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Abstract: Background: Personal Activity Intelligence (PAI) is a physical activity metric that translates
heart rate during physical activity into a simple score, where a weekly score of 100 or greater
is associated with a lower risk of cardiovascular disease and mortality. Here, we prospectively
investigated the association between PAI and ischemic heart disease (IHD) mortality in a large
healthy population from China. Methods: Using data from the China Kadoorie Biobank, we studied
443,792 healthy adults (60% women). The weekly PAI score of each participant was estimated based on
the questionnaire data and divided into four groups (PAI scores of 0, ≤50, 51–99, or ≥100). Adjusted
hazard ratios (aHRs) and 95% confidence intervals (CIs) for fatal IHD and nonfatal myocardial
infraction (MI) related to PAI were estimated using Cox proportional hazard regression analyses.
Results: There were 3050 IHD deaths and 1808 MI events during a median follow-up of 8.2 years
(interquartile range, 7.3–9.1; 3.6 million person-years). After adjustments for multiple confounders,
a weekly PAI score ≥ 100 was associated with a lower risk of IHD (aHR: 0.91 (95% CI: 0.83–1.00)),
compared with the inactive group (0 PAI). The corresponding aHR for MI was 0.94 (95% CI: 0.83–1.05).
In participants aged 60 years or older at baseline, the aHR associated with a weekly PAI score ≥ 100
was 0.84 (95% CI, 0.75–0.93) for IHD and 0.84 (95% CI, 0.73–0.98) for MI. Conclusion: Among healthy
Chinese adults, a weekly PAI score of 100 or greater was associated with a lower risk of IHD mortality
across all age groups; moreover, a high PAI score significantly lowered the risk of MI but only in
those 60 years and older at baseline. The present findings extend the scientific evidence that PAI may
have prognostic significance in diverse settings for IHD outcomes and suggest that the PAI metric
may be useful in delineating the magnitude of weekly physical activity needed to reduce the risk of
IHD mortality.

Keywords: physical activity; exercise; ischemic heart disease; myocardial infarction; activity metric;
Personal Activity Intelligence

1. Introduction

Ischemic heart disease (IHD) is the leading cause of cardiovascular disease (CVD)
mortality and the preponderant contributor to disease burden and mortality worldwide.
The prevalence of IHD increased from <100 million in 1990 to 197 million in 2019, and the
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estimated global IHD deaths increased from 5.69 to 9.14 million during this period [1]. The
age-standardized death rates for IHD are increasing in many parts of the United States,
the United Kingdom, and China. For example, age-standardized IHD death rates in China
increased from 110 per 100,000 in 1990 to 138 per 100,000 in 2016 [2]. Accordingly, countries
and health systems need to increasingly focus on delivering effective preventive interven-
tions to potentially reverse the alarming trends in morbidity and mortality secondary to
IHD [1].

The health benefits of regular physical activity (PA) and the dose–response relationship
between the amount of PA and CVD morbidity and mortality are well established [3,4].
However, recent estimates suggest that ~32% of women and ~23% of men worldwide
were not meeting the recommended levels of weekly PA (i.e., 150 to 300 min of moderate-
intensity PA, 75 to 150 min of vigorous-intensity PA, or combinations thereof) for health
benefits [5]. Although the global prevalence of insufficient PA was relatively stable between
2001 and 2016, a considerable variation in trends across regions, income groups, and
countries was observed with the largest increases in physical inactivity in high-income
countries and the greatest decreases in East and Southeast Asia [5]. Nevertheless, only 23%
of Chinese adults between the ages of 20 and 59 were meeting the recommended levels of
PA in 2014 [6]. The commonly reported barriers of PA participation include lack of time,
inability to self-manage such as setting personal goals and monitoring PA progress through
personalized feedback, and competing domestic and occupational responsibilities [7,8].
In addition, a positive association between leisure-time PA and socioeconomic status is
well recognized, and individuals of a high socioeconomic status are reported to be more
physically active than those of a lower socioeconomic status [9]. Furthermore, movement
restrictions and lockdowns during the COVID-19 pandemic have resulted in decreases in
PA and increases in sedentary time [10].

