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Abstract
In the past decade, several efforts have been made to project armed conflict risk into the future.
This study broadens current approaches by presenting a first-of-its-kind application of machine
learning (ML) methods to project sub-national armed conflict risk over the African continent along
three Shared Socioeconomic Pathway (SSP) scenarios and three Representative Concentration
Pathways towards 2050. Results of the open-source ML framework CoPro are consistent with the
underlying socioeconomic storylines of the SSPs, and the resulting out-of-sample armed conflict
projections obtained with Random Forest classifiers agree with the patterns observed in
comparable studies. In SSP1-RCP2.6, conflict risk is low in most regions although the Horn of
Africa and parts of East Africa continue to be conflict-prone. Conflict risk increases in the more
adverse SSP3-RCP6.0 scenario, especially in Central Africa and large parts of Western Africa. We
specifically assessed the role of hydro-climatic indicators as drivers of armed conflict. Overall, their
importance is limited compared to main conflict predictors but results suggest that changing
climatic conditions may both increase and decrease conflict risk, depending on the location: in
Northern Africa and large parts of Eastern Africa climate change increases projected conflict risk
whereas for areas in the West and northern part of the Sahel shifting climatic conditions may
reduce conflict risk. With our study being at the forefront of ML applications for conflict risk
projections, we identify various challenges for this arising scientific field. A major concern is the
limited selection of relevant quantified indicators for the SSPs at present. Nevertheless, ML models
such as the one presented here are a viable and scalable way forward in the field of armed conflict
risk projections, and can help to inform the policy-making process with respect to climate security.

1. Introduction

Without effective climate change mitigation meas-
ures and with continuing human-induced ecological
degradation, environmental pressures on livelihoods
are expected to worsen in many regions around the
world (Adger et al 2014, IPCC 2019). A more con-
tested impact of climate change is an increased risk
of violent conflict (Hsiang et al 2013, Buhaug et al
2014, Koubi 2019, Mach et al 2019). Political concern
as well as scientific and security interests have hence
been rising during the last decades. This has resulted

in a maturing body of academic literature on climate-
conflict connections (VonUexkull andBuhaug 2021),
also feeding decision-making of intergovernmental
institutions, such as the UN Security Council (Scott
2015, Conca 2019).

However, the scientific consensus is still limited
regarding the relevance and strength of specificmech-
anisms linking climate, the environment, and armed
conflict risk (Koubi 2019). Recent conclusions dif-
fer due to, inter alia, the use of different data prox-
ies, timescales, geographical scales as well as defini-
tions of conflict, and the field is further challenged
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by concerns about sampling bias in climate-conflict
research (Adams et al 2018).

Nevertheless, several conditions—including low
socioeconomic development and economic shocks,
weak governmental capacity, and a recent history of
armed conflict—are generally accepted as import-
ant contextual risk factors (Mach et al 2019). Under
these conditions, climatic and environmental drivers
are most likely to increase conflict risk (see Buhaug
and Von Uexkull (2021) and Mach et al (2019) for
potential linkages). Already conflict-prone countries,
which lack good governance systems and depend on
climate-sensitive economic activities such as rain-fed
agriculture are found to be the most vulnerable to the
adverse effects of climate change (Von Uexkull 2014,
Almer et al 2017, Otto et al 2017).

Gaining more insights into the role of water-
related environmental stress for future armed con-
flict risk is therefore needed. One way to do so
is quantitative forecasting. Relevant recent attempts
have focused mostly on developing early warning
models for armed conflict for a limited time hori-
zon (Hegre et al 2017, 2019, 2021, WPS Partnership
2021). For those instruments, accuracy and forecast-
ing skills are paramount. With their prediction hori-
zon, they are suited to inform, for example, short-
term policy making and interventions. They are not,
however, intended to explore security implications of
plausible long-term scenarios aiding capacity build-
ing and long-term policy processes.

Incomplete knowledge about the relations
between conflict drivers and the lack of sufficient
observational data make it challenging to project
long-term conflict risk (Cederman and Weidmann
2017). Nevertheless, making projection ensembles
without claiming to make absolute and accurate
predictions is a viable way towards better estimate
uncertainties (Maier et al 2016). The main aim of
the projections is to assess plausible developments
along with alternative scenarios rather than predict
the onset of an event. This approach is already suc-
cessfully adopted in other scientific disciplines such
as flood and drought risk projections (Hirabayashi
et al 2013, Wanders et al 2015). The insights obtained
from these long-term projections can then facilit-
ate hotspot identification, development of adaptive
policy options, and the preparation for rare events
(Mahmoud et al 2009, van Beek et al 2020).

Thus far, few studies address the long-term future
risk of conflict (de Bruin et al 2021, Von Uexkull and
Buhaug 2021). Examples are Hegre et al (2013) pre-
dicting conflict towards 2050; Witmer et al (2017)
projecting future regions at conflict risk under until
2065 using various Representative Concentration
Pathways (RCPs) and Shared Socioeconomic Path-
ways (SSPs); andHegre et al (2016) projecting conflict
towards 2100 under alternative SSPs. Up until today,
Witmer et al (2017) is the only conflict projection

study engaging with the SSP-RCP framework
(van Vuuren et al 2014).

Machine learning (ML)models have already been
identified as a viable way forward in conflict risk pro-
jections (Colaresi and Mahmood 2017). Here, we use
CoPro, a novel open-source ML model (Hoch et al
2021a), to disentangle historical relations between
socioeconomic as well as hydro-climatic indicat-
ors and armed conflict. Compared to the above-
mentioned examples, using ML has the distinct
advantage that it is data-driven and can deal with
non-linearity between indicator and conflict data
without pre-defining theoretically assumed interac-
tions. With this first, flexible, data-driven analysis of
future conflict riskwe aim to (a) advance the currently
under-studied field of long-term conflict risk projec-
tions (de Bruin et al 2021), (b) evaluate model abil-
ity to quantify future changes of regions-at-risk using
ML techniques, (c) evaluate the changes in conflict
risk across scenarios, and (d) (re)assess the import-
ance of socioeconomic and hydro-climatic drivers for
future changes in armed conflict risk.

To which extent an ML approach can help
projecting climate change impacts, including pos-
sible knock-on effects on livelihood insecurity and
resource competition, is thus the central question of
this paper. Understanding how different future path-
ways will develop can facilitate shaping sustainable,
fair, and peaceful policies, and the use of data-driven
approaches may be an important cornerstone in this.

