-
cess of biomass devolatilization in a simple lumped fashion, have previously been pre-
sented. In these isothermal models, apparent devolatilization kinetic parameters have
included heat transfer limitations, which were not otherwise included. None of the mod-
els, however, take the effect of biomass density, gas temperature, or particle morphol-
ogy into account. These are important properties, influencing flame stability and onset
of devolatilization.

To compromise between the need for a simple devolatilization model and the need for
describing the complicated phenomenon of biomass particle pyrolysis, this paper intro-
duces lumped Arrhenius kinetic parameters for a single first order global pyrolysis model.
The parameters of a zero dimensional, isothermal model are found by fitting to predic-
tions of a semi-two dimensional model [19] that previously has been validated against
experimental data. The comparison is done for different gas temperatures, particle sizes,
particle aspect ratios, and densities. The combined effect of these experimental properties
on the Arrhenius parameters is quantified using the multivariate data analysis method,
partial least squares regression (PLS). To the knowledge of the authors, no experimental
data valid for suspension firing of woody biomass exist, which has not been used in the
development of the semi-two dimensional model. Thus, the present model is not directly
evaluated further against experimental data.

2. Method and Model Description

The model development process is done in two parallel tracks, which are subsequently
compared and used for final model determination. An overview can be seen in Figure 1.
In a previously published paper, a rigorous semi-2D model was developed [19]. In this
paper, a 0D model is set up. Subsequently the lumped 0D Arrhenius parameters, A and
E, which provide the best agreement between the 0D and the semi-2D model for a range
of selected cases are determined. Then, a PLS model is established, which calculates the
lumped Arrhenius parameters from particle radius, aspect ratio, particle density, and
maximum gas temperature. The model development process is described in more detail in
the subsequent sections.
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Figure 1. Sketch of model development process. * Semi-2D model development described else-
where [19].

2.1. The Semi-Two Dimensional Model

The semi-two dimensional model is described in detail elsewhere [19–21], and only a
short introduction will be given here. The model was first presented for devolatilization
at medium heating rates by Thunman et al. [20], and subsequently developed further by
Ström and Thunman [21]. It was recently adapted to account for biomass devolatilized
under suspension firing conditions by Leth-Espensen et al. [19]. The model is a shell
model capable of describing both cylindrical and spherical geometries. The cylinder is the
preferred simple geometry to model biomass particles, [22] whereas coal particles tend to
be almost spherical in nature. The cylindrical model takes changes during devolatilization
in both radius and length into account using one variable only. The decrease in particle
length is assumed comparable to the decrease in radius, thus particle shrinking is described
only by the radius. Overall, the cylindrical model accounts for the internal temperature
gradient, the volume, and surface area in two dimensions, whereas the heat transfer is
solved in a one dimensional manner. The spherical model is one dimensional. Regardless
of the shape, in the model, the particle is divided into three concentric shells. The innermost
layer consists of moist biomass, the middle layer is dry biomass, and the outer layer is
char. The shells move inwards during the devolatilization, transforming the model particle
from consisting of practically only a moist shell in the beginning to be all char after full
devolatilization. The model accounts for intraparticle heat and mass transfer.
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2.2. The Zero Dimensional Model

The 0D model is based on the following assumptions:

• The particle is isothermal.
• The particle has constant density (shrinking particle).
• The particle is dry.
• The particle is spherical.
• The initial particle diameter, R, is defined as the initial cylinder diameter, according to

recommendations in [19].
• The devolatilization enthalpy is assumed to be 0.
• Both the influences of kinetics and heat transfer are described by a single first order

reaction model.
• The wall radiation temperature is defined as Tw = Tg − 200 K.

