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Abstract

With the increasing development of artificial intelligence (AI) technologies, deep

learning-driven approaches have been widely applied to predicate different ma-

chinery failures. One key challenge of failure prediction is to collect sufficient

data, especially data of various failure types, to train the data-driven models.

Existing studies focus on using transfer learning to transfer knowledge across

machines or domains, but not across failure types. In this study, we hypoth-

esise that knowledge about failure among similar failure types is transferable.

Should the hypothesis hold, companies may no longer require a large amount of

all types of failure data for predictive maintenance. This will increase the com-

panies’ overall implementation feasibility and productivity gains. We tested our

hypothesis on knowledge transferability for failure prediction in an experiment

performed on rotating machinery with vibration signals. During the experi-

ment, we first calibrated the performance of the trained deep neural network in

each impending failure type. Then, we leveraged the architecture and hyper-

paramesters of the neural network model trained from one type of failure as the

pre-trained model for knowledge transfer. The pre-trained model is fine-tuned

with data from another type of failure of the same machine. After that, we com-
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pared the performance of the neural network model to predict the second type

of failure before and after knowledge transfer. Results showed that transferring

knowledge obtained from one type of failure could vastly improve the perfor-

mance of predicting another type of failure, which may not have sufficient data

to train a good prediction model. This result implies that predictive analytics

can apply parameter-based deep transfer learning (TL) to address the challenge

of insufficient data on all types of machine failures for failure prediction.

Keywords: Deep neural network, Failure prediction, Predictive maintenance,

Transfer learning

1. Introduction

Advanced manufacturing strategies such as predictive maintenance have the

potential to increase equipment lifetime, improve production quality, reduce

lead times, prevent accidents and malfunctions, and optimise energy efficiency

and resource consumption [1]. One typical task of predictive maintenance is to5

predict system failures. Machine learning-based failure prediction can handle

massive monitoring signals collected from various sensors and identify the work-

ing conditions of machines [2] [3]. Traditional failure prediction methods usu-

ally require elaborate engineering and considerable domain expertise to design

a feature extraction system that can transform raw data into a suitable internal10

representation or feature vectors [4]. For this reason, as one of the most popular

trends in machine learning, deep learning methods have been widely applied for

predictive maintenance with various tasks because of their advantages in au-

tomatic feature extraction [5]. Many types of deep learning architectures have

been studied for predictive maintenance in recent years. Wang et al. [6] applied15

a fully connected deep neural network (DNN) to identify impending failures for

a wind turbine gearbox. By comparing their network with several traditional

machine learning approaches, the experiment shows that their method performs

better in extracting useful features for indicating failures from vibration signals.

Li et al. [7] proposed a deep belief network (DBN) to predict backlash error in20
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machining centres. The proposed deep neural network can discover helpful infor-

mation about failures from coupled data with good generalisability. Other deep

learning-based approaches, such as autoencoder-based deep neural networks [8],

deep convolution neural networks [9], and long/short-term memory networks [5],

have also been widely applied and researched for predictive maintenance. All25

the aforementioned studies have achieved specific targets for predictive main-

tenance and demonstrated successful applications of deep learning-based ap-

proaches. However, most methods inevitably require a large amount of data

collected under both normal and failure conditions. Therefore, an approach to

reduce the necessary amount of data without reducing prediction performance30

and additional effort for predictive maintenance is imperative. To address the

data deficiency challenge, transfer learning (TL) [10][11] arose as a new learn-

ing framework to reuse knowledge captured in deep neural networks [12] [13]. A

few studies have applied TL for predicting systems’ remaining useful life (RUL),

e.g., [14][15][16], and failures, e.g., [17][18][19][20][21][22][23]. For studies using35

TL for failure prediction, they focused either on knowledge transfer across do-

mains [17][22][23], across machines [18][20][21], or across working conditions [19].

Many sensor data of a complex machine may need to be monitored and anal-

ysed to predict failures. However, not all types of failures have sufficient data to

build AI-based prediction models. Predicting a particular type of failure using40

the knowledge of another failure type on the same machine could substantially

save costs and improve system operation reliability and safety. Feng and Zhao

[24] tried to use the attribute transfer method to tackle the zero-sample fault

diagnosis challenge. However, the method in [24] requires additional domain

knowledge to form attribute descriptions in both training and target failures.45

Such domain knowledge may not be available for some types of failures. To our

knowledge, no study has investigated the possibility of applying TL in failure

prediction across different failure types without human intervention.

We hypothesise that deep neural networks for predicting different failures

related to the same machine may share specific parameters. We, therefore, pi-50

loted using parameter-based TL to predict one type of failure based on knowl-
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edge captured in the deep neural network for predicting another type of failure.

