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ABSTRACT Tumor segmentation in Computed Tomography (CT) images is a crucial step in image-guided
surgery. However, low-contrast CT images impede the performance of subsequent segmentation tasks.
Contrast enhancement is then used as a preprocessing step to highlight the relevant structures, thus facilitating
not only medical diagnosis but also image segmentation with higher accuracy. In this paper, we propose a
goal-oriented contrast enhancement method to improve tumor segmentation performance. The proposed
method is based on two concepts, namely guided image enhancement and image quality control through
an optimization scheme. The proposed OPTimized Guided Contrast Enhancement (OPTGCE) scheme
exploits both contextual information from the guidance image and structural information from the input
image in a two-step process. The first step consists of applying a two-dimensional histogram specification
exploiting contextual information in the corresponding guidance image, i.e. Magnetic Resonance Image
(MRI). In the second step, an optimization scheme using a structural similarity measure to preserve the
structural information of the original image is performed. To the best of our knowledge, this kind of contrast
enhancement optimization scheme using cross-modal guidance is proposed for the first time in the medical
imaging context. The experimental results obtained on real data demonstrate the effectiveness of the method
in terms of enhancement and segmentation quality in comparison to some state-of-the-art methods based on
the histogram.

INDEX TERMS Guided enhancement, cross-modality, contrast enhancement, 2D histogram specification
(HS), SSIM gradient, tumor segmentation.

I. INTRODUCTION
Liver cancer is the fifth most prevalent cancer in the world,
carrying a low survival rate [1]. Nevertheless, timely detec-
tion of cancerous tumors and effective treatment strategies
can improve the overall survival rate. Diagnostic imaging
techniques such as CT facilitate timely diagnosis of can-
cer; however, low contrast and noise limit their utility [2].
Moreover, such low-contrast images make segmentation and
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tumor detection challenging problems that can be overcome
by applying a contrast enhancement beforehand.

It is also worth mentioning here that a single medical
imaging modality is unable to capture all the relevant struc-
tural information from the organs. For this reason, it is now
becoming more common to acquire both CT and MR images
periodically during liver cancer diagnosis and treatment [3].
Therefore, it would be interesting to use the additional cap-
tured information from one imaging modality (e.g. MRI)
to enhance the other (e.g. CT). The concept of enhanc-
ing the image from one modality using cross-modal image
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information is not novel; similar ideas have been successfully
applied to natural images [4]–[6]. One such approach for liver
CT image enhancement using the corresponding MR images
was proposed to improve the visibility of tumors and
vessels [7]. In general, the cross-modality guided enhance-
ment methods have shown better performance in comparison
with the classic single image enhancement methods [8], [9].

Currently, there are two main challenges related to image
enhancement in the medical context. Firstly, most recent
enhancement techniques are tailored to only specific types
of images. Secondly, it is not easy to find a well-established
benchmark for evaluating the existing enhancement meth-
ods. For these reasons, the effectiveness of the enhancement
approaches is often assessed based on their impact on the
underlying application. For medical imaging, the motiva-
tion of CE, in general, is to improve the visual appear-
ance of relevant organ structures for better diagnosis and
intervention [10]. However, limited research has been done on
image quality enhancement to improve the segmentation of
such organ structures [4], [11]–[14]. By using CE as prepro-
cessing step, improved segmentation of relevant structures in
CT images could be achieved as concluded in [13]. Therefore,
there is a dire need for efficient CE algorithms for such
images.

Traditional enhancement methods suffer from limitations
such as saturation, over-enhancement, and uneven contrast
spatial distribution, that may result from the uncontrolled
CE process. One way to overcome such limitations is to
combine the contrast enhancement approach with a quality
control scheme. Inspired by the guided filtering approach and
the simplicity of context-aware histogram-based image qual-
ity enhancement, we propose in this paper a cross-modality
guided histogram specification technique to improve the con-
trast of liver CT images using MRI images as guiding input
data. Furthermore, optimization is incorporated to prevent
the saturation artifacts inherent to histogram-based methods.
A similar idea was proposed for enhancing natural images
in [15]. It consists of mapping the histogram of the input
image to that of a reference image combined with an opti-
mization technique to preserve the structures of the input
image. In this work, we propose a similar approach for
medical images using cross-modal information. The new
CE approach is hence based on two concepts, namely, cross-
modality-guided medical image enhancement to improve
the global contrast, and quality control to preserve the
local structures during enhancement. Here, we formulate
the cross-modal CE as an optimization problem, where the
gradient of structural similarity index measure (SSIM) is
used for local structure preservation and minimizing artifacts
introduced during enhancement [16]. Later, the role of CE is
analyzed in facilitating tumor segmentation. The overall pro-
cessing scheme is evaluated on a real dataset containing CT
and MRI of the human liver with segmentation ground truth.
The main contributions of this paper are:
• The two-dimensional histogram specification-based
CE process is formulated as an optimization problem

and extended to multi-modal medical imaging data for
the first time.

• SSIM gradient is incorporated in the optimized
cross-modality guided 2D-HS framework to preserve
structural fidelity of the enhanced image with the origi-
nal image while applying enhancement.

