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Abstract: The behavior of beam-to-column connections significantly influences the stability, strength,
and stiffness of steel structures. This is particularly important in extreme non-elastic responses, i.e.,
earthquakes, and sudden column removal, as the fluctuation in strength and stiffness affects both
supply and demand. Accordingly, it is essential to accurately estimate the strength and stiffness
of connections in the analysis of and design procedures for steel structures. Beginning with the
state-of-the-art, the capacity of three available component-based mechanical models to estimate the
complex mechanical properties of top- and seat-angle connections with double-web angles (TSACWs),
with variable parameters, were investigated. Subsequently, a novel hybrid krill herd algorithm-
artificial neural network (KHA-ANN) model was proposed to acquire an informational model from
the available experimental dataset. Using several statistical metrics, including the corresponding
coefficient of variation (CoV), correlation coefficient (R), and the correlation coefficient provided by
the Taylor diagram, this study revealed that the krill herd-ANN model achieved the most reliable
predictive accuracy for the strength and stiffness of top- and seat-angle connections with double
web angles.

Keywords: artificial neural network (ANN); beam-to-column joints; semi-rigid connections; component-
based mechanical model; steel structures

1. Introduction

Steel beam-to-column connections are a fundamental component of steel structures,
and their performance affects the overall structural behavior. Interest in utilizing bolted
connections in steel constructions has significantly increased as a result of the uncertain
and often inferior performance of welded connections during earthquakes [1–6]. According
to Eurocode 3, Part 1–8, [7] a steel beam-to-column connection needs to have three essential
characteristics: stiffness (Sj,ini), bending moment resistance (Mj,Rd), and plastic deformation
capacity, ductility, or rotation capacity (ϕu). Generally, connections are subjected to complex
loading and deformation interactions, and they serve as energy dissipation regions under
extreme loading conditions. Experimental test results acknowledge that large variabilities
are involved in the load-carrying capacity of welded steel beam-to-column connections. In
fact, those variabilities are caused by different effects, such as [8]:

• Complex 3-D loading scenarios (axial loads, biaxial and shear, and torsional effects)
• Residual stresses as a result of welding, geometric imperfections, and strain hardening

of column shear-panel zones, etc.
• Differences in weld quality and details (thickness, number of weld passes, and weld

material)
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• Post-weld treatment (removal, backing bar detail, heat treatment, and grinding)

After the 1994 Northridge and the 1995 Kobe earthquake, widespread analytical
studies and experimental tests were commenced to examine the viability of using bolted
connections in steel structures in high-seismicity zones [9–11]. A review of past literature
shows that semi-rigid connections may be considered for seismic application where a large
spectrum of such behavior positively influences structure strength and stability [12–14].
This research acknowledges that semi-rigid connections are characterized by reliable
flexibility and appropriate rotational capacity.

Bolted top- and seat-angle connections without (TSACs) or with web angles (TSACWs)
have been extensively used in steel and composite structures because of their relatively high
moment capacity and easy construction. These types of connections are mainly designed to
resist gravity loads of determinate steel beams. A schematic layout is proposed in Figure 1.
The angles may be bolted or welded to the supported beam as well as to the supporting
column. While the entire load is assumed to be transmitted to the column through the
bottom seat angle, the top angle is considered mandatory for stability considerations.
Traditionally, top- and seat-angle connections have been designed as shear connections,
assuming negligible rotational resistance. However, the inherent flexural resistance of these
connections should not be ignored when an accurate analysis of semi-rigid steel frames is
desired [15,16].

Figure 1. Reference configurations for (a) TSACs and (b) TSACWs.

Modeling the actual mechanical properties is of great importance in taking advan-
tage of the flexible features of semi-rigid connections, leading to a reliable analysis and
design. The majority of modeling methods are established based on mechanical theories
considering geometric and material properties, hereafter called “mechanical” approaches.
The main challenge in these methods is defining an acceptable number of components and
conceptualization from physical behavior to analytical equations. Instead, informational
methods have shown brilliant promise as alternatives to mechanical methods. Generally, in
this approach, the connection behavior can be accurately represented by directly extracting
a complex M–ϕ curve relationship from the collected test data and subsequently analyzing
it using a neural network or other optimization technique.

Over the past few years, a large number of studies have been performed in the area of
modeling beam-to-column connections, from simplified global models to comprehensive
finite element simulations [17–22]. Examples of simplified methods are analytical and
empirical models where predictions will be made by determining key parameters (e.g.,
moment capacity, initial stiffness, etc.) and fitting a skeleton curve over these particular
points [23]. In such an approach, the fundamental parameters can be extracted from
experimental test data and represented with simple expressions, including polynomials,
power functions, or a combination of these two expressions. In this model, the concern
would be regarding the response of one component representative being the only basis of
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the connection’s flexibility. Once primary deformation sources are recognized, moment
capacity and initial stiffness are calculated from geometric and material properties.

The component-based mechanical model was first introduced to simulate the overall
performance of beam-to-column connections by taking into account the analytical models
of the different flexibility sources (column shear panel zone, angles, etc.) and the non-linear
constitutive relations of different components. Wales et al. [24] proposed the component-
based method, and Tschemmernegg et al. [25] developed this technique by using three
groups of springs for bolted and welded connections. Madas et al. [26] investigated the
application of the component-based analytical model by assembling different component
contributions to predict the M–ϕ curve. In another study, De Stefano et al. [27] investigated
the application of the component-based technique for double-web-angle connections, con-
sidering geometric and material properties. This study was extended by Shen et al. [28] to
double-web-angle connections, taking into account slip effects and gap elements. Eurocode
3 [7] was the first design regulation to implement the component-based model concept
to calculate the design parameters of bolted beam-to-column connections. Although the
component-based method has the advantage of adapting to different connection types
using the same principles, there is little discussion in Eurocode 3 about applying this
method to other connections.