Our experiment results on predicting two types of failures of a rotation machine

showed that TL could improve failure prediction performance across failure

types. The contributions of this study are twofold:55

• We give empirical evidence that parameter-based TL could transfer knowl-

edge across different types of failures on the same machine to improve the

prediction performance and address the insufficient data challenge.

• We proposed a novel deep transfer learning-based predictive maintenance

method based on our findings.60

The rest of this paper is organised as follows. Section 2 introduces the

transfer learning (TL) approaches. Section 3 describes our research design.

Section 4 presents our research implementation and results. Section 5 proposes

a novel deep transfer learning-based failure prediction approach across failure

types. Section 6 discusses our results and compares our approach with related65

work. The conclusions and future work are summarised in Section 7.

2. Transfer learning

First of all, notations and acronyms used frequently in this paper are sum-

marized in Table 1.

Transferring knowledge from one task or domain to another may vastly im-70

prove machine learning efficiency and performance. The insight behind TL is

that generalisation may occur within tasks and across tasks [10]. TL aims to

unite knowledge from different fields, which enables leveraging validated knowl-

edge from other domains or tasks when the targeted domain’s available data is

limited. In the definition of TL [25], we consider that a domain D consists of75

two components: one feature space X and one marginal probability distribution

P(X), where X = {x1, ..., xn } ∈ X. In general, if two domains are different, they

may have different feature spaces or different marginal probability distributions.

Given a specific domain, D = {X, P(X)}, a task T consists of two components:
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Table 1: Descriptions of notations and acronyms

Notation Description Notation Description

D Domain T Task

X Feature space DS Source domain

Y Label space TS
Learning task in

source domain

x, y Single sample DT Target domain

n Sample number TT
Learning task in

target domain

f(·)
Prediction function in

source domain
fT(·)

Prediction function in

target domain

Acronym Description Acronym Description

TL Transfer Learning AI Artifical Intelligence

Failure

Type 1
Friction failure

Failure

Type 2
Load imbalance failure

DNN Deep Neural Networ SVM Support vector machine

DBN Deep belief network KNNC
k-nearest neighbours

classification

BPNN
Backpropagation

neural network
ReLU Rectified Linear

NN Neural network model NN-A
NN model

for knowledge transfer

NN-B
NN model receiving

knowledge transferred
NN-C

Another NN model

receiving knowledge

transferred

one label space Y and one objective predictive function f(·) (denoted by T =80

{Y, f(·) }, which cannot be observed but could be learned through training. The

training data consist of pairs xi, yi, where xi ∈ X and yi ∈ Y. The function

f(·) can be leveraged to predict the corresponding label, f(x), of a new instance

5



x. Given a source domain DS and a learning task TS and a target domain DT

and a learning task TT, TL aims to help improve the learning of the target85

predictive function fT(·) in DT using the knowledge in DS and TS, where DS ̸=

DT or TS ̸= TT. Several approaches are used to achieve TL. For instance, Weiss

et al. [11] and Pan and Yang [25] categorised the form of knowledge transfer

into four general categories:

• The first category is instance-based TL. The most common approach in90

this category is for instances from the source domain to be reweighted to

adjust for marginal distribution differences. These reweighted instances

can be leveraged to train models for the target domain.

• The second category is feature-based TL, which reshapes the features from

the source domain by reweighting them to match the target domain. The95

core idea is to identify potential common feature space with predictive

qualities while reducing the marginal distribution between the domains.

• The third category is parameter-based TL, which assumes that the source

and the target tasks may share specific parameters and that the knowledge

that we want to transfer can be encoded into these shared parameters.100

Therefore, knowledge can be transferred across tasks by identifying those

shared parameters.

• The fourth category is to transfer knowledge based on some defined rela-

tionship between the source and target domains. It usually deals with TL

in relational domains.105

3. Research design and data collection

In this section, we first justify using parameter-based TL to predict different

types of failure of the same machine. Then, we explain the machine and its

failures we study.
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3.1. The rationale for using parameter-based TL110

Based on knowledge transferability theory, we hypothesise that phenomena

captured by sensors for detecting similar types of failures may share specific

common rules. As shown in Figure 1, all phenomena captured from a machine

shall follow specific natural rules such as Newton’s Law. When a failure type

(A) happens, all phenomena under this failure will also follow specific rules.115

For machine learning-based failure identification, the essence is to learn about

those rules by training a data-driven model to recognise the edge of the failure

circle. We consider that two similar failure types may have an intersection area

that represents their common rules. These common rules cannot be seen with

human eyes but could be captured and represented by deep learning models.120

As the common rules are usually unknown, the attribute transfer method [24],

which requires additional domain knowledge to form attribute descriptions in

both source and target failure types, is not applicable. The instance-based TL

is also difficult to use because it is challenging to know which data or instance

of the source failure type is relevant to the target failure type.125

Figure 1: Knowledge representation by machine learning

The parameter-transfer approaches assume that individual models for related

tasks should share some parameters or prior distributions of hyperparameters
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[25]. The parameter-based TL has shown positive results in transferring knowl-

edge across machines [20], and across conditions of the same type of failure [19].