• In order to obtain the objective of contrast enhance-
ment without affecting the important structures of
the image, the algorithm achieves a nice balance
between retaining structural similarity with input image
(by integrating SSIM gradient) and enhancing contrast
by employing 2D entropy. The suggested combination of
cross-modal guidance and quality control enhances the
CT image exploiting contextual information, as opposed
to context-unaware schemes.

• A new goal-oriented performance evaluation of the
proposed approach is done utilizing objective quality
metrics and through segmentation results applied on
real multi-modal liver data. Comparison with single
enhancement techniques validate the superior perfor-
mance of the proposed method.

The rest of the paper is organized as follows. Section II pro-
vides a brief review of relevant contrast enhancement meth-
ods. Section III describes the proposed Optimized guided
CE method. Experimental results of CE are discussed in
section IV. The results of applying segmentation on the
enhanced images are described in section V, followed by
conclusion in section VI.

II. RELATED WORK
Among the methods for image quality enhancement, CE is
themost intuitive andwidely used solution in various fields of
application, especially inmedical imaging. Contrast enhance-
ment methods can be broadly classified into two main cate-
gories: direct methods and indirect methods [17]. In the first
category, the contrast is first defined and amplified to then
deduce the modified value associated with the pixel to be
treated. In the second category, the pixel value is transformed
by means of an operation defined from global characteristics,
such as the distribution of pixel values, or local characteristics
such as the intensity gradient of the pixel. These operations
can be performed in the spatial or transform domain or even
in the joint spatial/spatial-frequency domain. It is well known
that methods that operate in the transform domain and more
particularly those that exploit multi-scale aspects and direc-
tional selectivity are more efficient but at the cost of increased
complexity and prohibitive computation time in the case of
large volumes of image data. It is therefore natural to turn to
global methods and more specifically those that exploit the
distribution of pixel values in the case of medical images.
Among these methods, those based on histograms developed
in general for natural images constitute an interesting alterna-
tive to other complex and time-consuming methods. Indeed,
histogram-based CE approaches are well investigated both
for natural as well asmedical images, thanks to their low com-
plexity and acceptable performance [18], [19]. For instance,
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histogram equalization (HE) is one of the conventional
histogram-based CEmethods that map the global Cumulative
Distribution Function (CDF) of the input image to that of
a uniform distribution. Other histogram-based methods like
Adaptive Histogram Equalization (AHE) and Contrast Lim-
ited Adaptive Histogram Equalization (CLAHE) operate on
a small region around each pixel of the image to improve
local contrast [20]. Besides these, another histogram-based
approach, Histogram Specification (HS), uses CDF of the
reference image with better perceptual quality to improve
the visual appearance of a low contrast image [21], [22].
Similarly, another interesting histogram-based approach
proposed for natural images uses contextual information
through the 2D-CDF of the target image to exploit the
inter-pixel correlation [23], [24]. This approach [23] has
been shown to outperform other histogram-based approaches
including minimum within-class variance multi-histogram
equalization [25].

Among these histogram-based methods, some have also
been used for medical image enhancement such as AHE
and CLAHE for CE of FLuid Attenuated Inversion Recov-
ery (FLAIR) MR images of brain [18]. In this method,
the authors first performed contrast stretching before apply-
ing AHE/CLAHE. Eventually, to highlight abnormal hyper-
intense regions they have detected regional maxima followed
by performing a local averaging of pixel values. However,
their method is strictly application-specific and they have
only used PSNR and average gradient for comparison, both
of which are not suitable for performance evaluation of
CE methods. Similarly, another histogram-based method
to enhance CT images has combined normalized gamma
correction with CLAHE to reduce the excessive brightness
introduced by CLAHE [19]. In this work as well, the simi-
larity metrics like SSIM [16] are inefficient for performance
evaluation of CE methods, since there is no reference image
in the CE task that can be used for similarity comparison.
Few enhancement techniques [2], [26], [27] decompose the
low-contrast image into detail and base layer separating high
frequency and low-frequency contents in the image and apply
histogram modification to enhance the base layer. The his-
togram is modified to prevent over-enhancement of the image
by ensuring that the minimum gray level of the enhanced
image approximates zero.

Despite the promising results of histogram-based meth-
ods in many applications, they sometimes introduce arti-
facts in the resulting image. Optimization strategies could
be then used to reduce these side effects [28]. For instance,
a HE-variant approach [29] finds an optimal threshold gray
level value that separates the histogram into four sub-
histogram. Histogram clipping is then applied to adjust
the threshold according to the distribution of the origi-
nal histogram. The proposed approach preserves natural-
ness of the image while minimizing over-enhancement.
MedGA [30], another optimization-based technique was pro-
posed to enhance the MR images. It is a combination of
histogram-based method and genetic algorithm; however,

only specific Region of Interest was enhanced in this way.
Similarly, Lin et al. [31] achieved a nice balance between
image brightness and contrast using a histogram averaging
and remapping scheme. CE is conditioned by minimizing
the average brightness difference between the input and
enhanced images while maximizing the entropy in the pro-
cessed image. However, this method is not well suited to dark
images because of its inherent and fundamental brightness
preserving property. Another method that maximizes infor-
mation content and minimizes the artifacts has been proposed
in [32]. The intermediate histogram equalized image and
the original image are combined using a weighting factor
computed by using a golden section search algorithm to attain
uniform distribution. However, the local details are lost in
case the image contains unevenly illuminated regions.