Even though the component-based mechanical model can predict virtually any M–ϕ
curve, it is not possible to extend it beyond the calibration range. Moreover, it fails to
predict considerably different behavior due to various failure modes when connections
with different material properties and geometric are concerned. Generally, simplified
models are suitable for application in frame analysis programs with design purposes.
Instead, it is possible to represent each component contribution, along with complex
interactions among the connection’s components, by using detailed finite element models.
A detailed finite element approach has high accuracy in simulating the complex M–ϕ
curve of connections [29–32]. Nevertheless, this method is computationally intensive and
time-consuming.

In this study, three different mechanical models proposed by Eurocode 3 [7], Kong
and Kim [33], and Pucinotti [34] were presented, and their ability to accurately estimate
initial stiffness Sj,ini, and the ultimate moment capacity Mn for TSACWs were examined
and compared against each other, with the support of experimental data from the literature
(77 specimens in total). Successively, a comprehensive ANN approach, combined with a
metaheuristic krill herd algorithm (KHA), was developed to extract an informational model
for TSACWs. Two statistical models, multiple linear regression and a genetic algorithm
combined with an ANN model, were also developed to evaluate the accuracy of the
proposed KHA-ANN model.

2. Databank Development

Having recognized that different parameters contribute to the (M–θ) behavioral char-
acterization of bolted beam-to-column connections, it is fundamental to first develop a
consistent databank of test results for the examined connection typology. Experimental
investigations and their results—when correctly extracted—notoriously allow for more
robust and accurate classification of different behavioral features for beam-to-column con-
nections, including Sj,ini, and Mn, but also hardening, non-linearities, progressive damage
and degradation of mechanical parameters, rotation capacity, failure mechanism, and
sequence. The same database is also strictly necessary for the development of the ANN
model proposed herein.

In this paper, the preliminary verification of the component-based mechanical model
for bolted TSACWs, as well as the training data to develop the ANN model, was carried out
with the support of experimental data from the literature. Table 1 presents a summary of
the significant geometrical and material properties for the examined TSACW connections.
The complete data of TSACW specimens are available in [35–37].
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Table 1. Geometrical and mechanical characteristics of selected TSACW specimens.

Test Beam Column
Size of Bolts

(mm)
Top Cleat

(mm)
Web Cleat

(mm)
Yield Stress of Angle

(N/mm2)

8S1 H210 × 134 × 6.4 × 10.2 H310 × 254 × 9.1 × 16.3 19.1 L152 × 89 × 7.9 L102 × 89 × 6.4 285.4

8S2 H210 × 134 × 6.4 × 10.2 H310 × 254 × 9.1 × 16.3 19.1 L152 × 89 × 9.5 L102 × 89 × 6.4 285.4

8S3 H210 × 134 × 6.4 × 10.2 H310 × 254 × 9.1 × 16.3 19.1 L152 × 89 × 7.9 L102 × 89 × 6.4 285.4

8S4 H210 × 134 × 6.4 × 10.2 H310 × 254 × 9.1 × 16.3 19.1 L152 × 152 × 9.5 L102 × 89 × 6.4 285.4

8S5 H210 × 134 × 6.4 × 10.2 H310 × 254 × 9.1 × 16.3 19.1 L152 × 102 × 9.5 L102 × 89 × 6.4 285.4

8S6 H210 × 134 × 6.4 × 10.2 H310 × 254 × 9.1 × 16.3 19.1 L152 × 102 × 7.9 L102 × 89 × 6.4 285.4

8S7 H210 × 134 × 6.4 × 10.2 H310 × 254 × 9.1 × 16.3 19.1 L152 × 102 × 9.5 L102 × 89 × 6.4 285.4

8S8 H210 × 134 × 6.4 × 10.2 H310 × 254 × 9.1 × 16.3 22.2 L152 × 89 × 7.9 L102 × 89 × 6.4 277

8S9 H210 × 134 × 6.4 × 10.2 H310 × 254 × 9.1 × 16.3 22.2 L152 × 89 × 9.5 L102 × 89 × 6.4 277

8S10 H210 × 134 × 6.4 × 10.2 H310 × 254 × 9.1 × 16.3 22.2 L152 × 89 × 12.7 L102 × 89 × 6.4 277

14S1 H358 × 172 × 7.9 × 13.1 H323 × 310 × 14 × 22.9 19.1 L152 × 102 × 9.5 L102 × 89 × 6.4 285

14S2 H358 × 172 × 7.9 × 13.1 H323 × 310 × 14 × 22.9 19.1 L152 × 102 × 12.7 L102 × 89 × 6.4 365

14S3 H358 × 172 × 7.9 × 13.1 H323 × 310 × 14 × 22.9 19.1 L152 × 102 × 9.5 L102 × 89 × 6.4 285

14S4 H358 × 172 × 7.9 × 13.1 H323 × 310 × 14 × 22.9 19.1 L152 × 102 × 9.5 L102 × 89 × 9.5 285

14S5 H358 × 172 × 7.9 × 13.1 H323 × 310 × 14 × 22.9 19.1 L152 × 102 × 9.5 L102 × 89 × 6.4 277

14S6> H358 × 172 × 7.9 × 13.1 H323 × 310 × 14 × 22.9 19.1 L152 × 102 × 12.7 L102 × 89 × 6.4 277

14S8 H358 × 172 × 7.9 × 13.1 H323 × 310 × 14 × 22.9 19.1 L152 × 102 × 15.9 L102 × 89 × 6.4 277

14S9 H358 × 172 × 7.9 × 13.1 H323 × 310 × 14 × 22.9 19.1 L152 × 102 × 12.7 L102 × 89 × 6.4 277
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3. Component-Based Mechanical Methods

Previous experimental research on the M–ϕ behavior of bolted-angle connections has
revealed that the length in the vertical leg, the thickness of the top cleat, and the beam
depth are the most critical features that affect connection and M–ϕ behavior [10,38,39]. The
component-based mechanical approach characterizes the M–ϕ relationship through the
superposition of the main components’ contributions. All deformation sources are defined
by a mathematical expression representative of individual connection components. Accord-
ingly, it is crucial to classify all deformation sources and possible failure patterns. Then, the
constitutive relationship of each deformation source is derived to identify its deformational
properties. Finally, by considering compatibility and equilibrium, all components should
assemble to achieve a reliable component-based model.