Cho et al. [19] also compared two parameter-based transferring learning strate-130

gies, one is to transfer only the neural network architecture, and another is to

transfer both the architecture and the neural network parameters. They found

that transferring architecture and parameters improves the prediction accuracy

of the target domain better. Our research chose to study parameter-based TL

since we assume that the source and the target tasks share the same parameter135

scale and prior distributions of the hyperparameters in the data-driven model.

We limit our focus on using sensor data collected from the same equipment to

accomplish different tasks. In this study, the tasks are to identify different types

of impending machine failures. Furthermore, we consider that the tasks shall

have a similar relationship between inputs and outputs. We hypothesise that,140

by discovering and reusing the shared parameters, knowledge for identifying one

type of failure could be transferred to identify the other.

3.2. Machine and failures studied

We tested our hypothesis on a rotating machine during the experiment since

it is the most common type of mechanical machinery and usually ran under145

harsh working conditions with various types of failures [26].

Our laboratory’s experiment was set up with a Bently Nevada Rotor Kit to

simulate rotating equipment’s working conditions. As shown in Figure 2, three

accelerometers of Kistler 8702B100 were mounted in the X, Y, and Z directions

on the bearing house to collect the vibration signals from the rotating machine.150

We selected vibration signals as the primary sensor data, given their superior

performance in indicating anomalies from the complex environment and broad

applicability in mechanical systems [6]. The sampling frequency for vibration

signals was 4,096 Hz. The experiment was performed with changing revolving

speed to simulate practical working conditions. Vibration monitoring refers to155

the zero position of the machine. In this position, signals from the accelerom-

eters were recorded and stored as normal samples. The rub generator can be
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modulated to simulate friction on the main spindle, which we labelled as Failure

Type 1. Failure Type 2 (load imbalance) can be injected by adjusting the weight

on the adjustable mass load during the experiment. “Friction and imbalance of160

components in rotating machines are some of the most recurrent failures that

significantly increase vibration levels, thus affecting the reliability of the devices”

[27]. Failures of both types (1 and 2) will largely affect the rotating movement

of the main spindle, which will react to the measured vibration signals. Thus,

sensor data under impending failure conditions can be obtained through the165

acceleration metres.

Figure 2: The hardware setup of the experiment

During the experiment, the vibration signals were measured through the

accelerometers in three directions at different rotating speeds through proximity

sensors and a handheld tachometer for control. We collected 5,035 samples.

Among them, 1,608 samples were collected under normal working conditions,170

which are hereby labelled normal samples. The amounts of samples collected

with Failure Types 1 (friction on the main spindle) and 2 (load imbalance) are

1,703 and 1,724, respectively.

In this research, we applied wavelet and Fourier transforms to extract wavelet
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coefficient-based and energy-based feature sequences from the vibration signals175

to represent the working conditions of target equipment in both the time and

frequency domains [28]. Different types of wavelet functions may cause various

time-frequency structures. In this study, the Daubechies 4 wavelet function

was selected because of its capacity to derive both conventional and energy-

based features from vibration signals [29] as well as its superior performance to180

estimate the local properties, such as breakdown points [30]. More details about

the rationale for choosing the Daubechies 4 wavelet function to extract features

from vibration signals and the method to use wavelet function are in [26].

To increase the data-driven model’s efficiency, we extracted a total of 33

features as follows from the original vibration signals.185

• The first and second peaks of vibration signals in the frequency domain

in three directions

• The standard deviation noises of wavelet coefficients in levels 1 to 4 (the

decomposition level during the wavelet transform)

• The percentages of energy (acquired from one-dimensional wavelet decom-190

position) corresponding to the approximation in three directions

• The percentages of energy corresponding to the details in levels 1 to 4

4. Research implementation and results

In this study, we designed a study to validate our hypothesis that knowledge

between different failure types of the same machine can be transferred. In195

particular, we attempted to investigate whether the knowledge collected in the

model of predicting Failure Type 2 (imbalance) can facilitate the prediction of

Failure Type 1 (friction). The study had three high-level steps as follows:

• Step 1: We used different percentages of Failure Type 1 data to train neu-

ral network models to predict its failure. We chose relatively low accuracy200

models as the baseline for later comparison.
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• Step 2: We used different percentages of Failure Type 2 data to train

neural network models to predict its failure. We chose a high accuracy

model as the model for transferring Failure Type 2 knowledge in later

steps.205

• Step 3: We used the high-accuracy Failure Type 2 model as the pre-

trained model (including its architecture and hyperparameters) and fine-

tuned the model using the same percentage of data for training the low

accuracy Failure Type 1 models. Then, we compared the performance

of Failure Type 1 models using and without using the pre-trained model.210

We expected that the pre-trained model’s performance should be better

because we believed that the knowledge to predict Failure Type 2 was

captured in the pre-trained model’s parameters, and the knowledge could

be transferred to predict Failure Type 1.

