
Received November 23, 2021, accepted December 13, 2021, date of publication December 23, 2021,
date of current version January 19, 2022.

Digital Object Identifier 10.1109/ACCESS.2021.3137869

A Comprehensive Tensor Framework for the
Clustering of Hyperspectral Paper Data With an
Application to Forensic Document Analysis
JOBIN FRANCIS1, BABURAJ MADATHIL 2, SUDHISH N. GEORGE 1, (Member, IEEE),
AND SONY GEORGE 3
1Department of Electronics and Communication Engineering, National Institute of Technology Calicut, Calicut 673601, India
2Department of Electronics and Instrumentation Engineering, Government Engineering College Kozhikode, Calicut 673005, India
3Department of Computer Science, Norwegian University of Science and Technology, 2815 Gjøvik, Norway

Corresponding author: Sony George (sony.george@ntnu.no)

ABSTRACT In forensic document analysis, the authenticity of a document must be properly checked in
the context of suspected forgery. Hyperspectral Imaging (HSI) is a non-invasive way of detecting fraudulent
papers in a multipage document. The occurrence of a forged paper in a multi-page document may have a
substantial difference from rest of the papers in its age, type, color, texture, and so on. Each pixel in an HSI
data can be used as the material fingerprint for the spatial point it corresponds to. Hence, hyperspectral data
of paper samples made of the same substance have similar characteristics and can be grouped into a single
cluster. Similarly, paper samples made of different substances have different spectral properties. This paper
relies on this heuristic and proposes a tensor based clustering framework for hyperspectral paper data, with an
application to detect the forged papers in multi-page documents. Information embedded in the hyperspectral
patches of the papers to be clustered is arranged into individual lateral slices of a third-order tensor in this
framework. Further, this work employs the self-expressiveness property of submodules and an objective
function is formulated to extract self-expressive representation tensor with low multirank and f-diagonal
structure. Objective function of the proposed method incorporates l 1

2
-induced Tensor Nuclear Norm (TNN)

and l 1
2
regularization to impart better low rankness and f-diagonal structure to the representation tensor.

Experimental results of the proposed method were compared to the state-of-the-art subspace clustering
approaches. The results demonstrate improved performance of the proposed method over the existing
clustering algorithms.

INDEX TERMS Forensic document analysis, hyperspectral imaging (HSI), clustering, self-expressiveness
property.

I. INTRODUCTION
Hyperspectral sensors generate the hyperspectral image (HSI)
of a spatial scene in hundreds of spectral bands [1]. Usually,
an HSI data is characterized by a large number of images
captured at different wavelengths [2]. In the HSI data of a
given object/material, the information embedded in various
spectral bands is varied; as the material absorbs or reflects
differently at different wavelengths [3]. Since the HSI data
contains a plethora of information both in its spectral and spa-
tial bands, it has got a lot of interest in sectors such as geology,
remote sensing [4], agriculture [5], forensic research [6], and
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so on. HSI techniques were previously used mainly in various
fields of satellite imaging and remote sensing [7]. Later,
HSI approaches have been widely employed in a number
of applications such as food quality inspection [2], medical
imaging [8], forensic analysis, and material science [9].
Furthermore, when compared to other invasive methods,
HSI methodologies have considered to be a good candi-
date for non-invasive analysis in characterizing the material
properties [6], [10].

An HSI data is typically represented by a three dimen-
sional data cube with two spatial domains and one spectral
domain [4], [5]. The spectral information are stacked along
the third dimension [5]. Hence, a single HSI pixel can be
viewed as anN dimensional vector, p ∈ RN , whereN denotes
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the total number of spectral bands [5]. In general, each point
or a pixel of anHSI data characterizes a givenmaterial with its
spectrum at that point. As a result, HSI pixel information can
be employed as a material fingerprint for the object/material
under consideration, which can be used to differentiate the
characteristics of different materials [6].

As a non-destructive contactless method and having
enriched with the information from numerous hyperspectral
bands, HSI methods have got a substantial recognition in
the field of forensic document analysis [6]. In recent days,
there have been a considerable number of cases reported on
fraudulent manipulation of legal documents. In the context of
a suspected forgery, the authenticity of the document need to
be examined. This is normally done by examining both the
ink and the paper that have been used to create the suspected
document [6], [9]. Suppose, the inclusion of distinct paper
type is identified in a multipage document, and which may
be suspected of being forged. Hyperspectral analysis can be
effectively used to detect the fraudulent paper/papers in the
above described scenario. A hyperspectral paper data is the
one that has been subjected to the HSI imaging technique [6].
Consider the hyperspectral data of a single paper, and assume
that the entire portion that paper is composed of the same
material. Then, the spectrum that corresponds to different
sample areas of hyperspectral paper data would share similar
spectral properties, unless or otherwise any portion of the
paper under consideration is forged [6], [10]. To put it another
way, the hyperspectral data of paper samples made of the
same substance can have similar characteristics, and these
samples may be grouped into a single cluster [4]. On the
other hand, if paper samples considered are made of differ-
ent material, the spectrum of these samples exhibit different
spectral properties, and those samples may fall into different
clusters [6]. The occurrence of a forged item, whether one
or many, in a multipage document may have differed from
the rest of the papers due to a variety of factors such as
material, type, age, texture, color, and so on [6]. HSImethods,
in comparison to three channel imaging techniques, can better
detect and evaluate different objects by analyzing their spec-
tral fingerprints through a wider spectrum [11]. As a result,
the challenge of document analysis in a suspected forgery
can be effectively addressed by the clustering analysis of
hyperspectral paper data samples [6], [10].

II. RELATED WORKS
Because of the large dimensionality of hyperspectral data,
supervised classification with prior labelling of the data
would be difficult to implement [12]. Unsupervised clus-
tering methods, which do not require prior labelling but
partition datapoints based on their inherent similarity, are
used to overcome this challenge [12]. In the literature on
hyperspectral data clustering, many techniques have been
identified, that adapt conventional unsupervised clustering
methods. In remote sensing applications, methods such as
fuzzy c-means [13], k-means [14], and spectral cluster-
ing [15] have been used to classify pixels for the clustering

of hyperspectral images [16]. However, due to the large
dimensionality of hyperspectral data, limited performance of
them were observed. Methods such as PCA [17], ICA [18],
and LDA [19] were used in certain works to reduce the
dimensionality of hyperspectral data [6], [20]. However in
some works, t-Stochastic Neighbouring Embedding (t-SNE)
has been used in studies such as clustering of hyperspectral
paper data and hyperspectral ink data, and has surpassed the
aforementioned methods [6], [9].