Given the pandemic scale of physical inactivity [11], innovative methodologies and
interventions to increase PA participation are sorely needed, and modern healthcare tech-
nologies can be used to improve PA uptake and overcome common barriers to PA partici-
pation [12–14]. The COVID-19 disease may be associated with various CVD pathologies,
and CVD patients infected with COVID-19 are reported to have the worst outcomes and
an increased risk of mortality [15]. Therefore, appropriate health care technologies in-
cluding wearable devices, web applications and platforms, and tele-rehabilitation could
help to achieve sustainable patient engagement and may lead to more favorable health
outcomes [16]. Personal Activity Intelligence (PAI) is a metabolic PA metric that considers
the age, sex, resting and maximal heart rate, and heart rate response to PA of individuals.
PAI was developed to objectively quantitate a physically active lifestyle and has now been
integrated into self-assessment heart rate devices and/or health apps. It translates heart
rate variations over the course of a week into a simple and easily understandable score
(0 PAI = inactive and 100 PAI = sufficiently active) [17–19].

The predictive ability of PAI for varied health outcomes across diverse settings has
been previously reported [17,18,20–26]. Briefly, a weekly PAI score of ≥100 was associated
with a lower risk of all-cause and CVD mortality in cohorts of relatively healthy individ-
uals [17,18,21] and in subgroups of patients with CVD [24]. Moreover, a sustained high
PAI score and an increase in PAI over time was associated with a reduced risk of all-cause
and CVD mortality [22,23]. We also found that maintaining a weekly PAI score ≥ 100 was
associated with significant reductions in the incidence of dementia [26]. Furthermore, in
earlier studies conducted before the WHO 2020 PA guidelines, the PAI metric predictive
ability was superior in meeting the PA recommendations (minimum of 150 weekly minutes
of moderate-intensity PA or a minimum of 75 weekly minutes of vigorous-intensity PA)
where individuals categorized into a group with a PAI score ≥ 100 and not meeting the PA
recommendations had a similar mortality risk compared with the individuals with a PAI
score ≥ 100 and meeting the PA recommendations. However, individuals meeting the PA
recommendations but not obtaining a PAI score ≥ 100 had higher mortality risks [18,24].
The PAI metric has been shown to fit well with the new PA guidelines (150 to 300 weekly
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minutes of moderate-intensity PA or 75 to 150 weekly minutes of vigorous-intensity PA).
This is particularly the case with the upper limits of the recommendations where individ-
uals obtaining ≥100 PAI without meeting the upper limit of the PA recommendations or
those meeting the PA recommendations but not obtaining ≥100 PAI had similar mortality
risks as the reference cohort of individuals with ≥100 PAI and meeting the PA recommen-
dations [21]. To our knowledge, only one previous study, conducted in the U.S., reported
on the association between PAI and IHD using the Aerobics Center Longitudinal Study
database [21], and the findings show that a weekly PAI score ≥ 100 was associated with a
lower risk of IHD mortality. The present study was undertaken to evaluate the association
between PAI and IHD using the China Kadoorie Biobank, a large prospective cohort of
Chinese adults.