4.1. Step 1 and 2: Training models for predicting Failure Types 1 and 2215

The applied deep learning model is established through fully connected deep

neural networks (DNN) with six layers. Lu et al. [22] used DNN in their studies

for fault diagnosis across domains and argued that “DNN is able to disentan-

gle fundamental factors of variations underlying the samples, and then group

features hierarchically in accordance with their relatedness to shared factors,220

which makes representations robust to transfer.” In addition, DNNs have also

shown a superior ability in studies using domain adaption benchmark datasets

[31][32][33]. Deep learning can “capture abstract features and recognize patterns

in ways many once thought impossible for computers” [34], and DNN has “the

ability to learn multiple nonlinear transformations with high complexity through225

multiple hidden layers, which helps to capture the main variations and discover

the discriminative information from the industrial data” [26]. Li et al. [4] ar-

gued that deep learning has attracted not only researchers’ but also engineers’

attention due to the strong capacity to capture abstract features and recognize

patterns in ways many once thought impossible for computers [14]. Li et al. [26]230

compared DNN with support vector machine (SVM) [35], deep belief network
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(DBN) [36], k-nearest neighbours classification (KNNC) [37], and backpropa-

gation neural network (BPNN) [38] to classify bearing looseness, main spindle

friction, and load imbalance failures in an experimental environment similar to

this study. The results demonstrate DNN’s superiority in failure classification.235

In our DNN, we used leaky Rectified Linear Unit (ReLU) functions as the

activation functions of the hidden layers and softmax functions as the activation

functions of the output layer. Unlike the DNN used in [26] for fault classification,

we chose to use ReLU as the activation function of the hidden layers instead of

using Tanh. The calculations of ReLU and Tanh are shown in Equations (1)240

and (2).

Tanhf(a) =
sinh (a)

cosh (a)
=

ea − e−a

ea + e−a
f(a) ∈ [−1, 1], (1)

Rectified Linear f(a) = max (0, a) f(a) ∈ R+, (2)

where a represents the weighted combination, which is a =
∑

i xiwi + b,

and xi and wi are the input values of the firing neurons and their weights,

respectively.

A general problem with Tanh functions is that it saturates, which leads to245

the vanishing gradient problem and prevents deep (multi-layered) networks from

learning effectively [39]. In modern neural networks, the default recommenda-

tion is to use the rectified linear unit or ReLU [39].

Since the dimension of inputs is 34 (33 features extracted from the vibration

signals and the rotating speed), the numbers of nodes selected in the hidden250

layers of the constructed deep neural network are 32, 32, 16, 16, 8, and 2 (i.e.,

32 nodes in the first and second layers, 16 nodes in the third and fourth layers,

8 nodes in the fifth layer, and 2 nodes in the last layer) to learn and repre-

sent the input data smoothly. We selected Adam as the optimiser. Adam is “an

algorithm for first-order gradient-based optimization of stochastic objective func-255

tions.” [40]. Adam is a popular deep learning algorithm because it achieves good

results fast [41]. We used TensorFlow Keras to train the model and applied its
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default Adam configuration parameters, i.e., learning rate=0.001, beta 1=0.9,

beta 2=0.999, epsilon=1e-08, decay=0.0. We used categorical cross-entropy as

the loss function because of its broad applicability. Studies show that using the260

cross-entropy error function instead of the sum-of-squares for a classification

problem leads to faster training as well as improved generalisation [42].

We first calibrated the neural network’s performance in Failure Types 1

and 2 with a different number of training samples. We first used 20% of the

randomly selected Failure Type 1 samples and 20% of the randomly selected265

normal samples as the training dataset to train the neural networks, and the

remaining Failure Type 1 samples and normal samples as the test dataset. The

results of the prediction of Failure Type 1 using the test dataset are shown

in Tables 2 and Figure 3. Table 2 shows the recorded test loss and accuracy

for all the steps (each step has been run and recorded five times). The test270

loss is obtained by computing the cross-entropy loss between the labels and

the predictions. In Figure 3, condition 0 represents the failure condition, while

condition 1 means the normal condition. The blue line in Figure 3 represents the

prediction result from the softmax layer of the neural network. The prediction

results of using 40% of the Failure Type 1 samples and 40% of the normal275

samples are shown in Table 2 and Figure 4. The prediction results using 60%

of the training samples are shown in Table 2 and Figure 5. From 3 to Figure 5,

we found Failure Type 1 can already be predicted with acceptable test accuracy

(on average more than 99%) by using only 40% of the training data.

