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Network for Ship Detection in Maritime
Surveillance System
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Abstract—With the extensive application of artificial intelli-
gence, ship detection from optical satellite remote sensing images
using deep learning technology can significantly improve detection
accuracy. However, the existing methods usually have complex
models and huge computations, which makes them difficult to
deploy on resource-constrained devices, such as satellites. To solve
this problem, this article proposes an enhanced lightweight ship
detection model called ShipDetectionNet to replace the standard
convolution with improved convolution units. The improved con-
volution unit is implemented by applying depthwise separable
convolution to replace standard convolution and further using the
pointwise group convolution to replace the point convolution in
depthwise separable convolution. In addition, the attention mech-
anism is incorporated into the convolution unit to ensure detection
accuracy. Compared to the latest YOLOVS5s, our model has a com-
parable performance in mean average precision, while the number
of parameters and the model size are reduced by 14.18% and
13.14 %, respectively. Compared to five different lightweight detec-
tion models, the proposed ShipDetectionNet is more competent for
ship detection tasks. In addition, the ShipDetectionNet is evaluated
on four challenging scenarios, demonstrating its generalizability
and effectiveness.

Index Terms—Attention mechanism, depthwise separable
convolution (DS-Conv), maritime surveillance system, optical
satellite remote sensing image, pointwise group convolution (G-
Conv), ship detection.

1. INTRODUCTION

ARINE traffic is increasingly crucial for economical
M and social development, especially in the epidemic of
COVID-19. Ensuring the safety of marine traffic is of great
significance because it can benefit seaborne trade and defend
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illegal activities, such as maritime terrorism, smuggling, and
marine pollution [1]. Nowadays, remote-sensing-imagery-based
intelligent ocean surface ship surveillance has become a hot
research topic.

Synthetic aperture radar (SAR) images are widely used in
the early stage of ship detection because SAR images have the
advantages of all-weather observations [2]. However, there are
some drawbacks: 1) SAR is vulnerable to the high level of in-
trinsic noise (speckle); 2) the extraction of geometric features is
difficult; and 3) the classification of ship type is hard [3]. Because
of these shortcomings of SAR, optical satellite remote sensing
image has attracted more attention, as it has higher resolution
and retains more geometric details that are not available in SAR
images.

Owing to the low resolution of early optical satellite remote
sensing image, the ship in the image will be regarded as a
point during the detection task, and then, the methods such
as constant false alarm rate [4], [5] and generalized likelihood
ratio test [6] are applied. However, these methods are easily
affected by climate and need to build complex equations. The
solution process is time consuming, which is not conducive to
real-time application [7]. With improved resolutions of optical
satellite remote sensing images, template matching has become
a common detection algorithm for ship detection [8], [9]. In this
method, a template database is first established manually accord-
ing to the information of the training image, and then, testing
images are matched with the established template database to
obtain the detection results. The template matching method is
simple and has good results in detecting closely docked ships.
However, it is challenging to deal with various complex scenes
and requires a lot of effort to establish the template database,
and the generalization ability is thereby poor. Especially when
the noise is high, it is easy to match incorrectly, which makes
the recognition accuracy low.

The emergence of convolutional neural networks (CNN5s)
opened up a new approach to ship detection [10]. A large number
of excellent convolution neural networks were enthusiastically
developed, such as VGG [11], GoogleNet [12], [13], You Only
Look Once (YOLO) [14]-[17]. Nevertheless, there are some
challenges in applying the CNN to ship detection based on opti-
cal satellite remote sensing images. First, the CNNs are usually
very large; they can be used on ground stations to detect ships.
However, collecting data on satellites and transmitting them to
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the ground stations for processing could be time consuming.
To shorten the time delay of ship information extraction, it is
necessary to migrate the ship detection model from the ground to
the spaceborne platform (i.e., NVIDIA Jetson TX2). At present,
spaceborne hardware resources are limited (i.e., memory size
of 8 GB), so it is a challenge to achieve accurate and fast ship
detection on a lightweight satellite [18]-[20]. For example, the
famous model YOLOv4, which has a superior performance in
ship detection, is built on deep, dense, and the number of network
layers. However, the number of parameters of YOLOv4 is as
high as 60M. The huge network puts forward high requirements
for hardware. Second, the CNNs used in marine ship detection
are based on the standard convolution (S-Conv). One of the lim-
itations of the S-Conv is that it has a large number of parameters
and needs lots of computations. This will delay the detection
speed and bring challenges to real-time tasks because of the
complex operation. Third, there are various scenes in the optical
satellite remote sensing images. Ships may be densely docked
in ports and may also have the characteristics of long strips,
arbitrary orientations. More seriously, the weather condition is
another factor for detecting ships from the optical remote sensing
images. These factors make the general CNN detection effect
poor.

To address the challenges mentioned above, this article pro-
poses an enhanced CNN-based ship detection network inspired
by YOLO, named ShipDetectionNet. The main contributions of
this article are as follows.

1) The ShipDetectionNet is designed with a compact size by
using an improved convolution unit to replace the S-Conv
for parameter reduction but ensuring detection accuracy.
The improved convolution is implemented by applying
depthwise separable convolution (DS-Conv) to replace S-
Conv and further using the pointwise group convolution
(G-Conv) to replace the point convolution in DS-Conv. In
addition, the channel attention model is incorporated into
the convolution unit to ensure detection accuracy.

2) We use optical satellite remote sensing images of ma-
rine ships as datasets and comprehensively evaluate the
proposed ShipDetectionNet. We compare it with the 11
state-of-the-art baselines and five lightweight models on
the whole satellite image dataset, and the experimental
results show the superiority of our network. Besides,
the ShipDetectionNet is evaluated on different scenarios,
demonstrating its generalizability and effectiveness.

The rest of this article is organized as follows. Section II
introduces the related work. The overall architecture of the
proposed ShipDetectionNet is introduced in Section III-A. The
details of the experiments are presented in Section IV. Finally,
Section V concludes this article.