2. Data andmethods

2.1. Spatio-temporal properties
We applied CoPro over the entire continent of Africa
(Hoch et al 2021a). The analysis was conducted at an
annual temporal resolution which suffices for long-
term outlooks of conflict risk. As spatial aggrega-
tion level we employed sub-national water provinces,
which are defined by hydrological boundaries of river
basins intersected with the administrative boundar-
ies of countries (Straatsma et al (2020); see figure 1).
By estimating and projecting conflict risk by water
province, we are able to account for important
within-country variation in hydrological character-
istics that shape climate change impacts and, pos-
sibly, conflict risk. Also, their use mitigates challenges
associated with alternative high-resolution gridded
designs, such as high spatial dependence.

To train, test, and evaluate CoPro, we focused on
the period 1995 until 2015, the longest intersect of
available historic hydro-climatic, socioeconomic, and
conflict data. We then projected conflict risk forward
in time until 2050. Projections follow three alternative
pathways of societal development included in the SSP
scenario framework (O’Neill et al 2017). As not all
SSPs are compatible with all RCPs, the following SSP-
RCP combinationswere employed to reflect a range of
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Figure 1. Geometric boundaries of the water provinces in
Africa plus log-scaled number of observed conflict events in
the reference period (1995–2015) per water province. White
areas denote provinces without recorded conflict in the
reference period.

socioeconomic and climate developments: SSP1 with
RCP 2.6, SSP2 with RCP 4.5, and SSP3 with RCP 6.0.
Details are given in appendix A.

To assess the relative importance of hydro-
climatic drivers, we performed an attribution experi-
ment: one simulation including both hydro-climatic
and socioeconomic data (‘SSP-RCP run’), and
another one with socioeconomic data only (‘SSP
run’).

2.2. Data description
For our analysis, we used indicators already quan-
tified in the SSP projections that can theoretically
and empirically be established as drivers of conflict
risk (see table 1). An important guiding factor for
data selection was the availability of consistent histor-
ical and projected data. Some commonly employed
indicators in empirical conflict studies, such as eth-
nopolitical exclusion and political instability, could
not be included due to the absence of SSP-consistent
projections for these variables. In other cases, the
parametrization of projected variables fails to cap-
ture dimensions that are salient for conflict risk.
For example, the extended portfolio of SSPs includes
within-country income inequality projections (Rao
et al 2019) but these reflect inequalities between indi-
viduals whereas what mainly matters for armed con-
flict risk are systematic inequalities across identity
groups (Cederman et al 2013). As more data becomes
available in the future, follow-up attempts can aim
at expanding the number of explanatory input vari-
ables used. We bias-corrected all variables to ensure
that the statistical properties do not change between
the historical period and projections. A more elabor-
ated overview of data properties and processing can
be found in appendix B. From each pixel-scale or

Table 1. Overview of indicators used to project water
province-level conflict risk. All indicators are sampled with a
one-year time lag. See appendix B for more details.

SSP indicators RCP indicators
Conflict-related
indicators

Education Precipitation Conflict in year
(outcome)

Population
count

Evaporation Conflict in
previous year

Gross domestic
product (GDP)
(Purchasing
power parity,
PPP) per capita

Flood volume Conflict in
neighbouring
province in
previous year

Governance Upper soil
water storage

country-scale variable, we calculated average values
by water province and year, except for population for
which the annual sum was applied. We performed an
additional sensitivity analysis (SA) run to test altern-
ative sampling methods of the RCP indicators. In this
run (named ‘SSP-RCP (SA) run’), the minimum (i.e.
worst-case) pixel-scale value of all RCP indicators per
water province was used, except for flood volume for
which the maximum was taken. For all runs, a one-
year time lag was applied for all indicators to mitigate
reverse causality between drivers and effect.

For conflict event observations, we employed the
UCDP Georeferenced Event Dataset (GED) v20.1
(Sundberg and Melander 2013, Pettersson and Öberg
2020). We selected data on ‘state-based armed con-
flict’ and ‘non-state conflict’ events, indicating deadly
conflict between the government and one or more
non-state actors or between non-state actors, respect-
ively. Conflict events between countries were not
included as they remain exceptionally rare, and
accounting for this conflict type would require a dif-
ferent research design. Conflict was coded as a binary
variable, obtaining the value ‘1′ if at least one conflict
event was reported in the given water province during
the year and ‘0′ if not.

To account for history of conflict, a well-
established driver of conflict occurrence (Hegre
and Sambanis 2006, Mach et al 2019), we sampled
whether armed conflict took place in the same
province during the previous year. Additionally, we
sampled whether a conflict event occurred in any of
the neighbouring provinces in the previous year to
account for ‘spill-over effects’ (Buhaug and Gleditsch
2008, Schutte and Weidmann 2011). A binary value
was assigned depending on the outcome.

2.3. Set-up of the MLmodel
Bymeans of usingMLmethods, we determine the his-
toric relation between the indicators (‘sample data’)
and conflict risk (‘target data’). It is in the nature
of the ML algorithm applied that this relation is
stationary in time. The established link does hence
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not change between the historical training period
and future projections, a general limitation common
with previous work on projections (Bowlsby et al
2020). Although we are unable to explore alternat-
ive assumptions of dynamic predictive power here,
usingMLhas the distinct advantage that it can flexibly
deal with non-linearity between the sample and target
data and without pre-defining theoretically assumed
interactions between the indicators. We defer this
important challenge to future research.

2.3.1. The reference period 1995-2015
To derive a stable relationship between the indicators
and conflict, we employed the open-source software
package CoPro v0.1.1 (Hoch et al 2021a, 2021b) to
train a Random Forest classifier (RFC) model with
21 years of data (1995–2015). See appendix C for a
detailed model description.

For each year of the reference period 1995–2015,
values were extracted for all indicators. The result-
ing sample data and target data were appended annu-
ally, yielding a ‘master matrix’. To minimize the risk
of overfitting ourmodel, 100 RF trees were initialised.
For each tree, 70%of themastermatrix datawere ran-
domly drawn to train the model and the remaining
30% were preserved to evaluate the predictions. The
RFC model, therefore, follows a different approach
than for exampleWitmer et al (2017), who uses a con-
ventional regression model framework.