Similar to the calculation we had done for Failure Type 1, for Failure Type280

2, we calculated the test accuracy and loss using 10%, 20%, and 40% of the

training data. The test accuracy and loss results are shown in Table 2 and

Figure 6, Figure 7, and Figure 8. For Type 2 failures, we observed that using

only 20% of the training data can already achieve acceptable test accuracy (on

average 89.9%).285
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Table 2: Prediction Loss and Accuracy Using Different Numbers of Training Samples for

Failure Type 1

Percentage and number of training

samples of Failure Type 1

20%

(662 sample)

40%

(1,324 sample)

60%

(1,986 samples)

Test loss 1 0.429 0.052 0.001

Test accuracy 1 78.5% 100% 100%

Test loss 2 0.499 0.029 0.004

Test accuracy 2 76.9% 100% 100%

Test loss 3 0.401 0.090 0.000

Test accuracy 3 77.7% 100% 100%

Test loss 4 0.226 0.169 0.003

Test accuracy 4 79.3% 97.2% 100%

Test loss 5 0.512 0.043 0.002

Test accuracy 5 64.9% 100% 100%

Average test loss 0.413 0.077 0.002

Average test accuracy 75.5% 99.4% 100%

4.2. Step 3: Transferring knowledge captured from Failure Type 2 data to pre-

dicting Failure Type 1

As shown in Table 1, using 40% of Failure Type 2 and 40% of the normal

samples to train the NN can achieve 100% prediction accuracy, which means

that the NN has learned the knowledge to predict Failure Type 2. We call this290

model NN-A. Results in Table 1 also show that the model trained using 20% of

Failure Type 1 and 20% of its normal samples has room to be improved. The

same goes for the NN model trained using 40% of Failure Type 1 and 40% of

its normal samples. This step aims to show that using NN-A as the pre-trained

model and fine-tuning it using a certain amount of Failure Type 1 data can295

predict Failure Type 1 better than using the same amount of Failure Type 1
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Table 3: Prediction Loss and Accuracy Using Different Numbers of Training Samples for

Failure Type 2

Percentage and number of training

samples of Failure Type 2

10%

(333 samples)

20%

(666 samples)

40%

(1,332 samples)

Test loss 1 0.392 0.183 0.007

Test accuracy 1 54.4% 99.9% 100%

Test loss 2 0.451 0.161 0.018

Test accuracy 2 65.9% 99.4% 100%

Test loss 3 0.377 0.161 0.000

Test accuracy 3 69.2% 100% 100%

Test loss 4 0.434 0.192 0.062

Test accuracy 4 51.8% 84.5% 100%

Test loss 5 0.508 0.319 0.000

Test accuracy 5 66.0% 65.9% 100%

Average test loss 0.432 0.203 0.017

Average test accuracy 61.4% 89.9% 100%

data without using NN-A. In this step, we first retrained NN-A using 20% of

Failure Type 1 data and compared the performance improvement. Then, we

did the same by using 40% of Failure Type 2 data.

4.2.1. Experiment 1: Fine-tune NN-A using 20% of Failure Type 1 data300

1. Build a neural network called the NN-B with the same structure as the

NN-A and use the hyperparameters in the NN-A as the initial weights of

the NN-B.

2. Randomly select 20% of the samples from Failure Type 1 and 20% of the

normal samples, as Training Dataset 2.305

3. Fine-tune NN-B using Training Dataset 2.

4. Use the remaining (80%) Failure Type 1 data as the test dataset and
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Figure 3: Prediction result of Failure Type 1 using 20% of the Failure Type 1 samples and

20% of the normal samples as the training dataset.

Figure 4: Prediction result of Failure Type 1 using 40% of the Failure Type 1 samples and

40% of the normal samples as the training dataset.

test how well the NN-B can predict Failure Type 1. The testing results

represent the performance of predicting Failure Type 1 after TL from the

NN model, i.e., the NN-A, which is built from the data of Failure Type 2.310

5. Compare the prediction performance of Step 4 with the baseline prediction

16



Figure 5: Prediction result of Failure Type 1 using 60% of the Failure Type 1 samples and

60% of the normal samples as the training dataset.