II. RELATED WORK

A. CNN-Based Object Detection Methods

At present, object detection methods based on the CNN are
mainly divided into two categories: two-stage detection algo-
rithms and one-stage detection algorithms. In this article, we
will briefly review the recent research on these target detectors.
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The two-stage target detectors, as the name suggests, require
two steps when training the whole network. R-CNN proposed
by Girshick ef al. [21] is the opening work of two-stage target
detection algorithms, which mainly include three modules. The
first module uses selective search to generate object region
proposals. Then, AlexNet [10] is applied to extract a 4096-D
feature vector from each region proposal. And the last step is
using the class-specific linear support vector machine to refine
each region. However, the training of R-CNN commonly costs
expensive time and space, and the speed of the detection is slow.
To solve these flaws, Girshick [22] proposed a new method
named Fast R-CNN, which is relatively faster to train and test.
This method introduced the region of interest pooling layer so
that the network has no size limit on the input of images. What is
more striking is Faster R-CNN [23], which is a further improve-
ment of Fast R-CNN. The reason for its excellent performance
is that it generates region proposals based on anchor by adding
a region proposal network (RPN).

On the contrary, the one-stage method treats the target
detection as a regression problem. YOLO series are classi-
cal algorithms for one-stage object detection, and YOLOvI1-
YOLOV4 [14]-[17] have been supported by the literature. The
basic idea of the YOLO algorithm is to divide the feature
map into sxs grid cells, and then, each cell is responsible
for detecting the targets falling into it to predict the bounding
box, confidence, and classification. In addition, Liu et al. [24]
proposed a single-shot multibox detector (SSD), which directly
generates multiscale feature maps through the CNN to detect.
Lin et al. [25] proposed another detection network named Reti-
naNet, which solves the problem of extreme imbalance between
foreground and background categories by designing the Focal
Loss. Different from the above methods relying on anchor boxes,
Tian et al. [26] proposed a per-pixel prediction fashion, which
is a fully convolutional one-stage object detector. Owing to the
elimination of anchor boxes, complex computation is reduced.

B. Ship Detection Frameworks

Ship detection plays an important role in maintaining marine
safety. Scholars attempt to design different networks for various
tasks in the field of ship remote sensing. For instance, Yang
et al. [27] developed a model, which consists of an RPN and
a deep forest ensemble to overcome the complex scene and
complex shipshape. Li et al. [28] designed a new network called
HSF-Net, which adds a hierarchical selective filtering layer to
effectively detect ships of different scales. Besides, there are
some ship detection models based on the improved YOLO
algorithm. Changhua et al. [29] proposed a YOLOv3-based ship
detection model for small ships. A residual connection and the
network structure of the feature pyramid are redesigned to detect
the information of small targets. In addition, an equilibrium
factor is introduced into the loss function to optimize the weight
of small objectives. The experimental results showed that the de-
tection accuracy of this method is improved by 6.3% compared
with the original YOLOV3. Liu et al. [30] presented another
YOLOv3-based CNN for ship detection in different climates. In
this model, anchor boxes and bounding boxes are redesigned, as
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Fig. 1.

Flowchart of the proposed ShipDetectionNet for ship detection is based on remote sensing images. The input images are collected using remote sensing

techniques. Then, they are received by the ShipDetectionNet, and the detection results are beneficial for marine pollution control, shipwreck rescue, and maritime

accident investigation.

well as soft nonmaximum suppression and mixed loss function
are introduced to improve the learning and feature expression
ability. From this literature, the experimental results illustrate
that the proposed e YOLO method outperforms other competing
methods.

However, in practical application, there are still challenges
in the contradiction between the detection accuracy and the
computational complexity of the model. To solve this challenge,
many scholars have made extensive efforts in simplifying the
model. For example, Wang et al. [31] proposed a lightweight
convolutional neural network (L-CNN) to detect ship infrared
images to tackle the limited spaceborne hardware resources.
The L-CNN determines the location of the target through the
connected domain, which avoids the traditional regression op-
eration and greatly reduces the computational complexity. Yu et
al. [32] proposed a lightweight ship detection framework for op-
tical remote sensing images with cloud occlusion. This method
exploited the sparse MobileNetV?2, which is a pruning structure
on MobileNetV?2 [33] to obtain candidate subgraphs. Another
ship detection algorithm for optical remote sensing images was
proposed by Chen et al. [34]. This network is an improved
YOLOvV3 based on an attention mechanism, in which the authors
designed a lightweight dilated attention module. In this article,
to better balance the storage space of spaceborne hardware
resources, we will design a novel ship detection network based
on YOLOVS. On the premise of ensuring the detection accuracy,
our network dramatically reduces the number of parameters and
calculations, effectively compressing the size of the model.

III. PROPOSED LIGHTWEIGHT CNN SHIP DETECTION
FRAMEWORK

A. Network Structure

The flowchart of the proposed model for ship detection based
on remote sensing images is illustrated in Fig. 1. The input im-
ages are gathered using remote sensing techniques, such as satel-
lites and unmanned aerial vehicles. The detection results will be
used in the maritime surveillance system to push for effective
marine accident investigation, accurate ship course navigation,
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Fig. 2. Backbone of YOLOVS. In summary, the existence of C3, Focus, and

SPP structures brings a large number of parameters and calculations, which has
a certain redundancy for single-target detection in this article.

stable maritime monitoring, etc. Considering the contradiction
between the detection accuracy and computational complexity
of the model, a new lightweight model, ShipDetectionNet, is
designed based on YOLOVS in this article. The ShipDetec-
tionNet (the network structure is illustrated in Fig. 5) mainly
consists of two proposed convolution units, which are based on
DS-Conv, and the pointwise G-Conv is used to replace the point
convolution in the DS-Conv. In the meantime, SE blocks [35]
are integrated into the proposed convolution units to enhance the
model accuracy. Specifically, we thoroughly analyze the limita-
tions of YOLOVS in Section III-B, corresponding solutions for
overcoming the limitations and the construction of our network
in Section III-C, and the loss function of ShipDetectionNet in
Section III-D. Based on these strategies, the ShipDetectionNet
can timely detect ships in practical marine scenes with more
robust, accurate, and reliable results.

B. Limitations of YOLOvS

Fig. 2 shows the backbone of the original YOLOvVS model,
where C'3 x 9 represents nine C3 blocks with 30 such convolu-
tion blocks in total, as shown in Fig. 2, which makes the model
reach over a hundred layers. Such a cumbersome network comes
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with a bunk of redundancy and complexity. The backbone is
mainly composed of Focus, Conv, C3, and SPP blocks. The
influence of these modules on ship detection is analyzed as
follows.