In recent decades, principles of subspace modeling have
been applied in the field of hyperspectral image cluster-
ing [12]. Due to the multidimensionality and highly corre-
lated information contained in neighbouring spectral bands,
hyperspectral data can be structured as multiple low dimen-
sional subspaces embedded within a large dimensional
space [12]. This assumption is based on the fact that, HSI
data often contains large homogeneous regions, and the pix-
els inside those regions can have similar spectral proper-
ties [1]. With the advancement in Sparse Representation (SR)
and Low Rank Representation (LRR) models, many works
have been proposed to meet the challenge of HSI clustering,
in recent decades [21]. Because of its robustness, Sparse
Subspace Clustering (SSC) was used in HSI clustering [22].
Exploiting the abundance of spatial information and high
spectral correlation, Zhang et al. proposed a spectral-spatial
SSC (S4C) for the effective grouping of HSI data [4]. Sim-
ilarly. an l2 norm regularized SSC proposed by Zhai et al.
was employed in the field of hyperspectral remote sensing
imagery [16], [23]. Then,Whang et al. introduced a Fast High
Order SSC (FHoSSC) with Cumulative Markov Random
Field (MRF) for subspace segmentation that took advantage
of superpixels [16]. A number of Low Rank Subspace Clus-
tering (LRSC) approaches have been proposed for the cluster-
ing of hyperspectral imagery, based on LRR techniques [12].
In addition, in works such as [24] and [25], hypergraphs have
been used to obtain an accurate information about the mani-
fold structure. Following that Xu et al. proposed a superpixel
based LRSC that leverages hypergraphs for the classification
of hyperspectral images [12].

A number of works have recently been published that
exploit the properties of higher order tensors by utilizing
the multilinear algebra and abstract algebra [26]. Since the
invention of the t-product proposed by Kilmer et al. [27], the
multiplication of third order tensors has become substantially
simplified. Some recent works introduced the concept of free
submodules by assuming that datapoints from a large dimen-
sional space are lying near a union of free submodules [28].
In Sparse and Low Rank Submodule Clustering (SLRSmC),
Kernfeld et al. employed Union of Free Submodules (UoFS)
model in their work, which is based on the self expressive-
ness property of free submodules [29]. Relying on this self
expressive representation, Wu et al. proposed a Structure
Constrained Low Rank Submodule Clustering (SCLRSmC)
framework for clustering of 2D images [26]. In SCLRSmC,
images to be clustered are stacked into the lateral slices of
a third order data tensor. Further, the data tensor has been
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FIGURE 1. The complete overview of fetching 3D patches/samples from the hyperspectral paper data. The papers under
consideration are arranged in a tiled format. For the ease of illustration, only four papers are considered in this figure.
In this, three different types of papers are shown among which paper 1 and paper 2 are of same type. The FIGURE at the
right side shows hyperspectral data samples fetched from different portions. It is assumed that samples with different
spectra would lie in different submodules. Ns represents number of spectral bands.

modeled as a t-product of the data tensor and a structured
low rank coefficient tensor, based on the self expressive
representation [26].

According to the past literature on HSI data clustering,
it is identified that the capabilities of tensor frameworks
have not been properly exploited in majority of the existing
works. Moreover, due to the multiple spectral bands present
in hyperspectral data, most of the proposed works suffer
from increased computational complexity [30]. Tensor based
frameworks, on the other hand, are relatively easy to imple-
ment, and computations can be simplified using multilinear
algebra tools [26]. In addition, depending on the problem
and its needs, datapoints can be arranged into appropriate
slices of a tensor in different orientations [31]. Since, the
diverse information of a hyperspectral data is embedded in
its hundreds of spectral bands, a tensor based framework is a
good candidate for the execution of hyperspectral data clus-
tering. Above all, a comprehensive framework for clustering
hyperspectral paper data that fully explores the capabilities
of a third order tensor space has not yet to been properly
employed. Based on the aspects aforementioned, it is evident
that there is still room for a tensor based clustering framework
that could effectively address the challenge of clustering of
hyperspectral paper data.

In this work, we assume that if every single paper in
a multipage document is made of the same material, then
attributes such as texture, color, and age would also be
identical throughout the entire portion of that paper under

consideration [6]. Based on the preceding assumption, it is
obvious that the hyperspectral samples of a paper data fetched
from different parts of a single paper will have similar spec-
tral signatures and those samples will be lying in a single
submodule [6], [26]. Hence, we further believe that if all of
the pages in a multipage document are made of the same
material, then hyperspectral data samples taken from various
parts of all those papers in that document would almost
undoubtedly be found in a single submodule. Therefore,
a forged paper can be easily identified because the hyper-
spectral data samples of the forged item will be placed in a
different submodule. We plotted the normalized reflectance
spectrum of hyperspectral data of various papers presented
in FIGURE 2 (a), to underline the above-mentioned aspect.
It has been observed that the reflectance spectra of those
papers differ significantly from one another and are eas-
ily distinguishable (FIGURE 2 (b)). Hence, there will be a
high probability for those samples from various papers to be
lying in different clusters/submodules. We also plotted the
reflectance spectra of a number of specimens collected from
the same paper. We used five hyperspectral samples with
dimensions ∈ RS1×S3×Ns , (S1 = 10, S3 = 10, Ns = 186)
from Paper 1 and Paper 12, shown in FIGURE 2 (a) for this.
FIGURE 2 (c) shows that the spectra of the samples taken
from same paper (say, Paper 1 or Paper 12) are overlaid on
one another. The indistinguishable spectra of those samples
from the same paper are very likely to belong to a single
submodule.
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On the basis of this heuristic described above, we pro-
pose a submodule clustering framework for hyperspectral
paper data by embedding each hyperspectral data sample
in a third order tensor space. An overview of the pro-
posed framework is given in FIGURE 1 with an illustra-
tion of hyperspectral data of four papers arranged in a
tiled format. Amongst, Paper 1 and Paper 2 are assumed
to be composed of the same material. Furthermore, the
fetched hyperspectral 3D patches/blocks ∈ RS1×S3×Ns and
its different submodules are also shown in FIGURE 1.
Now, we list the major contributions of the proposed
method,

1) We develop a comprehensive tensor based framework
for the clustering hyperspectral paper data. First, the
3D patches ∈ RS1×S3×Ns from hyperspectral paper data
are arranged into lateral slices of a third order tensor,
termed input data tensor in this framework. Employ-
ing t-product, the third order input data tensor is then
self-expressively represented as the product of the input
data tensor itself and a low rank structured coefficient
tensor.

