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ABSTRACT 
Floating pontoon bridges offer viable alternatives to cable-

supported bridges when crossing long straits. Design of such 

large floating structures requires estimation of long-term load 

effects (e.g. 100 years) under stochastic wave loading. The long-

term extreme response of such floating structures can be 

estimated using the so-called full-long term method, where the 

structural response is calculated for all possible environmental 

conditions over a long-term period. Such a procedure is 

naturally computationally demanding and depends highly on the 

computational efficiency of the short-term response calculation. 

Although the procedure is rather efficient in frequency domain 

compared to time domain, the computational demand can still be 

considerable when the number of environmental variables is 

large. In such cases, the computational burden is usually reduced 

using approximate methods or surrogate modeling, e.g. based on 

machine learning. Either approach requires compromise of 

accuracy to some extent and training of the surrogate models can 

be just as computationally demanding, depending on the 

problem.  Here, we shall explore the possibility of carrying out 

the short-term response calculations using multiple timescale 

spectral analysis, which allows analytical approximations of the 

short-term response statistics. Through comparisons with the 

more time-consuming numerical solution, the results are 

discussed in terms of computational efficiency and accuracy. 

Keywords: floating bridge; long-term extreme; wave 

loading; multiple timescale spectral analysis, frequency domain 

 

1. INTRODUCTION 
Floating bridges are often exposed to dynamic wave loads, 

which can cause large dynamic excitations of these structures 

and thus are critical for structural design. For reliable design of 

any floating structure that is exposed to wave actions, maximum 

dynamic load effects in a long-term period (i.e. 100 years, 

service life of the structure) needs to be estimated considering 

the variability in the sea state. This can most accurately be 

achieved by using the full long-term analysis, where the 

probability distribution of the selected extreme response in the 

long-term is obtained through integration of short-term 

responses under all possible sea states weighted by their 

probability of occurrence [1]. Therefore, in order to carry out 

such analyses, the short-term extreme response (i.e. maximum 

response in a short-term stationary interval such as 1-3 hours) 

must be calculated for many sea states. Even though in the cases 

where the nonlinearities in the system can be neglected and the 

calculations can be done in the frequency domain, the procedure 

is still computationally demanding owing to the large number of 

analyses that need to be carried out.  

Over the years, many approaches were proposed to reduce 

the computational burden of carrying out a full long-term 

analysis when estimating long-term extreme response of a 

variety of marine structures such as floating offshore wind 

turbines [2] or floating bridges [3]. Recently, applications in 

wind engineering that account for uncertain turbulence fields 

were also published [4]. Approximate methods such as first and 

second order reliability methods [5] or inverse reliability 

methods can be used [6] to estimate the extreme responses. 

However, such approximations are only accurate if certain 
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conditions are satisfied concerning the limit state functions and 

require verification with a full long-term analysis. Alternatively, 

an environmental contour approach can be adopted [7], which is 

widely used in the marine engineering industry. Such an 

approach neglects the variability in the short-term extreme and 

commonly used along a correction factor, which is structure 

dependent. In addition to the reliability theory based 

approximate methods, other studies exist where the full long-

term integral is solved in a more efficient manner, using for 

instance surrogate modeling [5] or active learning algorithms 

based on machine learning [8].  

Another obvious approach to reduce the computational 

burden of the full long-term analysis is to replace the function 

calls that evaluate the dynamic response by closed-form 

expressions. Closed-form solutions, however, are not commonly 

available for most applications, especially complex structures. In 

such cases, approximate analytical solutions are possible through 

exploiting the separation between timescales of the response (the 

so-called resonant and background components) as shown by 

Davenport [9] for buffeting responses of structures. This 

approach was extended and generalized by Denoël [10] to the 

framework of multiple timescale spectral analysis (MTSA). If 

successful, such an approach is fast and efficient and offers 

obvious advantages when a full long-term analysis is carried out 

where a large number of response calculations are required.  