First, C3 is a stack of Conv modules, and Conv is composed of
Conv2d, which is a S-Conv. In S-Conv, each kernel convolutes
all the channels of the input feature maps, and the number of
convolution kernels is equal to the number of output channels.
P denotes the number of parameters, () means the calculation
cost, and the equations are as follows:

Ps.conv = k-k- Ninput : Noulput
QS—COI‘IV =L-L-k-k- ]Vinput . Noutput

ey
@

where L is the size of the input image, & is the size of the convolu-
tion kernel, and Niypy and Noygpue represent the number of input
channels and the number of output channels, respectively. In
general practical tasks, the number of Njppy and Noypue generally
can reach hundreds or even thousands. Multiplication between
them will make P and () even large. Meanwhile, YOLOVS has
up to 24 layers of C3 in its backbone, which will produce a large
number of parameters and calculations.

Second, Focus is used to slice the image before entering the
backbone. The specific operation is to get a value every two
pixels on a feature map and joint it into a new feature map.
The Focus operation centralizes the information of the spatial
dimension to the channel dimension so that the input channel is
expanded by four times. For example, a 640 x 640 x 3 image is
input into the network, and the convolution kernel of the Focus
module is 3 x 3. The number of output channels is four times
that of input channels, i.e., 32. The comparison of parameters
(presented by P) and computations (presented by ()) between
the Focus module and S-Conv is as follows:

Ps.cony =3 x 3 x 3 x32=2864
Procus = 3 X 3 X 12 x 32 = 3456

Qs-cony = 3 X 3 x 3 x 32 x 320 x 320 = 88473600
QFocus = 3 X 3 X 12 x 32 x 320 x 320 = 353894400.

It can be seen that the Focus produces more parameters and
computational cost than the S-Conv. The Focus proposed by the
author of YOLOVS is to replace the first three convolution layers
in YOLOV3. In our network, we do not need to merge several
layers like YOLOV3; on the contrary, the Focus will increase the
number of parameters and calculation cost, so this structure is
removed.

Finally, the SPP structure is at the back of the backbone. The
significance is that the network using SPP can receive images of
any size. In YOLOVS5, SPP makes the fusion of local features and
global features. Because YOLO is applied to complex multitar-
get detection, SPP is conducive to the case of the large difference
in target size. However, the task of this article is a single target
detection, and the size difference between targets is relatively
small. SPP does not greatly improve detection accuracy in our
task. To reduce the complexity of the network, this module is,
therefore, removed.
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In summary, the existence of C3, Focus, and SPP blocks brings
a large number of parameters and calculations, which comes
with huge redundancy for single-target detection.

C. Construction of ShipDetectionNet Architecture

The ShipDetectionNet proposed in this article is based on
YOLOVS. We designed our convolution units to construct the
ShipDetectionNet for ship detection, and these convolution units
are named ShipDetection Unit. Through the analysis in the
previous section, the Focus and SPP structures in YOLOVS will
cause some complexity. To make the detection network lighter,
Focus and SPP are removed. Besides, YOLOVS is stacked by C3
composed of Conv, which is S-Conv. Therefore, it can make the
network produce a large number of parameters and computation
costs. The improved convolution units are implemented by using
DS-Conv to replace Conv and further applying the group point-
wise convolution (PW-Conv) to replace the point convolution
in DS-Conv, as shown in Fig. 3. The proposed method for
complexity reduction and high detection performance of the
network is as follows.

1) Replace S-Conv With DS-Conv: DS-Conv, whichis a form
of factorized convolutions that factorize an S-Conv into a depth-
wise convolution (DW-Conv) and a PW-Conv. A single kernel
is applied to each input channel in the DW-Conv. Then, the
PW-Conv applies a 1 x 1 convolution to combine the outputs
of the DW-Conv. This factorized convolution has the effect of
drastically reducing the model size and computational cost [36]—
[38].

The number of parameters (presented by P) and computa-
tional cost (presented by @) of the DS-Conv is

PDS—Conv =k-k- Ninpul+Ninput : Noutput (3)
QDS—Conv =L-L-k-k- Ninput+L L Ninput . Noulpul~ (4)
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The ratio 1 of (3) to (1) is
k-k- Ninpul+Ninput : Noulput
k-k- ]Vinput : Noutput
1 1

= —t—. 5
Nowpe T2 ©)

Similarly, the ratio r5 of (4) to (2) is
L-L- ki . /4; . ]Vinpur‘rL -L- ]Vinput : Noutput
L-L-k-k- ]Vinpul : Noutput
1 1

= + (6)
Noulpul k2

=

To =

where Noypu > 1 and k > 1. Therefore, 7y <1 and ry <1
show that the DS-Conv has fewer parameters and calculations
than the S-Conv. Applying it to the ShipDetectionNet can com-
press the model size and reduce the complexity of the network
to better adapt to the ship detection task of a single target.

However, the PW-Conv, the second part of the DS-Conv,
is also the S-Conv, which will produce more parameters and
calculations. If it is improved, the complexity of the model will
be further reduced.

2) Replace PW-Conv in DS-Conv With Pointwise G-Cony:
The application of G-Conv can be traced back to AlexNet [10],
which was used to distribute the model over two GPUs.

Assuming that g is the number of groups, the number of
parameters of G-Conv is

Pocon = k- 1o - Do Rowou (7)
g g
The ratio of (7) and (1) is
1
ratiog = — ()
g

where g > 0; then, ratiog < 1. It is proved that the G-Conv can
obtain the same number of feature maps with fewer parameters,
and the number of parameters of the G-Conv is 1/g of the S-
Conv. Therefore, the G-Conv also makes a great contribution to
the compression of the model.

In the DS-Conv, the DW-Conv is a special G-Conv, and its
number of groups is equal to the number of input channels.
And the PW-Conv in the DS-Conv is S-Conv. If we consider
the application of G-Conv, that is, group the PW-Conv, we
can reduce the number of parameters. However, if multiple
G-Convs stack together, there is a side effect: It is obvious that
outputs from a certain group only relate to the inputs within
the group [39]. It prevents information flow between groups
and weakens information expression. Therefore, the channel
shuffle (CS) is followed after the pointwise G-Conv, simply to
recombine the channels between different groups.

The comparison between the original DS-Conv and the im-
proved DS-Conv is shown in Fig. 4. The combination of point-
wise G-Conv and CS to replace the PW-Conv in the DS-Conv
can significantly reduce the consumption of computing cost.