These predictions were subsequently evaluated
against observed conflict events and a range of evalu-
ation metrics was computed (see section 3.1). Addi-
tionally, the relative importance of each indicator was
assessed to improve our understanding of their rela-
tion with conflict occurrence. While the evaluation
metrics focus on the accuracy of all data points, it is
also important to assess accuracy per water province.
Hence, the fraction of correct predictions (FOPs) per
water province polygon i was determined as follows:

FOPi =

∑
cpi
Ni

where cp denotes a correct prediction andN the num-
ber of predictions made for a given polygon i. FOP
can thus range between 0 (no correct prediction)
and 1 (only correct predictions). Computing the FOP
allows for identifying provinces where model output
is more likely to be correct.

2.3.2. Projections of conflict risk until 2050
From the end of the reference period until 2050, we
make annual out-of-sample forward projections. To
maintain the internal consistency of each projection
pathway, this was done for each selected SSP-RCP
combination and each of the 100 RF trees separately.

The last reference year (here: 2015) is used to ini-
tialize the conflict risk projections, since all projec-
tions are based on indicator and conflict values of the

previous year due to the 1 year time lag. All projec-
tions after 2016 draw upon the projected binarymaps
of conflict occurrence in the previous time step of
each individual RF tree, while the remaining indicator
values are provided by SSP- and RCP-specific input
data.

At the end of each projection year, the outcomes
of all trees are combined per water province. We
therefore not only obtain a final projection for the
year 2050 but also all years in between, yielding the
possibility to track conflict risk development over
time (see appendix D for conflict risk development
over the entire African continent).

As a quantitative validation of the long-term pro-
jections against true outcomes is not possible, model
output is evaluated by comparing projections across
all scenarios for the SSP-RCP and SSP run separately.
Therefore, the probability of conflict (POC) per poly-
gon iwas annually determined over all RF trees (T) as:

POCi =

∑T
t P(c)i,t
T

where P(c) denotes the projected probability of con-
flict per polygon i and RT tree t.

3. Results and discussion

3.1. Model validation
The reference period 1995–2015 is used to evaluate
the performance of the SSP-RCP run and the SSP run.
In general, only marginal differences in predictive
performance are reported between both runs (table 2,
figure 2). Including hydro-climatic information has
thus only limited effect on the model’s ability to cor-
rectly predict conflict risk across the African con-
tinent for the historical sample in the current study
design.

For both runs, the overall model performance is
good as indicated byROC-AUC scores above 0.9, with
the SSP run showing a slightly better performance.
The computed ROC-AUC score is in line with previ-
ous studies (Hegre et al 2013, Colaresi andMahmood
2017). The mean Brier-score, measuring the mean
squared difference between the predicted probability
and the actual outcome, is slightly higher than that
computed by Witmer et al (2017) but comparable
with Hegre et al (2019).

Overall accuracy—that is, the fraction of correct
classifications—is good in both runs. Mean precision
(the ability of the classifier not to label an observation
as ‘conflict’ that is ‘non-conflict’) is slightly higher in
the SSP-RCP run whereas recall, which expresses the
ability of the classifier to find all positive observations,
is lower than in the SSP run. The relatively low recall
in both runs is most likely rooted in the imbalanced
training dataset due to the small fraction of conflict
observations (∼22%).
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Table 2. Overview of computed model evaluation scores for both SSP-RCP run and SSP run for the period 1995–2015.

SSP-RCP run SSP run

Average ROC-AUC score 0.90 0.91
Average precision-score 0.74 0.77
Average accuracy 0.87 0.87
Average precisiona 0.76 0.75
Average recall 0.62 0.64
Average Brier-score 0.10 0.09
Average FOP 0.87 0.87
a Note that precision and precision-score are different. While the former computes

actual precision of model output, the latter is based on the precision-recall curve.

Figure 2. (A) ROC-curve averaged over 100 model repetitions for both SSP-RCP run and SSP run. (B) probability density
functions for accuracy, precision, recall for SSP-RCP (darker shade; solid line) and SSP runs (lighter shade; dashed line).

The spatial model performance strongly depends
on the number of conflict events between 1995 and
2015 per water province (see figure 3(A)). Predictions
of conflict are more accurate in very conflict-rich
provinces and in provinces with no or little conflict
observations. In contrast, polygons with an interme-
diate number of reported conflict events tend to be
less accurately predicted. Overall FOP is nevertheless
high with a sample average of 0.87 in both runs (see
table 2). Identical values are obtained in the SSP-RCP
(SA) run (see appendix E), indicating robust model
performance across settings.

Areas with low model accuracy in the reference
situation as expressed by low FOP values include
southern Algeria as well as parts of the Sahel and
Sahara, the Democratic Republic of the Congo
(DRC), Somalia, and Ethiopia (figure 4(A)). In these
areas, only an intermediate number of conflict events
is observed (figures 1 and 3). There is, however,
not a single country for which all water provinces
are poorly modelled—an advantage of using a sub-
national aggregation level. Conflict-prone regions
identified with high POC in the out-of-sample val-
idations are, inter alia, the Horn of Africa, South
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Figure 3. (A) scatter plot of FOP and the number of reported conflict events per polygon including third-order regression line
and 95% confidence interval for the SSP-RCP run; (B) permutation importance for projections made with reference period data
for the SSP-RCP run.

Sudan, Nigeria, and the north-eastern part of DRC
(figure 4(B)). Projections for these areas largely agree
with observations of current conflict as reported in
the conflict database (figure 1). By comparing FOP
and POC values obtained by the SSP only and SSP-
RCP run, we find that for the reference period the
inclusion of hydro-climatic variables both regionally
improves and reduces accuracy as indicated by high
FOC values (figure 4(C)) and that particularly east-
ern Africa and Nigeria are predicted by the SSP-RCP
run to be more conflict-prone than in the SSP run
(figure 4(D)). The distribution of provinces where
inclusion of RCP indicators improved FOP values is
54%, again quantifying their overall limited impact.
Detailed maps of FOP, FOP difference, and a number
of observed conflict events for selected regions can be
found under appendix F.

3.2. Major predictors of conflict
To assess the indicator importance in RF models,
there are multiple approaches (Tyralis et al 2019).
Here, we computed the permutation importance
per indicator, that is, the decrease in model score
when the original relation between indicator and
dependent values is broken (Breiman 2001). The

permutation importance was subsequently normal-
ized relative to the indicator with the highest value
to improve comparability. It is important to note
that the permutation importance does not provide
information on whether a variable increases or
decreases conflict risk. Aggregating importance is
therefore not sensible as different variables can have
countervailing effects.