The devolatilization process in the isothermal particle is modeled as a global reaction,
using the single first order reaction (SFOR) model, described in Equation (1) [23].

dΥ
dt

= k(Υ∗ − Υ) (1)

Here, t is the time, Υ is the fraction of volatiles released, Υ∗ is the fraction of volatiles
present in the particle at t = 0, and k is an Arrhenius reaction rate constant given in
Equation (2).

k = A × exp
( −E

RgT

)
(2)

Rg is the gas constant, T is the particle temperature, and A and E are the Arrhenius pre-
exponential factor and activation energy, respectively. The temperature in the particle is
uniform and determined by the radiation and convective heat transfer and is given in
Equation (3).

dT
dt

=
1

ρCp

3
R

(
σε(T4

w − T4) + h(Tg − T)
)

(3)

Here, ρ is the density, Cp is the specific heat capacity of the fuel, R is the particle radius,
σ is the Stefan–Boltzmann constant, ε is the emissivity, Tw is the radiation temperature
(reactor wall temperature), and h is the heat transfer coefficient. Expressions for the model
input parameters are given in Table 1. The two coupled differential equations are solved
using the ode45 solver in Matlab®.

Table 1. Input parameters to the 0D model.

Parameter Value Ref.

h [J/(s m2 K)] Estimated, empirical function of Cp,g etc. [24]
Υ∗ [-] Estimated, empirical function of Tg etc. [24]
ε [-] 0.85 [25,26]

Cp,g [J/(kg K)]
(

19.50583 + 19.88705 ×
Tg

1000
− 8.598535 ×

( Tg

1000
)2 + ... [27]

...1.369784 ×
( Tg

1000
)3

+ 0.527601 ×
( 1000

Tg

)2
)
× 1000

28
Cp,dry wood [J/(kg K)] Cp,dry wood = (g1 + 2 × g2)× 1000 × R/7.72 [28,29]

g1 = z12 × exp(z1)/(exp(z1)− 1)2

g2 = z22 × exp(z2)/(exp(z2)− 1)2

z1 = 380/T
z2 = 1800/T

2.3. Fitting the Arrhenius Parameters

In order to approximate the semi-2D model with a 0D model, the Arrhenius equation
must account both for the rate of the kinetics and for any heat transfer limitations in a given
particle. The apparent kinetic parameters are obtained by fitting the Arrhenius equation.
The pre-exponential factor, A, and the activation energy, E, in the Arrhenius equation are
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coupled, though, so the procedure suggested by Rawlings and Ekerdt [30] is used here.
In order to minimize the correlation between the fitted parameters, a modified Arrhenius
equation, as seen in Equation (4), has been used.

k(T) = k(Tre f )× exp

(
−E
Rg

( 1
T
− 1

Tre f

))
(4)

k(Tre f ) is the rate constant at a reference temperature, here 1600 K, the midpoint in the
temperature interval. k(Tre f ) and E are fitted to the result from the semi-2D devolatilization
model using the lsqcurvefit command in Matlab®, which works by minimizing the
residual sum of squares between the model results from the semi-2D model and the 0D
model. The residual sum of squares is given in Equation (5). The value of A can be
calculated from k(Tre f ) and E.

RSS =
tend

∑
t=0

(y2D − y0D)
2 (5)

An example of a fitted curve and the semi-2D cylindrical model output can be seen in
Figure 2.
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Figure 2. Example of fitting the 0D model to the semi-2D cylindrical model, here for a dry particle of
dp = 1510 µm, AR = 2, and ρ = 700 kg/m3 with Tg = 1600 K.

2.4. Chemometrics

Chemometrics is a statistical approach to extract data from chemical or biological data
sets. A common method within chemometrics is partial least squares regression (PLS) [31,32].
In PLS, a correlation between a matrix of input variables (X) and an output variable (Y) is
determined. PLS is a linear regression method. An in depth description of PLS is beyond the
scope of this manuscript, but can be found elsewhere [31–34]. The PLS models presented
here are calculated in PLS Toolbox version 8.1.1 and Matlab version 9.3.0 (R2017b).