Generally, bolted beam-to-column connections have more deformation sources than
welded, fully rigid connections due to different components. Bolting provides fewer
restraints on column, beam, and connection components than welding, resulting in more
flexibility. The angles are recognized to be a deformation potential for the semi-rigid
connections, which affects overall connection behavior. Recent research [40–42] indicated
that bolted beam-to-column connections exhibit complex behavioral features, leading to a
more complicated response. Generally, the modeling method supposed to take into account
among others: (i) flange cleat flexural effects at large displacements, (ii) high flexural and
axial flexibility of bolts, (iii) strain hardening effects, and (iv) effect of the plastic hinge on
the angle leg and beam flange.

Pucinotti [34] developed a simplified mechanical model for TSAC connections where
the connection behavior is characterized by the flange cleat in flexural bending, bolt effects,
and the effect of the unilateral contact between the column flange and top flange cleat.
The fundamental deformation sources of top- and seat-angle connections are shown in
Figure 2. In this simplified model, the joint is conceived as two rigid bars connected by two
non-linear springs representing the axial response of angles. The two rigid bars AB and
CD are representative of the column and the connected beam, respectively. The beam and
column are supposed to be fully rigid, relative to the top angle. Considering Figure 2, AC is
incorporated into the model to simulate the flexural response of the top cleat’s outstanding
leg, and a spring, BE, simulates the bolted effect.

Figure 2. A simplified mechanical model of top- and seat-angle connections.

The AB part of the beam is schematized as an elastic beam supported by an assembly
of elastic independent springs that represent the stiffness Kt of the column web [24]

Kt =
twc E

ln(1 + Hc)
Ba (1)
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where twc = thickness of the web column; E = Young’s modulus; Hc = height of the column;
Ba = width of the outstanding leg.

The BC part of the top cleat is schematized as an inelastic beam with linear strain
hardening, while the BE part is schematized as an elastic-perfectly-plastic spring. The end
C of the outstanding leg is free to translate vertically, but it must rotate by ϕc =

δC
Hb

, where
δC is the vertical translation and Hb is the height of the connected beam. δC is calculated by
applying the principle of virtual force from the mechanical model of Figure 2 as shown in
the following equation

δC =
∫ L2a

0
M′(z)χ(z)dz + N′BE

NBE
Kb

+ ḾB
MB
Kφ

(2)

where χ = curvature of the part BC of the top cleat, schematized as an inelastic beam;
N′BE = axial load; Kb = axial stiffness of the bolts = E πd2/4

ta+t f c
; ta = thickness of the angle;

tfc = thickness of the flange column; Kϕ = the rotational stiffness (as result of the top cleat
and the stiffness Kt of the column web).

The mechanical model in the case of top- and seat-angle connections with web angles
presents several additional components, in addition to top cleat deformation, equal to bolt
rows of the web cleat, see Figure 3. The stiffness Ktai of the column web in correspondence
to the i-th bolt row is provided by the formula [24]

Ktwi =
twcE

ln(1 + Hc)
Bawi (3)

where twc = thickness of the web column; E = Young’s modulus; Hc = height of the column;
Bawi = width of the portion of the outstanding leg of the web angles.

The BC portion of the outstanding leg of the web cleat is schematized as an inelastic
beam with linear strain hardening. The BE segment is conceptualized as an elastic-perfectly-
plastic spring. The end C of the outstanding leg of the web cleat is free to translate
horizontally, but its rotation ϕCwi = 0. δCwi is obtained by the application of the principle
of virtual forces

δCwi =
∫ 2L2awi

0
M′(z)χ(z)dz + N′BE

NBE
Kbwi

+ M′B
MB

Kϕwi
(4)

where χ = the curvature of the part BC of the beam; N′BE = axial load; Kbwi = axial stiffness
of the bolt i = Eπd2/4

taw+t f c
; taw = thickness of the web angle; tfc = thickness of the flange column;

Kϕwi = rotational stiffness; Lbwi = the length of bolt i.
Kong and Kim [33] have used curve-fitting software to obtain the effects of top and

seat angles on the Sj,ini value of TSACWs; they developed a semi-empirical equation as
follows:

Sj,ini =
0.49Elttt

3

(
d + tt

2 + ts
2 + 2kt

)
(

gt − tt − db
2

)2

tc f

tt

tbw
tt

(
d
tt
)

0.3
+

0.312nαEl2
pta

(1 + υ)gc
(5)

In Equation (5), E is Young’s modulus; lt is the length of the top angle; tt is the top
angle thickness; ts is the thickness of the seat angle; d is the height of the beam; kt is the
fillet size of the top angle; tcf is the thickness of the column flange; tbw is the thickness of
the beam web; gt is the distance from the top angle heel to the center of the bolts; db is the
diameter of the bolts; n is the number of bolts; α = 1.0 mm; lp is the angle length of the web;
ta is the angle thickness of the web; υ is Poisson’s ratio; gc = g1 − ta, as shown in Figure 4.
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Figure 3. Mechanical model for top- and seat-angle connections with web angles.

Figure 4. Parameters of TSACW connection.
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For a TSAC with a single web cleat, Kishi and Chen [43] elaborated a model proposal
for the detection of the collapse mechanism in 1990. Kong and Kim [33] extended the
model and presented the following equation for estimating the ultimate moment capacity
Mn of TSACW connections:

Mtop–seat
n = Mos + Mp + Vptd2 + Vpad4 (6)

In Equation (6), Mos is the plastic moment capacity of the seat angle; Mp is the plastic
moment capacity of the top angle; Vpt is the ultimate shear force acting on the top angle; d2
is a parameter related to the depth of the beam and the thickness of top and seat cleats; Vpa
is a parameter that depends on the ultimate shear force at the upper and lower edges of
the web cleat; d4 is the distance between the plastic shear at the lower edge of the web cleat
and the center of compression. These parameters are schematized in Figure 5.

