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Abstract
Identity documents (or IDs) play an important role in verifying the identity of a person
with wide applications in banks, travel, video‐identification services and border controls.
Replay or photocopied ID cards can be misused to pass ID control in unsupervised
scenarios if the liveness of a person is not checked. To detect such presentation attacks on
ID card verification process when presented virtually is a critical step for the biometric
systems to assure authenticity. In this paper, a pixel‐wise supervision on DenseNet is
proposed to detect presentation attacks of the printed and digitally replayed attacks. The
authors motivate the approach to use pixel‐wise supervision to leverage minute cues on
various artefacts such as moiré patterns and artefacts left by the printers. The baseline
benchmark is presented using different handcrafted and deep learning models on a newly
constructed in‐house database obtained from an operational system consisting of 886
users with 433 bona fide, 67 print and 366 display attacks. It is demonstrated that the
proposed approach achieves better performance compared to handcrafted features and
Deep Models with an Equal Error Rate of 2.22% and Bona fide Presentation Classifi-
cation Error Rate (BPCER) of 1.83% and 1.67% at Attack Presentation Classification
Error Rate of 5% and 10%.

1 | INTRODUCTION

ID documents such as passports and driver's licences that
contain the face picture of the ID document owner are
controlled and verified in many daily applications. Such doc-
uments are typically controlled and verified by humans or
machines based on the application scenarios such as border
crossing or purchasing age‐restricted consumer goods.
Furthermore, due to the increasing use of applications such as
remote banking or ID control, especially in pandemic situa-
tions, ID cards are often controlled remotely [1, 2]. Following
such motivation, a few studies have proposed approaches to
verify the ID of a person using face image and the ID image in
recent years [3, 4].
While remote ID card verification provides a convenience

to the user, it allows users with malicious intent to misuse the
copies (photocopied or digital) of ID cards for impersonating
bona fide users. The digital copies of ID cards can be printed

and presented to impersonate the ID of a different person. A
more sophisticated attack can further present a digital copy of
the ID card using various screens such as on tablets or
smartphones. Thus, ID card verification and identification
systems must detect print and replay attacks by accepting bona
fide presentations and rejecting attack presentations. While the
printed ID cards can be perceived as a low‐quality attack, high‐
quality digital screens with higher resolution and higher visual
quality can challenge the ID card verification systems to detect
such attacks.
With the growing number of applications using remote ID

card verification [5], very limited attention has been given to
detect presentation attacks in ID card systems [6–8]. The ne-
cessity of a reliable ID card Presentation Attack Detection
(PAD) system thus became inevitable. To address the vulner-
abilities of presentation attacks in face recognition system, two
general approaches were traditionally followed: (i) Hardware‐
based [9, 10] (ii) Software‐based [11, 12]. Hardware‐based
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systems usually employ additional sensors to seek cues on
presentation attack, for example, facial thermogram, specific
reflection properties of the eye, perspiration, etc. Software‐
based systems utilise from the image/video to detect the
attacks. Software‐based feature approaches can be further
classified into dynamic and static level approaches. Dynamic
approaches include analysing challenge‐response, blinks, spe-
cific movements of face while static approaches include
learning classifiers on image descriptors like Histogram of
Oriented Gradients [13], Local Binary Patterns [14, 15], Op-
tical flow [16], and Histogram of Oriented Optical Flows [17].
Unlike in a face recognition system where a subject can be

asked to respond to a dynamic challenge, ID cards cannot
benefit from such approaches without involving a live face
capture in the verification process of ID cards. Although the
user can be asked to move the ID card while capturing, the
attacker can follow such a procedure to bypass the PAD
mechanism. Considering such challenges and not overloading
the subject with additional face capture, wemotivate our work to
detect presentation attacks on ID cards directly without explicit
user interaction.We, however, note a limited set of studies in this
direction [7, 18] for tampering, print and replay attacks of ID
cards. There are also studies based on reading the Near‐Field
Communication (NFC) chips that are embedded in the bio-
metric International Civil Aviation Organization (ICAO) doc-
uments [19], but it should be duly noted that not all countries yet
provide ICAO standard biometric documents to identify a
person via NFC. In such cases, solely relying on the NFC feature
for identification and verification would be rendered useless.
Motivated by the limited studies and the growing impor-