2.4.1. Parameter Definition

The input parameters tested for the calculation of A and E in the 0D model are
particle radius, particle density, gas temperature, and particle aspect ratio, as they have
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previously [10,24,35] been shown to influence the devolatilization process. The applied
parameter spans for each variable can be seen in Table 2. They cover the parameter
variations relevant for biomass suspension firing conditions. A total of 35 simulations with
the semi-2D model have been made to span the parameter space. The applied parameter
values for each simulation can be seen in the Appendix A. To show the correlation (negative
or positive) between input parameters, the correlation coefficient chart is made. It is shown
in Figure 3. The higher the absolute value in the correlation coefficient matrix, the higher
degree of correlation between two input parameters. When the degree of correlation is
high, the effect of each input parameter cannot be separated due to confounding. Here the
degree of correlation is numerically low (≤0.23), which means the influences on the model
results can largely be ascribed to each individual input parameter.

Table 2. Input parameter span.

Parameter Symbol Unit Min Max

Radius R µm 39.4 1560
Density ρ kg/m3 700 1300

Gas temperature Tg K 1300 1900
Aspect ratio AR - 1.01 8

Figure 3. Correlation coefficient chart. Numbers give the r-values for the different correlations,
dots show combinations of the input parameters constituting the data points, the magenta lines are
the best straight lines through the dots, and the bars show the distribution for that specific input
parameter. Correlation coefficient charts are used to illustrate if two input parameters or input and
output parameters are correlated. Consequently, it can, among other things, be seen from a coefficient
correlation chart whether the effect of the input parameters can be separated in the model, and it can
be seen if the spans of the input parameters are represented adequately.
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2.4.2. Preprocessing

Preprocessing is an important step in PLS, and the individual preprocessing meth-
ods tested can be seen in Tables 3 and 4. When studying, e.g., the effect of the particle
radius on the Arrhenius parameters, it is clear that the correlation is nonlinear as seen in
Figure 4. Thus, both R, log(R), R1/2, and R1/3 have been tested, and the quality of the
preprocessing is then determined based on the explained variance for the input matrix
(ExpVar(X)), the output parameter (ExpVar(Y)), and the root mean squared error of cross
validation (RMSECV) for both A and E, respectively. Similar considerations have been
made for determining the preprocessing of ρ, Tg, and AR. In these cases, the nonlinearity
of the correlations between input and output variables are so weakly pronounced that
no significant improvement is added to the model by choosing various more complex
preprocessing methods and thereby increase model complexity beyond what is necessary.

0 200 400 600 800 1000 1200 1400 1600

Radius [ m]

10-1

100

101

102

103

104

k 
[s

-1
]

k(T = 1600)

Figure 4. Reaction rate as a function of initial particle radius for particles simulated with the semi-2D
code with ρ = 700 kg/m3, AR = 2.

Furthermore, the input variables here are not on the same scale, so to account for this,
all input parameters have also been scaled to account for unit variance.

2.4.3. Cross Validation

The cross validation is made to ensure that the presented model is robust. It can
be done in many ways; here, the random subset method [36] is used with 6 splits and
20 iterations, thus on average 17% of the data set is removed in each iteration. All models
have been made with two PLS components. When doing the cross validation, preferably
the obtained RMSECV values should be low, and ExpVar values high. The values in
Tables 3 and 4 are the basis for choosing the relevant preprocessings for a model. Due to
the lower RMSECV(A) and RMSECV(E) and higher ExpVar(X) (compared to the number
of input data in X) and ExpVar(Y) values, model 2 has been chosen both for A and E. If
models appear equally good or almost equally good based on RMSECV and ExpVar data,
the simpler model is usually preferred within PLS.
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Table 3. Table of tested partial least squares regression (PLS) models for obtaining values of A. All models have two PLS
components. ExpVar = explained variance, RMSECV = root means squared error of cross validation. x = parameter included,
- = parameter not included.