2) In a hyperspectral paper data, we use the heuris-
tic that the three dimensional paper patches fetched
from different locations of the same paper may
have stronger correlations, whereas patches taken
from distinct papers may exhibit lower correla-
tions. In the proposed method, we incorporate
this heuristic by employing a dissimilarity matrix
which can clearly capture the different correla-
tion exist in between the hyperspectral paper data
samples/patches.

3) To the best of our knowledge, the aforementioned
methodology is the primarily one that incorporate a
complete tensor based framework for the clustering
hyperspectral paper data.

III. PRELIMINARIES AND TECHNICAL BACKGROUND
This section illustrates notations and mathematical concepts
used in our paper. Further, important terms, its notations and
corresponding descriptions are given in TABLE 1. Following
that, the mathematical preliminaries and their expressions are
presented.

A. TENSOR-PRODUCT (T-PRODUCT) [27]
For tensorsX ∈ Rn1×n2×n3 andY ∈ Rn2×n4×n3 , the t-product
X ∗ Y will be a tensor Z of order n1 × n4 × n3 and 8

∗
′

denotes the tensor product [26]. The (l,m)th tube of Z is
given by Z(l,m, :) =

∑n2
p=1 X (l, p, :) ◦ Y(p,m, :), where

l = 1, 2, . . . , n1 and m = 1, 2, . . . , n4, and 8
◦
′ is the circular

convolution operator [28].

B. TWIST OPERATOR [28]
Let X ∈ Rn1×N×n3 , then

−→
X ∈ Rn1×n3×N is the twisted

version ofX . Then, the lateral slices ofX becomes the frontal
slices of

−→
X . It is given by,

−→
X (:, :, i) = twist(X (:, i, :)).

FIGURE 2. (a) Types of papers. (b) Spectra that correspond to each
hyperspectral patch/sample ∈ RS1×S3×Ns fetched from Paper 1 to Paper
10. S1 × S3: spatial dimension, Ns: Number of spectral bands. (c) Spectra
that correspond to five samples each from Paper 1 and Paper 12.

C. HALF THRESHOLDING FUNCTION [32]
The half thresholding function for a vector,
z = (z1, z2, . . . zN ) ∈ RN is given by [33],

h
λ, 12

(zi) =


2
3
zi

(
1+ cos

(
2π
3
−

2
3
9λ(zi)

))
,

|zi| >
3
√
54
4

(λ)
2
3

0, otherwise

(1)

where,9λ(zi) = arccos(λ8 (
|zi|
3 )−

3
2 ) and λ denotes the regular-

ization parameter [33].

D. TENSOR MULTIRANK [26]
Themultirank of a tensor,X ∈ Rn1×n2×n3 is a vector, p ∈ Rn3

with the k th element is equal to the rank of the k th frontal slice
of X̂ , where X̂ represents the Fourier transform of X . Then,
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TABLE 1. TABLE represents different terms and its notations used in this
paper.

X̂ = fft(X , 3) denotes the DFT along the third dimension for
the tensor, X [28].

E. TENSOR-SINGULAR VALUE DECOMPOSITION
(T-SVD) [26]
The t-SVD of a third order tensorX ∈ Rn1×n2×n3 is given by,
X = U ∗6 ∗ VT where, U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3

are the orthogonal tensors. Then, 6 ∈ Rn1×n2×n3 is an
f-diagonal tensor, where its frontal slices contain diagonal
matrices [26]. The t-SVD of tensor,X can be found out using
the SVDs of frontal slices of its Fourier tensor, X̂ [26]. For the
frontal slice X̂ (k) of the Fourier tensor X̂ , the SVD is given
by, Û(:, :, k) ∗ 6̂(:, :, k) ∗ V̂(:, :, k), for k = 1, 2, . . . , n3.
Then, U =ifft(Û, 3), 6 =ifft(6̂, 3),V =ifft(V̂, 3),
where ifft(Û, 3) denotes the inverse DFT along mode-3
of Û [26].

F. l 1
2
-INDUCED TENSOR NUCLEAR NORM (TNN)

Consider a tensor, X ∈ Rn1×n2×n3 with t-SVD X = U ∗6 ∗
VT , then its l 1

2
-induced TNN can be expressed as,

‖X‖~ 1
2
=

n3∑
k=1

min(n1,n2)∑
i=1

√
|6̂(i, i, k)| (2)

The solution for l 1
2
-induced TNN can be deduced from

a number of steps. Each frontal slice, 6̂(k) consists of
s1 ≥ s2 . . . ≥ sN ≥ 0 singular values at its diagonal positions
and those values can be represented by a vector s, where,
s = (s1, s2, . . . , sN ) ∈ RN . First, apply half thresholding
function stated in Eq: (1) onto each members of s ∈ RN .
This is accomplished with the half thresholding operator
H
λ, 12

(.), as proposed in [32]. The half thresholding operator
H
λ, 12

(.) is a non-linear mapping function and for any vector,
s = (s1, s2, . . . , sN ), it can be expressed as,

H
λ, 12

(s) = (h
λ, 12

(s1), hλ, 12
(s2), . . . hλ, 12

(sN ))th (3)

where, ‘th′ represents the threshold [32], [33]. Then, the
entire procedure to find the l 1

2
-induced TNN can be summa-

rized in Algorithm 1.