Figure 5. Collapse mechanism for TSACW.

Eurocode 3 [29] implemented a component method to estimate the Sj,ini of TSACs. In
this method, the connection behavior is simulated by a series of different components, each
representative of an elastic spring with a specific stiffness and strength. It is possible to
calculate the overall stiffness by assembling these springs in a parallel-series configuration,
as shown in Figure 6.
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Figure 6. Modeling of TSAC connection recommended by Eurocode 3.

In Eurocode 3, the following components consider the stiffness coefficients of the
column shear panel zone (K1), the column flange in tension (K3), the column flange in
compression (K2), flexural stiffness of the column flange (K4), top cleat flexural stiffness
(K6), tensile stiffness of the bolts (K10), and, for non-preloaded bolts, their shear stiffness
(K11) and their bearing stiffness (K12). Therefore Sj,ini of the TSAC is provided by

Sj,ini =
Ez2

∑n
i=1 1/Ki

(7)

where E is Young’s modulus, z is the lever arm, Ki is the i-th component stiffness coefficient,
and n is the number of joint components. Z should be taken as the distance from the
bolt row in tension and the mid thickness of the leg of the seat cleat on the compression
flange. The Eurocode 3 does not include a mechanical model for the TSACW connection.
Accordingly, an extension of Eurocode 3 for TSACWs is proposed in this study by the
authors [44]. For a bolt row in a web cleat, the stiffness illustrated in Figure 7 should be
considered.

Figure 7. Eurocode 3 extension for TSACW connection.

The overall stiffness of basic components illustrated in Figure 7 is represented by a
single equivalent stiffness coefficient keq calculated from the following equation

keq =

Sj,ini
Ez + ∑ ke f f ,rzr

zeq
(8)
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where Sj,ini is the initial stiffness for TSAC and zr is the distance between the center of
compression cleat and bolt row r of the web cleat. Additionally,

ke f f ,r =
1

∑i 1/ki,r
(9)

where ki,r is the stiffness coefficient representing component i relative to bolt row r, and

zeq =

Sj,ini
E + ∑r ke f f ,rz2

r
Sj,ini
Ez + ∑r ke f f ,rzr

(10)

Finally, the initial stiffness of TSACW can be calculated from the following equation

Sj,ini =
Ezeq

keq
(11)

In 2005, Eurocode 3 [7] propose an equation to estimate the Mn of TSAC and TSACW
connections

Mn = FRdZ (12)

where the Z is the lever arm and FRd is the design resistance of weak joint components,
which can be one of the following: the top cleat in bending (Ftc,Rd), the bolts in tension, the
beam flange in tension and compression, and the beam web in tension.

4. Informational Approach

An informational-based method is recognized as an alternative method to simulate
complex structural and material behaviors that are not simply estimated by conventional
methods. This alternative method simulates the behaviors via the information contained
in the tested specimens. Accordingly, this is an important evolution from mathematical
equations to preserve data that contain the necessary information on mechanical charac-
teristics. In this approach, the underlying mechanics information is extracted from the
experimental test data and processed in the neural network’s program. Subsequently, the
trained networks can be employed in the simulation process. Several researchers have
applied neural networks to describe the complex behavior of different materials [45–47].
The application of neural networks to predict the M–θ curve of top and seat connections
and end-plate connections has been investigated by [48–52].

ANNs are mathematical models inspired by biological neural systems. The neural
networks determine the outputs based on the model inputs through processing units called
neurons. One of the most common types of neural networks is the feedforward network, in
which neurons are placed in layers that include an input layer, one or more hidden layers,
and an output layer. In each layer, the neurons are entirely connected, and the net input of
a neuron is always the sum of the weighted outputs from all neurons in the previous layer.
Each neuron uses a function called the activation function for its net input to determine its
output [53,54]. To connect the nodes in each layer, a parameter called “weight” is used. All
weights of an ANN are usually adjusted randomly as a default condition; consequently,
network outputs will have an associated error. To minimize the output error, the optimal
ANN weight should be determined using the training data. This optimization process is
called training the network [55].

4.1. Krill Herd Algorithm

The KHA is an intelligent group algorithm for optimization in engineering disci-
plines [56]. This algorithm has been used to achieve more efficiency in civil engineering
by referring to a novel metaheuristic algorithm to determine the weight optimization of
each ANN model. In this algorithm, krill individuals search for food in different places
and are presented as different decision variables. The objective is to calculate the distance
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between krill individuals and extra food availability, related to the cost. Therefore, the time-
dependent position of a krill individual is measured by functional processes, which include
the process of foraging, the search displacement, and the physical random diffusion [56–58].
Figure 8 shows a basic representation of the KHA.

Figure 8. A flowchart of the krill herd optimization algorithm.

In the process of the foraging motion, the krill individual’s velocity is always affected
by another krill’s displacement in the multidimensional search space, where the velocity
changes dramatically and dynamically based on the internal influence parameters, includ-
ing the influence of the target group and the repulsive effect. The displacement description
of a krill individual can be formulated by Equations (13)–(18) [57].

θnew
i = εiθ

max
i + µnθold

i (13)

εi = εlocal
i + ε

target
i (14)

εlocal
i =

Ns−1

∑
i=0

fijxij (15)

fij =
fi − f j

fw − fb
(16)

xij =
xi − xj

| fw − fb|rand(0.1)
(17)

ε
target
i = 2(rand(0.1) +

i
imax

) f best
i xbest

i (18)

In these equations, θmax
i represents the highest motion created and θold

i is the motion
created. µn represents the algebraic magnitude of the motion created, while the target
effects are shown by εlocal

i and ε
target
i . fw and fb are the worst and best population positions,

respectively. fi and fj are the ith and jth krill individual proportions. The current number
and the highest number are provided by imax. To identify the neighboring members of
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each krill individual, a sensor distance parameter (SDi) was used (as shown in Figure 9),
following equation [57]

SDi =
1

5np

np−1

∑
i=0

∣∣xi − xj
∣∣ (19)

where np represents the number of krill individuals in the population, while xi and xj
represent the position of ith and jth krill, respectively [57].