2. Materials and Methods
2.1. Study Participants

The China Kadoorie Biobank is a nationwide, prospective cohort study from 10 geo-
graphically diverse regions across China. Participants were chosen from Disease Surveil-
lance Points (DSP) which is a nationally representative system [27,28], and study areas
were selected based on levels of economic development, local disease patterns, various
levels of risk exposures, quality of outcome reporting systems, and local commitment to
the project. Details of study design and methods have been previously described [29,30].
Briefly, participants were invited to study clinics between June 2004 and July 2008, and
a total of 512,714 individuals, 30–79 years of age, were eligible for inclusion. We wanted
to investigate the association between PAI and IHD in relatively healthy participants at
baseline; therefore, we excluded participants with a previous diagnosis of IHD and/or
stroke (n = 23,129), cancer (n = 2385), chronic obstructive pulmonary disease (n = 34,541),
tuberculosis (n = 5738), those who reported any fracture at baseline examination (n = 1114),
and those with missing data on PA habits (n = 2015). The final analyses included 443,792 par-
ticipants (177,529 men and 266,263 women) (Supplementary Figure S1). All participants
provided written informed consent. The study was conducted in accordance with the
Declaration of Helsinki and approved by the ethics committees or institutional review
boards at the University of Oxford, the Chinese Center for Disease Control and Prevention
(China CDC), the Chinese Academy of Medical Sciences, and relevant participating regions
(DAR-2019-00063; 17 December 2019) for studies involving humans.

2.2. Clinical Measurements and Questionnaire-Based Information

Trained staff measured body weight, height, and blood pressure using standardized
methods with calibrated instruments. After ≥5 min of rest in a seated position, blood pres-
sure was measured at least twice using an automated digital monitor (model UA-779, A&D
Medical), and the mean of 2 satisfactory measurements was used for analyses [31]. Stepwise
on-site testing of plasma glucose level was determined using the SureStep Plus System
(Johnson & Johnson, New Brunswick, NJ, USA). Self-reported data on sociodemographic
characteristics (age, sex, occupation, household income, education, and marital status),
lifestyle behaviors (PA, smoking, and alcohol consumption), personal and medical history
(diabetes, hypertension, and general health), and family history of CVD were obtained at
baseline through standardized questionnaires [30].

2.3. Personal Activity Intelligence

Information on the frequency and duration of leisure-time PA was obtained via a
self-reported questionnaire based on 6 specific activities: Tai chi/Qigong, walking, jog-
ging/aerobic exercise, swimming, ball games (basketball, table tennis, etc.), and other
activities (e.g., mountain climbing). The response options to the frequency of PA by par-
ticipants such as “1–2 times/week”, “3–5 times/week”, and “daily or almost every day”
were translated to 1.5, 4, and 5 week days, respectively. The question “Approximately
how many hours per week did you perform exercise during your leisure time” was used
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to determine the duration of PA. The intensity of PA was classified by activity-specific
metabolic equivalents (METs; 1 MET = 3.5 mLO2/kg/min) available from the Compendium
of Physical Activities [32,33]. We calculated the PAI score of each participant based on the
frequency, duration, and intensity of leisure-time PA. According to the PAI algorithm previ-
ously described [18,19], weekly minutes of PA were calculated by multiplying the average
frequency and duration, and the strenuousness of physical exertion was translated into a
relative PA intensity using ~44%, 73%, and 83% of heart rate reserve for low-, moderate-,
and vigorous-intensity activities, respectively. Exercise volumes were then combined with
intensity calculations, using the heart rate reserve, to estimate the weekly PAI score which
was based on the questionnaire data.

2.4. End-Points and Follow-Up

The health outcomes of all participants were obtained using linkage with DSP system,
the national health insurance claim system and through established local chronic disease
registries [27,28]. The underlying causes of death were coded using the 10th International
Classification of Diseases (ICD) by trained staff, who were blinded to baseline information.
The primary outcome in the analyses was fatal IHD (ICD10: I20-I25), and the secondary
outcome was nonfatal myocardial infarction (MI) (ICD10: I21-I23). Study participants were
followed from baseline to date of event, loss to follow-up, or to 1 January 2015, whichever
came first.