A breakthrough in the field of image enhancement was
achieved when He et al. [33] introduced the idea to exploit
information in a similar image to enhance the underlying
image. This concept was further extended to cross-modality
guided natural image enhancement [9]. The majority of
cross-modality guided natural image enhancement meth-
ods process input images emanating from both modali-
ties with the same contents and an accurate pixel to pixel
correspondence, which largely simplifies the enhancement
process [8]. Based on this strategy, Near Infrared (NIR)
images were enhanced using photographs [34]. This method
used gradient-based histogrammatching to embed contrast of
NIR images in photos. Moreover, wavelet domain processing
was done to improve texture information. A similar idea was
applied to medical images recently, where 2DHSwas applied
to map histogram of liver CT image to that of corresponding
MR image [7]. However, optimization to control CE was not
done in this work.

III. METHODOLOGY: OPTimized GUIDED CONTRAST
ENHANCEMENT (OPTGCE)
Generally, classical Contrast Enhancement (CE) methods
do not optimize an objective function or contrast-related
measure; instead, they manipulate the pixel values accord-
ing to a predefined distribution. Besides, these approaches
amplify the contrast without objectively controlling the pos-
sible artifacts that may arise from the CE process. To the
best of our knowledge, there are very few works where
the contrast enhancement effect is controlled according to
a well-defined framework. The proposed method OPTGCE
operates according to this strategy. It applies HS-based CE
to the low-contrast CT image based on the second-order
distribution of an image of a complementary modality, that
is MRI. The motivations behind the use of histogram-based
methods are essentially their simplicity, reduced computa-
tional load, and the fact of exploiting a global statistical
quantity that contains essential information on the distribu-
tion of pixel values. This is especially advantageous in the
case of a large size of medical imaging data. Therefore, the
2D histogram effectively exploits the inter-pixel interactions,
i.e. second-order statistics, in the design of the CE scheme.
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This treatment enhances the overall contrast well but may
suffer from some side effects. Indeed, the locally relevant
structures of the image can be negatively affected, leading
the processed image to be divergent from the original. There-
fore, it is necessary to control the critical parameters of the
CE process to amplify local contrast while simultaneously
preserving the intrinsic structures of the image. One strategy
to prevent the CE from side effects is to control the enhance-
ment by using a local similarity measure between the input
and enhanced image or some stopping criteria. Here, we per-
form the optimization using a measure that is directly related
to the structural information in the image and carries contrast
information. Furthermore, the extent of contrast is quantified
through the two-dimensional entropy. The flowchart of the
proposed technique is shown in Fig. 1. The three essential
components of the proposed method, namely the 2D his-
togram specification-based CE, the structural gradient-based
similarity measure, and 2D entropy are described below.

FIGURE 1. Flowchart of the proposed method.

A. 2D HISTOGRAM SPECIFICATION
Most image processing methods based on the distribution of
pixel values involve only one-dimensional histogram. This
has the disadvantage of not taking into account the strong
spatial correlation of pixels and exploiting it in order to
avoid side effects associated with histogram approaches.
These limitations have led to the use of higher-order statis-
tics of pixel values and characteristics to develop more

efficient methods. The two-dimensional grayscale histogram
is the simplest higher-order distribution. A two-dimensional
histogram was then introduced in order to exploit the pixel
inter-correlation in various image processing tasks such as
image classification and grey-level thresholding [35], [36].
Later, this idea was also applied to 2D-HS and 2D-HE [23].
Indeed, it has been shown that the 2D HS clearly out-
performs its one-dimensional HE and HS counterparts in
terms of visual quality [23]. The approach in [23] is driven
by the principle that the local and global contrast of the
image could be enhanced by amplifying the grey-level tran-
sitions of neighboring pixels. One way to accentuate such
transitions is to exploit the grey-level transition probability,
i.e. 2D grey-level histogram. In recent work, 2D-HS based
approach was applied to improve the contrast of liver
CT images using MR images [7]. Although this method
produces an acceptable enhancement, it is accompanied by a
darkening or brightening effect in certain areas of the image
due to the use of top hat and bottom hat transforms [37].