Figure 9. Sensing distance around an individual krill.

4.2. Training the KHA-ANN Model

To train the ANN for estimating two outputs of Sj,ini and (Mn/Mp,beam), a total number
of 77 specimens from references [36,37] were considered. Up to 80% of selected samples (62)
were used for training, while the 20% portion (15 specimens) was used to test the network.
Several variables, including the ratio of moment inertia from column to connected beam,
the thickness of the top and bottom flange cleat, the maximum thickness of the right or
left web cleat, bolt size, and the ratio of Fy column to Fy beam, were introduced as the
input parameters. The input and output, as well as their properties, are shown in Table 2.
Figure 10 also shows the correlation matrix of the input variables.

Table 2. Statistical parameters of input and output parameters.

Parameter Type Max Min Average STD

Ratio of moment inertia of column/beam Input 20.00 0.30 2.60 3.96

Thickness of top flange cleat (mm) Input 15.90 0.00 8.11 4.79

Thickness of bottom flange cleat (mm) Input 15.90 0.00 8.70 4.46

Max thickness of right/left web cleat (mm) Input 15.00 0.00 6.17 4.51

bolt size (mm) Input 24.00 16.00 19.51 1.70

Ratio of Fy column/Fy beam Input 1.13 0.80 1.00 0.09

Sj,ini (kNm/rad) Output 36,365.00 1633.00 12,021.75 9108.08

Mn/Mp beam Output 0.95 0.13 0.43 0.20
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Figure 10. Correlation matrix of the input variables.

The histogram graphs of the studied output parameters (Sj,ini, and Mn/Mp beam) indicate
that they follow a normal distribution, as depicted in Figure 11.
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The number of hidden layers and the total number of neurons in the hidden layers in
an ANN depends on the problem’s nature [50]. Generally, the trial-and-error method is
used to obtain the ideal architecture, which best reflects laboratory data characteristics. In
this research, an innovative method for calculating the number of neurons in hidden layers
is taken into account, namely

NH ≤ 2NI + 1 (20)

where NH represents the number of neurons in the hidden layers and NI is the number of
input variables.

Since the number of influential input variables for the current study is equal to 6, the
empirical Equation (20) shows that the number of neurons in hidden layers can be less than
13. Therefore, several networks with different topologies (with a maximum of 2 hidden
layers and a maximum of 13 neurons) were trained and studied in this paper.

The hyperbolic tangent stimulation function and Levenberg–Marquardt training algo-
rithm were used in all networks. The statistical indices used to evaluate the performance
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of different topologies are the age absolute error (AAE), variance account factor (VAF), and
model efficiency (EF) that are defined as follows [51]

EF = 1− ∑n
i=1(Pi −Oi)

2

∑n
i=1
(
Oi −Oi

)2 (21)

VAF =

[
1− var(Oi − Pi)

var(Oi)

]
(22)

AAE =

∣∣∣∑n
i=1

(Oi−Pi)
Oi

∣∣∣
n

× 100 (23)

where pi is the prediction of specimen i and oi is the observation of specimen i.
After examining the different topologies of the networks, it was found that the lowest

value of error characterizes the network with a 6-7-6-1 topology in EF, VAF, and AAE, and
by the highest value of R2 to estimate the two output parameters Sj,ini, and (Mn/Mp,beam), as
shown in Table 3. It is necessary to mention that the error criteria for training and testing
the selected data are calculated in the main range of variables and not in the normal range.

Table 3. Statistical results from the ANN model to determine the Sj,ini and Mn
Mp,beam

.

Type Statistical Index Sj,ini (kNm/rad) Mn/Mp beam

Train

AAE 0.260 0.107

EF 0.903 0.877

VAF% 90% 88%

Test

AAE 0.085 0.095

EF 0.993 0.890

VAF% 99% 75%

All

AAE 0.226 0.104

EF 0.920 0.880

VAF% 92% 88%

In this study, as in for several structural engineering practice applications, the KHA
was used as a new metaheuristic algorithm to determine the weight optimization of
each ANN model, given that the (Mn/Mp,beam) output has a numerical range of 0–1 while
the Sj,ini output is characterized by a numerical range of 1600–37,000 (kNm/rad). This
means that there is a big difference between the two target outputs. For modulation, two
separate ANNs were hence used in this study, each one with one output. Their essential
characteristics are summarized in Table 4.

Table 4. Feedforward ANN structure and topology.

No Name

Features of Neural Network

Number of
Input

Number of
Output

Neural
Network

Hidden
Layer Node Learning Role Transfer

Function

2 KHA-
ANN-M 6 1 Feedforward 2 7-6 Levenberg–

Marquardt Tansig

3 KHA-
ANN-S 6 1 Feedforward 2 7-6 Levenberg–

Marquardt Tansig

M stands for the ultimate moment capacity of connections (Mn/Mp,beam); S stands for the initial stiffness of connections (Sj,ini).
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Figure 12 shows the optimal topology of a feedforward network with two hidden
layers, six input variables (neurons), and one output parameter.

Figure 12. Optimized feedforward ANN with 6-7-6-1 structure.

The KHA has also been used to provide the least prediction error for the trained
structure to optimize the weights and biases of the ANN model. The KHA parameters are
also presented in Table 5.

Table 5. Features of KHA in feedforward ANN models.

No. Name

Features of KHA

Number
of Krills

Minimum Number
of Krill Herd

Maximum
Iteration

Maximum
Induced Speed D Max

1 KHA-ANN-MS KHA-Model 1 10 2 200 0.01 0.005

2 KHA-ANN-M KHA-Model 2 5 2 200 0.01 0.005

3 KHA-ANN-S KHA-Model 3 5 2 100 0.01 0.004

M stands for the ultimate moment capacity of connections (Mn/Mp,beam); S stands for the initial stiffness of connections (Sj,ini).