2.5. Statistical Analyses

Baseline characteristics of the participants were compared using Cochran–Armitage
test for categorical variables and regression analyses for continuous variables, and data
are presented as number (%) for categorical variables and mean (SD) for continuous
variables. Participants were categorized into 4 groups according to their weekly PAI
score: 0 (inactive), ≤50, 51–99, or ≥100 [17,18]. The inactive group (0 PAI) was used as
a reference cohort. To investigate the association between PAI and IHD/MI, we used
stratified Cox proportional hazard models. The first model included age (as the underlying
time scale), year of study stratified by sex, study area, and baseline age in 5-year intervals.
The final model additionally included body mass index (<18.5, 18.5–24.9, 25–29.9, or
≥30 kg/m2), hypertension (yes, no), diabetes status (yes, no), smoking history (never,
previous, or current), education (no formal education, primary school, middle or high
school, technical school/college, or university), alcohol consumption (average grams
of alcohol per week), self-rated general health (poor, fair, good, or excellent), marital
status (single, married, widow/er, or separated/divorce), occupation (agriculture and
related workers, factory worker, administrator/manager, professional/technical, sales and
service workers, house wife/husband, self-employed, unemployed, retired, or other/not
stated), household income, and family history of CVD (yes, no) [17]. The assumption of
proportional hazards was examined and satisfied using Schoenfeld residuals, and results
are reported as adjusted hazard ratios (aHRs), and 95% confidence intervals (CIs) indicate
the precision of estimates.

We also investigated the associations of PAI with IHD in prespecified subgroups of
participants based on baseline age, and those with known IHD risk factors, such as smoking,
hypertension, diabetes, or overweight/obesity. In a separate analysis, study participants
were categorized into <100 PAI and ≥100 PAI, and we assessed the association of PAI with
IHD and MI. All statistical tests were 2 sided, and p < 0.05 was considered significant. The
statistical analyses were performed using Stata for Windows (version 16, StataCorp LLC,
College Station, TX, USA).

3. Results

The characteristics of study participants according to their weekly PAI scores are
presented in Table 1. Among the 443,792 participants, 22.7% attained a weekly PAI score
of ≥100. These individuals tended to be older, with higher levels of education and were



J. Clin. Med. 2022, 11, 6552 5 of 12

more likely to have “excellent” or “good” self-reported health status compared with their
inactive counterparts.

Table 1. Baseline characteristics of study participants (n = 443,792).

Inactive
(n = 324,166)

≤50
(n = 10,393)

51–99
(n = 8420)

≥100
(n = 100,813) p-Value a

Female sex, no. (%) 199,490 (61.5) 6183 (59.5) 5355 (63.6) 55,235 (54.8) <0.001
Age, mean (SD), y 49.9 (10.1) 50.7 (10.1) 51.3 (10.4) 54.3 (10.6) <0.001

Urban residence, no. (%) 116,708 (36.0) 7222 (69.5) 4958 (58.9) 64,227 (63.7) <0.001
Body mass index, no. (%)

<18.5 13,541 (4.2) 296 (2.9) 219 (2.6) 3331 (3.3)
18.5–24.9 207,932 (64.1) 6159 (59.3) 5156 (61.2) 61,030 (60.5)
25.0–29.9 90,390 (27.9) 3445 (33.2) 2680 (31.8) 31,960 (31.7)
≥30.0 12,303 (3.8) 493 (4.7) 365 (4.3) 4492 (4.5) <0.001

Systolic blood pressure, mean (SD), mmHg
130.3 (20.9) 128.2 (20.8) 129.7 (21.5) 131.1 (21.0) <0.001

Diastolic blood pressure, mean (SD), mmHg
77.8 (11.1) 77.0 (11.2) 77.1 (11.3) 77.3 (11.0) <0.001

Education level, no. (%)
No formal education 66,015 (20.4) 731 (7.0) 1088 (12.9) 12,295 (12.2)

Primary school 107,386 (33.1) 2051 (19.7) 1976 (23.5) 28,579 (28.4)
Middle or high school 137,522 (42.2) 6058 (58.3) 4219 (50.1) 50,375 (50.0)
College or university 13,243 (4.1) 1553 (14.9) 1137 (13.5) 9564 (9.5) <0.001