3) Use SE Block to Improve Detection Accuracy: Consid-
ering the reality, we reduce the model size to adapt to the
deployment of offshore platforms. However, the complexity
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Fig.4. Comparison between the original DS-Conv and the improved DS-Conv.

reduction of the network may lead to the loss of detection
accuracy. To ensure detection performance, we add SE blocks
to some convolution units. As shown in Fig. 5, the SE blocks
are added between the DW-Conv and the PW-Conv in each
ShipDetection Unit(b). The reason why the SE blocks are here
will be presented in Section IV.

The neural network continuously extracts information fea-
tures in forwarding propagation and backing propagation, but
not all features play a crucial role. Through the SE mechanism,
the network can search for more powerful representations, which
capture the most significant image properties in a given task,
thereby improving performance [35].

Suppose that the dimension of the input feature map is H x
W x C, where H, W, and C represent the height, width, and
the number of channels, respectively, and U is the tensor of this
matrix. First, the global average pooling is performed, that is,
squeeze. The formula is

ze = Fyq (Ue

W H
MWHZZ&W) ©)
=1 j=1

It means that the cth element of z is generated by shrinking U
through its spatial dimensions H x W. To take advantage of the
information gathered during the squeeze operation, the second
operation, excitation, is performed

s =Fu(z,W)=0(g(2,W)) =0 (W (W12))  (10)

where ¢ and o refer to the ReLU function and Sigmoid function,
respectively, z represents the result obtained by (9), and W is
the weight. The dimension of W7 is % x C and the dimension
of Wais C x % r represents the reduction ratio, which aims to
reduce the number of channels to reduce the calculation cost. To
obtain the final output, U will be rescaled with the s acquired
above

U = Fycate (Uwsc) =U.: x s (11)

where Fyeale (Ue, 8¢) refers to channelwise multiplication be-
tween the scalar s and the feature map U... [t remarks the channel
so that it can focus on the key information. The detailed principle
of the SE block can be found in [35].

4) Constructing ShipDetection Unit: Our convolution net-
work units are constructed based on the three methods proposed
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ShipDetection Units. The numbers 1, 1/2, 1/4, 1/8, and 1/16 in the backbone represent the reduction ratio of the feature maps after downsampling. After the
backbone is in the detection layer, we use the PANet as the detection layer. The ShipDetectionNet has 20 layers.

above to reduce the complexion of the model and ensure detec-
tion accuracy.

The design of the ShipDetection Unit draws lessons from the
bottleneck in ResNet [40]. A bottleneck consists of a PW-Conv
for dimension reduction, a 3 x 3 convolution, and a PW-Conv
for dimension upgrading. Our network units use the composition
of the bottleneck for reference, the PW-Conv was replaced with
the pointwise G-Conv and CS, and the 3 x 3 convolutions were
replaced with the DW-Conv. The number of output channels
will be small because the DW-Conv uses a single kernel for each
input channel. If we first use dimensionality reduction PW-Conv
such as bottleneck to compress and then go through DW-Conv,
fewer features will be extracted. Therefore, we adopt an inverse
method, that is, first increase the dimension, then convolute, and
finally reduce the dimension [33], [40]-[42].

The network convolution unit, namely ShipDetection Unit,
is mainly divided into two categories based on the bottleneck.
The classification basis is whether the number of input channels
is the same as that of intermediate channels. When the number
of input channels and middle layer channels is different, the
pointwise G-Conv (CONVpg) and CS are carried out first. This
combination can significantly reduce the number of network
parameters [39]. Then, the DW-Conv (CONVpy) is performed,
and finally, the pointwise G-Conv (CONVpg) and CS are com-
pleted. The convolution operation in ShipDetection Unit(a) can
be summarized as follows:

Y = CONVpg (X, W, b)
Y = CS(Y)

Y = CONVpy(Y)

Y = CONVpg(Y)

where X is the input features, Y is the intermediate features, and
W and b refer to trainable parameters in the ShipDetectionNet.
When the number of input channels is the same as the number
of intermediate channels, since the number of channels after
the DW-Conv is the same as the number of input channels, to
reduce the redundancy of the network, the previous pointwise
G-Conv is removed, and the DW-Conv (CONVpw) is carried out
directly. In addition, since the ShipDetection Unit(b) shown in
Fig. 5 is stacked at the back of the network, it will be followed by
the prediction layer. This part of the ShipDetection Unit will no
longer set the pointwise G-Conv but the PW-Conv (CONVpy)
to better improve the representation of features. The convolu-
tion operation in ShipDetection Unit(b) can be summarized as
follows:

Y = CONVpw (X, W, b)
Y = SE(Y)

Y = CONVpy (V). (13)

In the above two types of ShipDetection Units, the processes
of stride = 1 and stride = 2 are different. When stride = 2,
because the number of input channels is different from the
number of output channels, the shortcut structure is not added,
which is the reason why the shortcut connection is a dotted line
in Fig. 5.

5) Building ShipDetectionNet Using ShipDetection Units:
In the ShipDetectionNet, except that the first convolution layer is
S-Conv, all other convolution layers are ShipDetection Units. As
shown in Fig. 5, the blue convolution blocks in the first half rep-
resent ShipDetection Unit(a), and the yellow convolution blocks
in the second half represent ShipDetection Unit(b). Before in-
putting the image into the network, the data are preprocessed,
mainly including translation, flipping, mosaic data augmenta-
tion, etc. Mosaic data augmentation splices four images together
toformanew 640 x 640image. The numbers 1, 1/2, 1/4,1/8, and
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TABLE I
NETWORK ARCHITECTURE (SHIPDETECTIONNET)

Input size | Operator | Exp size | Out | SE | Stride
2242 x 3 Conv2d — 32 | — 2
1122 x 32 ShipDetection Unit(a) 32 32 0 1
1122 x 32 | ShipDetection Unit(a) 96 64 0 2
562 x 64 ShipDetection Unit(a) 192 64 0 1
562 x 64 ShipDetection Unit(a) 192 64 0 1
562 x 64 ShipDetection Unit(a) 192 128 0 2
28% x 128 ShipDetection Unit(a) 384 128 0 1
282 x 128 ShipDetection Unit(a) 384 128 0 1
282 x 128 | ShipDetection Unit(a) 384 128 0 1
282 x 128 | ShipDetection Unit(a) 384 256 0 2
142 x 256 ShipDetection Unit(a) 384 256 0 1
142 x 256 ShipDetection Unit(a) 384 256 0 1
142 x 256 ShipDetection Unit(a) 384 256 0 1
142 x 256 | ShipDetection Unit(a) 384 256 0 1
142 x 256 | ShipDetection Unit(a) 384 512 0 2
72 x 512 | ShipDetection Unit(b) 512 512 | 1 1
72 x 512 ShipDetection Unit(b) 512 512 1 1
72 % 512 ShipDetection Unit(b) 512 512 1 1
72 x 512 ShipDetection Unit(b) 512 512 1 1
72 x 512 ShipDetection Unit(b) 512 512 1 1