The indicator with the highest importance is con-
flict in the previous year (figure 3(B)). A recent his-
tory of conflict is an important, well-documented
driver of conflict (Hegre and Sambanis 2006, Gold-
stone et al 2010, Bara 2014,Mach et al 2019). Previous
conflict in neighbouring water provinces also plays an
important role and is ranked third (Buhaug andGled-
itsch 2008, Schutte and Weidmann 2011).

The second-ranked indicator is quality of gov-
ernance, whose relevance again is supported by earlier
empirical studies (Goldstone et al 2010, Besley and
Persson 2011, Walter 2015).

Education and population count are ranked
fourth and fifth. Educationmay have indirect impacts
via socioeconomic divisions as well as varying degrees
of political inclusion (Barakat andUrdal 2009, Brown
2011). A high population count is found to amplify

6
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Figure 4. (A) Fraction of correct predictions (FOP) per water province obtained with the SSP-RCP run; (B) predicted probability
of conflict (POC) obtained with the SSP-RCP run; (C) difference between FOP obtained with SSP-RCP run and SSP only run;
(D) difference between POC obtained with SSP-RCP run and SSP only run. All values were obtained for the reference period
1995–2015.

the risk of conflict through multiple processes,
including by increasing the likelihood of finding a
critical mass of prospective combatants (Raleigh and
Hegre 2009).

GDP per capita (PPP) is found to be of less
importance than other socioeconomic indicators.
This may be surprising since low economic develop-
ment is often mentioned as a major risk factor for
conflict (Fearon and Laitin 2003, Mach et al 2019).
The modest explanatory power in our model is partly
a product of also accounting for human development
(education), which often is ignored in conflict stud-
ies, and because our spatial sample includes mostly
low-income countries (Vestby et al 2021).

Overall, the hydro-climatic indicators are found
to be the least influential among the indicators but
still add to the explanatory power of the ML model.
This is in line with prevalent findings, underlining
that climate anomalies themselves are unlikely to lead
to conflict in the absence of adverse socioeconomic

conditions (Mach et al 2019). Here, soil moisture and
evaporation are of slightly higher importance than
flood volume and precipitation although the overall
differences are marginal.

The overall picture therefore shows that CoPro
can capture the main historical spatial and temporal
variability of conflict occurrence over Africa well.
With respect to indicator importance, model results
follow the current understanding of contemporan-
eous literature by assigning higher importance to the
history of conflict and socioeconomic drivers than to
hydro-climatic variables.

3.3. Scenario projections
3.3.1. Output analysis
After validating CoPro model output for the histor-
ical period, we first explore the projectionsmade with
multiple SSP-RCP combinations and subsequently
compare them with output from SSP only runs. The
volatile and somewhat stochastic pattern of conflict

7
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Figure 5. (left) projected probability of conflict (POC) per water province averaged over period 2041–2050 for the SSP-RCP run;
(right) absolute difference between simulated POC for SSP run and SSP-RCP run per water province for corresponding SSP-RCP
combinations. Blue colours correspond to higher risk without the hydro-climatic projections used in the SSP-RCP run
(i.e. climate change contributes to reducing simulated conflict risk in these areas). Note that for the right panel the legend values
are manually set for improved visualization of the spatial patterns.

onset and ending suggests that evaluating projections
for a single year may yield rather arbitrary results (see
appendix D). We therefore decided to average out-
put over the final decade 2041–2050 to obtain a more
robust picture.

Projections made reflect the scenario storylines
and show greater conflict probability in SSP3-RCP6.0
compared to SSP1-RCP2.6 (figure 5). This difference
between scenarios is consistent over time (figure 6).
For all projections, the spatial spread is less than in
the reference situation. Given the more sustainable

development of SSP1-RCP2.6 compared to today, a
reduction of conflict-prone areas can be expected, in
line with earlier research (Hegre et al 2016). Even
so, the simulated drop in overall conflict propensity
is also driven by the overly optimistic quantitative
projections for future socioeconomic development in
Africa even under SSP3 (see Buhaug andVestby 2019)
that depresses future modelled conflict risk particu-
larly for low-income countries. Governance projec-
tions may also be overly optimistic in the SSPs as
its future development is modelled as a function of

8



Environ. Res. Lett. 16 (2021) 124068 J M Hoch et al

Figure 6. Probability of conflict per water province averaged for each decade up to 2050 for all SSP-RCP runs.

economic growth, implying that overall conflict pre-
valence may be higher than what these risk projec-
tions indicate, especially in less optimistic develop-
ment futures.

Figure 5 shows the distribution of and diver-
gence in projected POC over Africa for the SSP-RCP
runs compared to the reference scenarios. For SSP1-
RCP2.6, the highest POC is obtained for North and
West Africa as well as for (parts of) Mozambique,
Tanzania, Kenya, and Angola. For SSP3-RCP6.0, and
to a lesser extent for SSP2-RCP4.5, almost the entire
Sahara and Sahel zone and the Horn of Africa face
substantial armed conflict risk. Other areas projected
to experience increased POC in SSP3-RCP6.0 com-
pared to the other scenarios are large parts of Angola,
DRC,NorthernMali and coastalWest Africa. Conflict
risk also increases in southern Morocco and Maur-
itania. These areas overlap only partly with those
having a high POC for the reference situation (see
figure 4(B)).

Comparing output from the SSP-RCP and SSP
only runs, several patterns can be observed. For the

SSP1 scenario, overall differences are small, owing
to the relatively modest changes in projected hydro-
climatic conditions until 2050 in the associated RCP
2.6 pathway. In SSP2, especially Northern and parts of
Central Africa are projected to bemore conflict-prone
when climate effects are not accounted for, whereas
parts of the Sahel and southern Africa are projec-
ted to have a decreased POC. In SSP3, differences
are found to increase especially in the Sahel, showing
both a higher POC (northern Sahel) and a lower POC
(southern Sahel) when not considering RCP indicat-
ors. In general, and as expected, results depict that
the influence, both negative and positive, of climate
change becomesmore pronounced with higher RCPs.