IV. PROPOSED METHOD
This session begins with an illustration of the self-
expressiveness property of free submodules [26]. According
to the self-expressive representation, a member or datapoint

Algorithm 1 Algorithm for l 1
2
-Induced TNN

Require: X ∈ Rn1×n2×n3 , λ > 0, µ > 0, th > 0
Ensure: Xht ∈ Rn1×n2×n3

1: X̂ = fft(X , 3)
2: for i= 1 to n3 do
3: [U, 6, V ] = svd

(
X̂ (i)

)
4: Û (i)

= U, 6̂(i)
= 6, V̂ (i)

= V
5: s = diag(6̂(i))
6: H

λ, 12
(s) = (h

λ, 12
(s1), hλ, 12

(s2), . . . hλ, 12
(sN ))th

7: 6̂hf (:, :, i) = diag(H
λ, 12

(s))
8: end for
9: U = ifft(Û, 3),H 1

2
(6t ) = ifft(6̂hf , 3), V = ifft(V̂, 3)

10: Xht = U ∗H 1
2
(6t ) ∗ VT

in a submodule can be represented as the t-linear combina-
tion of other members in the same submodule. To put it in
another way, consider Kn3 to be a set of tube fibers belongs
toR1×1×n3 that forms a commutative ring under regular addi-
tion and t-product [26]. The self-expressive representation of
submodules can be expressed as the t-linear combination of
oriented matrices and mode-3 fibers by making use of the
multilinear algebra. An oriented matrix with dimensions of
n1 × 1× n3, can be formed from a matrix of size n1 × n3 by
twisting it perpendicular to a page [29], [34]. Let Kn1

n3 denote
the set of n1 × 1 × n3 oriented matrices. Further, a sin-
gle oriented matrix can also be viewed as a one dimen-
sional vector with dimension n1 and the elements becomes
1× 1× n3 tube fibers [26]. The set of oriented matrices can
then be considered as an n1 dimensional free module over
the ring Kn3 [26], [29]. Consider a generating set

{−→
D i ∈

Kn1
n3
}n1
i=1, and any element

−→
X ∈ Kn1

n3 can be uniquely rep-

resented as a t-linear combination of the
−→
D is [26]. Mathe-

matically, it can be represented as,

−→
X =

n1∑
i=1

−→
D i ∗
−→z i (4)

where, −→z i ∈ Kn3 [26]. This is the same as generalizing
vector space over a field [26]. Hence, with t-product, lin-
ear combination for submodules can be executed with the
corresponding coefficients as mode-3 or tube fibers [29],
[34]. Hence, consider Fn1n3 , a free submodule which is a
subset of the module Kn1

n3 . Then, consider a set of L free
submodules, {lFn1n3}Ll=1 and any element corresponding to a
free submodule F can be represented as t-linear combina-
tion of elements in the union of L free submodules [26].
In such a representation, non-zero tube fibers represent the
coefficients correspond to other elements belong to the same
submodule and the zero tube fibers represent, coefficients
correspond to elements from other free submodule [26].
Circular convolution is defined within t-product in the spa-
tial domain. However, it can be replaced and simplified by
multiplication in the Fourier domain using Discrete Fourier
Transform (DFT) [26].
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FIGURE 3. A member of a submodule is represented as t-linear
combination of other elements in the same submodule [26].

A. REPRESENTATION OF HYPERSPECTRAL PAPER DATA
INTO A THIRD ORDER TENSOR SPACE
Let Xi ∈ RS1×S3×Ns , where i = 1, 2, . . . ,N represent a set of
hyperspectral pixels, that has been sliced from a hyperspectral
paper data. In the above depiction, S1×S3 represents the spa-
tial dimension of the hyperspectral patch, and Ns represents
the number of spectral bands. Then, N denotes the total num-
ber of samples taken from different pages from a multipage
document. Further, consider a matrix Bi ∈ RS1S3×Ns , where
i = 1, 2, . . . ,N which is to encapsulate the spectral informa-
tion of each hyperspectral data sample Xi ∈ RS1×S3×Ns . The
information contained in each spectral sample of dimension
S1×S3 ofXi ∈ RS1×S3×Ns is then encoded into the respective
columns of the matrix Bi ∈ RS1S3×Ns . In other words, each
spectral sample of dimension RS1×S3 will be reformed into
a column vector with dimension RS1S3 , and there will be Ns
such column vectors for a single hyperspectral patch, Xi ∈

RS1×S3×Ns . Then, the matrixBi consists of all the information
contained in a hyperspectral patch or sliced from a hyperspec-
tral paper data. The entire process described above is then
repeated for each of the N hyperspectral data samples to be
clustered.

Consider a third order tensorX ∈ RS1S3×N×Ns , to integrate
the information contained in each hyperspectral data sample,
Xi ∈ RS1×S3×Ns , where i = 1, 2, . . .N , into a third order
tensor space. Consequently, by the process of twisting, each
matrix Bi can be converted into an oriented matrix,

−→
B i ∈

RS1S3×1×Ns as illustrated in FIGURE 4. The aforementioned
process is repeated for N hyperspectral data samples, a col-
lection of {

−→
Bi }Ni=1 can be made. The set of oriented matrices

is then organized into the lateral slices of a three-dimensional
tensor X ∈ RS1S3×N×Ns , and this process is illustrated in
FIGURE 5. By this process, each lateral slice, X (:, i, :) ∈
RS1S3×1×Ns of the three dimensional data tensor, X holds
the diverse information contained in respective hyperspectral
data sample.

B. PROBLEM FORMULATION
To solve the clustering problem, the next step is to create
a self-expressive representation for the hyperspectral paper
data. For this task, we assume that the hyperspectral paper
data placed in the lateral slices belong to a union of L free
submodules [26]. In the self expressive representation, a dat-
apoint belonging to a submodule can be expressed as a t-linear
combination of other datapoints in the same submodule [26].

FIGURE 4. Formation of a lateral slice formed by the process of twist
operation. FIGURE at the left: matrix Bi ∈ RS1S3×Ns , for i = 1 to N .
FIGURE at the right: the twisted matrix. The big black dots represent
intensity values.

On the other hand, a coefficient tensor Z will exist, where,
the relationship between the data tensor X can be expressed
in terms of t-product such that X = X ∗ Z [26], [31], [35].
In the above representation, the data tensor, X itself acts as
a dictionary. The coefficient tensor Z would have evolved
with a low tensor multirank and an f-block diagonal struc-
ture for improved representation and reduced computational
cost [26], [34]. Hence, the proposed method imposes low
tensor multirank and a structure constraint on the coefficient
tensor. Finding the tensor multirank, on the other side, is non-
convex, thus its strong convex surrogate Tensor Nuclear
Norm (TNN) is a good candidate. Then, TNN of Z , denoted
by ‖Z‖~ can be expressed as the sum of the singular values
of all the frontal slices of Ẑ [26]. Many recent methods such
as [26], [31], [36] have employed TNN to impose the low
tensor rank constraint on the representation tensor in their
optimization problems.