tance of attack detection in remote ID card verification, we
present a new approach on ID card PAD in a remote verifi-
cation scenario. The proposed approach is motivated by the

observation that the appearance of bona fide presentations
significantly differs from printed presentations and replay
presentations, as noted in Figure 1. One can note the subtle
differences in bona fide versus presentation attacks, which can
be used for detecting presentation attacks. Based on such a
hypothesis, we assert that pixel‐wise supervision can effectively
detect presentation attacks on ID cards. Inspired by the success
of such binary supervision for attack detection in recent studies
for face PAD [20] and morphing attack detection [21], we
propose pixel‐wise binary supervision for detecting attacks on
ID cards. Specifically, in our proposed approach, we use a
modified DenseNet121 [22] network with the complete image
of the ID card crops resized to the network input requirements
instead of using face crops.
As noted from a limited set of studies and unavailability of

public datasets, we further create a new dataset of ID cards with
both bona fide and attacks on two different kinds of ID cards
from the European Union—the Personalausweis‐ID card and
the Aufenthaltstitel‐Residence Permit [23]. Unlike the previous
studies, the dataset is obtained from a real ID verification sys-
tem, and the attacks are manually verified before marking them
as attacks. The newly created dataset corresponds to in‐the‐wild
settings where both bona fide and attack attempts are captured
by various mobile phones. Further, the attacks in our new
dataset correspond to images printed using different printers
and a variety of displays used for replay attacks. The above
mentioned database is in‐house and due to General Data Pro-
tection Regulation, the dataset is not publicly available. Our
contributions can be listed as below:

� A new database of ID cards is constructed in this work with
433 videos (10,677 images) along with 366 replay videos
(79,926 images) and 67 print attacks (14,279 frames).

F I GURE 1 An illustration of Bona fide, Replay attack and Print Attack for ID cards. Bona fide images are clear and well defined with no moiré patterns.
Replay attack images have different contrast, and images are blurry. The print images have different saturation due to the printer's quality. *Note ‐ Personal
information redacted to protect the privacy of the subjects in ID card
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� We assume that the inputs to the trained model include only
Personalausweis‐ID card and the Aufenthaltstitel‐Residence
Permit.

� We present a new approach for ID card PAD using pixel‐
wise supervision for detecting presentation attacks and
demonstrate the applicability of the proposed approach to
detect presentation attacks efficiently.

� We present the benchmark performance evaluation using
multiple handcrafted features and state‐of‐the‐art deep
learning models based on the newly created dataset. Spe-
cifically, we provide a benchmark against seven handcrafted
approaches and three deep learning approaches.

� We further complement our results through a thorough
analysis for explainability using multiple class activation
maps (CAM). We provide an in‐depth discussion on
strengths and limitations of our proposed approach to
facilitate the future works in this direction.

In the rest of the paper, we first present a set of related
works in Section 2 and present the details of the newly created
ID card attack database in Section 3. We then provide the
detailed rationale and present our proposed approach in Sec-
tion 4. We present a number of baseline evaluations and pro-
posed approach in Section 5, and demonstrate the applicability
of the proposed approach in detecting the attacks effectively.
In Section 6, we present the heat maps of the networks to give
an insight on the model learning the labelled images. In Sec-
tion 7, we present results and experiments done towards the
ablation studies. Section 8 analyses the cases for which the
model prediction fails and measures that can be taken in future
work to catch these scenarios. In Section 9, we explain the
limitations of our current approach. Towards the end, we
present a detailed analysis of the obtained results and provide
some conclusive remarks along with the potential future works
in Section 10.