Figure 6: Prediction result of Failure Type 2 using 10% of the Failure Type 2 samples and

10% of the normal samples as the training dataset.

performance (i.e., the performance shown in Table 1 and Figure 3).

The results of Experiment 1 are shown in Table 4. The data in the second

column of Table 4 show the prediction results without using the knowledge of
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Figure 7: Prediction result of Failure Type 2 using 20% of the Failure Type 2 samples and

20% of the normal samples as the training dataset.

Figure 8: Prediction result of Failure Type 2 using 40% of the Failure Type 2 samples and

40% of the normal samples as the training dataset.

Failure Type 2, i.e., without using TL. The data in the third column of Table315

4 show the prediction results using the knowledge of Failure Type 2. This

experiment shows that the test accuracy of using the knowledge of Failure Type

2 is, on average, 99.4%, which is higher than the test accuracy (i.e., 75.5%)
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without using the knowledge of Failure Type 2. In addition, the average test

loss of prediction without using TL is around ten times the average loss of320

prediction using TL. The results in Figure 9 show the prediction results using

TL. By comparing the results shown in Figure 9 and Figure 3, we can see that

using TL can provide higher prediction accuracy and lower the loss of Type 1

failures.

Figure 9: Prediction result of Failure Type 1 using 20% of the Failure Type 1 samples and

20% of the normal samples as the training dataset and TL.

4.2.2. Experiment 2: Fin-tune NN-A using 40% of Failure Type 1 data325

1. Build a neural network called the NN-C with the same structure as the

NN-A and use the hyperparameters in the NN-A as the initial weights of

the NN-C.

2. Randomly select 40% of the samples from Failure Type 1 and 40% of the

normal samples, as Training Dataset 3.330

3. Fine-tune the NN-C using Training Dataset 3.

4. Use the remaining (60%) Failure Type 1 data as the test dataset and

test how well the NN-C can predict Failure Type 1. The testing result

represents the performance of predicting Failure Type 1 after TL from the

NN model, i.e., the NN-A, which is built from the data of Failure Type 2.335
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5. Compare the prediction performance of Step 4 with the baseline prediction

performance (i.e., the performance shown in Table 1 and Figure 4).

The data in the fourth and fifth columns of Table 4 show the prediction

results without using and using the knowledge of Failure Type 2, respectively.

Although this experiment shows no significant differences in test accuracy are340

found between using TL and not using TL, the test loss of not using TL is still

ten times that of using TL. Figure 10 visualises the prediction results of using

TL and 40% of the sample data to predict Type 1 failures. Comparing such

results to those shown in Figure 4, we can see that the test loss shown in Figure

10 is much less than that shown in Figure 4.345

Table 4: Result of Using and Not Using TL to Predict Type 1 Failures

20%

(662 training samples)

40%

(1,324 training samples)

Without TL With TL Without TL With TL

Test loss 1 0.429 0.024 0.052 0.002

Test accuracy 1 78.5% 99.7% 100% 100%

Test loss 2 0.499 0.112 0.029 0.001

Test accuracy 2 76.9% 99.0% 100% 100%

Test loss 3 0.401 0.018 0.090 0.000

Test accuracy 3 77.7% 100% 100% 100%

Test loss 4 0.226 0.069 0.169 0.000

Test accuracy 4 79.3% 98.7% 97.2% 100%

Test loss 5 0.512 0.007 0.043 0.027

Test accuracy 5 64.9% 99.9% 100% 100%

Average loss 0.413 0.046 0.077 0.006

Average

accuracy
75.5% 99.4% 99.4% 100%

In addition, we found that TL can accelerate training convergence by com-

paring results in training the neural network using and not using TL. Figure
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Figure 10: Prediction result of Failure Type 1 using 40% of the Failure Type 1 samples and

40% of the normal samples as the training dataset and TL.

11 and Figure 12 illustrate the training error with epochs and the prediction

result without using and using TL, respectively, and show that TL can help

accelerate the training convergence in the training process in Experiment 1. A350

similar trend, as shown in Figure 13 and Figure 14, is observed in Experiment

2.

5. Deep transfer learning-based predictive maintenance method

As mentioned above, to achieve predictive maintenance, most currently avail-

able methods inevitably need large amounts of data collected from both normal355

and failure conditions. After carrying out the aforementioned experiment and

analyses, we validate our hypothesis that knowledge between different failure

types of the same machine can be transferred. For this reason, it is impera-

tive to develop a method further to identify or predict potential failures based

on the hypothesis, especially when the available data is not sufficient for tradi-360

tional approaches. Therefore, under this background, we propose a deep transfer

learning-based method to leverage data across different failure types.

The essential idea is to use one type of failure data to train a neural network.