To explore this in more detail, a closer look at
RCP 6.0 reveals that in Northern Africa, projected
decreases in precipitation and evaporation (figure 7)
correspond with higher POCs in the SSP-RCP run
compared to the SSP run. In DRC, increases in flood
volume may add to an increased POC. Meanwhile,
increased levels of precipitation inWestern Africa and
southern parts of the Sahel could explain a lower
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Figure 7. Relative change in percent of mean levels of each hydro-climatic indicator per water province in 2041–2050 compared to
1995–2015 under RCP 6.0. (A) Precipitation. (B) Evaporation. (C) Soil Moisture content. (D) Flood volume. Note that legend
extends indicate whether legend values were cut for improved visualization of spatial patterns.

POC in the SSP-RCP scenario. For other regions, the
hydro-climatic patterns are too ambiguous to make a
substantive influence on the projections.

3.3.2. Projection uncertainties
A clear caveat in making these projections is the
implicit (but common) modelling assumption that
the shape and strength of relationships between the
predictors and the outcome remain stationary across
the training and projection periods. Relations will
most likely not remain stable over time; especially
when climate change impacts worsen, its role is likely
to increase with respect to the reference situation
due to non-linear sensitivities and potential social
tipping points (Mach et al 2019). Also, Bowlsby
et al (2020) point out that the drivers of instabil-
ity are not constant over time and that care must be
taken when interpreting projection studies based on
historical relations. This limitation could be partly
overcome by using more advanced deep-learning and

self-learning ML models or by altering the historical
relation between indictors and conflict to explore an
ensemble of possible futures. However, such more
complex models also would make it more difficult
to understand the input–output relations between
drivers and conflict risk.

When testing the output sensitivity to different
sampling methods of the RCP indicators, results of
the SSP-RCP (SA) run indicate an overall agree-
ment of projected trends at the regional scale (see
appendix E). Locally, projections of the climate sens-
itivity run show, however, both negative and posit-
ive deviations, indicating that the way climate vari-
ables are sampled may affect projection outcomes at
the water province scale.

Furthermore, the impact of hydro-climatic data
must be assessed carefully as the RCPs are quanti-
fied differently in different GCMs. The applied IPSL
model provides only one of multiple possible real-
izations of future climate. IPSL was selected as it
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projects changes that are in the mean of the full
ensemble of CMIP5 GCM models (Warszawski et al
2014, Wanders et al 2015). However, the direction
and magnitude of change for specific climate indic-
ators vary across GCMs in some parts of the African
continent.

Still, the results exhibit consistency in space and
time across the outputs for various SSP-RCP combin-
ations as projected POC values agree with the under-
lying scenario storylines (appendix A). In the end,
we cannot claim with certainty how interactions and
relations will develop in the future, and how armed
conflict risk will be distributed in space and time. As
projections in general can at best work as realizations
of imaginable futures (de Bruin et al 2021), it would
not be credible to pretend that we hold this know-
ledge, nor that it can be accurately included intomod-
els. As such, the conflict maps shown represent a lim-
ited number of plausible realizations among an infin-
itely imaginable set of possible futures.

4. Conclusions and recommendations

To project future areas at risk of armed conflict, we
employed the open-source ML model CoPro to pro-
duce maps of regions-at-risk for various scenarios
in Africa until 2050. Also, we compared the relative
impact of hydro-climatic variables on conflict occur-
rence. To our knowledge, this study represents the
first attempt to use ML for long-term conflict risk
projections. By using data-driven approaches, exist-
ingmodel designs can be complemented and theoret-
ical insights can be contributed to the ongoing debate
on the potential impacts of climate change on armed
conflict.

Results indicate a more peaceful future compared
to current conditions for SSP1-RCP2.6, and in many
areas also under SSP2-RCP4.5. In the SSP3-RCP6.0
scenario, conflict risk will increase in many regions
that already suffer from high prevalence of conflict,
particularly in the Horn of Africa and parts of West
Africa and East Africa (figure 6). These results are
consistentwith the underlying scenario storylines and
other studies. Besides, our results indicate that hydro-
climatic indicators may both increase and decrease
conflict risk, depending on the location: in North-
ern Africa and large parts of Eastern Africa climate
change increases projected conflict risk whereas for
areas in theWest and northern part of the Sahel shift-
ing climatic conditionsmay reduce conflict risk. Since
the runs performed aremore experiments than depic-
tions of the real world with all its complexity, these
findings must, however, be interpreted carefully.

A wider range of quantified SSP indicators would
allow for ensemble projections and thus for map-
ping their uncertainties (O’Neill et al 2020). Until
then, we are limited to available sources, includ-
ing too bright projections of economic growth for
low-income countries that also affect the governance

projections (Buhaug and Vestby 2019). Currently,
ensemble projections are only possible for RCP indic-
ators derived from GCMs. In follow-up studies, their
ensemble output should be used to confirm (or dis-
miss) our findings of the projected impact of hydro-
climatic indicators.

We also recommend investigating the role of on-
the-ground impact of the meteorological drivers pre-
cipitation and temperature. Changes thereof cannot
be translated directly to changes in conflict, but it is
rather the local impact that is decisive. Example can-
didates are the impact of climate change on ground-
water levels (Döring 2020), actual flood and drought
risk (Von Uexkull 2014, Ide et al 2021), crop pro-
duction (Von Uexkull et al 2016), and food prices
(Raleigh et al 2015).

This study merely focused on climate change
impact of hydrology-related indicators. Other
climate-related factors that might inform conflict
risk, such as heatwaves, are not considered. Besides,
the use of annual averages does not capture changes
in, for example, timing and intensity of the rainy sea-
son, and cumulative effects building up over time.
Future work should hence try to include these intra-
and inter-annual effects. With the flexible structure
of CoPro and the implemented ML approach, new
insights and novel data sources can be included as
they become available.

We found that data availability is a major con-
straint for advancing data-driven projections of
armed conflict risk. Since the distribution of areas
with observed conflict events versus areas without
conflict is imbalanced towards the latter, transitional
areas that have seen violence only sporadically or in
parts of the training period are more difficult to pre-
dict. Furthermore, only drivers that have been pro-
jected within the SSP framework (plus the exten-
ded governance data) could be employed, whereas
empirical conflict literature offers additional contex-
tual variables of importance, such as political dis-
crimination and grievances (Cederman et al 2013)
and agricultural dependence (Von Uexkull et al
2016). When improved quantitative data under the
various SSPs becomes available, data-driven projec-
tions can be advanced. Another avenue for future
work is considering potential differences in responses
for different conflict types, as well as the unique
scope conditions underwhich thesemightmaterialize
(Von Uexkull and Buhaug 2021).