Smoking status, no. (%)
Never 224,025 (69.1) 7366 (70.9) 6170 (73.3) 67,623 (67.1)

Former 17,907 (5.5) 745 (7.2) 593 (7.0) 8741 (8.7)
Current 82,234 (25.4) 2282 (22.0) 1657 (19.7) 24,449 (24.2) <0.001

Regular alcohol intake, no. (%)
Yes 47,952 (14.8) 1592 (15.3) 1142 (13.6) 15,565 (15.4) <0.001

Household income, yuan/yr, no. (%) b

<10,000 93,839 (29.0) 2045 (19.7) 2271 (27.0) 23,524 (23.3)
10,000–19,999 94,746 (29.2) 3139 (30.2) 2354 (28.0) 28,857 (28.6)
20,000–34,999 78,084 (24.1) 2821 (27.1) 2007 (23.8) 28,784 (28.6)

≥35,000 57,497 (17.7) 2388 (23.0) 1788 (21.2) 19,648 (19.5) <0.001
Self-rated health status, no. (%)
Excellent 60,024 (18.5) 2012 (19.4) 1575 (18.7) 19,405 (19.3)

Good/Fair 235,365 (72.6) 7526 (72.4) 6071 (72.1) 74,414 (73.8)
Poor 28,777 (8.9) 855 (8.2) 774 (9.2) 6994 (6.9) <0.001

Family history of CVD, no. (%)
Yes 63,128 (19.5) 2518 (24.2) 2018 (24.0) 21,731 (21.6) <0.001

a For linear trend, regression analyses were used for continuous variables; Cochran–Armitage test was used for
proportions of categorical variables. b At the exchange rate of February 2022, 1 yuan was approximately equal to
USD 0.16 or GBP 0.12.

The baseline characteristics of individuals are also presented both for IHD and MI
status and according to the weekly PAI scores in the Supplementary Tables S1 and S2. Re-
gardless of the event status at follow-up, those with a weekly PAI score of ≥100 had higher
levels of education and reported “excellent/good” health status at baseline compared with
the inactive cohort.

There were 3050 IHD deaths and 1808 MI events during a median follow-up of
8.2 years (interquartile range, 7.3–9.1; 3.6 million person-years). After adjustments for
multiple confounders, a weekly PAI score ≥ 100 was associated with a lower risk of IHD
(aHR: 0.91 (95% CI: 0.83–1.00)) compared with the inactive group (0 PAI). The corresponding
aHR for MI was 0.94 (95% CI: 0.83–1.05). Among participants with a weekly PAI score < 100
as reference, the aHRs associated with ≥100 PAI were 0.91 (95% CI: 0.83–1.00) for IHD and
0.93 (95% CI: 0.83–1.05) for MI (Tables 2 and 3).
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Table 2. Hazard ratios of ischemic heart disease mortality by PAI.

PAI Person-Years Deaths HR (95% CI) a HR (95% CI) b

Inactive 2,653,654 1949 1.00 (Ref.) 1.00 (Ref.)
≤50 81,979 76 1.01 (0.80–1.27) 1.02 (0.81–1.29)

51–99 67,421 63 0.95 (0.74–1.23) 0.99 (0.76–1.27)
≥100 805,145 962 0.89 (0.82–0.98) 0.91 (0.83–1.00)

<100 2,803,054 2088 1.00 (Ref.) 1.00 (Ref.)
≥100 805,145 962 0.90 (0.82–0.98) 0.91 (0.83–1.00)

CI, confidence interval; HR, hazard ratio; ischemic heart disease (ICD10: I20-I25); PAI, Personal Activity Intelli-
gence. a Adjusted for age as time scale, year of study, and jointly stratified by sex, study area, and baseline age in
5-year intervals. b Adjusted for age as time scale, year of study, BMI (<18.5, 18.5–24.9, 25–29.9, or ≥30 kg/m2),
smoking (never, previous, or current), alcohol consumption (average grams of alcohol in a typical week), ed-
ucation (no formal education, primary school, middle or high school, technical school/college, or university),
household income, hypertension (yes, no), diabetes status (yes, no), marital status (single, married, widow/er, or
separated/divorce), self-rated health (poor, fair, good, or excellent), occupation (agriculture and related workers,
factory worker, administrator/manager, professional/technical, sales and service workers, house wife/husband,
self-employed, unemployed, retired, or other/not stated), family history of CVD, and jointly stratified by sex,
study area, and baseline age in 5-year intervals.