The MTSA framework will be used here to calculate the 

long-term extreme response of a large floating bridge under 

several simplifying assumptions to explore the potential of the 

approach. The formulations are briefly presented referring to the 

necessary sources. The analyses results are compared with the 

conventional spectral density approach. Finally, the results are 

discussed with emphasis on the potential application in long-

term extreme response assessment of floating bridges.  

 
2. METHODOLOGY 
 

2.1 Long-term extreme analysis of floating bridges 
under wave actions 
 

Considering a floating bridge that is supported by discrete 

pontoons, the stochastic action of the waves acts on the pontoons 

of the bridge, which results into dynamic motion of the structure. 

For structural design purposes, we seek the largest load effect 

(e.g. displacement, stress or section force) that is caused by the 

stochastic wave loading during the service life of the structure 

(i.e. long-term, typically 100 years). To formulate this response, 

we first start with the statistics of the so-called short-term 

response. In a short-term interval where the loading and the 

dynamic response can both be assumed stationary and Gaussian, 

the cumulative probability distribution (CDF) of the short-term 

extreme response can be written as 
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Here, X denotes the maximum value of the response process 

X(t) in the short-term interval 
shortT . Moreover, |X W is the  

extreme response given a sea state  ,s pH T=W which is 

described by two environmental parameters: significant wave 

height Hs, and the peak period Tp. 
x and 

x & are the standard 

deviations of the response process X(t) and its time derivative, 

respectively. The long-term is simply composed of many 

consecutive short-term intervals, and the CDF of the long-term 

extreme response can be written through ergodic averaging as: 
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where ( )f
W
ω is the joint probability distribution function 

(PDF) of the environmental parameters that define the sea state. 

As seen from the equation, the quantity inside the integral should 

be evaluated for all the considered sea states, which requires 

calculation of the short-term response statistics given in Eqn(1). 

In the next two sections, we will see how these can be calculated 

for a floating bridge in the frequency domain using the classical 

spectral density method and the multiple timescale spectral 

analysis. 

 

2.2 Stochastic dynamic analysis in the frequency 
domain 
 

Stochastic dynamic analyses of a floating bridge under 

wave loading can be conveniently carried out in the frequency 

domain using the framework introduced by Kvåle et al. [11]. 

Using the spectral density approach, the frequency response 

function of the system can be written in generalized coordinates 

of the dry modes shapes, including the hydrodynamic effects as: 
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where 
s

M ,
sC  , and 

sK are structural mass, damping and 

stiffness matrices in generalized coordinates and ( )hM   and 

( )hC   are frequency-dependent added mass and potential 

damping matrices that arise due to fluid-structure interaction, 

also written in generalized coordinates. Under stochastic 

loading, the spectral density matrix of the response can thus be 

written in generalized coordinates as: 

 

 
*( ) ( ) ( ) ( )x pS H S H

T   =  (4) 

Here,  ( )pS   denotes the spectral density matrix of the wave 

loading and ( )rS  of the response, both given in generalized 

coordinates. The spectral density matrix can also be transformed 
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to the nodal coordinates of the finite element model using the 

mode shape matrix: 

 ( ) ( )x p x pS Φ S Φ
T =  (5) 

Where the 
p

Φ denotes the dry mode shape matrix at the pontoon 

degrees of freedom. The variances and covariances of the 

response process can then be obtained through numerical 

integration: 
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where 
2

x
σ  is the covariance matrix of the response process in 

bridge degrees-of-freedom. Note that the long-term statistics can 

be applied for a selected quantity in the matrix using Eqns. (1)

and (2).  