For the sake of completeness of the article, we recall here
the basic notions and concepts introduced in the methods
of 2D histogram specification. Let us consider an input image
[f ] = {f (m, n)|1 ≤ m ≤ M , 1 ≤ n ≤ N }, where f (m, n) is
the grey-level of pixel located at (m, n); the dynamic range
of image is [fmin, fmax] and M × N is its height and width
respectively. The principle of guided contrast enhancement is
to transform an input image [f ] into an output image [fe] to
improve its contrast. The guide or reference image used in
this process is represented by [g], that is an image of better
perceptual quality. One way to achieve this objective is to
use the traditional Histogram Modification Framework and
map the 1D-CDF of [f ] to that of [g]. However, as pointed
out before, it is more efficient to consider pixel context,
use higher-order statistics and compute the 2D-CDF instead
when using the HS approach. Therefore, two-dimensional
histograms of both guidance and input images, hg and hf
respectively are derived from the Grey Level Co-occurrence
Matrix (GLCM) computed from the two images. GLCM is a
square matrix containing the number of occurrences of pair-
wise combinations of grey levels when exploring the whole
image using a sliding window and a defined neighborhood.
For the sake of simplicity, the neighborhood is generally
restricted to the two nearest neighbors of the current pixel,
i.e. left and above pixels. Let f (m, n) denote the input image
pixel’s grey level. The GLCM is then computed as follows:

Cf (i, j) =
K−1∑
i=0

K−1∑
j=0

δij(f (m, n), f (p, q)), (1)

Here, i and j represent the pixel values and (m, n) and (p, q)
represent the image coordinates,K is the total number of grey
levels, and 0 ≤ i, j ≤ K − 1,

δij(a, b) =

{
1, if i = a and j = b
0, otherwise
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The transition probability of grey-levels, i.e. the 2D nor-
malized histogram, is derived from the GLCM as follows:

hf (i, j) =
Cf (i, j)∑K−1

i=0
∑K−1

j=0 Cf (i, j)
(2)

The 2D-histogram is then used in the pixel grey-level
mapping process using the histogram specification method
as described below. This mapping process is based on the
two-dimensional Cumulative Distribution Function (CDF) of
the input and guidance images computed as follows.

Hf (i, j) =
K−1∑
i=0

K−1∑
j=0

hf (i, j) (3)

The expression of the 2D-CDF of the guidance image
is computed similarly and is represented as Hg. Once the
2D-CDF of both images is computed, the transformation T
allowing the mapping between the input signal and the
desired signal is obtained as follows:

T (i, j) = argmin
[k,l]
|Hf (i, j)−Hg(k, l)|+η(|i− k| + |j− l|)

(4)

The mapping is accomplished by searching the target
pixel values, T (i, j)1 and T (i, j)2 corresponding to pixel
values i and j in [f ]. The second term in Eq. 4, i.e. |i −
k| + |j − l| ensures to select a nearby pixel pair for which
the difference between both CDFs among the candidate pixel
values is minimized. η represents a very small number and its
value = 10−4.

The final step in 2D-HS consists of mapping the intensity
values in [f ] to new values. To this end, each pixel and its
immediate neighbor are considered. The intensity values for
the enhanced image [fe] are therefore calculated using the
equation below:

fe(m, n) = T (f (m, n), f (m, n+ 1)) (5)

From Eq. 5, it can be inferred that transformation of
each value in the original image [f ] to a new value in the
enhanced image [fe] also depends on its neighboring element.
Therefore, unlike the 1D histogram specification which only
considers individual pixel values for calculating the CDFs and
ultimately mapping these values, this approach also exploits
the contextual information among the pixels. Next, we look
at the SSIM gradient approach.

B. GRADIENT BASED STRUCTURAL SIMILARITY MEASURE
As mentioned above, histogram specification is widely
applied to enhance image contrast. However, like many
transformation-based CE methods relying on global statis-
tical descriptors, it affects local and global image structures.
One way to control processing distortions is to integrate into
the CE process a stopping criteria or an objective function and
formulate the whole problem in a constrained optimization
framework. The method proposed by Avanaki [15] belongs
to this kind of solution. The idea is to apply global HS to

a low-contrast image driven by an SSIM-based measure
to control the enhancement through structural similarity
changes between the original image and its enhanced variant.
SSIM is a well-established measure to calculate the extent of
similarity between two images [16]. Considering one image
as a reference, the index provides the quality of the image
under analysis in comparison with a reference. SSIM index
is calculated between corresponding local blocks in
images [A] and [B], after which the average of the values is
taken to obtain a single value of SSIM as the overall similarity
index. Let us assume that ax and bx represent corresponding
blocks x in both images; µax and µbx represent the mean
intensity values of ax and bx and the standard deviations are
given by σax and σbx . C1 and C2 are small numbers greater
than 0 to ensure the denominator is not zero. The SSIM
between the two blocks ax and bx is then expressed as:

SSIM(ax , bx)=

(
2µaxµbx+C1

) (
2σaxbx + C2

)(
µ2
ax+µ

2
bx+C1

) (
σ 2
ax+σ

2
bx+C2

) (6)

Few terms in Eq. 6 are described mathematically as:

µax = w ∗ ax ,

σaxbx = w ∗ (axbx)− µaxµbx ,

σ 2
ax = w ∗ a2x − µ

2
ax (7)

where w is 11 × 11 Gaussian kernel and ∗ indicates convo-
lution. Eq. 6 could be regarded as expression for SSIM index
map, SSIMmap calculated via element wise addition and mul-
tiplication using parameters expressed in Eq. 7. Then, at all
points, SSIMmap indicates local similarity between images
[A] and [B]. The global SSIM index for the overall images
can then be expressed as:

SSIM(A,B) =
1
Z

∑
∀x

SSIMmap(ax , bx; x) (8)

where Z denotes the number of pixels in either image.
SSIMmap(ax , bx; x) is SSIM index value corresponding to the
window x of size c × c in images [A] and [B], starting from
the upper left corner of images and proceeding to the bottom
right. For the local SSIM measures in Eq. 6, we define the
following terms for compactness:

α1(ax , bx) = 2µaxµbx + C1,

α2(ax , bx) = 2σaxbx + C2 (9a)

β1(ax , bx) = µ2
ax + µ

2
bx + C1,

β2(ax , bx) = σ 2
ax + σ

2
bx + C2 (9b)

As discussed earlier, the SSIMgradient-based optimization
method [15] is applied to the cross-modal medical image
enhancement in this work. Here, 2D-HS is applied to enhance
CT images by exploiting the better quality of MR images.
When applied in the framework of optimization, the SSIM
gradient refines the enhancement process incrementally.

The integration of SSIM ultimately preserves the overall
morphology of the original image with minimal information
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TABLE 1. Description of important notations used in the paper.

loss during enhancement. Here, we denote the input image
as [f ] and the image whose structural similarity is being
compared with [f ] as [fe]; [fe] is obtained after applying
2D-HS. Now, to adapt the notion of SSIM gradient to our
scenario, let us replace [A] by [fe] and [B] by [f ] and rewrite
Eq. 8 as:

SSIM(fe, f ) =
1
Z

∑
∀x

SSIMmap(fex , fx; x) (10)

Calculating the derivative of Eq. 10 with reference to [fe]
gives the SSIM gradient expression as follows:

∂fe SSIM(fe, f )

=
2
Z

[(
w ∗

α1

β1β2

)
f
]

+

(
w ∗
−SSIMmap

β2

)
fe

×

[
+w ∗

µfe (α2−α1)−µf (β2 − β1)SSIMmap

β1β2

]
(11)

where α1, α2, β1 and β2 have been described in Eq. 9a
and 9b. Eq. 11 is a closed form solution and simple expres-
sion for SSIM gradient obtained by decomposing SSIM in
linear terms. For thorough understanding of the mathematical
computations, the reader is referred to [15]. The important
notations used in this paper are listed in Table 1.

C. CONTRAST ENHANCEMENT WITH QUALITY CONTROL
After briefly introducing 2D-HS and SSIM gradient methods,
the OPTGCEmethod is described in this subsection. Initially,
we set the input CT image [f ] equal to [f ′] and guidance
MRI as [g]. The CDFs of [f ] and [g] are calculated using
Eq. 3. Eq. 4 mathematically defines how to calculate the
transformation matrix T . The pixel values in [f ′] are mapped

to new values using Eq. 5 to get enhanced image [fe] in
the manner explained in the section III-A. The proposed
algorithm then calculates the structural similarity between
[fe] and [f ] using Eq. 6 followed by SSIMgradient calculation
with respect to image [fe], represented by ∂fe . Afterwards,
[f ′] is updated as mentioned in step 5 of the algorithm 1.
Images [f ′] and [fe] are updated in every iteration, while [g]
remains unchanged. Since SSIM computes the quality over
the local neighborhood, it is capable of capturing local dis-
similarities better than global approaches. Hence, optimizing
the enhancement process using SSIM gradient offers better
outcomes in terms of retaining the structure of the original
image [f ]. Algorithm 1 describes the steps of our proposed
approach:

In the above algorithm, α represents the step size or the
factor by which [fe] is updated in every iteration. Next,
we describe a method to calculate the optimal value of α.

1) CALCULATION OF SUITABLE STEP SIZE
In this subsection, we elaborate the empirical approach simi-
lar to [15] for calculating an optimal step size α, so the algo-
rithm attains higher SSIM in fewer iterations. The estimated
increase in SSIM at iteration t is mathematically described
as:

1SSIM(t) = αZ
∑
∀x

(
∂fe SSIM(f , fe(t))

)2 (12)

Based on the behavior of SSIM (t) at several iterations,
1SSIM(t) can be modeled by αrst [15]. The final value of
SSIM (after several iterations) can be expressed as:

SSIMf = SSIM′ +
rαZ
1− s

(13)
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Algorithm 1 OPTimized Guided Contrast Enhancement
Algorithm (OPTGCE)

input CT image = f and guidance image = g
Calculate 2D-CDF of guidance image as Hg and that of
input image as Hf .
Set f ′ = f , threshold = 0.05 and t = 1
while 1E>=threshold do
1) Apply 2D histogram specification to f ′ to match

2D histogram of image g and generate enhanced
image fe.