1/16 in the backbone represent the reduction ratio of the feature
maps after downsampling. To obtain the output of three feature
layers to detect targets of different sizes, the output branches are
set in layer 9, layer 14, and the last layer. After the backbone,
we use the PANet [43] as the detection layer. In the process of
DW-Conv, to reduce the number of network parameters, the size
of the convolution kernel is 3 x 3. The h_swish is selected as
the activation function, which aims to reduce the computational
cost of the network on the premise of ensuring accuracy. It is
defined as
h_swish(x) = x - w.
We present the overall ShipDetectionNet architecture in Ta-
ble I, where Exp size and Out represent the number of interme-
diate channels and the number of output channels, respectively.
Since the size of the feature maps decreases with the deepen-
ing of the network gradually, it is easier to lose the key feature
information of the ship, so the number of channels of the feature
maps is set to gradually increase with the depth of the network.
The proposed ShipDetectionNet structure is a line structure as
a whole, without complex branches, with only 20 layers, which
reduces the network’s redundancy and is more suitable for ship
detection from sensing remote satellite images.

(14)

D. Loss Function of the ShipDetectionNet

The ShipDetectionNet is a one-stage target detector, so there
is no need to generate region proposals. Its loss function consists
of three parts: location loss, category loss, and confidence loss.
The overall loss is the sum of the above three.

The ShipDetectionNet uses CloU loss as its location loss,
that is, the loss of bounding box regression. Its definition is as
follows:

LCIOU =1-—-IoU+

15)

2(Bp.B
P(PQ, G)+aU

5817

where IoU is the intersection over union of the bounding box
and the ground truth, Bp and B¢ represent the center points
of the bounding box and the center points of the ground truth,
respectively, p represents the Euclidean distance between the
two points, and c refers to the diagonal distance of the minimum
closure region that can contain the bounding box and the ground
truth at the same time. v represents the normalization of the
difference between the width-to-height ratio of the bounding
box and the ground truth, and « is the balancing factor that
balances the loss aroused by IOU and the loss of the width and
height scale. v and « are defined as follows:

4 wa wp 2
v = — | arctan— — arctan—
s hG hp

v
"~ 1—-IoU(Bp,Bg) +v

(16)

o (17)
where wg and hg mean the width and height of the ground truth,
respectively; similarly, wp and h,, are the width and height of
the bounding box, respectively.

The category loss function of the bounding box uses binary
cross entropy loss (BCEWithLogitsLoss), which is shown as
follows:

. . i a 1
N
Lojass = — Z [yilog (9:) + (1 — yi)log (1 —45)]  (19)
n=1

where N represents the total number of categories. In our task,
N is 1. z; is the predicted value of the current category, ¥; is the
predicted probability obtained after Sigmoid function, and y; is
the true value (1 or 0).

The confidence loss function of the bounding box also uses
binary cross entropy loss (BCEWithLogitsLoss), as described
in the following:

C; = Sigmoid (&;) = H% (20)
Loy = — i [Cilog (07) +(1-Cy)log (1 _ Cy)} 1)
n=1

where M represents the total number of generated bounding
boxes. C; and C’Z are the value of both true confidence and
predicted confidence, respectively.

Therefore, the loss function of the ShipDetectionNet consists

of the above three parts:

Loss = Lciou + Leass + Lobj~ (22)

IV. EXPERIMENTS

A. Experimental Setup

1) Settings: We conduct all the experiments on an NVIDIA
Titan V GPUs (12 GB) built-in server and introduce Pytorch
to implement all the compared models. Through the training
process, the batch size is set to 4. We stopped training after 300
epochs. Rather than searching for the best hyperparameters in
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the hyperparameter space, we use the same training parameters
as those in the corresponding models.

2) Datasets: The data used in this article are from a Kaggle
competition for marine ship detection.! The official dataset
contains 29 GB of images, including 192 556 in the training
set and 15 606 in the testing set. We randomly selected 1600
768 x 768 pixel images (the size of the original image was
768 x 768 pixels, and it was preprocessed to 640 x 640 pixels
and entered into the ShipDetectionNet) as the dataset of the
proposed method and randomly divided them into a training
set, a verification set, and a testing set according to the ratio of
7:2:1. The robustness of the proposed model can be effectively
verified because of the diverse direction and size of targets in
remote sensing satellite images and the extensive ship scenes.

3) Evaluation Metrics: We use recall, precision, and the
mean average precision (mAP) for evaluation, defined as

TP

Recall = —— 23
T TP RN 23)
TP
Precision = —— 24)
TP + FP

1
mAP = / Precision (Recall) d(Recall) (25)
0

where TP, FP, and FN refer to true positive, false positive, and
false negative, respectively. Precision (recall) is the precision—
recall curve.

In addition, to adapt to the special marine environment, the
complexity of our model is relatively small, so the model size
and network parameters are also used for the evaluation.

B. Comparison With State-of-the-Art Methods

We compare the ShipDetectionNet with the following 11
state-of-the-art methods, which are described as follows.

1) Faster R-CNN [23]: This two-stage detection algo-
rithm introduced the RPN to generate proposals di-
rectly with high recall. The backbone of the selected
model is ResNet50 with five FPN feature layers in the
mmdetection framework.

2) RetinaNet [25]: This algorithm proposed Focal Loss in
the classification branch, which solves the problem of
positive and negative sample imbalance in target detec-
tion. The backbone of the selected model is ResNet50
with five FPN feature layers in the mmdetection frame-
work.

3) SSD300 [24]: SSD is a typical one-stage target detection
algorithm, which added the pyramidal feature hierarchy-
based detection method to realize multiscale detection.
We use the SSD300, that is, the input is 300 x 300 pixel
images.