 

2.3 Stochastic dynamic analysis using MTSA 
 
Although the methodology presented in the previous 

section is rather efficient, especially compared to time-domain 

alternatives, calculation of the covariances of the response is still 

time-consuming due to tedious numerical integration which 

often requires a fine frequency grid. Alternatively, multiple 

timescale spectral analysis (MTSA) can be used to obtain semi-

analytical approximations of the covariances of the response 

[10]. Notice that the equation of motion, the frequency response 

function of which is given in Eqn.(3) can also be formulated in 

state-space form: 

  ( ) ( )A By gi  + =  (7) 

In which the matrices read: 
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The matrices ( )x  and ( )p  represent the Fourier transforms 

of the response and the wave load processes, respectively. It 

should also be noted that the frequency dependency of the mass 

and damping matrices is disregarded in the formulation. The 

following eigenproblem can then be solved to obtain the natural 

frequencies and mode shapes of the system: 

 

 Aθ Bθλi =  (9) 

where θ denotes the matrix of complex mode shapes and λ is a 

vector of complex eigenvalues. The normalization of the mode 

shapes follows: 
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where the maximum absolute value of the elements the mode 

shape matrix is forced to unity by means of the matrix D .  

The spectral density matrix of the modal state forces can also be 

written transforming from the spectral density matrix of the wave 

loading in the nodal coordinates of the system  ( )pS  : 

 ˆ ( ) ( )p pS θ S θ
T =  (11) 

Further, when the characteristic frequency of the loading 
p can 

be considered different from the natural frequencies of the 

considered modal responses, the covariances of the modal state 

response can be written as the combination of two contributions 

as: 
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Where the covariance matrices 
2
σ̂ r

 and 
2
σ̂ l

represent the 

resonant and the loading components of the modal state 

responses, respectively. The former arise due to the peaks in the 

transfer function of the structural system where the latter arises 

due to the peaks in the loading spectrum in the cases where the 

peak frequency of the loading spectrum lies far away from the 

resonant frequencies. In the context of the current paper the 

loading component is generally small and will be neglected, 

however, should be included in a general setting. The resonant 

component on the other hand can be written as [10]: 
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For the mth and nth modal state responses. The matrices λ and D
are given above, the operator (*) denotes conjugate of the 

complex number, and  

 

 ( )i ireal =  (14) 

The covariance matrix of the response in the nodal finite element 

(FE) coordinates of the system can then be obtained through 

coordinate transform: 
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3. CASE STUDY: BJØRNAFJORD FLOATING 
BRIDGE 
 

3.1 General 
 

A floating pontoon arch bridge that spans the 5km wide 

Bjørnafjord in Norway is currently in its design phase. The 

bridge will be used here as a case study where we will calculate 

its long-term extreme response using the methodology described 

above. The layout of the bridge is shown in Figure 1. The bridge 

is approximately 5000 meters long and rests of 46 steel pontoons, 

the geometry of which are assumed identical (58 x 10 meters). 

The bridge deck is a streamlined steel box girder, which is 31 

meters wide and 3.5 meters wide. The radius of curvature of the 

arch is 5000 meters. For further details on the bridge, the reader 

is referred to published articles or reports.  
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The bridge was modeled in ABAQUS finite element (FE) 

software, where the girder, tower and the pontoon columns are 

modeled using beam elements (Figure 2). The structural matrices 

are assembled using the FE model and the modal analysis is 

carried out in the absence of hydrodynamic effects. A few first 

dry modes of the structure are given in Table 1 to provide a 

glimpse into the dynamic properties of the complex structure.  

 

 
 
FIGURE 1 : LAYOUT OF THE BRIDGE AND THE GLOBAL 

COORDINATE SYSTEM 

 
FIGURE 2 : FINITE ELEMENT MODEL OF THE BRIDGE IN 

ABAQUS 

 
TABLE 1: DRY MODES OF THE BRIDGE  

Mode No f (Hz) T (s) Motion* 

1 0.009223 108.43 H 

2 0.017115 58.427 H 

3 0.030574 32.708 H 

4 0.043776 22.843 H 

5 0.063739 15.689 H 

6 0.075672 13.215 H 

7 0.092569 10.803 H 

8 0.10827 9.2359 H 

9 0.12236 8.1728 H 

10 0.13517 7.3979 H 

 
3.2 Hydrodynamic loads 
 
The wave excitation forces acting on the pontoons of the bridge 

can be written in terms of a cross-spectral density matrix, also 

mentioned in the methodology section. The part of the spectral 

density matrix for pontoons n and m will read: 