No. ρ Tg AR r A ExpVarX ExpVarY RMSECV A
kg/m3 K µm s−1 % % s−1

1 x x x x log(x) 47 87 1.3
2 x x x log(x) log(x) 56 97 0.60
3 x x x x1/2 log(x) 53 95 0.83
4 x x x x1/3 log(x) 54 96 0.69
5 x x log(x) log(x) log(x) 56 97 0.61
6 x log(x) x log(x) log(x) 55 97 0.60
7 x x1/2 x log(x) log(x) 56 97 0.59
8 x x1/3 x log(x) log(x) 56 97 0.60
9 x 1/x x log(x) log(x) 55 97 0.59
10 log(x) x x log(x) log(x) 56 97 0.60
11 x x - log(x) log(x) 65 97 0.61
12 - x x log(x) log(x) 65 97 0.57
13 - x - log(x) log(x) 53 96 0.61

Table 4. Table of tested PLS models for obtaining values of E. All models have two PLS components. ExpVar = explained
variance, RMSECV = root means squared error of cross validation. x = parameter included, - = parameter not included.

No. ρ Tg AR R E ExpVarX ExpVarY RMSECV E
kg/m3 K µm J/mol % % J/mol

1 x x x x x 49 83 21×103

2 x x x log(x) x 57 95 11 × 103

3 x x x x1/2 x 54 91 15 × 103

4 x x x x1/3 x 56 93 13 × 103

5 x x log(x) log(x) x 57 95 11 × 103

6 x log(x) x log(x) x 56 96 11 × 103

7 x x1/4 x log(x) x 57 96 11 × 103

8 x x1/3 x log(x) x 57 96 11 × 103

9 x 1/x x log(x) x 56 96 11 × 103

10 log(x) x x log(x) x 57 95 11 × 103

11 x x - log(x) x 67 95 11 × 103

12 - x x log(x) x 65 95 11 × 103

13 - x - log(x) x 54 95 12 × 103

3. Results
3.1. Arrhenius Plots

The Arrhenius parameters for four different particle sizes (dp = 78.8 µm, dp = 800 µm,
dp = 1.51 mm, and dp = 3.12 mm) found by fitting the 0D model to the semi-2D model for
different aspect ratios have been used to generate the Arrhenius plots in Figure 5. They
have been determined for T = 1600 K, and plotted with these A and E values for a short
temperature interval to illustrate the effects of the different parameters. It can be seen that
the aspect ratio only has a minor influence on the Arrhenius parameters, and that the effect
of aspect ratio levels off for higher values of AR. The effect of aspect ratio on the apparent
rate constant is more pronounced for the smaller particles.

Furthermore, the change in apparent rate constant as a function of temperature is
smaller for the large particles. It is due to the increased heat transfer limitations in the large
particles. This is in contrast to the smaller particles, which are kinetically controlled, and
where the temperature, consequently, has more influence over the apparent rate constant.
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(a) dp = 78.8 µm.
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(b) dp = 800 µm.
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(c) dp = 1.51 mm.
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(d) dp = 3.12 mm.
Figure 5. Arrhenius plots for the fitted values for A and Ea for different aspect ratios for four particle sizes, ρ = 700 kg/m3,
Tg = 1600 K. The Arrhenius parameters have been used to generate Arrhenius plots for a smaller temperature interval to
illustrate the effects of the input variables.