2) Calculate structural similarity between fe and f ,
SSIM(f , fe) and SSIM gradient ∂feSSIM(f , fe)

3) Calculate Et and 1E .
4) Increment t as t = t + 1
5) Update f ′ contents using SSIM gradient driven

factor as: f ′ = fe + αZ∂feSSIM(f , fe).
end while
Output enhanced image fe

where r =
∑
∀x
(
∂fe SSIM(f , fe(1))

)2
, s = 1SSIM(2)/

1SSIM(1), 1SSIM(2) and 1SSIM(1) denote the incre-
ase in SSIM values at t = 2 and t = 1 respectively.
SSIM′ denotes the initial value of SSIM computed after first
iteration. Our experiments show that SSIM value changes
faster in earlier iterations, therefore the algorithm is executed
three times to calculate the quantities in Eq. 13. Replacing
SSIMf value by 1 (the ideal value) and substituting the above
values in Eq. 13, the approximated upper bound on α can be
calculated as:

α =
1− s
rZ

(
1− SSIM′

)
(14)

In our experiments, the value of α was calculated for the
middle slice of each volume; the same value was used for
all the slices in that volume, since SSIM values between
original image and corresponding enhanced images among
all the slices of specific volume were very close. The range
of α found for our dataset was [20, 60]. Furthermore, it is
important to mention that for any value of α in the spec-
ified range, the SSIM index value improves compared to
that obtained in the first iteration, i.e. without incorporating
SSIM gradient.

As stated in the previous sections, the objective of this work
is to improve contrast while maintaining structural similarity
with the input image to facilitate tumor segmentation. There-
fore, along with ensuring this structural similarity (via SSIM
gradient), we incorporate another criterion in our proposed
method to measure the contrast enhanced at each iteration by
applying 2D-HS. Therefore, 2D entropy is used to control the
level of enhancement. The stopping criterion for the enhance-
ment process is determined by the gain in two-dimensional
entropy achieved for the enhanced image. The rationale of our
methodology is to exploit inter-pixel correlation; therefore,

we have used 2D entropy to formulate this criterion as:

Et = −
K−1∑
i=0

K−1∑
j=0

hfe(t) (i, j)ln(hfe(t) (i, j)) (15)

In Eq. 15, Et represents the value of the 2D entropy for an
image fe at iteration t , where t varies from 1 to 10. hfe(t) (i, j)
is the value of transition probability of gray level pairs.
The change in entropy of the enhanced image gained with
every iteration is calculated as follows:

1E = Et − Et−1 (16)

Moreover, the change in entropy values (normalized to lie
in the range [0,1]) across all the iterations is shown in Fig. 2
when the algorithm is applied to our dataset. Since the entropy
values of all the images in a particular volume were very
similar, entropy value of the middle slice from each volume
is plotted for the sake of compactness. At a specific point
in the optimization process, when 1E becomes negligible
(close to zero) or when the 1E value starts oscillating,
the enhancement process is stopped. Both these scenarios
imply that further application of the enhancement process
either will not further enhance the image or will likely intro-
duce artifacts in the image. We observe an obvious increase
in entropy when applying the proposed method for the
first iteration. Subsequent applications bring a slow entropy
increase; however, we show in section V that the segmen-
tation accuracy is higher when segmentation is applied on
images enhanced using the proposed algorithm. The result
of applying the OPTGCE method and comparison with other
methods is presented in the following section.

FIGURE 2. Variation in entropy values with iterations.

IV. ASSESSMENT OF CONTRAST ENHANCEMENT
In this section, we describe the dataset used in the experi-
ment and the results obtained using different methods [7],
[31], [32]. The qualitative and quantitative assessments are
elaborated below.

A. DATASET
The data used in this research work is provided by the
Intervention Center, Oslo University Hospital in Norway.
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FIGURE 3. Comparison of proposed method with state of the art methods and their corresponding histograms.

FIGURE 4. Comparison of proposed method with state of the art methods and their corresponding GLCM plots.

Liver CT and MR data of the same patient are used; how-
ever, CT-MRI data is not registered since registration is not
required for global enhancement methods. We tested our
method on 10 patients’ data constituting 99 CT-MR image
pairs (containing tumors). The images from different vol-
umes are of different spatial sizes (such as 512 × 512,
360×240) with pixel values in the range [0, 255]. In medical
image processing tasks such as segmentation and enhance-
ment, the processing is often restricted to a particular
organ and the nearby organs are removed from the medical
images [38], [39]. The liver area in the images is there-
fore separated and processing is applied only to this
region.

1) QUALITATIVE ANALYSIS
In this subsection, few enhanced images alongwith their
corresponding histograms and GLCM plots are presented
in Fig. 3 and 4 respectively. To ensure a fair compari-
son, we selected all histogram based methods where [31]
and [32] employ optimization based histogram processing
and [7] applies cross-modality guided HS. We denote these
methods as Averaging Histogram Equalization (AVHEQ)
[31], Histogram Equalization with Maximum Intensity Cov-
erage (HEMIC) [32] and Cross-Modality Guidance-based
enhancement (CMGE) [7].