In order to find the TNN of a particular tensor, l1 norm
is employed to compute the absolute sum of singular values
of its frontal slices. The acceptance of l1 minimization is
due to the fact that it is convex and the sparser solution can
be obtained with less computational bottleneck [32]. But in
recent studies, it is observed that lq (0 < q < 1) regular-
ization techniques provide more sparser solutions compared
to l1 norm [32], [33]. For a vector x ∈ RN , lq regularization
problem from the observation y = Ax, can be represented as,

min
x∈RN
‖Ax− y‖22 + λ‖x‖

q
q, (5)

where, y ∈ Rm, A ∈ Rm×N . Then, ‖x‖q represents the

lq quasi-norm and is defined by, ‖x‖q = (
∑N

i=1 |xi|
q)

1
q .

The unit ball representations of various norms are illustrated
in FIGURE 6 in which l2 norm has the spherical shape,
whereas in l1 norm, it is of diamond shaped. It is observed
from FIGURE 6 (a) and FIGURE 6 (b) that l1 regularization
provides a sparser solution compared to l2 norm. However,
as the value of q is again reduced, the unit ball can assume
the shape as shown in FIGURE 6 (c) in which there is higher
probability for the y = Ax line to coincide with axes. Hence,
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FIGURE 5. Self expressiveness representation (X = XZ) of hyperspectral data using union of free submodules approach. Coefficient tensor
Z ∈ RN×N×Ns is represented with low multirank and f-diagonal structure.

the probability of achieving sparser solution is higher as the
value of q is changed from 0 to 1. For q ∈ [ 12 , 1), solution will
be sparser for smaller value of q. But no significant change is
observed in the performance for q ∈ [0, 12 ) [32], [33], [37].
Hence, fixing the index q = 1

2 , l 12
regularization has been

chosen as an improved regularization technique which yields
more sparser solution than l1 minimization [32], [33].
Moreover, iterative half thresholding algorithm proposed

by Xu et al. provided a fast solution and convergence to the
l 1
2
approach, despite the non-convex nature of l 1

2
norm [32].

Furthermore, within some constraints, Xu et al. had also ver-
ified the convergence of the half thresholding algorithm to a
stationary point by a dynamic system methodology [33]. The
strong sparsity inducing ability of l 1

2
regularization was suc-

cessfully implemented in many sparsity problems [37]. Moti-
vated from the aforementioned successful approaches and
benefited from the strong theoretical background, to obtain
more accurate tensor low rank representation, l 1

2
-induced

TNN is employed in the proposed method by replacing l 1
2

norm in place of l1 norm in the expression of TNN. The
formulation of l 1

2
-induced TNN has already been detailed

in Section III. Furthermore, an appropriate block diagonal
structure for the representation tensor encourages clustering
of multi-view data and improves clustering algorithm perfor-
mance. Obviously, in the samples of the hyperspectral paper
data, objects belonging to a single submodule have strong
correlations, while objects belonging to distinct submodules
have lower correlations [26]. Hence, the correlation between
different datapoints in the hyperspectral data can be captured
with a dissimilarity matrix, denoted by PDM ∈ [0, 1]N×N ,
where the entries of PDM is given by [38],

PDM i,j =

1−

( ∑N
i=1(xi−µxi )(xj−µxj )√

(xi−µxi )
2×
√
(xj−µxj )

2

)
2

(6)

where, i, j = {1, 2, . . . ,N } and

( ∑N
i=1(xi−µxi )(xj−µxj )√

(xi−µxi )
2×
√
(xj−µxj )

2

)
is the Pearson rank correlation coefficient represented by
rxixj [39]. Generally, Pearson rank correlation coefficient
indicates a measure of linear relationship between the

FIGURE 6. Unit ball representation of various norms in a three
dimensional space R3.

two variables. Unlike Euclidean scores, the above metric
shows how closely two variables are correlated. The value,
rxixj = +1, indicates the positive correlation between the
variables xi and xj, whereas rxixj = −1 stands for a negative
correlation. Further, µxi and µxj represent the sample mean
of xi and xj. In the above expression, xi = (vec(X (:, i, :)) and
xj = (vec(X (:, j, :)), where, vec(.) indicates the vectorization
of the lateral slices into a one dimensional vector [39]. The
proposed method integrates the following aspects into its
optimization problem.

1) The proposed method incorporates l 1
2
-induced TNN

to impart better low rankness on the representation
tensor Z .

2) Integrating the dissimilarity matrix within the proposed
method depicts the higher correlations occur between
members of the same submodule and lower correlations
for those exist in distinct submodules. Furthermore,
it aids in the better capturing of f-diagonal structure.

3) Since l 1
2
regularization can give a more sparse solution

than l1 norm, the submodule structure constraint is
modified using l 1

2
norm. Furthermore, using the abil-

ities of l 1
2
-induced TNN and l 1

2
regularization, a sin-

gle stage optimization problem is formulated to obtain
a better self-expressive representation to retrieve the
underlying clusters.

Combining all the above, the proposed optimization problem
can be reformulated as,

min
Z

∥∥Z∥∥~ 1
2
+ λ1

Ns∑
k=1

∥∥PDM � Z (k)∥∥ 1
2
1
2

+ λ2
∥∥X − X ∗ Z

∥∥2
F (7)
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where, ‖.‖~ 1
2
represents the l 1

2
-induced TNN and ‖.‖

1
2
1
2
rep-

resents l 1
2
norm. Further, ‖.‖F denotes the Frobenius norm.