Table 3. Hazard ratios of myocardial infarction by PAI.

PAI Person-Years Deaths HR (95% CI) a HR (95% CI) b

Inactive 2,653,654 1226 1.00 (Ref.) 1.00 (Ref.)
≤50 81,979 43 1.05 (0.77–1.42) 1.02 (0.75–1.40)

51–99 67,421 38 0.96 (0.69–1.33) 0.98 (0.71–1.37)
≥100 805,145 501 0.93 (0.83–1.05) 0.94 (0.83–1.05)

<100 2,803,054 1307 1.00 (Ref.) 1.00 (Ref.)
≥100 805,145 501 0.94 (0.84–1.05) 0.93 (0.83–1.05)

CI, confidence interval; HR, hazard ratio; myocardial infarction (ICD10: I21-I23); PAI, Personal Activity Intelli-
gence. a Adjusted for age as time scale, year of study, and jointly stratified by sex, study area, and baseline age in
5-year intervals. b Adjusted for age as time scale, year of study, BMI (<18.5, 18.5–24.9, 25–29.9, or ≥30 kg/m2),
smoking (never, previous, or current), alcohol consumption (average grams of alcohol in a typical week), ed-
ucation (no formal education, primary school, middle or high school, technical school/college, or university),
household income, hypertension (yes, no), diabetes status (yes, no), marital status (single, married, widow/er, or
separated/divorce), self-rated health (poor, fair, good, or excellent), occupation (agriculture and related workers,
factory worker, administrator/manager, professional/technical, sales and service workers, house wife/husband,
self-employed, unemployed, retired, or other/not stated), family history of CVD, and jointly stratified by sex,
study area, and baseline age in 5-year intervals.

The stratified analyses show an effect modification by age at the cutoffs of 40 and
60 years for IHD and MI outcomes (p < 0.01). Compared with the reference cohort of 0 PAI,
the aHRs of IHD associated with a weekly PAI score ≥ 100 was 0.90 (95% CI, 0.82–0.98) in
participants older than 40 years and 0.84 (95% CI, 0.75–0.93) in participants who were older
than 60 years at baseline (Figure 1). The aHRs of MI associated with a weekly PAI score of
≥100 was 0.92 (95% CI, 0.81–1.04) for those older than 40 years and 0.84 (95% CI, 0.73–0.98)
in participants older than 60 years at baseline (data not shown).

In other subgroups of participants, a weekly PAI score ≥ 100 was associated with a
lower risk of IHD mortality. For example, compared with inactive hypertensive participants,
the aHR for hypertensive participants with a PAI ≥ 100 was 0.81 (95% CI, 0.68–0.95).
Similarly, the aHRs associated with a PAI ≥ 100 was 0.79 (95% CI, 0.63–0.98) in patients
with diabetes and 0.84 (95% CI, 0.73–0.98) in overweight/obese individuals (Figure 1).
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inactive and ≥100 PAI groups, respectively. Diabetes: n = 23,688 with 283 and 212 events in inactive
and ≥100 PAI groups, respectively. ≥40 years: n = 362,616 with 1899 and 944 events in inactive
and ≥100 PAI groups, respectively. ≥60 years: n = 86,484 with 1267 and 702 events in inactive and
≥100 PAI groups, respectively.

4. Discussion

In this large prospective cohort of healthy men and women in China, we found that a
weekly PAI score of greater than or equal to 100 was associated with a lower risk of IHD
across all age groups and associated risk factor profiles. A high PAI score also significantly
lowered the risk of MI but only in those 60 years and older at baseline.