3.2. PLS Model

The PLS model presented here is developed to be able to predict the Arrhenius
parameters in a lumped SFOR kinetic scheme accounting both for the reaction rate and the
heat transfer limitations. A and E values have been found for multiple values spanning
the parameter ranges (see Appendix A for all parameters combinations), by fitting the
0D model to the semi-2D model. A PLS model has then been generated using these new
A and E values. Two graphs showing the 0D model predictions of log(A) and E as a
function of the log(A) and E values given by fitting the 0D model to the semi-2D model
(cf. Section 2.3) can be seen in Figure 6. The figure shows that there is good agreement
between the values for log(A) and E predicted by the simple 0D model and by fitting to
the semi-2D model. The Arrhenius parameters for the 0D model can be found through
the regression vector. The regression vectors both for the preprocessed input parameters
and for the raw input parameters can be seen in Table 5. The regression vectors for the
preprocessed input parameters show that both for log(A) and E an increase in AR, Tg, or
log(R) would result in a decrease of log(A) and E. In other words, the PLS model analysis
shows that if the gas temperature increases the apparent activation energy decreases. This
is as expected, because the model covers both heat transfer limitations and kinetics. An
increase in gas temperature means a higher absolute heat transfer as well as a higher
reaction rate, resulting in a smaller apparent activation energy. The raw regression vector
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can be used for predictive purposes. In Equations (6) and (7), the values for log(A) and E
can be estimated for pyrolysis situations similar to the ones used for model development.

Table 5. Regression vectors for A (model 2) and E (model 2).

Parameter Reg. A Reg. E Reg. A Reg. E
Preprocessed Preprocessed Raw Data Raw Data

Intercept 0 0 20.192 2.8567 × 105

log(R) −0.91578 −0.33747 −4.0709 −52,955
ρ 0.036181 0.071702 0.00048924 13.222

AR −0.030436 0.0043212 −0.043234 83.703
Tg −0.26579 −0.87356 −0.0043317 −75.003
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Figure 6. Comparison of log(A) and E determined from a fit to the semi-2D model and as predicted by the 0D lumped
kinetics from model 2 and 2, see Tables 3 and 4. Best fit linear regressions have r2 = 0.97 and r2 = 0.95 for the log(A) and E
graphs, respectively.

log(A) = 20.19 − 4.071 × log(R) + 4.892 × 10−4 × ρ − 0.04323 × AR − 4.332 × 10−3 × Tg (6)

E = 28.57 × 10
4 − 5.295 × 104 × log(R) + 13.22 × ρ + 83.70 × AR − 75.00 × Tg (7)

Here, A is the preexponential factor in s−1, E is the activation energy in J/mol, R is
the particle radius in µm, ρ is the density in kg/m3, AR is the aspect ratio, and Tg is the
maximum gas temperature in Kelvin.

4. Discussion and Validation
4.1. Evaluation of Particle Conversion Predicted by the 0D Model and Semi-2D Model

Mass loss profile obtained from experiments is desirable for validating the proposed
kinetic model. However, time-resolved mass loss data during devolatilization of biomass at
high heating rates and peak temperatures is scarce in open literature. Although experiments
using a flat flame burner can reach the desired conditions, such as the studies conducted
by Johansen et al. [15] as well as Lewis and Fletcher [37], mass loss data at the initial
conversion stage are difficult to obtain and have not been reported to the best knowledge
of the authors. Therefore, validation of the 0D model (Equations (1)–(3) and Equations (6)
and (7)) is here done by comparison of predictions to the results from the semi-2D model
presented by Leth-Espensen et al. [19]. The semi-2D model was validated using a range of
different studies. Agreement between the 0D and the semi-2D model has been checked
for all input parameter combinations given in the Appendix A. Examples of conversion
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comparisons obtained by the semi-2D and the 0D model for the different particle sizes
can be seen in Figure 7. The 0D model shows good agreement with the more complicated
semi-2D model and predicts devolatilization times well. The model predictions are best for
smaller particles as they are heated up rapidly, and thus closer to being isothermal, but it
should be noted that the conversion time is relatively accurate for all particle sizes.
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Figure 7. 0D model with the apparent kinetics modeled by the PLS model given in Equations (6) and (7) compared to a
semi-2D devolatilization model [19]. ρ = 700 kg/m3, Tg = 1600 K.