Finally, X represents the third order data tensor X ∈

RS1S3×N×Ns . Further, we employ variable splitting forZ , into
the above equation such that Z = C and Z = Q.

min
C,Q,Z

∥∥C∥∥~ 1
2
+ λ1

Ns∑
k=1

∥∥PDM �Q(k)∥∥ 1
2
1
2

+ λ2
∥∥X − X ∗ Z

∥∥2
F

s. t. Z = C, Z = Q (8)

In the above expression, λ1 and λ2 denote the regularization
parameters. The above constrained equation is transformed
into a unconstrained one using Augmented Lagrangian (AL)
Method [26], given by,

L(C,Q,Z,G1,G2)

=
∥∥C∥∥~ 1

2
+ λ1

Ns∑
k=1

∥∥PDM �Q(k)∥∥ 1
2
1
2

+ λ2
∥∥X − X ∗ Z

∥∥2
F + 〈G1,Z − C〉 + 〈G2,Z −Q〉

+
µ

2

(∥∥Z − C
∥∥2
F +

∥∥Z −Q
∥∥2
F

)
(9)

where, tensors G1 and G2 are the Lagrangian multipliers,
µ ≥ 0 denotes the penalty parameter and 〈., .〉 denotes the
inner product. The above problem can be solved by iteratively
minimizing the Lagrangian L over one tensor while keeping
the others constant.

C Subproblem: The update expression for C is given by,

C[j+1] = arg min
C
‖C‖~ 1

2
+ 〈G1,Z − C〉 +

µ

2

∥∥Z − C
∥∥2
F

(10)

The subproblem of updating C can be transformed into the
following form,

C[j+1] = arg min
C

‖C‖~ 1
2
+
µ[j]

2

∥∥∥∥∥C −
(
Z [j]
−

G[j]
1

µ[j]

)∥∥∥∥∥
2

F
(11)

The solution to the above subproblem is obtained by,

C[j+1] = Hτ

[
Z [j]
−

G[j]
1

µ[j]

]
(12)

where,Hτ [.] is the singular value half thresholding operator
and τ = 1

µ
is the threshold value.

Q Subproblem: The update expression for Q is given by,

Q[j+1]
= arg min

Q
λ1

Ns∑
k=1

∥∥PDM �Q(k)∥∥ 1
2
1
2

+〈G2,Z −Q〉 +
µ

2

∥∥Z −Q
∥∥2
F (13)

The above equation can be decomposed into Ns expressions
and the k th frontal slice of Q can be updated by,

Q(k)[j+1]
= arg min

Q
λ1‖PDM �Q(k)

‖

1
2
1
2

+
µ[j]

2

∥∥∥∥∥∥Q−
Z (k)[j]

+
G(k)[j]

2

µ[j]

∥∥∥∥∥∥
2

F

(14)

where, Q(k)[j+1] is the k th frontal slice/matrix of Q. The solu-
tion to the above subproblem is given by half thresholding
operator [37],

Q(k)[j+1]
= H λ2PDM

µi

Z (k)[j]
+

G(k)[j]

2

µ[j]

 (15)

where, H λ2PDM
µi

is the halfthresholding operator [32]. Here,

Q(k)
m,n is the (m, n)th element of k th frontal slice/matrix of Q.
Z Subproblem: The subproblem for updating Z is given

by,

Z [j+1]
= arg min

Z
λ2‖X − X ∗ Z‖2F + 〈G

[j]
1 ,Z − C[j+1]〉

+
µ[j]

2
‖Z − C[j+1]‖2F +

µ[j]

2
‖Z −Q[j+1]

‖
2
F

+〈G[j]
2 ,Z −Q[j+1]

〉 (16)

It can be written as,

Z [j+1]
= arg min

Z
λ2‖X − X ∗ Z‖2F

+
µ[j]

2

(∥∥Z−C[j+1]∥∥2F+∥∥Z−Q[j+1]∥∥2
F

)
(17)

Taking Fourier Transform on both sides, the above equation
can be rewritten as,

Ẑ [j+1]
= arg min

Ẑ
λ2
∥∥X̂ − X̂ ⊗ Ẑ

∥∥2
F

+
µ[j]

2

(∥∥Ẑ−P̂ [j+1]
1

∥∥2
F+

∥∥Ẑ−P̂ [j+1]
2

∥∥2
F

)
(18)

where, Ẑ , P̂ [j+1]
1 and P̂ [j+1]

2 are the Fourier transforms of k th

frontal slice ofZ , C[j+1]−
G[j]
1

µ[j] andQ
[j+1]
−

G[j]
2

µ[j] respectively

and 8
⊗
′ indicates the slicewise multiplication. The analytic

solution for the update of the k th frontal slice is given by,

Ẑ (k)[j+1]
=

(
2λ2X̂ (k)T X̂ (k)

+ 2µ[j]I
)−1

×

(
2λ2X̂ (k)T X̂ (k)

+ µ[j]
(
P̂ (k)[j+1]

1 + P̂ (k)[j+1]

2

))
(19)

In the algorithm, stopping criterion ismeasured by the follow-
ing condition as (20), shown at the bottom of the next page.
The proposed method can be summarized in Algorithm 2.
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Algorithm 2 Clustering Framework for Hyperspectral Data

Require: Data: X ∈ RS1S3×N×Ns and parameters λ1, λ2,
µmax , ρ

Ensure: Z ∈ RN×N×Ns

1: C[0]=Q[0]=Z [0]=G[0]
1 =G[0]

2 ← 0 ∈ RN×N×Ns

2: λ1 > 0, λ2 > 0, µ[0] > 0, ρ > 0
3: while not converged do
4: C[j+1]← Update using Eq: (12)
5: Q[j+1]

← Update using Eq: (15)
6: Z [j+1]

← Update using Eq: (19)
7: G[j+1]

1 = G[j]
1 + µ

[j] (Z − C)
8: G[j+1]

2 = G[j]
2 + µ

[j] (Z −Q)
9: µ[j+1]

= ρµ[j]

10: Check the convergence using Eq: (20)
11: [j]← [j+ 1]
12: end while

V. EXPERIMENTS AND RESULTS
A. HYPERSPECTRAL PAPER DATASET PREPARATION
The hyperspectral images of the papers to be clustered are
captured using a push-broom hyperspectral camera, HySpex
VNIR-1800 with wavelength ranges from 400 nm to 1000 nm
with a spectral sampling of 3.18 nm. Further, a pre-processing
software, HySpex RAD [9] is used to perform basic camera
corrections including dark current subtraction, sensor cor-
rection and radiometric calibration. Then, the arrangement
for creating hyperspectral paper data of those papers are
illustrated in FIGURE 7 (a), where the papers are arranged in
a tiled format. This dataset is prepared using papers of various
colors, thicknesses, textures, ages, and manufacturers. The
types of papers are given in TABLE 2. The obtained hyper-
spectral paper data has a spatial dimension of 7500×1800 and
consists of 186 spectral bands. The hyperspectral paper data
sample areas, RS1×S3×Ns are selected from a wide range such
asR10×10×186 toR50×50×186 for creating the input data tensor
X ∈ RS1S3×N×Ns . Please refer Section IV-A which describes
the process of arranging the hyperspectral patches into the
lateral slices of a third order input data tensor.