Adverse climate change impacts intensifying in
many regions raise concerns for peace and security. As
precise knowledge about ‘where’ and ‘when’ of con-
flict onset is impossible to obtain for long-term pro-
jections, following various scenarios and producing
consistent maps of possible conflict risk realizations
may facilitate informing policy-making processes.
Based on these conflict maps, the potential con-
sequences of today’s decision-making on long-term
conflict development can become tangible. This study
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points to the benefits for peace of investing in eco-
nomic, human, and political development and main-
taining sustainable demographic change (resulting
in a SSP1 world with decreasing radiative forcing)
over nationalism and protectionism (resulting in a
SSP3 world with stabilizing radiative forcing). Our
study also shows that projecting conflict risk with
ML approaches may be a viable way forward towards
more insights into the delicate interplay of climate
change and conflict.
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Appendix A

In deciding which SSP-RCP combinations to use,
we followed the matrix of possible combinations
as provided by van Vuuren et al (2014). Within
these possibilities we included the more divergent
combinations. Table 3 provides brief descriptions of
the SSP and RCP scenarios used.

Appendix B

The following socioeconomic indicators were used:
pixel-scale log-transformed population count (Jones
and O’Neill 2016), pixel-scale log-transformed gross
domestic product per capita based on purchasing
power parity (GDP per cap (PPP); Murakami and
Yamagata 2019), country-scale education expressed
as the mean number of schooling years at age 25
or older (Wittgenstein Centre for Demography and
Global Human Capital 2018), and country-scale

estimates of quality of governance (Andrijevic et al
2020)1F5, with the latter representing an extension to
the basic SSP projections based on the World Bank’s
Worldwide Governance Indicators.

As hydro-climatic indicators we selected yearly
anomalies of precipitation, evaporation, flood
volume, and upper soil water storage per water
province. These pixel-scale indicators were selected
to represent overall climate variability (precipitation
and evaporation) and on-the-ground hydrological
effects (floods and soil water storage as proxy for
droughts (Basche et al 2016, Silva 2017)). All envir-
onmental variables were simulated with the global
hydrological model PCR-GLOBWB (Sutanudjaja
et al 2018). For climate projections under the vari-
ous RCPs, the model was forced with CMIP5 output
from the global climate model (GCM) IPSL, derived
from the ISIMIP ensemble (Warszawski et al 2014) to
ensure consistency between the historical and future
records.

Additional details are provided in table 4.
In line with common approaches in climate

science (Teutschbein and Seibert 2012), we bias-
corrected all variables to ensure that the statistical
properties are not altered significantly moving from
the historical record to the projections as such alter-
ations could potentially weaken the relation between
the projected indicators and conflict events. Thus, we
used the last available observation and compared it to
the first year from the projection.We assumed that the
computed additive bias remains constant through-
out the projections and corrected all future years
accordingly.

All indicators are gridded and were conservat-
ively resampled to a 5 arc-min spatial resolution (that
is, around 10 km by 10 km). For those indicators
with discontinuous temporal coverage of the simula-
tion period (both reference and projection period),
linear interpolation was applied between available
data points. The same data sources were used for
both the reference period and the projection period.
This list gives only the variables that are exogenously
entered into the projections. Conflict in neighbour-
ing provinces and history of conflict are based on the
dependent conflict variable.

Appendix C

This appendix outlines the main characteristics
of CoPro, the machine learning (ML) framework
developed to project long-term conflict risk. More
specific and detailed details can be found on the
online documentation, which also contains interact-
ive examples of the various steps taken throughout the
simulation (https://copro.readthedocs.io/en/latest/).

5 Although governance is typically not subsumed under socio-
economic indicators, we do so here for the sake of easier readability
and traceability throughout the manuscript.
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Table 3. Overview and descriptions of scenarios used in the study.

RCP Scenario description (from O’Neill et al (2017))

SSP1
Sustainability

2.6 SSP1 is characterised by a gradual shift towards a more sustainable
and inclusive path than today’s. International cooperation, higher
levels of health care and education accelerate a downward demo-
graphic trend. Challenges for mitigation and adaptation are low.
Under RCP 2.6, total radiative forcing increases to 3.0 W m−2 until mid-
century before a decline begins. It is the low end of the scenario literature in
terms of emissions and radiative forcing (van Vuuren et al 2011). For this
scenario, greenhouse gases emissions need to be collectively reduced.

SSP 2 Middle
of the road

4.5 SSP2 follows the current trends in environmental and socioeco-
nomic developments without fundamental breakthroughs.
Challenges for mitigation and adaptation are moderate.
Under RCP 4.5, total radiative forcing will have increased relatively steeply
to around 3.8 W m−2 before stabilization begins. To reach RCP 4.5, changes
in the energy system are needed and cost-efficient technologies to lower net
emissions must be implemented (Thomson et al 2011).

SSP 3
Regional
Rivalry

6.0 SSP3 is characterised by an increase in nationalism, degrading
environmental developments and declining investments in health-
care and education, leading to high population growth in lower
income countries. Challenges for mitigation and adaptation are high.
Total radiative forcing under RCP 6.0 increases steadily to 3.5 W m−2 in
2050. Stabilization only begins in the end of the century. RCP 6.0 implies
explicit climate policy intervention and greenhouse gas emissions peak
around 2060 and then decline until 2100 (Masui et al 2011).

Details on the specific application in this paper, such
as input variables and division of training and test
data, are found in sections 2.2 and 2.3 in the main
manuscript.

CoPro software requirements and installation

CoPro is a computational framework specifically
designed to project conflict risk using ML meth-
ods. It is entirely written in Python and makes
use of the latest geospatial and ML packages. Dur-
ing development, emphasis was put in usability
which was reviewed in a separate software public-
ation (Hoch et al 2021a). CoPro can be installed
on both Windows, MacOS, and Linux. Install-
ation is possible either from source code, giv-
ing users the possibility to further develop the
software, or as compiled software for immedi-
ate use (see https://copro.readthedocs.io/en/latest/
Installation.html). In both cases, but particularly the
first, minimum Python experience is necessary.

Once installed, CoPro can be executed from com-
mand line alongside a text file (hereafter named
‘config-file’) containing information about data
sources and settings for a run. The user thus only
needs to fill the config-file with run-specific input
data and settings, but does not need to adapt any-
thing on the software side of things.