Features of the KHA, shown in Table 5, are defined as follows:

I. Number of krill: the required number of krill for starting the optimization;
II. Minimum number of krill herd: the minimum number of required krill in each group;
III. Maximum iteration: maximum interaction between krill in one group or one group

with another group;
IV. Maximum induced speed: maximum induced speed between the two groups;
V. D max: maximum radius in each group.

4.3. Multiple Linear Regression and Genetic Algorithm

Multiple linear regression and genetic algorithm models were also developed to
validate the feedforward KHA-ANN model’s accuracy in this study. In multiple linear
regression, two or more independent variables have a significant effect on the dependent
variable, as shown in Equation (16) [59]:

y = f (x1, x2, . . .)→ y = a0 + a1x1 + a2x2 + . . . (24)
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In the above equation, y is the dependent variable; x1, x2, . . . are the independent
variables; a1, a2, a3, . . . are the coefficients of the regression equation. For input and output
variables, different models of linear regression were investigated using MINITAB version
14.0 software. The following equations show multiple linear regression models for Sj,ini
and Mn/Mp outputs.

Sj,ini = 4526− (630× Icol/Ib) + (889× thtc) + (304× thbc)
−(285×Max− thwc) + (1282× db)(24, 013× f yc/ f yb)

(25)

Mn/Mp = 1.004− (0.00527× Icol/Ib) + (0.03663× thtc)− (0.0103× thbc)
+(0.00346×Max− thwc)− (0.0006× db)− (0.777× f yc/ f yb)

(26)

For another evaluation of the KHA-ANN model, the genetic algorithm combined with
ANNs was considered. The features of the genetic algorithm are shown in Table 6.

Table 6. Features of genetic algorithm in ANN models.

Parameter Name Value

Selection mode 3

Population size 150

Maximum generations 250

Recommendation percentage 0.15

Cross percentage 0.15

Mutation percentage 0.7

5. Accuracy of Proposed KHA-ANN-Model

Tables 7 and 8 show the comparison between different models with experimental data
for estimating Sj,ini, and Mn, respectively. Concerning the calculated average “Avg.” and
standard deviation “STD” values, the results in Tables 7 and 8 indicate that the KHA-ANN
model provides more reliable predictions for both Sj,ini, and Mn, compared to the Eurocode
3 [7], Kong and Kim [33], Pucinotti [34], multiple linear regression, and genetic algorithm
formulations described earlier. Using the existing empirical models, Sj,ini, and Mn were
either underestimated or overestimated however, the KHA-ANN predictions, conversely,
was rely on underlying mechanism and characterized by minimum deviation.

Figures 13 and 14 show the scatter graph that provided the relationship between test
results and the proposed KHA-ANN model for estimating the Sj,ini and Mn parameters,
respectively, compared to the mechanical and other informational models. The comparative
results indicate that the KHA-ANN model offers a more reliable prediction for both the
examined mechanical parameters, thus confirming the proposed model’s high potential
and accuracy.
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Table 7. Comparison of different models with literature test data, as obtained in terms of Sj,ini.

Test Sj,ini
(kN·m/rad) Test/EC3 Test/Kong

and Kim
Test/

Pucinotti
Test/

KHA-ANN
Test/

Multiple Linear Regression
Test/

Genetic Algorithm

8S1 6000 0.62 0.81 1.09 1.07 0.70 0.82

8S2 13,846 0.44 1.49 1.21 1.10 1.31 1.45

8S3 10,099 0.49 1.03 1.35 1.15 1.17 1.39

8S4 1633 1.32 1.34 0.83 1.19 0.16 0.17

8S5 8089 1.65 1.26 1.07 1.08 0.77 0.85

8S6 4490 1.80 1.13 0.79 1.20 0.52 0.62

8S7 4638 1.17 0.96 1.24 1.22 0.44 0.48

8S8 6060 1.50 1.43 1.41 1.35 1.35 1.31

8S9 10,029 1.61 1.94 1.13 1.06 0.69 0.81

8S10 30,222 2.74 4.09 0.95 0.98 1.65 1.58

14S1 21,623 1.74 0.99 1.08 0.93 1.64 1.84

14S2 26,919 1.05 0.87 1.05 1.06 1.59 1.44

14S3 11,022 0.87 0.51 1.12 1.15 0.92 1.21

14S4 23,852 1.67 1.07 1.02 1.02 1.81 2.03

14S5 22,672 1.78 0.97 1.03 0.97 1.72 1.93

14S6 25,247 0.97 0.76 1.08 0.99 1.49 1.35

14S8 58,679 1.43 1.27 1.05 0.96 0.28 0.24

14S9 24,169 0.93 0.72 1.09 0.95 1.42 1.29

Avg. 1.32 1.25 1.08 1.07 1.09 1.17

STD 0.56 0.78 0.15 0.11 0.54 0.55

Table 8. Comparison of different models with literature test data, as obtained in terms of Mn.

Test Mn
(kN·m) Test/EC3 Test/Kong

and Kim Test/Pucinotti Test/
KHA-ANN

Test/Multiple Linear
Regression

Test/
Genetic Algorithm

8S1 43.6 1.11 1.22 1.14 1.00 1.11 1.11

8S2 44.9 0.93 0.95 0.76 1.03 1.04 1.02

8S3 54.2 1.11 1.22 1.13 1.25 1.38 1.35

8S4 21.7 1.17 1.21 1.09 1.15 0.50 0.69

8S5 43.3 1.02 1.09 1.26 0.99 1.00 0.99

8S6 33.1 1.25 1.37 1.33 1.23 0.84 0.94

8S7 47.4 1.34 1.47 0.75 1.09 1.09 1.08

8S8 50.4 1.87 2.07 0.92 0.95 1.25 1.15

8S9 54.6 1.56 1.67 1.19 0.99 1.30 1.39

8S10 74.7 1.35 1.37 0.70 1.00 1.50 1.55

14S1 83.7 1.08 1.11 1.12 0.93 0.61 0.63

14S2 168.8 0.75 1.12 0.83 1.02 0.80 0.90

14S3 80.9 1.30 1.31 1.29 1.25 1.35 1.30

14S4 101.3 1.03 1.06 1.18 1.00 0.74 0.76

14S5 119.9 1.22 1.57 1.66 1.21 0.90 0.93

14S6 127.4 1.00 1.03 0.88 1.03 0.81 0.91

14S8 186.9 1.045 1.07 0.875 1.04 1.04 1.01

14S9 123.8 0.97 1.00 0.9 1.00 0.79 0.78

Avg. 1.17 1.27 1.05 1.06 1.00 1.03

STD 0.25 0.28 0.24 0.10 0.28 0.25
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Figure 13. Comparison between experimental and theoretical models for Sj,ini.
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Figure 14. Comparison between experimental and theoretical models for Mn.