The present findings are consistent with the results of the Aerobics Center Longitudinal
study showing that a weekly PAI score of ≥100 is associated with lower risk of IHD
mortality [21]. In the study of 56,175 relatively healthy participants at baseline, a weekly
PAI score ≥ 100 was associated with a 30% lower risk of IHD mortality compared with an
inactive reference cohort [21]. These results suggest that PAI has prognostic significance
for IHD outcomes in diverse settings, including high- and middle-income countries with
varied ethnic populations.

To our knowledge, this is the first study to assess the association between PAI and
MI outcomes. Although high weekly PAI scores were associated with a lower risk of MI
compared with the inactive or reference cohort, statistical significance was only achieved in
those who were 60 years or older. The nonsignificant results in the total cohort may partly
be explained by the very low incidence of MI events during the follow-up period, thus
restricting the statistical power of the analysis and affecting the precision of the estimates.
Furthermore, the significant association between PAI and MI in those 60 years or older
may partly be due to an increase in the PA levels in the Chinese elderly population [34].
Nevertheless, previous studies related to PA and the risk of MI have also reported an
inverse relation between high levels of PA and the risk of subsequent MI [35,36]. A meta-
analysis of 33 studies showed that moving from an inactive state to moderate PA was
associated with 20% lower risk of IHD incidence and mortality, and even low levels of PA
(less than 11.5 METs h/week) were associated with favorable outcomes [35]. Similarly, the
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results from a large cohort of general population followed up for an average of 9 years
demonstrated that high levels of PA were associated with a lower risk of acute MI (HR:
0.66, 95% CI: 0.50–0.89) and IHD (HR: 0.49, 95% CI: 0.38-0.64) [36].

We observed a 10% to 21% lower risk of IHD mortality associated with a weekly PAI
score ≥ 100 across individuals stratified according to hypertension, body mass index, or
diabetes. These results suggest that “at risk” subgroups of patients may reduce their risk
of IHD mortality by achieving high weekly PAI scores. Previous studies in hypertensive
patients have also shown a beneficial effect of high levels of PA for CVD mortality. For
instance, moderate or high levels of PA were associated with a lower risk of CVD events
across all levels of blood pressure (HRs of 0.81, 0.69, and 0.77 for pre-, stage 1, and stage 2
hypertension, respectively) [37]. The results of the prospective cohort of 5859 individuals
with diabetes at baseline showed that moderate levels of PA were associated with a lower
risk of CVD mortality (HR: 0.51, 95% CI: 0.32–0.81), and the findings of the meta-analysis
were consistent, showing a lower risk of CVD mortality associated with high levels of PA
(HR: 0.63, 95% CI, 0.48–0.83) [38]. For MI outcomes, we observed similar trends as for IHD;
however, the statistical power of these analyses was limited due to fewer events in the
subgroups of participants (data not shown).

The burden of IHD has continued to increase in China since 2000 and accounted for
~40% of all CVD mortality in 2019 [39]. Although participation in PA has increased over
the years, only 23% of Chinese adults were meeting contemporary PA recommendations in
2014 [6]. Emerging healthcare technologies could be used as facilitators for health behavior
change [14,40]. For example, wearable devices promoting a physically active lifestyle
could help individuals to track and self-monitor their PA. The PAI metric is integrated
into wearable devices with a downloadable application that is freely available worldwide.
Recent studies using objective measurements of PAI through a wearable heart rate monitor
and mobile app have shown that individuals with type 2 diabetes using PAI significantly
improved their exercise capacity and sleep time when compared with the control group
following current PA recommendations [41]. Similarly, the monitoring of PAI scores was
associated with an increase in PA among cardiac patients compared with those not using
PAI [42]. The advantages of PAI may be partially attributed to the personalized metric it
provides based on the individual heart rate response to exercise, which provides a readily
available index of exercise intensity and energy expenditure. These data may be shared
between patients and their healthcare providers and offer an opportunity for physicians to
motivate and empower their patients to achieve a cardioprotective weekly PAI score.