Input data requirements and settings

To run CoPro, data sources and settings need
to be provided in a text file, hereafter named
‘config-file’. A template can be found at https://
copro.readthedocs.io/en/latest/Settings.html. CoPro
can be run with any input indicator dataset as long as

it meets the following requirements: (a) it has a clear
indicator variable name; (b) it has continuous annual
data along the time axis, (c) it is gridded with longit-
ude and latitude information, and (d) it is provided in
netCDF-format. In a nutshell, the input netCDF-file
needs to have three dimensions: longitude, latitude,
and time. Also, the spatial aggregation level (e.g. water
provinces, counties, states, countries and so forth)
can be user-defined by providing a file with corres-
ponding polygons which altogether define the over-
all study area. The only input dataset that is not flex-
ible is the conflict event data. Here, CoPro is currently
still limited to UCDP GED (Sundberg and Melander
2013, Pettersson and Öberg 2020). The only flexibil-
ity with respect to the conflict event data is the type of
violence which can be user-defined. Future work will
aim at including other conflict event databases such as
ACLED. Additional settings that need to be provided
to CoPro are:

• the historical time period;
• the year until which projections are ought to be
made;

• optionally, climate zones can be specified which
will work as masks for the study domain. That way,
only the overlay area between the study area and
the selected climate zones will be considered in the
simulations;

• a location where to store model output.

Machine learning settings

In addition to the input data requirements and set-
tings, a couple of settings need to be specified in
the config-file with respect to the ML methods to be
employed.
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Table 4. Overview of indicators used plus their data source and additional notes.

Indicator Unit Source Notes

Population
count

— Jones and
O’Neill (2016)

A downscaling model was used to produce projec-
tions of spatial population change that are quantit-
atively consistent with national population and urb-
anization projections for the SSPs and qualitatively
consistent with assumptions in the SSP narratives
regarding spatial development patterns.

Gross domestic
product (GDP)
per capita (pur-
chasing power
parity (PPP))

Billion USD
(2005)/capita

Murakami
and Yamagata
(2019)

The GDP (PPP) is determined by down-
scaling urban and non-urban population
by using multiple auxiliary variables, yield-
ing gridded values until 2100 by 10 years.
GDP per capita (PPP) is obtained per water
province by dividing the mean GDP (PPP) with
population count averaged over each water
province.

Education years Wittgenstein
Centre Human
Capital Data
Explorer (2021)

Mean number of schooling years at age 25 or older
for all sexes at the country level.

Governance
index

— Andrijevic et al
(2020)

This composite governance index is computed at
the country level taking the Worldwide Governance
Indicators (WGI) as the starting point. Determ-
inants for the projections are, inter alia, GDP per
capita, education, and gender gap in education.
A more elaborated outline can be found in the
methods section of Andrijevic et al (2020) and its
supplement.

Upper soil water
storage

m PCR-GLOBWB
(Sutanudjaja
et al 2018)

All hydro-climatic variables were continuously
simulated with the global hydrological model
PCR-GLOBWB at 10 arc-minutes spatial resolution.
Annual averages of the model output formed the
input for this study. Anomalies were determined for
both the reference and projected period based on
mean reference value.

Total evapora-
tion

m

Flood volume m3

Precipitation M

Simulated
conflict

— Simulated by
CoPro

Per water province, a Binary indicator whether the
machine learning model projects conflict (value 1)
or non-conflict (value 0). Is accompanied by the
probability of conflict which is computed as out-
lined in section 2.3.2.

Conflict in
previous year

— UCDP GED
v20.1/CoPro

For the reference period, this Binary indicator was
determined per water province by checking whether
there was at least 1 conflict event reported in the
UCDP GED dataset (Sundberg and Melander 2013,
Pettersson and Öberg 2020) in the previous year. For
the projection period, conflict occurrence simulated
by each classifier was used instead.

Conflict in
neighbouring
province in
previous year

— UCDP GED
v20.1/CoPro

Idem, but specified to capture spatial instead of tem-
poral proximity to other events, i.e. whether there
was at least one neighbouring water province where
conflict was reported (reference run) or simulated
(projection) in the previous year.

• The scaling method. The scaling method defines
how the values sampled from the different
indicator datasets are converted to standard nor-
mally distributed data. This is needed to avoid
indicators with higher variance to dominate the
ML estimation. CoPro currently supports four dif-
ferent scaling methods;

• the ML method. CoPro currently supports three
methods: NuSVC (Nu-Support Vector Classifica-
tion), KNeighborsClassifier, and Random Forest

Classifier. They all belong to the class of super-
vised learning classifiers (see below for additional
information). Each model differs how the relation
between indicators and conflict event data is estab-
lished as well as in additional tuning parameters;

• the fraction of datapoints used for training the ML
model. This inherently defines the fraction that can
be used to validate the out-of-sample predictions;

• The number of ML model instances to be used.
This is ameasure to account for the uncertainty and
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arbitrariness how the MLmethod chooses the data
used for training and evaluating the predictions.

Supervised learning classification

As we distinguish our ML target (that is, the variable
whose prediction we try to optimize) as either ‘con-
flict’ or ‘no-conflict’, we can speak of classification.
And as we know these labels a priori and feed the ML
model with this information, we employ supervised
learning classification methods: methods that learn
under user-supervision using upfront-known classi-
fiers for the target data. The ability to learn is then
also the main difference compared to more conven-
tional statistical methods such as (linear) regression
as for instance used by Witmer et al (2017).

Within supervised learning classification, there is
a plethora of ML routines. We included three of these
routines into CoPro and briefly explain them here in
more detail.

Nu-SVC is a classificationmethod from the group
of support vectormachines (SVMs). These SVMs sep-
arate labelled target data using a hyperplane, which
in case of two indicators is a line, as decision bound-
ary. Depending on which side of the hyperplane the
indicator values fall, a SVM returns the correspond-
ing label. SVMs have the advantage of low computa-
tional demand if drawing a hyperplane is feasible.

The KNeighbors Classifier is a classification
method from the group of nearest neighbors. To pre-
dict the label P (e.g. conflict or not) of a point in a
two-dimensional case with two indicators A and B,
the KNeighborsClassifier would first calculate the dis-
tance between the indicator value pair (AP, BP) to all
other known indicator value pairs. Depending on the
value provided for k, the classifier selects all labels
within the radius k for a decision and assigns the
majority of the labels found. By changing the value
for k, the search radius and thus number of labels in
the search can be increased or decreased.