The maximum, minimum, and average ratios of the test to theoretical Sj,ini and Mn
parameters, along with the corresponding coefficient of variation CoV, calculated per the
following equation, are provided in Table 9.

CoV =
Standard Deviation

Average Value
=

√
∑n

i=1(xi−x)2

n−1

x
(27)

where xi =
Experimental Sj,ini or Mn

Theoretical Sj,ini or Mn
; and x = ∑n

i=1
xi
n .
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Table 9. Ratio of actual to predicted Sj,ini, and Mn parameters for models considered.

Theoretical
Models Minimum Maximum Average CoVtest/CoVtheoretical

Sj,ini/Sj,ini,theoretical

EC3 0.44 2.74 1.32 1.02

Kong and Kim 0.51 4.09 1.25 0.97

Pucinotti 0.79 1.41 1.08 0.96

Genetic algorithm 0.17 2.03 1.17 0.35

MLR 0.16 1.81 1.11 0.39

KHA-ANN 0.93 1.35 1.07 0.97

Mn/Mn,theoretical

EC3 0.75 1.87 1.17 0.77

Kong and Kim 0.95 2.07 1.27 0.85

Pucinotti 0.7 1.66 1.05 0.84

Genetic algorithm 0.63 1.55 1.02 0.87

MLR 0.50 1.50 1.00 0.86

KHA-ANN 0.93 1.25 1.06 0.98

Table 9 indicates that the proposed hybrid KHA-ANN model yields the most reliable
results for mechanical properties prediction. The maximum and average ratio of the test to
theoretical Sj,ini and Mn parameters estimated by the KHA-ANN model was the closest
to unity, indicating robust predictive ability. Meanwhile, the minimum value estimated
by this model for Sj,ini and Mn parameters was equal to 0.93, resulting in accurate yet
conservative predictions, which is convenient for design purposes. The results also show
that the ratio of the test’s coefficient of variation to the theoretical values was estimated
to be 0.97 and 0.98 for Sj,ini and Mn parameters, respectively, by the KHA-ANN model,
indicating its superior accuracy to the other models considered in this study.

Another visual measure that can be taken into account for comparing the performance
of the KHA-ANN model against the component-based mechanical model is the Taylor
diagram, see Figures 15 and 16. This diagram depicts a graphical illustration of the
adequacy of each investigated model, based on the root-mean-square-centered difference,
the correlation coefficient, and the standard deviation.

The results proposed in Figures 14 and 15 indicate that the closest prediction for both
the Sj,ini and Mn input parameters, to the point representing the experimental data in the
literature, are provided by the KHA-ANN model developed herein. The component-based
model proposed by Pucinotti, as shown, also results in high values of root-mean-square-
centered difference and standard deviation, thus further suggesting good accuracy of
the formulation over the selected experimental data. Conversely, the same comparative
parameters are relatively too low regarding the application of the EC3 model to the selected
experimental specimens.

Tables 10 and 11 provide the final weight for both hidden layers by application of
the KHA-ANN model. Using the values of weights between different layers of ANN, it is
possible to determine and predict the Sj,ini and Mn

Mp,beam
.
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Figure 15. Taylor diagram visualization of model performance, in terms of Sj,ini prediction.

Figure 16. Taylor diagram visualization of model performance, in terms of Mn prediction.
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Table 10. Final weights and bias values of the optimum KHA-ANN model for the ratio of Mn/Mpbeam.

IW b1

0.7514 0.0535 0.0958 −0.0792 −0.1804 −0.6325 −0.2747

0.4097 0.2051 −0.0213 0.0424 0.1579 0.1816 −0.0143

−0.6575 0.4321 −0.2058 −0.0650 0.3990 −0.2737 0.1995

0.2339 −0.8016 −0.4855 −0.1924 −0.3408 −0.1798 −0.0717

−0.1071 0.4356 0.9440 −0.3874 −0.0518 0.2166 0.0639

−0.0276 0.0805 −0.3331 −0.1355 −0.1292 −0.1902 0.7536

0.1837 0.1549 −0.3965 0.2715 0.0351 −0.0581 0.1724

LW1 b2

0.486836 0.232199 0.178818 0.19609 0.19983 0.204216 −0.0893 0.5233

−0.35536 −0.71724 −0.64976 −0.788 −0.54886 0.606369 −0.1354 0.1026

0.438549 0.307981 −0.07002 0.099073 −0.68334 0.244562 0.2810 0.7008

0.822261 0.257671 −0.2456 0.064399 −0.00797 0.5287 −0.4390 −0.3015

0.638967 0.347942 −0.51478 0.230256 0.122677 0.141804 −0.7414 0.3832

−0.26656 −0.25888 −0.15317 0.300429 0.455593 −0.03802 −0.1338 −0.1351

LW2 b3

0.9681 −0.6657 −0.7876 −0.2552 −0.6038 −0.0206 −0.3210

IW: weights values for input layer; LW1: weights values for first hidden layer; LW2: weights values for second
hidden layer; b1: bias values for first hidden layer; b2: bias values for second hidden layer; b3: bias values for
output layer.

Table 11. Final weights and bias values of the optimum KHA-ANN model for Sj, ini (kNm/rad).