The input image in Fig. 3a2 has low contrast as validated
by its histogram. Similarly, the input image in Fig. 4a2 is
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TABLE 2. Quantitative assessment of different enhancement methods.

low-contrast CT image. The images enhanced using HEMIC
(Fig. 3a3 and 4a3) do not show noticeable contrast improve-
ment. Although CMGE (Fig. 3a5) expands the dynamic
range of the image (Fig. 3a5), it darkens the image. AVHEQ
(Fig. 4a4) stretches the dynamic range of enhanced images,
however, its GLCM plot (Fig. 4b4) shows significant gaps
among the pixel pairs and consequently the compactness
of the plot is lost. The plot of OPTGCE enhanced image
(Fig. 4b6) reflects the uniform distribution of the pixel pairs.
Furthermore, it approximates the plot of the guidance image
(Fig.4b1) in evenly distributing the pixel pairs; this similarity
is also verified in their histograms (Fig. 3b1 and Fig. 3b6).

2) QUANTITATIVE ANALYSIS
Image Quality Assessment (IQA) is a well-investigated
research field especially in the case of natural images [40].
However, the use of existing IQA metrics has serious limi-
tations in the medical context [41]. The objectives of CE in
the medical context are quite different [42], [43]. While in the
case of natural images the objective is to measure the effect of
various distortions on the perceptual quality of the image; in
the medical context even if some degradation may disturb the
radiologists the focus is rather on the diagnosis. Therefore,
the existing IQA metrics must be used with special care.
Another challenging topic is how to evaluate the performance
of a given image quality enhancement algorithm in terms of
perceptual quality [44]. In the present study, we focus on
some contrast enhancement evaluation (CEE) metrics.

Themotivation of theOPTGCE is to emphasize the appear-
ance of specific structures in the image and convey the maxi-
mum structural information to facilitate tumor segmentation.
To this end, we have chosen three different CEE metrics to
evaluate the quality of enhanced images. The first metric
is a mutual information-based no reference metric called
MIGLCM [45]. This metric offers quantitative criteria that
examines the changes in the statistical features, joint entropy,
andmutual information, acquired from theGLCMof the orig-
inal and the enhanced images. Besides MIGLCM, we have
used a recent metric Multi-Criteria Contrast Enhancement

TABLE 3. Median MCCEE values for different methods.

Evaluation (MCCEE) found to be effective for the evaluation
of CE in CT images that have been enhanced to improve
tumor segmentation [46]. It is a comprehensive metric as
it not only measures improvement in contrast but also con-
siders other evaluation criteria like over-enhancement. For
MCCEE, four features are evaluated for each image cor-
responding to four different criteria. These criteria include
contrast enhancement, structure preservation, lightness order
preservation, and brightness preservation. Two of the four
features corresponding to the structure and lightness order
preservation are evaluated from the subband images after
wavelet decomposition. MCCEE is finally evaluated using
a trained Support Vector Regressor (SVR) with subjective
quality scores or DICE from the subsequent segmentation.
MCCEE here is applied on data of three patients only since
the rest of the data from seven patients is used for training.

For the last metric, we have used entropy, which is often
used in QA of medical image enhancement [31]. Table 2 lists
the median values of MIGLCM and entropy, whereas Table 3
shows the MCCEE values. It is pertinent to mention that
the higher the MCCEE score, the better enhancement result
is; the range of MCCEE is [0,1]. Similarly, a higher value
of MIGLCM reflects better performance of CE algorithms.
Besides, higher entropy values also correspond to superior
CE performance; however, there is no specified range for
this metric. From the tabular results, we can observe that
OPTGCE demonstrates the best performance. For MCCEE
and entropy, CMGE, HEMIC, and AVHEQ are ranked low
overall by the two QA metrics. In the case of MIGLCM,
HEMIC is ranked as the second-best and CMGE gives the
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FIGURE 5. Comparison of tumor segmentation results with the ground truth.

poorest results. All in all, we observe that OPTGCE shows
the best performance for all the quantitative metrics chosen.
In this section, we compared the performance of our proposed
method individually without looking at its effect on the sub-
sequent segmentation task. In the following section, the appli-
cation of the gradient-driven Seeded Region Growing (SRG)
method on the enhanced images will be discussed.

V. TOWARDS AN OPTIMAL SEGMENTATION
PRESERVING LOCAL STRUCTURES
Segmentation in low contrast medical images, particularly
CT images is a delicate operation. The segmentation pro-
cess is often accompanied by miss-classification errors that
negatively impact high-level tasks, for instance, diagnosis
in the medical context. Similar to several fields of sci-
entific research, deep learning-based image segmentation
approaches seem to dominate the state of the art [47]. How-
ever, DL-based techniques require an extensive amount of
data to train the networks, which is difficult to acquire in the
medical context due to confidentiality and ethical considera-
tions. This work entails the segmentation of liver tumors from
a rather limited volume of data consisting of only 99 liver
tumor images (out of 10 patients’ data). We, therefore, resort
to the traditional approach, SRG. Several studies report the

use of SRG for segmenting medical images compared to
more sophisticated approaches [48]–[50]. However, as has
been pointed out, classical segmentation, whether stochastic
or deterministic, inevitably induces pixel classification errors,
which could be fatal in the case under study here. One solu-
tion to minimize these errors is to apply pre-processing so
as to amplify the inter-pixel gradient to facilitate the dis-
crimination of local structures. Contrast enhancement is the
most intuitive solution. In this work, one of the segmentation
methods that seems to us the most adequate is the region
growing technique based on the gradient of pixel values [51].
Indeed, the fact of first carrying out CE amplifies the gradient,
which results in putting the gradient-based region growing
method in the most favorable conditions. A constraint that
may limit the utility of this approach is the execution time;
therefore, we use its parallel implementation as proposed
in [13]. In this section, we present the results of applying
segmentation on enhanced images along with its quantitative
assessment.