The Random Forest Classifier (applied in this
manuscript) belongs to the group of ensemble
algorithms. It randomly selects from the known
indicator values and corresponding labels to cre-
ate the so-called decision trees. Each tree is further
branched up to a certain depth or until there is no
additional information gain. To predict the label from
indicator values, the average vote from all decision
trees is employed. In a binary example, the predicted
label would be 1 if the average from all decision trees
is above 0.5. This method is suitable if the labelled
data cannot be easily divided by a hyperplane or if
the nearest neighbors do not provide a clear estimate.
Further (mathematical) information can be found in
Breiman (2001).

CoPro workflow in a nutshell

Once all data and settings are provided, the simu-
lations can be commenced following the workflow
depicted in figure 8. Additional information and an

interactive Python notebook can be found at https://
copro.readthedocs.io/en/latest/examples/index.html.
In a first step, the relation between indicators and
conflict event data needs to be established. To that
end, CoPro initially defines the study area and con-
flict events to be considered by applying the different
model settings in a filtering step. Subsequently, CoPro
will go through each year th of the historical period.
Per year and polygon, the indicator and conflict data-
sets will be read, applying a 1 year time lag for the
indicator data plus the variables ‘Conflict in previous
year’ and ‘Conflict in neighboring province in pre-
vious year’ (see appendix B). This implies that the
first year has to be skipped and merely serves as input
to the second. Hence, the indicator data associated
to th consists of the data observed for th-1. For the
target conflict data itself no time lag is applied. Per
polygon, CoPro produces a Binary value per indic-
ator dataset representative for a given water province.
This value is determined using common statistical
methods such as the mean, max or min. It can also
be opted for log-transforming the data. Both settings,
that is the statistical method and whether indicator
values should be log-transformed, must be provided
in the config-file.

Once indicator and target data were sampled for
the entire historical period, the scaling method is
applied. Then, a user-specified number of model
instances is trained with a user-defined fraction of
this scaled data. The trained instances are stored to
be used again for the projections. The other part of
the scaled data is then used to make out-of-sample
predictions of conflict occurrence and evaluate them
using multiple metrics. By using and averaging across
multiple model instances, a robust picture can be
obtained of the accuracy of conflict risk predictions.

In a second step, CoPro projects conflict risk per
year tp between the end of the historical period until
the year until which projections are ought to bemade.
Due to the 1 year time lag, the first projection year
can still draw upon historical data. Afterwards, CoPro
employs the scaled projected annual indicator data
at tp-1 as model input together with simulated con-
flict risk at tp-1. This is again executed for each model
instance separately to output projected conflict risk
at tp. By again averaging across all model instances
per year, CoPro yields one overall projection for each
tp. These out-of-sample forward projections are con-
tinued until the last year of the projection period is
reached.

Appendix D

The development over time of projected mean prob-
ability of conflict over the entire continent of Africa is
depicted in figure 9. Even for these continent-average
aggregations, which mask large sub-continental dif-
ferences (see figure 6), the ‘erratic’ nature of con-
flict onset is visible, mostly driven by variations in
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Figure 9. Continent-wide statistics of conflict probability per year for different scenarios.

the hydro-climatic variables which show a higher
degree of year to year variability. Clear differences in
trends can be observed between a sustainable devel-
opment scenario (SSP1) and a scenario characterized
by regional rivalry (SSP3). For the latter, results indic-
ate that no pacification will occur until 2050, whereas
the other scenarios show a clear downward trend.
Additionally, continent averages show that the evolu-
tion of socioeconomic development is more influen-
tial for future conflict risk than hydro-climatological
change, which is in line with other research (Witmer
et al 2017, Koubi 2019, Mach et al 2019).

Appendix E

To assess how sensitive the model is to changes in
the sampling method of the climate variables, we
performed an additional ‘sensitivity analysis’ run
(hereafter: SSP-RCP (SA) run), aggregating the cli-
mate variables in a different way. In these mod-
els, we use the minimum pixel-level values of the
climate variables within water province boundaries
for all climate variables, except for flood for which
we take the maximum. These aggregations follow a
‘weakest link‘ logic where groups may mobilize for
violence anywhere within the water province when
exposed to adverse impacts of climate variability and
unfavorable conditions in some places cannot be
made up for by favorable conditions in other loc-
ations. For the historical period, results differ only

very marginally from the default SSP-RCP run. Sim-
ilarly, projected conflict risk for the period 2041–
2050 differs primarily at the water province level
(figure 10) while regional trends and model per-
formance remain stable across sampling techniques
(table 5).

Appendix F

Figure 11 provides detailed maps of the fraction of
correct predictions (FOPs) for the SSP-RCP run in
the reference period 1995–2015, the difference of FOP
values between SSP only run and SSP-RCP run, and
the number of observed conflict events per water
province in this period. The FOP is determined as
the number of correct predictions over number of
total predictions. Formore detail, see section 2.3.1. By
comparing FOP values with the number of observed
conflict events, it is possible to obtain an idea why
CoPro yields high respectively low FOP values. Over-
all, the model yields highest FOP values where either
a lot of conflict events are observed (in the south
West of Somalia, for instance) or where only few or
no events are observed, such as in the north West of
Ethiopia. This aligns with the findings presented in
figure 3 and section 3.1. Furthermore, we find that
there is no FOP difference mostly for provinces with
a low or high number of observed conflicts. Except
from this, a clear relation between number of conflicts
observed and FOP difference between runs cannot be
derived from these data.
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Figure 10. Projected conflict risk with SSP-RCP and SSP-RCP (SA) runs for the different scenarios for the decade 2041–2050.

Table 5. Overview of computed model evaluation scores for SSP-RCP and SSP-RCP (SA) run for the period 1995–2015.

SSP-RCP run SSP-RCP (SA) run

Average ROC-AUC score 0.90 0.90
Average precision-score 0.74 0.75
Average accuracy 0.87 0.87
Average precision 0.76 0.76
Average recall 0.62 0.61
Average Brier-score 0.10 0.09
Average FOP 0.87 0.87
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Figure 11. (Top to bottom) maps of fraction of correct predictions (FOP) for SSP-RCP run, FOP difference between SSP run and
SSP-RCP run, and log-scaled number of observed conflict events for the SSP-RCP run in the historical reference period,
1995–2015, for selected regions (from left to right): Nigeria, Somalia, Ethiopia, and the Sahel zone as defined by UN-OCHA.
White areas indicate that no conflict events are observed.
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