 

 ( ) ( , ) ( , ) ( , )S W W
n m n m

H

p p n mS d 


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where ( , )W
H

m   is the Hermitian transpose of the wave 

excitation transfer function, which is obtained through potential 

flow analyses using WADAM software. 
n m

S  denote the wave 

elevation cross-spectral density.  

When the hydrodynamic radiation effects are considered, the 

total system mass and damping matrices can be written 

approximately as: 

 

 ( ), ( )
s s

M M M C C Ch t h t = + = +  (17) 

Disregarding the frequency-dependency of the added mass and 

potential damping matrices. t is selected as a predominant 

response frequency. The frequency-dependent added mass and 

potential damping matrices were obtained using potential flow 

theory just together with the hydrodynamic transfer functions 

and the matrices corresponding to the predominant frequency 

were used in the analyses.  

 

3.3 Joint probability modeling of the sea-states 
 

The calculation of the long-term extreme response of the bridge 

using Eqn.(2) requires the joint probability distribution of 

environmental variables that show randomness in the long-term. 

Investigations of the wave conditions at the site were carried out 

by the Norwegian Public Roads Administration using both 

numerical simulations and site measurements. The JONSWAP 

spectrum is used to model the one-dimensional wave spectrum, 

which relies on two well-known parameters: significant wave 

height (Hs) and peak period (Tp). Using the data available, Cheng 

et al. [12] proposed joint probability modeling of the parameters 

using a marginal PDF of Hs and a conditional PDF of Tp that 

depends on the Hs. A short-term stationary interval of 1 hour was 

considered to obtain the statistical properties. The probabilistic 

model is summarized in Table 2. 

 
TABLE 2: JOINT PROBABILITY DISTRIBUTION OF WAVE 

PARAMETERS IN THE LONG-TERM 

PDF Type parameters 

( )
sHf h  Weibull 

1.256 ( )

0.261 ( )

shape

scale





=

=
 

| ( | )
p sT Hf t h  Lognormal 

0.06

1.397

6.727( ) 8.088

0.002( ) 0.002

h

h





−

−

= − +

= +
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4. RESULTS 
 
Stochastic dynamic response of the bridge was calculated 

through the methods described in section 2. The system matrices 

and the spectral wave load matrix were assembled using the 

finite element model of the bridge. The frequency dependent 

added mass and damping matrices were taken as constant using 

their values at a predominant frequency of 0.93 rad/s. Analyses 

were repeated using the spectral density approach and the 

multiple spectral timescale analysis, where the latter was 

significantly faster. The analyses were then repeated for different 

sea states by altering the parameters Hs and Tp. Dynamic 

displacement responses of the pontoons are given for two 

different sea states in FiguresFigure 3 &Figure 4. The plots 

indicate good agreement between the responses obtained through 

the classical spectral density approach and the approximation by 

MTSA.  

 

 

 

 

 
 
FIGURE 3 : RMS DISPLACEMENT OF BRIDGE PONTOONS IN 

GLOBAL COORDINATES (SEA STATE: HS= 2 M, TS = 4.5 S) 
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FIGURE 4 : RMS DISPLACEMENT OF BRIDGE PONTOONS IN 

GLOBAL COORDINATES (SEA STATE: HS= 2.4 M, TS = 5.9 S) 

It can be observed from the comparison plots that although in 

general a good agreement is achieved between the two responses, 

discrepancies are also present, which manifest itself in particular 

response components and sea states. The accuracy of the method 

depends on the response spectra, therefore, will be affected by 

the frequency content of the response and the loading. To 

illustrate the overall performance, the relative discrepancy 

between the responses obtained by the two methods for the range 

of considered sea states is presented in Figure 5. For the sake of 

brevity, the results are presented for the sway response (x) of the 

middle pontoon (pontoon 23 in Figs. Figure 3Figure 4). It is 

observed that the error is sensitive to changes in the peak period 

but not in the significant wave height. For the most important 

range of the sea states the discrepancy was below 10%.  