21



Figure 11: Training accuracy with epochs using 20% of the Failure Type 1 samples and 20%

of the normal samples as the training dataset and without TL.

Figure 12: Training accuracy with epochs using 20% of the Failure Type 1 samples and 20%

of the normal samples as the training dataset and TL.

The neural network, including architecture and hyperparameters, is used as the

pre-trained model for another failure type but is fine-tuned using data that type365

of failure. The fine-tuned model can then be used for predicting the that type

of failure.

22



Figure 13: Training accuracy with epochs using 40% of the Failure Type 1 samples and 40%

of the normal samples as the training dataset and without TL.

Figure 14: Training accuracy with epochs using 40% of the Failure Type 1 samples and 40%

of the normal samples as the training dataset and TL.

The architecture of our proposed method is shown in Figure 15. Our pro-

posed method includes three phases as follows:

• Pre-training phase. We first introduce sensor data and the corresponding370

ground truth (labels that can indicate the working condition of equip-
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ment). After feature engineering, the extracted features are applied to

train a deep neural network for the source task (e.g., failure prediction

with sufficient history data). The architecture and hyperparameters of

the neural network model will be shared by the target task (e.g., failure375

prediction with insufficient data).

• Adaption phase. The training data may be insufficient to train the ma-

chine learning model for the target task alone. The model generated in

the pre-training phase will be fine-tuned using the data of the target task.

• Prediction phase. Once the transfer learning-based deep neural network380

is adapted to the target task, we can use the network for predicting even

though the available data for the target task is rare and insufficient for

traditional methods. In this stage, the knowledge about source task, e.g.,

failure learned from similar failure types, can be inherited in the deep

neural network and reused for prediction for the target task.385

Figure 15: The architecture of deep transfer learning-based predictive maintenance method
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6. Discussion

Quantitative or qualitative lack of data or labeled data is a common dilemma

in practical applications of predictive maintenance [43][44]. To fill the gap and

mitigate the impact of insufficient data, reusing of analytics insights, models,

and data, also known as reusing analytics profiles [45], from related data or390

models have been proposed. Transfer learning is one possible approach for

reusing analytics profiles.

Our experiments show that we can improve Type 1 failures’ prediction accu-

racy using knowledge learned for predicting Type 2 failures. This improvement

is more apparent when we use 20% of the data in the training dataset than395

when we use 40% of the data. For industrial practitioners, our results can pro-

vide valuable insights to improve the performance of machine learning when

data related to some failure types are insufficient. Suppose a company wants

to predict a particular type of failure but does not have sufficient data to train

the neural network. In that case, the company can investigate the possibility of400

transferring knowledge learned for predicting other failure types for predicting

this type of failure.

6.1. Comparison with related work

According to [11] [25], there are four categories of TL. Three categories of the

TL approach, namely instance-based, feature-based, and parameter-based, have405

been used for predictive maintenance. The TL approach to transfer knowledge

based on some defined relationship between the source and target domain has

not been used, probably because it usually focuses on TL in the relational do-

main, which may be irrelevant to predictive maintenance data. Compared to our

work, existing studies have either different focuses or use different approaches.410

Instance-based TL was applied by Zhang et al. [18] to predict failures of

minority disks using data acquired from majority disks. The purpose of [18] is

to predict the same type of failure across systems, which is different from the

purpose of our study.
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Feature-based TL was used for predicting RUL and faults. In [14], feature-415

based TL was applied to predict the remaining useful life (RUL) across machines

by leveraging the weights of models from the same kinds of machines. The RUL

in their research is represented by testing the machine’s tool wear during the

experiment. Ragab et al. [15] also used feature-based TL and DNN for predict-

ing the RUL of the same machine across operation conditions. Lu et al. [22]420

used DNN with domain adaption for fault diagnosis. Their approach can learn

transferable features and strengthen the representative information obtained

from the source domain to predict the faults of the target domain. However,

their approach requires “the prior known set of faults remains the same in source

and target domains”. Our approach focuses on using knowledge learned from425

one failure type to predict failures of another type. We do not focus on a set

of faults in source and target domains. Wen et al. [23] use a three-layer sparse

auto-encoder to extract the features of raw data and apply the maximum mean

discrepancy term to minimise the discrepancy penalty between the features from

training data and testing data. The purpose of the approach in [23] is to predict430

the same type of failure across operation conditions. The approach needs to se-

lect a proper third dataset closer to the target dataset than the source dataset

and requires the same sample ratios in the source domain and the target do-

main. Different from [23], our approach targets failure prediction across failure

types and does not need the third dataset when transferring knowledge from one435

failure type to another. Feng and Zhao [24] propose to use the attribute transfer