4) YOLOv2 [15]: The YOLO algorithm was first proposed
to treat the target detection as a regression problem.
Compared with YOLOV1, batch normalization is added
to make the mAP significantly improved.

![Online]. Available: https://www.kaggle.com/c/airbus-ship-detection
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TABLE II
COMPARISON OF DETECTION PERFORMANCE OF DIFFERENT METHODS

Methods R(%) mAP (%)  Para  Size(MB)
Faster R-CNN 83.4 81.51 41.12M 314
Mask R-CNN 72.4 79.06 43.75M 335

RetinaNet 84.7 76.56 36.10M 276

SSD300 83.7 69.24 23.75M 181

YOLOv4 72.4 81.63 63.94M 244

YOLOV3 76.7 75.55 61.50M 117
YOLOV3-tiny 73.6 72.69 8.6TM 16.6

YOLOv2 68.7 62.93 50.66M 193

YOLOV5s 83.1 82.64 7.05M 13.7

VFENet 78.5 79.64 32.48M 249

YOLOF 66.2 57.58 42.06M 322

ShipDetectionNet 83.4 83.03 6.05M 11.9

5) YOLOv3 [16]: To achieve a better training effect, the
author trained Darknet-53 as the backbone and designed
three scales to fuse the feature maps of different sizes.

6) YOLOv3-tiny [16]: YOLOv3-tiny removed some feature
layers based on YOLOv3 and retained only two inde-
pendent prediction branches, suitable for tasks requiring
high-speed detection.

7) YOLOv4 [17]: This algorithm integrated the best opti-
mization strategies in the field of CNN in recent years.
It is easy to distort the image when resizing the image,
so the letterbox is used to fill the image to maintain the
ratio of length and width.

8) YOLOv5s: YOLOVSs is the network with the smallest
depth and the smallest width in the YOLOVS series.

9) Mask R-CNN [44]: This algorithm adds a branch of
output object mask on Faster R-CNN to make it com-
petent for instance segmentation. In short, Mask R-CNN
can complete three tasks: classification, regression, and
segmentation.
VFNet [45]: The authors of this article proposed a novel
detection score, IoU-aware classification score (IACS),
to achieve higher detection accuracy in dense object
detectors. A new loss function Varifocal Loss and a
new star-shaped bounding box feature representation are
designed to predict and estimate the IACS, respectively.
YOLOF [46]: This article reconsidered the FPN and
pointed out that the success of FPN lies in its divide-
and-conquer strategy rather than multiscale feature fu-
sion. Compared with the traditional FPN, this network
uses only one-level feature for detection, which greatly
improves the detection efficiency.

The results shown in Table II (where R and Para refer to
recall and the number of parameters, respectively) indicate that
our model beats other models in terms of mAP, the number of
parameters, and the model size. YOLOvVSs is ranked second,
and YOLOV2 is the last in mAP. Compared with the latest
YOLOVSs, our model has a comparable performance in mAP,
while the number of parameters and the model size are reduced
by 14.18% and 13.14%, respectively. In addition, YOLOv4 and
Faster R-CNN are also close to our model in mAP, but their
parameters are 10.57 and 6.80 times than ours, respectively,
and their model sizes are 20.50 and 26.39 times than ours,

10)

11
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respectively. Obviously, it is still a challenge for them to balance
the detection accuracy and spatial resources. The Faster R-CNN
is a single-task model that can only detect targets, and the
Mask R-CNN is improved to form a multitask model that can
also complete segmentation tasks. Mask R-CNN was trained
on polygons, so the branch that completed the segmentation
also participated in the training. On large general object datasets
such as COCO, the authors of Mask R-CNN show considerable
experimental results in this article. However, for the scenario
of this article, the task is single and mainly focuses on ship
detection without considering other objects, which may not give
full play to the advantages of Mask R-CNN. From another point,
the network parameters of YOLOvV3-tiny are close to that of
the ShipDetectionNet, but the performance of YOLOv3-tiny
has decreased 12.5% for mAP. Therefore, to ensure accuracy,
the ShipDetectionNet with a low number of parameters better
balances the detection performance and the model complexity.
It can be seen that the R and mAP trends of RetinaNet and
YOLOV4 are opposite; the reasons are as follows: the contribu-
tion of RetinaNet lies in the design of the Focal Loss function,
which adds weights to balance the number of positive and
negative samples, making the loss function pay more attention
to the samples that are difficult to distinguish. This can be of
great advantage in complex multicategory scenarios. However,
our task is relatively simple, and there is only one foreground,
which makes the classification of foreground and background
not so hard. If Focal Loss continues to be used to increase
the weight of positive samples, the focus of RetinaNet training
will be excessive on the positive sample, which will result in
producing a large number of bounding boxes. The impact of
this is that positive samples are well detected, resulting in a
high recall. However, some negative samples are also classified
as positive samples, leading to a low precision, which pulls
down the mAP value. In YOLOv4, the backbone is deep. With
continuous downsampling, it is easy to lose pixels of small
targets, so small targets cannot be detected well, resulting in low
recall. However, YOLOv4 integrated a series of tricks to improve
precision, generating a higher mAP. The above analysis also
shows that these two networks are not suitable for our dataset.
It is worth noting that YOLOF, as a new target detector,
achieve poor results. The possible reason may be that YOLOF
only employs a single-layer C5 feature (with a downsample rate
of 32) to detect, while the receptive field of the C5 feature can
only cover a limited scale range. Although the dilated encoder
makes up for the larger receptive field range missing in the C5
feature, it still lacks the receptive field required for small target
detection. And there are many small ships in our dataset, so the
performance of YOLOF is greatly weakened in our dataset.

C. Comparison With Lightweight Models

We also compare the ShipDetectionNet with five lightweight

target detection methods, which are described as follows.

1) ShuffleNetv2 [47]: For the shortcomings of ShuffleNetv1
and to improve the speed, ShuffleNetv2 proposed four
criteria to reduce the memory access cost, avoid network
fragmentation, and reduce elementwise operations.
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TABLE III
COMPARISON OF DETECTION PERFORMANCE OF DIFFERENT LIGHTWEIGHT
METHODS
Methods R(%) P((%) mAP(%) Para
ShuffleNetv2 69.02 88.24 68.19 0.44M
MobileNetv2 74.54 93.10 73.80 5.95M
MobileNetv3-small 77.61 93.36 77.32 3.54M
MobileNetv3-large 80.06 92.55 79.68 5.20M
SARShipNet-20 70.86 90.23 69.58 3.22M
ShipDetectionNet 83.44 90.97 83.03 6.05M

2) MobileNetv2 [33]: MobileNetV2 designed the linear bot-
tlenecks and inverted residuals based on DS-Conv, im-
proving the network performance.