The strengths of the present study include a large population-based cohort of appar-
ently healthy men and women, comprehensive information on participant risk factors for
cardiovascular mortality, and an 8.2-year average follow-up. Moreover, using the same
cut-off values of PAI as used in the present study, the findings of prospective studies from
Norway [19], China [17], and the U.S. [21] showed an inverse association between PAI
and all-cause mortality and CVD outcomes. These results strengthen the reliability and
validity of the PAI metric across various ethnicities and socioeconomic strata and suggest
that PAI has prognostic implications in diverse settings. Nevertheless, we acknowledge
some limitations of our study methodology. First, due to the observational nature of our
study, the findings are not necessarily causal. Second, the estimation of PAI was based on
self-reported data which are prone to information bias. However, due to our prospective
study design, measurement errors and the nature of misclassification are most likely to be
nondifferential, and the measures of association are more likely to be biased towards the
null. Third, residual unmeasured and unknown factors such as prescribed medications
and dietary practices, which were unaccounted for in the analyses, may have influenced
our estimates. Indeed, healthy dietary patterns consisting of diets high in vegetables,
whole grains, fibers, and legumes and low in red and processed meat, as well as an active
lifestyle, are shown to be associated with a lower risk of IHD [43,44]. Finally, although the
China Kadoorie Biobank is a nationwide representative sample of Chinese adults, and the
PAI metric has previously been shown to predict IHD mortality in a large US cohort [21],
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additional confirmatory studies of PAI across disparate races and ethnicities are needed
before the present findings can be extrapolated to other populations in low-, middle-, and
high-income countries.

Modern wearable health technologies have the potential to revolutionize health
management based on the notion that the self-tracking of health behavior leads to self-
knowledge and could potentially provide consumers with direct access to personal an-
alytics that can facilitate preventive care and contribute to their health by aiding in the
management of ongoing illness [40,45]. The findings of a recent systematic review and
meta-analysis demonstrated that a wearable sensor-assisted home-based cardiac rehabili-
tation program significantly improved the cardiorespiratory fitness of patients with CVD
when compared to center-based cardiac rehabilitation programs [46]. Of note, data related
to PA wearables and health outcomes in the general population remain scarce. However,
this kind of research is more feasible now than ever largely because of the increased popu-
larity and accessibility of activity-based wearables including accelerometers and should
be a goal for future studies. The PAI studies using objective measurements in individuals
with diabetes and cardiac patients have shown that the use of PAI is feasible, acceptable
and efficacious, and the majority of participants reported increased motivation to exercise
and to continue to use PAI long-term [41,42]. Nevertheless, future prospective cohort
studies using the objective measurements of PAI are warranted and would help to enhance
our understanding of the utility of the PAI score in disease prevention and management.
Another important aspect of the behavior change is focusing on patient perception of the
risk factors of illness, and the data show that patients seem to underestimate the role of
the actual risk factors [47]. Therefore, an increased awareness about the role of various risk
factors for health and disease and the promotion of a healthy lifestyle for the prevention
and management of illness should be an essential part of public health and clinical settings.

5. Conclusions

In summary, PAI was inversely associated with IHD outcomes in this large, prospective
study of relatively healthy individuals. Our findings related to the beneficial effect of PA
for MI outcomes in individuals 60 years or older are of particular interest, highlighting
the importance of moderate-to-vigorous PA for disease prevention in this subgroup, given
that the incidence and severity of CVD are proportional to advancing age. These results
may partly be explained by the increased PA in the escalating population of older adults in
China [36] and suggest that remaining active during the transition from middle-to-older
ages is possible and confers significant cardiovascular and survival benefits. Our findings
also suggest that the PAI metric may be useful in delineating the magnitude of weekly PA
needed to reduce the risk of IHD mortality.
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