method (similar to feature-based TL) to tackle the zero-sample fault diagnosis

challenge, i.e., fault diagnosis when no samples of the target faults are available

for model training. The advantage of their approach is that faults can be diag-

nosed based on the defined fault descriptions without any additional data-based440

training. However, it requires additional domain knowledge to form attribute

descriptions in both training and target faults. Such domain knowledge may

not be available for some types of failures. Our study shows that parameter-

based deep transfer learning can transfer the knowledge learned from one type

of failure to another type of failure without human intervention.445
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Parameter-based TL has been used in a few studies for predictive mainte-

nance. Zhang et al. [16] used parameter-based TL to predict RUL across op-

eration conditions. Our study focuses on predicting machinery failures, not its

RUL. So, we do not use the sensor sequence information, such as in [16]. Zhang

et al. [17] used parameter-based TL to transfer knowledge from the source do-450

main to the target domain for fault diagnosis. Their neural network structure

needs to be modified to dimensions of new data and labels. Our study focuses

on transferring knowledge between different failure types on the same machine.

Thus, the source domain neural network structure can be used as-is. Liu et

al. [20] and Fan et al. [21] used convolutional neural network and model-based455

(equivalent to parameter-based) transfer learning models for fault diagnosis in

building chillers. In their approach, the pre-trained neural network model is

fine-tuned using some labeled target domain data. However, their studies and

experiments focus on transfer learning across machines of the same type, mean-

ing that they also expect the prior known set of faults remains the same in460

source and target domains. Cho et al. [19] studied how to use parameter-based

TL to transfer knowledge on the same failure type, i.e., flaking failure, but under

different working conditions, namely low speed and high speed. Although our

study also applies parameter-based TL, different from [20] [21] [19], our study

focuses on predicting different types of failures from the same machine, not the465

same failure type across machines or working conditions.

6.2. Implications to academia

Our study showed that parameter-based TL could help transfer knowledge

and provide evidence to support our hypothesis that knowledge about failure

among similar failure types is transferable. Furthermore, we noticed that TL470

could also help to accelerate training convergence in the second round of train-

ing. One possible reason is that the two data-driven models share specific pa-

rameters or similar distributions of the hyperparameters in the first several

layers. For instance, they may share a way to extract certain key features from

the raw data so neurons linked with the path will have similar values or distri-475

27



butions. Therefore, knowledge can be transferred by inheriting the architecture

and hyperparameters in the trained network. Our experiments demonstrated

the process that knowledge for identifying one failure type could be stored in

the shared hyperparameters of deep neural networks and later be transferred

to identify other failure types. We consider our findings could offer insights480

about using deep transfer learning to reuse knowledge across failure types in

the research fields of predictive maintenance, which can supplement the exist-

ing knowledge of transferring failure prediction knowledge across machines and

domains.

6.3. Known limitations485

Our experiment successfully leveraged the data from one failure type of a ro-

tating machine to predict another failure type for the same machine. Although

the two failure types are among the most recurrent ones [27], generalizing the

results of this study to other failure types of rotating machine [46], such as

misalignment and mechanical looseness, needs to be evaluated further. In ad-490

dition, we need to validate knowledge transfer across failure types of different

equipment types.

Like many studies [17][18][19][20][21][22][23], our current work is limited to

understanding the applicability of using TL to predict failures without consid-

ering the dynamic aspects of a system, e.g., degradation. Previous studies, e.g.,495

[26] showed that DNN could also be used for degradation assessment. Under-

standing how to combine DNN and TL for degradation assessment can bring

more insights to data-driven predictive maintenance.

7. Conclusion and future work

This study builds on previous deep learning and knowledge transfer research500

to develop a generic approach for predictive maintenance. We propose to lever-

age knowledge transfer between failure types to increase overall predictive main-

tenance feasibility and productivity gains for firms. The proposed approach
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could resolve the data insufficiency challenge, which is one of the main challenges

for predictive maintenance. The theoretical basis of the proposed approach is505

the hypothesis that knowledge about failure among similar failure types is trans-

ferable. We designed a two-step training procedure to validate the hypothesis

to transfer the knowledge learned from one failure type to another. The study

results provided substantial evidence to support our hypothesis. Our experi-

ment considers that the two tasks are similar because the data are collected510

from the same equipment through the same collection system. To the best of

our knowledge, our study is the first to automatically transfer knowledge about

impending failure identification across different failure types.

Our study is limited to knowledge transfer from one failure type to another

in the same equipment. One of our planned future studies is to study knowl-515

edge transfer among different failure types across multiple types of equipment.

Another one is to understand how to use DNN and TL to facilitate degradation

assessment in predictive maintenance.
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