3) MobileNetv3-large [42]: On the bias of MobileNetv2, this
algorithm added the attention model and improved the
activation function using h_swish, instead of ReLU®6.

4) MobileNetv3-small [42]: 1t is a reduced version of the
MobileNetv3-large, which contains fewer convolutional
blocks and fewer filters.

5) SARShipNet-20 [7]: This is a lightweight ship detection
network for SAR images. Because the code in [7] is not
open source, we reproduced this network. To ensure the
detection performance, we did not cut the image to 80 x
80 according to the requirements in [7], but cut it to 640 X
640 according to the size of our dataset.

To ensure the consistency of experimental variables, we em-
bedded the above networks into the framework of YOLOVS to
enable them to complete the target detection task.

The results shown in Table III (where R, P, and Para refer to
recall, precision, and parameter quantity, respectively) illustrate
that our model achieves the best in mAP. Although the param-
eters of ShuffleNetv2 and MobileNetv2 are lower than those of
our model, their accuracy is 14.84 and 9.23 lower in mAP than
ours, respectively, which is obviously not suitable for the high-
accuracy ship detection task. Similarly, MobileNetv3-small and
MobileNetv3-large are lighter than ShipDetectionNet, but their
accuracy is 77.32% mAP and 79.68% mAP, respectively, which
is 5.71 and 3.35 lower than ShipDetectionNet, respectively. The
performance of SARShipNet-20 on our dataset is not good.
The reason may be that it is difficult to extract the complex
feature information of optical images. These networks sacrifice
the accuracy of detection in exchange for the lighter weight of the
network model. Our purpose is not only to reduce the detection
model size but also to evaluate the tradeoffs between accuracy,
the number of operations, and the number of parameters. Consid-
ering comprehensively, although the lightweight target detection
model in Table III is lighter, the detection accuracy is not high
enough. The ShipDetectionNet balances the accuracy with the
complexity of the model and is more competent for the ship
detection field.

D. Comparison of Methods for Special Scenes

To show that the proposed model is suitable for ship detection
in various special scenes, the testing set is divided into four types:
open sea, nearshore, small ships, and cloud barrier. We put the
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Fig. 6. Test results of the ShipDetectionNet in the scenario of open sea.
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Fig. 7. Test results of the ShipDetectionNet in the scenario of nearshore.

above four types of datasets into ShipDetectionNet for testing,
respectively, and the results are analyzed as follows.

1) Open Sea: The images of the open sea account for the
largest proportion in the whole dataset, including both large
ships and small ships. Since there is no interference from the
surroundings (surrounded by the sea), the ship is easy to detect,
so the detection confidence is also high. In Fig. 6, the detec-
tion confidence of most ships is above 90%, and the highest
detection confidence is 95%. It is important to note that the
ShipDetectionNet can successfully distinguish two ships when
they are close together, which is challenging to do in some other
detectors.

{ship 089p 08736 |
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2) Nearshore: Corresponding to the ships in the open sea
is the ships that are nearshore. Owing to the interference of
sundries, the targets are difficult to identify. For example, it is
easy to mistakenly detect nearshore objects like ships. However,
it can be seen from Fig. 7 that our model can well identify the
ships, and the highest detection confidence is 95%. In a complex
environment, two adjacent ships can also be separated by the
ShipDetectionNet. It shows that our model is not affected by the
surroundings and has robust detection ability.

3) Small Ships: Owing to the taking distance, taking angles,
and other reasons, the targets are quite small in the obtained
images. The continuous downsampling of the CNN will make
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Fig. 8.  Test results of the ShipDetectionNet in the scenario of small ships.
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Fig. 9. Test results of the ShipDetectionNet in the scenario of cloud barrier.
the position information of the feature map rough or even lose it,
which is easy to cause inaccurate positioning or detection missed
of small-scale ships. Therefore, there are some difficulties and
challenges in the recognition of small ships. Fig. 8 shows the
detection results. It can be seen that the ship is rather small, and
in some images, it is not easy to distinguish the target and the
background with the naked eye as if the ship and the background
are fused. However, our model can even make the confidence of
some ships more than 90%, which is enough to improve the
effectiveness of the ShipDetectionNet.

4) Cloud Barrier: In practical applications, marine ship im-
ages are often affected by bad weather. Owing to the dataset,
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we only tested the detection effect of the ShipDetectionNet in
a cloudy environment. With clouds stretching over the ocean,
fuzzy ship images shot by the satellite present low contrast
and poor fine details and arouse challenges over accurate ship
detection. Fig. 9 shows the detection results. It can be seen that
good detection results can be obtained for both larger and smaller
ships. Even ships that are difficult to see with the naked eye are
successfully identified by the ShipDetectionNet. It is enough
to illustrate the adaptability of the proposed method to severe
weather conditions.

Finally, we found that in the image containing multiple ships,
the detection performance of small ships is worse than that of
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TABLE IV
EVALUATION INDEX OF SHIP DETECTION RESULTS OF THE SHIPDETECTIONNET

Models R mAP  Para G T (ms)
ShipDetectionNetl ~ 81.90 81.29 6.78M  16.0 14.36
ShipDetectionNet2 ~ 82.52 81.93 539M 148 10.42
ShipDetectionNet3 ~ 82.82 8226  6.12M 154 13.40
ShipDetectionNet4  83.44  83.03 6.05SM 153 10.66

TABLE V

COMPARISON OF DETECTION PERFORMANCE OF DIFFERENT LIGHTWEIGHT
METHODS IN FAIRIM

Methods Recall (%)  Precision (%) mAP (%)
ShuffleNetv2 50.16 84.20 47.79
MobileNetv3-small 66.23 87.93 64.30
MobileNetv3-large 72.24 87.25 70.73
YOLOVS5s 79.22 86.37 77.30
ShipDetectionNet 80.03 83.14 77.56

large ships. On the one hand, it is caused by the characteristics
of the network itself. To increase the receptive field in the
network, the feature map is required to be continuously shrunk,
so the information of the small area is naturally difficult to be
transmitted to the rear of the detector. On the other hand, in our
dataset, the number of small ships is significantly less than that
of large ships, which brings some difficulties for the network to
adapt to the target. In the future work, we will also continue
to explore ways to improve the detection accuracy of small
ships, to make the overall detection ability of the network more
comprehensive.