4.2. Comparison of Devolatilization Times Predicted by the 0D and Semi-2D Model

An overall comparison of the devolatilization time predicted by the semi-2D model
and the 0D model can be seen in Figure 8. The devolatilization time is defined as the time,
where 95% of full devolatilization is reached. The 0D model predicts most devolatilization
times adequately, showing limitations only for particles with a large radius at a high gas
temperature. In these cases the 0D model may predict negative activation energies, as can
be deduced from Equation (7), see examples in the table in Appendix A. As negative E
values entail that the reaction rate decreases for increasing temperatures, the model cannot
be trusted in these instances and such values have been disregarded in Figure 8. From
Figure 8, it can be seen that the 0D model tends to overpredict the devolatilization time for
small particles and underpredict the devolatilization time for large particles, however, the
prediction capability is overall good, and the trend is captured well by the model.
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Figure 8. Comparison of the time predicted by the semi-2D model and the 0D model with the best fit
linear regression r2 = 0.97. Conditions for data points are listed in the Appendix A.

4.3. Comparison of the Arrhenius Parameters to Literature

The lumped Arrhenius parameters, which can be calculated from Equations (6) and (7)
covers most of the area for Arrhenius parameters previously covered in literature [10,38,39]
for simple first order reactions relevant for suspension firing. In Figure 9 a comparison
can be seen. Previously reported SFOR Arrhenius parameters are often only determined
short temperature span, but extrapolated outside this region, the model presented here has
gas phase temperature as a parameter, thus allowing for a broader temperature interval,
where the model is accurate. Consequently, it allows for better modeling of industrial sized
suspension firing boilers. Furthermore, as the model also takes particle size into account
one equation can describe all sizes relevant for suspension firing. The model’s tendency
to predict slightly too low reaction rates for small particles at high temperatures, also
described in Section 4.2, can be seen in Figure 9 by comparing to the Arrhenius parameters
for small particles from Johansen et al. [10] as well. The model’s slightly higher predicted
devolatilization times for small particles is the result of providing a model, which account
for broad parameter ranges within particle size, density, gas temperature, and aspect
ratio. Especially the particle size is an important factor in determining lumped kinetics
for biomass devolatilization and covering almost two orders of magnitude results in less
accuracy in the interval ends.
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Figure 9. Arrhenius plot comparing the presented model to lumped kinetics literature data for small (dp = 0–112 µm),
medium (dp = 112–616 µm), and large (dp = 616–2000 µm) particles from Johansen et al. [10]. This model accounting
for both kinetics and heat transfer is based on experimental data from two single particle combustors (HR = 102–103,
Tg = 1480–1831 K, dp = 1790–5800 µm), (HR = 30, Tg = 1050–1267 K, dp = 10 900 µm) and an entrained flow reactor
(HR = 105, Tg = 1405–1667 K, dp = 63–90 µm), and kinetic data from Wagenaar et al. [38] obtained in an entrained flow
reactor (HR = 2–12 K/s, Tg = 773–873 K, dp = 100–212 µm), and parameters from Ontyd et al. [39] obtained in a drop tube
reactor (HR 3.7 × 103–7.8 × 103 K/s, Tg = 950–1300 K, dp = 100 µm). The reaction rate predicted by the model depends
on particle size, density, and aspect ratio. Here, ln(k) is shown for AR = 1 for comparative reasons, as the literature data
are reported for spherical particles. The model’s ability to account for density and particle size changes means it covers a
wider area, here shown in dark gray. Extrapolations of both the model presented here and literature models are shown in
light gray.

5. Conclusions

A 0D model has been developed to describe devolatilization of cylindrical biomass
particles using a lumped single first order Arrhenius equation to account for both kinetics
and heat transfer limitations in the particle. The model accounts for aspect ratio, particle
density, gas temperature, and particle radius, because of their influence on devolatilization
rate and on flame shape and stability. Including these parameters in the devolatilization
model allows for better CFD simulations of industrial sized units. Calculations show that
of these parameters, especially particle radius and temperature, are important for the
prediction of the degree of particle devolatilization. Model predictions are compared to
those of a more complicated semi-2D model, showing good agreement, especially for the
smaller particles, where the heat transfer limitation is less severe. The presented model
also shows that it is important to include differences in aspect ratio, but that the influence
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of aspect ratio on devolatilization rate levels off as aspect ratio increases and consequently
end effects become less important.