A. QUANTITATIVE ASSESSMENT OF SEGMENTATION
The results of applying gradient-driven SRG algorithm
on enhanced as well as input images are demonstrated
in Fig. 5 and 6. It can be noticed that the tumor in the
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FIGURE 6. Comparison of tumor segmentation results with the ground truth.

TABLE 4. Comparison of different segmentation assessment method for enhancement results.

input image can hardly be seen in Fig. 5a1 and 6a1 with-
out applying CE. In general, application of the CE methods
improve the contrast of the input image, which ultimately
enables SRG to locate tumor contours favorably. How-
ever, OPTGCE well preserves uniformity in the structure of
tumors in the enhanced image together with yielding sharp
tumor edges. Therefore, Seeded Region Growing (SRG)
algorithm is better able to locate the tumor contours in the
OPTGCE-enhanced images. This property enables OPTGCE
to outperform other CEmethods in facilitating tumor segmen-
tation. The quantitative segmentation assessment as well as
qualitative comparison with ground truth also supports our
claim.

It should be noted here that the segmentation results are
demonstrated without applying any kind of post-processing
such as morphological region filling. We believe that bet-
ter results could be obtained if appropriate post-processing
was applied to the segmented images. For further validation,
we quantitatively evaluate the segmentation results using

three assessment metrics, i.e., Positive Predictive Value
(PPV), Dice and Hausdorff distance (with Euclidean dis-
tance). The average values of these metrics obtained for each
volume are shown in Table 4. In the past, several metrics
have been proposed to evaluate the performance of seg-
mentation algorithms such as intensity-based, shape-based,
and or distance-based. One of the challenges in medical
image segmentation assessment is that the object of interest
constitutes a small part of the image, therefore the assess-
ment methods are biased to yield more weightage to speci-
ficity compared to sensitivity. Distance-based metrics such
as Hausdorff distance are capable of detecting data outliers in
such cases where intensity-based approaches may often fail.
There is no standard range for the hausdorff distance values,
however, the lower value indicates superior segmentation
outcomes.

Among the numeric results in Table 4, PPV values in
general are greater than 0.8 for all the segmentations.
Since PPV computes the ratio between the number of pixels
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correctly classified as tumors to the number of pixels cor-
rectly classified and the non-tumor pixels wrongly classified
as tumors, this metric gives similar values to all the methods.
It should be noted that the range of PPVmetric is [0,1]; where
1 implies accurate segmentation. It can also be observed
that all the segmentations in Fig. 5 and 6 do not include
many non tumor pixels in the resultant segmentation when
compared to the ground truth. Although Dice yields better
scores for segmentation applied on images enhanced using
the proposed method, the overall dice scores are low. Dice
similarity metric gives higher value to the terms that compute
the intersection between true positives in segmentation under
test and ground truth. The range of dice score lies between
0 and 1, where 1 corresponds to the perfect segmentation.
In the proposed CE approach, the segmented area does not
completely overlap with the GT, contributing to lower dice
scores; moreover, not applying any kind of post-processing
to segmentation also introduces discontinuities and non uni-
formity in segmented tumors. It is worth mentioning here that
the Dice scores are lowest when SRG algorithm is applied on
the input images without any kind of enhancement, whereas
Hausdorff distance shows highest value. The segmentation in
the case of the OPTGCE method consistently achieves lower
Hausdorff distance values for all three volumes. CMGE is the
second-best while HEMIC ranks lowest in all the three cases
tested.

VI. CONCLUSION
This study proposes an optimization-based guided con-
trast enhancement approach OPTGCE for low contrast
CT images. The proposed technique adopts a context-aware
2D histogram-based scheme of exploiting information in
the better perceptual quality guidance image for global
contrast enhancement, while local image structures are
enhanced through SSIM based measure in an optimization
framework. This combination effectively improves the con-
trast while minimizing the artifacts associated with typical
histogram-based enhancement methods to preserve the mor-
phological information of the image during enhancement.
The qualitative and quantitative analysis usingmetrics includ-
ing entropy, MCCEE, andMIGLCM shows the superiority of
the proposedmethod in comparisonwith the existingmethods
that do not include guidance mechanism. Finally, a tumor
segmentation algorithm is applied on the enhanced images
to analyze the performance of the proposed method in facili-
tating tumor segmentation. The comparison with the ground
truth and quantitative assessment using Hausdorff distance,
dice, and PPV metrics validate the superior performance of
OPTGCE. With the availability of more data, goal-oriented
contrast enhancement can be implemented using deep neural
networks to facilitate tumor segmentation in different organs.
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