E. Ablation Experiment

We propose a method to reduce the number of parameters
and calculations of the network, but reducing the complexity
of the model is bound to affect the accuracy of detection. The
ShipDetectionNet finds the best tradeoff between accuracy, the
number of operations, and the number of parameters by adding
SE blocks. We will evaluate where SE blocks are added in this
part.

To explain the method of this article conveniently, we divide
the whole network into three parts. The first part is the S-Conv of
layer 1, which does not participate in the discussion; the second
partis 2—15 layers, which is composed of ShipDetection Unit(a);
and the third part consists of 16-20 layers and is composed of
ShipDetection Unit(b).

To evaluate the impact of the location of SE blocks on the ex-
perimental results, we set up four cases: 1) ShipDetectionNetl,
where SE blocks are added to the second part and the third
part; 2) ShipDetectionNet2, where SE blocks are removed from
the model structure; 3) ShipDetectionNet3, where the SE block
is only added to the second part; and 4) ShipDetectionNet4,
where the SE block is only added to the third part, as shown in
Table IV.

In Table IV, R represents for recall, Para and G are parameters
and GFLOPs, respectively, and T refers to the inference time
of each image. From Table IV, we can see that adding SE
blocks reasonably will improve detection accuracy, but it has
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a slight negative impact on the detection speed. Although the
second and third parts of ShipDetectionNet! all add SE blocks,
the mAP value is the lowest, indicating that adding too much
attention mechanism increases the redundancy of the network
to play the opposite role. ShipDetectionNet4 with SE blocks
added only in the third part can generate satisfactory results with
the mAP of 83.03%, and the number of parameters, GFLOPs,
and inference time decreased compared with ShipDetection-
Net3 with SE blocks added only in the second part. Therefore,
ShipDetectionNet4 is chosen as the ShipDetectionNet proposed
in this article.

The evaluation is carried out on the testing set of satellite
remote sensing ship images to verify the generalization per-
formance of the ShipDetectionNet. From Table IV, the recall
for ShipDetectionNet4 is 83.44%, the precision is 90.97%, and
the mAP value is 83.03%. In addition, the average inference
time of each image is 10.66 ms, which means only 1.7 s is
needed to complete the detection of 160 images in the testing set.
Interestingly, some ashore ships, small ships, and ships in cloudy
weather in complex scenes can also be successfully detected on
this dataset, which indicates that the ShipDetectionNet is robust.

F. Tests on the FAIRIM Dataset

We trained several networks on a new dataset FAIR1M [48]
and tested the models. FAIR 1M is a large dataset for fine-grained
target detection and recognition in remote sensing images. The
image contains rich geographic information and panchromatic
and several multispectral bands. Each image is of the size in the
range from 1000x 1000 to 10 000x 10 000 pixels and contains
objects exhibiting a wide variety of scales, orientations, and
shapes. This dataset contains five categories and 37 subcat-
egories. However, according to our own tasks, 1000 images
containing ships were selected to constitute our dataset, which
was randomly divided into the training set, verification set, and
test set in a ratio of 7:2:1. Since the annotation of this dataset
is oriented bounding box, we converted the data annotation
into horizontal bounding box and canceled the classification of
ships to adapt to our own tasks. To ensure the consistency of
experimental variables, we embedded the following lightweight
networks into the framework of YOLOvVS, enabling them to
complete the object detection task. The batch size of each
network was set to 4, and 300 epochs were trained. The default
values of the hyperparameters of the original network were kept.
The experimental results are as follows.

It can be seen that our network achieves the optimal results
in both recall and mAP in Table V. It does not perform well
in precision, but there is room for improvement. Both the
large and small versions of MobileNetv3 achieve high-precision
results, which may be due to its network architecture search
(NAS) strategy. Find the optimal parameter collocation through
NAS to build the optimal network. The inspiration for us is
that although the realization of NAS requires the support of
certain experimental equipment, we can try more combinations
of various experimental parameters in future experiments to
find the optimal network architecture. The low recall values of
MobileNet and ShuffleNet lead to their low mAP values, because
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Fig. 10. Test results of the ShipDetectionNet in the FAIRIM dataset.

the number of their parameters is too small, and the network
is not sufficient to extract and learn features. Considering the
tradeoff between performance and efficiency, our network is
more suitable for the ship detection task. In future work, we will
continue to study fine-grained ship detection, detecting different
types of ships to better adapt to practical applications.

Fig. 10 shows the detection effect of our network on the
FAIRIM dataset, and it can be seen that the ShipDetection-
Net can still achieve a pretty detection effect in this relatively
complex scene. In addition, we can observe that the detection
effect of small ships is not as good as that of large ships.
This is still caused by continuous downsampling. Excessive
downsampling rate makes the pixels occupied by small objects
gradually decrease or even disappear. Although multiscale fu-
sion is used in our network, it may not be enough according to the
detection results. One of our future ideas is to add a multiscale
fusion branch to the shallow layer of the network to preserve as
many pixels of the small target as possible. Meanwhile, we also
considered using some data enhancement strategies to increase
the proportion of small targets.

V. CONCLUSION

In this article, we propose an enhanced network based on
YOLOVS, called ShipDetectionNet, to balance the detection
performance and the model complexity. We take the DS-Conv to
replace S-Conv and further use the pointwise G-Conv to replace
the point convolution in the DS-Conv, which further reduces the
number of parameters and computational cost of the network.
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Meanwhile, to ensure the detection accuracy of the network,
we also add SE blocks. Based on these, we build two types of
network convolution units, ShipDetection Unit(a) and ShipDe-
tection Unit(b), and use them to structure the ShipDetectionNet.
Compared with 11 state-of-the-art baselines and five lightweight
models, the results show the superiority of the proposed method.
And the ShipDetectionNet is evaluated on different scenarios,
demonstrating its generalizability and effectiveness.

To make the ship detection more effective, reliable, and robust,
we will consider the influence of climate on the detection images,
such as haze, rain, and low lighting. Owing to the small amount
of data in the harsh environment, the expansion of the dataset
can be considered, such as artificially creating some fog scenes.
After continuous attempts, we believe that our model will be
more superior.
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