The devolatilization model presented is simple and can be implemented into CFD
without adding substantially to the computational costs. By implementation into CFD
simulations, as, e.g., the ones described by Johansen et al. [8], it is likely that an even
greater match between numerical simulations and the physical phenomena during flame
development in a suspension firing unit can be obtained. Future work should include
making the CFD simulation described above, and expanding the model to include different
kinds of biomass and municipal waste.

Author Contributions: Formal analysis, A.E. and T.L. (Tian Li); funding acquisition, P.A.J.; method-
ology, A.E. and T.L. (Tian Li); project administration, P.A.J.; supervision, P.G., T.L. (Terese Løvås),
and P.A.J.; validation, T.L. (Tian Li); writing—original draft, A.E.; writing—review and editing, A.E.,
T.L. (Tian Li), P.G., T.L. (Terese Løvås), and P.A.J. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was partly funded by Ørsted A/S, Burmeister & Wain Scandinavian Contrac-
tors A/S, and Rambøll A/S.

Data Availability Statement: The data presented in this study are available in the Appendix A.

Acknowledgments: The authors gratefully acknowledge the financial and advisory support received
from Ørsted A/S, Burmeister, and Wain Scandinavian Contractors A/S, and Rambøll A/S. We also
thank the Nordic Five Tech (N5T) alliance for financial support.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:
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HR Heating rate
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PLS Partial least squares
A Arrhenius preexponential factor s−1

Cp specific heat capacity J/(kg K)
dp particle diameter mm/µm
Ea Arrhenius activation energy J/mol
h convective heat transfer coefficient J/(s×m2×K)
k reaction rate s−1

R initial particle radius m
Rg gas constant J/(mol K)
T temperature K
t time s
X input matrix
Y output matrix
y degree of devolatilization at time t
ε emissivity coefficient
ρ density kg/m3

σ Stefan–Boltzmann constant J/(s m2 K4)
Υ volatile fraction
Υ* volatile fraction at t = 0
g gas
p particle
ref reference
w radiation temperature
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Appendix A. Model Parameters

Table A1. Model input and output parameters. Cases with negative E values marked in gray.

ρ Tg AR R Υ∗ A (fit) E (fit) A (PLS) E (PLS) tdevo,2D tdevo,0D
kg/m3 K - µm - s−1 J/mol s−1 J/mol s s

700 1300 1.01 39.4 96.9 1.13 × 108 1.05 × 105 2.31 × 108 1.13 × 105 0.0128 0.0131
700 1300 1.01 1560 90.1 1.49 × 102 3.44 × 104 7.26 × 101 2.82 × 104 3.68 3.669
700 1300 3 39.4 96.9 5.55 × 108 1.27 × 105 1.90 × 108 1.13 × 105 0.0158 0.0136
700 1300 3 1560 90.1 1.84 × 101 2.58 × 104 5.95 × 101 2.81 × 104 5.27 3.946
700 1900 1.01 39.4 98.0 8.86 × 105 6.64 × 104 5.83 × 105 6.78 × 104 6.10 × 10−3 6.9 × 10−3

700 1900 1.01 1560 94.2 1.70 4.52 × 10−11 1.83 × 10−1 −1.68 × 104 1.53 0.029
700 1900 3 39.4 98.0 6.52 × 105 7.16 × 104 4.78 × 105 6.77 × 104 7.50 × 10−3 7.3 × 10−3