 
 
FIGURE 5 : RELATIVE DISCREPANCY (%) IN THE RMS 

RESPONSE (DISPLACEMENT X IN PONTOON 23) FOR 

DIFFERENT SEA STATES 

Then, for the considered displacement response in the middle 

pontoon, a long-term extreme response analysis was carried out. 

The full log-term method that was described in section 2 was 

used along with the joint environmental described in section 3.3. 

The integral in Eqn.(2) was evaluated numerically. Same 

numerical integration scheme was used for both methods, where 

the only difference was the routines for the calculation of the 

short-term responses. The results for the long-term periods of 1, 

50 and 100 years are presented in Table 1. A reasonable 

agreement is observed between the two methods. It is also 

important to assess which sea states are the most important 

contributors to the integral in Eqn.(2) since the accuracy of the 

final estimate hinges greatly on the accuracy of the short-term 

analysis given those environmental conditions. The relative 

contributions (normalized so that the largest value is unity) to the 

long-term integral is presented in Figure 5 accordingly. The two 

methods exhibit very similar behavior, and the contribution is 

concentrated at the sea states highlighted in the plots. 

 

TABLE 3: COMPARISON OF THE LONG-TERM EXTREME 

RESPONSE ESTIMATES  

Long-term  numerical MTSA 

1 year 0.062 m 0.059 m 

50 years 0.095 m 0.089 m 

100 years 0.101 m 0.095 m 
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FIGURE 6 : RELATIVE CONTRIBUTION OF EACH SEA STATE 

TO THE LONG-TERM INTEGRAL (TOP: NUMERICAL, BOTTOM: 

MTSA) 

 
5. DISCUSSION 
 
When estimating the long-term responses of floating structures 

under random wave loading, many simulations must be carried 

out due to the uncertain environmental conditions. This is a 

rather tedious and time-consuming process, even in the 

frequency domain, as the response spectra must be numerically 

integrated using a fine frequency grid. Therefore, replacing the 

response calculations by analytical closed-form solutions is very 

attractive given that the accuracy is preserved. Here, in a 

preliminary study, we showed that reasonable estimations of the 

long-term extreme responses can be obtained using the much less 

time-consuming multiple timescale spectral analysis. The 

application gave promising results under rather crude 

assumptions that could further be improved, such as neglecting 

the loading component. In continuation of this work, the effect 

of frequency dependency of hydrodynamic matrices will 

certainly be accounted for. Although the results show great 

potential for further improving the accuracy, there are also 

inherent limitations of the approximation resulting from the 

fundamental assumptions that the theory is based on. It should 

be noted that in such cases (sea states) where the assumptions are 

not quite satisfied, the calculations could still be carried out using 

numerical integration. Given the large amount of calculations, 

even if the short-term response calculations are partially replaced 

by MTSA, the total computation time will still be reduced 

significantly, without loss of accuracy. 

 
 

6. CONCLUDING REMARKS 
 
In this paper, the possibility of estimating long-term extreme 

responses of floating bridges by the use of multiple timescale 

spectral analysis is investigated through a case study. The 

selected case study was a super-long floating pontoon bridge that 

is planned to be built in Norway. Using a probabilistic model of 

the wave conditions at the site based on site investigations, long-

term extreme response of the bridge was estimated using the full 

long-term method. The analyses were repeated using the 

classical spectral density method and MTSA and the results are 

compared. It was shown that very reasonable estimates were 

reached using MTSA with a significant reduction of the 

computation time. The results, although preliminary in nature, 

encourage pursuing the methodology further. 
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