B. EXPERIMENTAL RESULTS
This section presents the Experimental results of the pro-
posed method and the state-of-the-arts. Sparse Subspace
Clustering (SSC) [40], Low Rank Subspace Clustering
(LRSC) [41], Least Square Regression (LSR) [42], Struc-
ture Constrained-Low Rank Representation (SCLRR) [38],
Structure Constrained Low Rank Submodule Clustering
(SCLRSmC) [26] and l0-LRSC [43] are the state-of-the-
art clustering algorithms chosen for comparison. Similarly,
Accuracy (ACC), Normalized Mutual Information (NMI),
Purity, Adjusted Rand Index (ARI), F-score, Precision, and

FIGURE 7. FIGURE illustrates the hyperspectral paper data arranged in
tiled format. The order of the hyperspectral paper data used in this work
are shown in the leftmost image. Images correspond to various bands
captured at wavelengths of (a) 408 nm. (b) 475 nm. (c) 756 nm.
(d) 985 nm.

Recall are the quality metrics that have been employed for
evaluating the algorithms. All of the metrics described above
have already been defined and presented in various papers.
Accuracy, NMI definitions and equations can be found in [44]
and in [45]. Then, in [31] and [46], expressions for Purity
and ARI are given. Similarly, F-score, Precision and Recall
measures are expressed in terms of True Positives (TP), True
Negatives (TN), False Positives (FP) and False Negatives
(FN), where the expressions of the aforementioned can be
found in [47], [48]. Most of these metrics have widely been
used in the clustering methods described in the literature as
well as in the state-of-the arts [34], [49]. The values of these
metrics are normalized in the range [0, 1], with 1 indicating
perfect clustering. However, in practise, higher values of
thesemeasures close to 1 imply good clustering results. In this
work, all of the algorithms have been subjected to at least
20 trials, and the evaluation metrics are presented in terms of
mean and standard deviations (m± σ ).
We compare the performance of our proposed method on

different hyperspectral sample sizes ∈ RS1×S3×Ns , where the
spatial dimensions S1 × S3 have been varied from 10× 10 to
50 × 50. Furthermore, the number of papers selected for
clustering have been divided into four cases. In Case I, the
first ten papers (Paper 1 to Paper 10) listed in TABLE 2 are
considered, whereas for case II, the first twenty papers, i.e.
HP proofing paper to 65 gr/m2 white paper, and so on. All of

max
{
‖Z [j+1]

− C[j]‖∞, ‖Z [j+1]
−Q[j]

‖∞, ‖Z [j+1]
− Z [j]

‖∞

‖C[j+1] − C[j]‖∞, ‖Q[j+1]
−Q[j]

‖∞

}
< ε (20)
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TABLE 2. TABLE shows different types and materials of the papers used to prepare hyperspectral paper data. In this, types of the papers are listed in the
order that the papers given in FIGURE 7 (a).

TABLE 3. Quantitative comparison of all the methods for the data tensor X ∈ RS1S3×N×Ns composed by hyperspectral patches of dimension
R10×10×186. Evaluation measures are given as mean and standard deviations (m± σ ). Best: Bold.

TABLE 4. Quantitative comparison of all the methods for the data tensor X ∈ RS1S3×N×Ns composed by hyperspectral patches of dimension
R20×20×186. Evaluation measures are given as mean and standard deviations (m± σ ). Best: Bold.

TABLE 5. Quantitative comparison of all the methods for data tensor X ∈ RS1S3×N×Ns composed by hyperspectral patches of dimension R30×30×186,
R40×40×186 and R50×50×186. Evaluation measures are given as mean and standard deviations (m± σ ).
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the cases have been clearly illustrated in TABLE 3, TABLE 4
and TABLE 5 and in which, detailed comparison of the clus-
tering results of the proposed method with conventional sub-
space clustering algorithms are also presented. The proposed
method produces good clustering results under different sce-
narios, as illustrated in the aforementioned TABLEs. As given
in Case I of TABLE 3, proposed method attains the ACC,
NMI and ARI values as (0.9650±0.0020), (0.9760±0.0020)
and (0.9594±0.0605) respectively. Our method outperforms
SSC, LSR and LRSC in all the cases we have considered.
For lesser dimensions of hyperspectral data samples, men-
tioned in Case I of TABLE 3, methods such as SSC, LSR,
and LRSC have produced comparable results. However, for
increased dimensions, (Case III and Case IV of TABLE 3),
their clustering results show a decline. Other methods, such
as SCLRR, l0-LRSSC and SCLRSmC also have produced
good clustering results in general. However, proposedmethod
exhibits superior performance over these two methods in all
the scenarios. In Case IV of TABLE 3, where the hyper-
spectral paper data samples of 40 papers, proposed method
obtains comparatively better ACC (0.9202 ± 0.1052), NMI
(0.9071 ± 0.1036), ARI (0.9016 ± 0.1385) and F-score
(0.8890 ± 0.1348) values. At the same time, other methods
produced low evaluation scores in the same scenario.

Similarly, for the data tensorX ∈ RS1×S3×N×Ns , composed
of several hyperspectral paper data patches of dimensions
∈ R20×20×186, proposed method have shown better perfor-
mance over the other methods. The comparison results are
tabulated in TABLE 4. For the data tensorX ∈ R400×400×186,
in Case IV, proposed method have obtained the ACC value of
(0.9075 ± 0.0027) and F-score value of (0.9005 ± 0.0025)
respectively. Among the methods we compared, SCLRSmC
produces comparatively good results for all cases mentioned
in TABLE 4. Methods such as LRSC, LSR, shows severe
decline in their performance for increased number of papers
taken for clustering. Other methods, SCLRR and l0-LRSC
produces good results for Case I and Case II of TABLE 4,
but fails for increasing dimensions of the data tensor X .
We further tested our method by changing the spatial