700 1900 3 1560 94.2 1.17 1.72 × 10−6 1.50 × 10−1 −1.69 × 104 2.23 0.036
1300 1300 1.01 39.4 96.5 2.19 × 108 1.12 × 105 4.55 × 108 1.21 × 105 0.0217 0.0225
1300 1300 3 39.4 96.5 8.98 × 108 1.34 × 105 3.73 × 108 1.21 × 105 0.0270 0.0233
1300 1900 1.01 39.4 97.7 8.72 × 105 6.81 × 104 1.15 × 106 7.58 × 104 0.0101 0.0112
1300 1900 1.01 1560 93.4 9.29 × 10−1 1.00 × 10−9 3.59 × 10−1 −8.83 × 103 2.84 0.885
1300 1900 3 39.4 97.7 4.68 × 105 7.09 × 104 9.40 × 105 7.56 × 104 0.0126 0.0117
1300 1900 3 1560 93.4 6.32 × 10−1 9.83 × 10−8 2.95 × 10−1 −9.00 × 103 4.16 1.247
1000 1600 2.005 799.7 93.2 7.12 8.67 × 103 7.02 × 101 2.50 × 104 1.27 1.422
700 1600 1.01 39.4 97.6 5.93 × 106 8.25 × 104 1.16 × 107 9.03 × 104 8.40 × 10−3 8.5 × 10−3

700 1600 2 39.4 97.6 6.63 × 106 8.99 × 104 1.05 × 107 9.03 × 104 9.80 × 10−3 8.7 × 10−3

700 1600 3 39.4 97.6 7.80 × 106 9.38 × 104 9.53 × 106 9.02 × 104 10.3 × 10−3 8.9 × 10−3

700 1600 5 39.4 97.6 9.52 × 106 9.78 × 104 7.81 × 106 9.00 × 104 10.8 × 10−3 9.2 × 10−3

700 1600 8 39.4 97.6 1.10 × 107 1.00 × 105 5.79 × 106 8.98 × 104 11.1 × 10−3 9.9 × 10−3

700 1600 1.01 400 94.8 2.17 × 104 5.26 × 104 9.28 × 102 3.70 × 104 0.281 0.399
700 1600 2 400 94.8 3.47 × 103 4.40 × 104 8.41 × 102 3.70 × 104 0.336 0.413
700 1600 3 400 94.8 2.10 × 103 4.18 × 104 7.61 × 102 3.69 × 104 0.360 0.427
700 1600 5 400 94.8 1.54 × 103 4.08 × 104 6.24 × 102 3.67 × 104 0.380 0.458
700 1600 8 400 94.8 1.35 × 103 4.05 × 104 4.63 × 102 3.64 × 104 0.392 0.51
700 1600 1.01 755 93.8 7.50 × 101 1.85 × 104 6.99 × 101 2.24 × 104 0.671 0.967
700 1600 2 755 93.8 1.70 × 101 1.15 × 104 6.33 × 101 2.23 × 104 0.831 1.008
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Table A1. Cont.

ρ Tg AR R Υ∗ A (fit) E (fit) A (PLS) E (PLS) tdevo,2D tdevo,0D
kg/m3 K - µm - s−1 J/mol s−1 J/mol s s

700 1600 3 755 93.8 1.27 × 101 1.05 × 104 5.73 × 101 2.23 × 104 0.897 1.053
700 1600 5 755 93.8 1.07 × 101 1.00 × 104 4.70 × 101 2.21 × 104 0.952 1.149
700 1600 8 755 93.8 9.97 9.94 × 103 3.48 × 101 2.18 × 104 0.984 1.317
700 1600 1.01 1560 92.6 1.64 2.31 × 103 3.64 5.73 × 103 2.09 2.115
700 1600 2 1560 92.6 1.00 1.13 × 103 3.30 5.65 × 103 2.73 2.257
700 1600 3 1560 92.6 8.85 × 10−1 1.00 × 103 2.99 5.57 × 103 2.73 2.409
700 1600 5 1560 92.6 8.17 × 10−1 1.01 × 103 2.45 5.40 × 103 3.17 2.754
700 1600 8 1560 92.6 7.87 × 10−1 1.06 × 103 1.82 5.15 × 103 3.28 3.387
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