IW b1

0.4909 0.0796 −0.2764 −0.5954 0.0284 −0.2423 −0.0895

0.4492 −0.0926 −0.1428 0.0302 −0.3488 0.3437 0.1813

−0.1479 0.0582 −0.2119 −0.2836 0.2420 0.0284 0.4236

−0.2780 −0.4243 −0.5634 −0.0486 0.1429 −0.4097 0.1867

−0.1867 −0.1417 0.2382 −0.1349 0.4164 0.5311 −0.3966

0.3095 0.0664 −0.3421 0.0480 −0.1781 −0.4250 0.0680

0.0033 −0.1334 −0.4464 0.0177 −0.3164 −0.2103 −0.1803

LW1 b2

0.0471 0.3241 0.4336 −0.2665 0.3534 0.2147 −0.3209 −0.0945

−0.5778 −0.1768 −0.1420 −0.0004 −0.5863 0.0144 0.3295 0.1550

0.3186 −0.3091 0.0413 −0.2326 0.1294 −0.3266 0.2789 0.1893

0.5598 0.2860 −0.5133 −0.1338 0.0662 0.3885 −0.0985 −0.2359

−0.0901 0.5717 −0.3920 −0.1306 0.3884 −0.0880 0.1531 0.0450

0.3889 0.4165 −0.4297 −0.0532 0.2369 0.5079 −0.0817 0.4104

LW2 b3

0.9681 −0.6657 −0.7876 −0.2552 −0.6038 −0.0206 −0.3210

IW: weights values for input layer; LW1: weights values for first hidden layer; LW2: weights values for second
hidden layer; b1: bias values for first hidden layer; b2: bias values for second hidden layer; b3: bias values for
output layer.
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6. Comparison and Discussion of the Mechanical and Informational Approaches

The plastic response of different components and their interactions are recognized as
the main challenge of modeling the behavior of bolted beam-to-column connections. It is
possible to represent the complex behavior of bolted connections, i.e., slippage, residual
stress, and friction, using a detailed finite element method; however, integrating such an
approach into the analysis and design process of a real structure becomes time-consuming
and impractical. An informational model using ANNs and component-based mechanical
models was developed in this research to represent the behavior of steel bolted beam-to-
column connections. The features of these two distinct methods are discussed herein.

The constitutive contacts of all the components in bolted connections are set up
through geometric and material properties using the principle of virtual forces. The effi-
ciency of this approach depends on the accuracy of the relationships of the constitutive
component and the number of components. By defining an acceptable number of com-
ponents and subsequently conceptualizing the physical behavior as analytical equations,
applying the mechanical model to different connection configurations is possible. Nev-
ertheless, conceptualization typically resulted in equations that exclude several essential
features of physical behavior. To properly simulate the mechanical properties of bolted
angle connections, the main challenge is recognized as due to slippage, which affects the
initial and hardening stiffness. Slippage is a possibility of the connection deforming before
it starts to transmit forces. This has nothing to do with the capacity of the connection, only
with its rigidity. Screwed connections with long holes (without pre-tensioning) are the best
example of slippage.

Unlike the conventional mechanical modeling process that involves conceptualiza-
tion from the observed behavior to the mathematical equations, in the informational base
method, the information about essential behavior is extracted from the available experi-
mental test data and processed using ANNs. Accordingly, there is no need for pre-defined
mathematical equations, unlike the component-based mechanical method. The main ad-
vantage of the proposed methodology is that the ANN-based model can learn the complex
M–θ relationship of the connection’s components due to frictional slippage, buckling, slack-
ing of fastened bolts, and fracture as the yielding of materials. However, the ANN model
of the bolted connection is limited to only estimating the global response that includes the
contribution of all components. Using this method, it is impossible to represent the contri-
bution of individual components; therefore, it does not offer an insight into the underlying
mechanics. This poses difficulties in applications and extensions to other beam-to-column
connection configurations and material properties [60]. To improve network prediction
quality, it is suggested that the ANN interpolates rather than extrapolates from a particular
training set. Meanwhile, for training the ANN, it is recommended that all possible mixtures
of design variables in practice be considered.

The results of observational and computational data for both Sj,ini and Mn/Mp,beam
outputs are shown in Figure 17 for all 77 specimens. Figure 17 indicates that samples having
constant design variables (shown with green circles) caused an error in output results.

Overall, given that the performance and behavior of steel connections are non-linear,
the application of ANNs optimized with metaheuristic algorithms can be effective. More-
over, the combination of ANNs and component-based mechanical models can be employed
for beam-to-column connections with different configurations, so the advantages of the
two methods are implemented, and their disadvantages are accounted for.
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Figure 17. The difference between observational and computational results for Sj,ini and Mn/Mp,beam.

7. Concluding Remarks

In this research, three different mechanical models have been presented, and their
capacities for estimating the mechanical properties of top- and seat-angle connections with
double-web angles were examined. In the second phase of research, a novel hybrid krill
herd algorithm-artificial neural network (KHA-ANN) model was proposed to acquire an in-
formational model from the available experimental test dataset. The following conclusions
have been drawn based on the results of this study:
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I. The proposed simplified mechanical models have sufficient accuracy in estimating
the mechanical properties of bolted beam-to-column connections. This method’s
main challenge is defining a sufficient number of components and conceptual-
ization from physical behavior to analytical equations. The component-based
mechanical models can be applied to different connection configurations, provided
that the fundamental components with their non-linear response are accurately
identified.

II. The novel hybrid KHA-ANN model established an excellent agreement with the
experimental database. The results suggest that the informational model may
be a reliable alternative to the mechanical model for estimating the mechanical
properties of bolted beam-to-column connections. Although this method has the
valuable characteristic of being user-friendly, it was limited to only presenting the
global response including the contribution of all components. Therefore, it does
not offer an insight into the underlying mechanisms of individual components.

III. The results of the ANN model optimized by the krill herd algorithm acknowledged
that this algorithm is quite successful in finding the optimal point of functions.
This model has good potential compared to multilinear regression and genetic
algorithm models where AAE, VAF, and EF statistical coefficients have higher
values, indicating a lower error of this model. The maximum and average ratios of
the test to theoretical Sj,ini, and Mn parameters estimated by the KHA-ANN model
were the closest to unity, indicating robust predictive capability.
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