dimensions of the hyperspectral patch S1 × S3 in varying
dimensions as 30×30, 40×40 and 50×50 respectively. The
obtained results are reported in TABLE 5. Overall, the pro-
posed method performs well under the conditions described
in TABLE 3, TABLE 4 and TABLE 5. Moreover, it could
outperform the existing methods and maintains consistent
performance throughout the different scenarios considered
in this work. The proposed method surpasses existing meth-
ods due to a number of the following factors. The tensorial
arrangement of the hyperspectral samples could help in stack-
ing them into distinct lateral slices. Moreover, each lateral
slice of the data tensorX accommodates the information from
all the spectral bands. Also, the dissimilaritymatrix employed
in the proposed method aids to get a proper f-diagonal struc-
ture for the representation tensor Z which can clearly show-
case the high correlation that exists in intra-cluster datapoints
and less correlation that exists between datapoints that belong

to inter clusters. In addition, a comparison study of the affinity
matrices generated by the proposed method and other state-
of-the-art methods was also conducted and the learned affin-
ity matrices are given in FIGURE 8. The proposed method
could generate an affinity matrix with an accurate block
diagonal structure, as can be seen in FIGURE 8 (g). This is
also one of the reasons for the proposed method’s consistent
behaviour in producing good clustering outcomes. Among
the compared methods, SCLRSmC and l0-LRSC produces
comparatively better affinity matrices. At the same time,
as seen in FIGUREs 8(a), (b) and (c), methods such as
SSC [40], LRSC [41] and LSR [42] were failed to maintain
the required block diagonal structure for their corresponding
affinity matrices.

Hence, from the evaluation results, it is clear that proposed
method can be used in the context of detecting forged one
in a multi-page document. The method we proposed could
effectively cluster the hyperspectral samples selected from
different papers. As proposed in this work, it is observed that
hyperspectral samples with similar spectral properties have
been grouped into a single cluster, while those with a different
spectral properties have been grouped into respective clusters.
On the other hand, this results precisely demonstrates the
truthfulness of the heuristic we proposed in our study. The
forged paper/papers in a multipage document will be mapped
into some other clusters and the original papers of the doc-
uments as a whole will be mapped into a single cluster and
thereby the forged papers can be detected easily.

C. COMPARISON OF EXECUTION TIME
Even-though the proposed method consistently producing
good clustering results, it has been also realized that, execu-
tion time of the proposed method increases with increasing
dimensions of the data tensor X . The time required for the
proposed method for various dimensions have been shown
in FIGURE 9 (a). For data tensor, X ∈ R1600×186×400,
composed by hyperspectral patches of 40 × 40 × 186, the
computational time of the proposed method is nearly 3000
Seconds. Moreover, for X ∈ R2500×186×400, the execution
time reaches to 5069 seconds. Hence, the computational
time of the proposed method increases in a linear fashion
with increasing dimensions of hyperspectral slices as rep-
resented in FIGURE 9 (a). Similarly, we made an analysis
of the computational time required for all the algorithms.
FIGURE 9 (b) shows the computational time comparison of
all the algorithms with the data tensor X ∈ RS1S3×N×Ns ,
where S1S3 = 10, Ns = 186 and N varies from 100 to
400. Similarly, in FIGURE 9 (c), we selected hyperspectral
patches ∈ R20×20×186 for all cases reported in TABLE 4.
Among the compared methods, SCLRSmC, takes much

computational time as shown in FIGURE 9 (b). Methods,
such as SSC, LRSC and l0-LRSC consume less execution
time but the results are considerably reduced at varying
scenarios as aforementioned. Hence, a disadvantage of the
proposed method is huge computational time required for
its execution. But, since the proposed method incorporates

6204 VOLUME 10, 2022



J. Francis et al.: Comprehensive Tensor Framework for Clustering of Hyperspectral Paper Data

FIGURE 8. Affinity matrices produced by all the algorithms for the data tensor X ∈ R100×100×186 (Case I of TABLE 3).

FIGURE 9. Computational time of the proposed method and state-o-the-art algorithms. Vertical axes represent computation time given in
seconds and horizontal axes represent the types (number) of hyperspectral paper data taken for clustering.

FIGURE 10. Figure illustrates the convergence analysis of the proposed
method with ACC metric and representation error term, ‖X −XZ‖∞.

the information embedded in all spectral bands, this may be
acceptable to some extent. The problem of redundancy in
spectral bands can be reduced by incorporating a simultane-
ous band selection to the proposed method. Then, the hyper-
spectral samples can be represented by minimum number
of spectral bands and thereby the computational time of the

proposedmethod can be reduced to a greater extent. However,
we address this challenge in our future work.

D. PARAMETER TUNING, CONVERGENCE AND
COMPUTATIONAL COMPLEXITY
The optimum values of the regularization parameters λ1 and
λ2 have been determined by a grid search to achieve the
best clustering results. For the proposed method, we fixed
λ1 = 0.0085 and λ2 = 0.0045 for all the experiments.
We evaluated the convergence behaviour of the proposed
method against the evaluation metrics ACC as well as the
representation error term, ‖X − XZ‖∞ which are pre-
sented in FIGUREs 10 (a) and (b) respectively. It has been
observed that the proposed algorithm shows a good con-
vergence rate and converges quickly within 10-20 itera-
tions. The computational complexity of the proposed method
lies in C ∈ RN×N×Ns and Q ∈ RN×N×Ns updates.
Then, C update involves l 1

2
-induced TNN which requires,
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O(N 2Nslog2Ns +
1
2NsN

2
+ N 3) and Q update with l 1

2
reg-

ularization requiresO(N 2Ns) operations per iterations. Over-
all the proposed method bears moderate computational
complexity.

VI. CONCLUSION
A tensor framework for clustering of hyperspectral paper
data with an application to forensic document analysis has
been proposed. In the proposed framework, spectral infor-
mation from the hyperspectral patches fetched from papers
to be clustered are stacked into lateral slices of a third order
tensor. Objective function of the proposed method incorpo-
rates l 1

2
-induced TNN which improves the low rankness of

the representation tensor. Similarly, the structural constraint
employed by means of l 1

2
regularization and the dissimilarity

matrix facilitates to achieve f-diagonal structure of the rep-
resentation tensor. The optimization problem formulated has
been solved using Inexact Augmented Lagrangian Method.
The proposed method has been evaluated and further com-
pared with state-of-the-art clustering techniques. The results
show that proposed method produces consistent clustering
results and outperforms the other methods.
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