2 | RELATED WORK

Presentation and other attacks have been studied for well‐
established modalities such as the face, iris and fingerprint
for many years now [12, 24–26]. This section provides a set of
related works for ID card verification.
Gonzalez et al. [7] recently proposed a two‐stage approach

for detecting presentation attacks on ID cards, specifically to
detect print (from high‐quality printers) and replay attacks
(from digitally displayed on screens). The proposed two‐stage
network using MobileNet [27] is used to crop to the edges
of the ID cards. A BasicNet is employed to classify bona fide,
print and replay attacks created using Chilean national ID
cards.
The BasicNet is trained with different inputs: i) Discrete

Fourier Transform (ii) Steganalysis Rich Model (SRM) (iii)
Error Level Analysis. Discrete Fourier Transform classifies the
bona fide ID cards with 97.5% accuracy and a mean of 96.8%
of attack ID cards. The drawback of this network is there is no
widely available dataset to benchmark.

Zhou et al. [18] studied detecting tampering on ID cards.
They proposed a method to detect tampering by providing
more attention to artefacts rather than image content itself.
The proposed approach consists of two R‐CNN networks
where the first network used the Red‐Green‐Blue (RGB) image
and the second network used SRM of the RGB image
(considered a noisy image) to detect the manipulated regions.
With four standard image manipulation datasets such as Na-
tional Institute of Standards and Technology Nimble 2016 [28],
CASIA [29], COVER [30] and Columbia dataset [31], the au-
thors demonstrated improved performance in both detecting
and distinguishing between different tampering techniques.
Further, recently proposed DocFace [3] and DocFace+ [4]

used an automatic system for matching ID document photos
to live face images in real time. The proposed approach used
the image read from NFC chips in the Chinese ID cards to
compare against live faces. A base model is trained on an
unconstrained face dataset (selfies), and then the knowledge is
transferred to the target domain (ID card images). While the
approach is not directly related to detecting presentation at-
tacks on ID cards, the authors overcome it by accessing facial
images stored in a chip within the ID document via NFC.
However, such a solution cannot be employed for electronic
ID cards enabled with storage.

3 | DATABASE

Due to the sensitive nature of ID cards, not many datasets are
available for public research. In order to study and investigate
the problem, we construct a new in‐house database of ID
cards consisting of German ID cards and residence permits as
shown in Figure 1. The in‐house database consists of video
recordings of bona fide ID cards, printed ID cards and
replayed ID cards using digital display considering various
types of attacks. As the database is obtained from an opera-
tional scenario, the videos of ID cards in our newly collected
dataset with the consent by the users have varying lighting
conditions, background, and scenarios. The attacks represent
in‐the‐wild settings with different kinds of printers and display
devices representing a challenging set. Since the data collected
are from an operational scenario, the videos are recorded from
various android, apple smartphones and tablets. Further, the
data are captured using a custom‐made ID verification soft-
ware, which records a video for 9 s with 30 frames per second.
Figure 2 illustrates the process of bona fide data capture

where the frontal part of the ID card is typically captured at a
resolution of 1280 � 720 pixels for 9 seconds at 30 frames per
second. Each presentation corresponds to an average of 270
frames per ID verification attempt.

3.1 | Survey of existing databases

Due to the sensitive nature of data on the ID cards, the da-
tabases for research and commercial purposes are hard to
obtain. So far there are two known databases apart from our

MUDGALGUNDURAO ET AL. - 385
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in‐house database. We list the databases through an exhaustive
search in Table 1. The Chilean database from Ref. [7] and
Public‐IvS [32] where the ID photos are cropped from the
existing ID cards are present.

3.2 | Bona fide ID dataset

Through manual annotation of the ID card dataset, our newly
created dataset consists of ID cards of 433 unique subjects
resulting in 116,910 frames (9 s at 30 frames per second).
Further, by eliminating the frames with no ID card present
through manual verification, our dataset totals to 97,477
frames.

3.3 | Attack ID dataset

Similar to bona fide ID card presentation, the attack presen-
tation in the dataset consists of video recordings from printed

attacks and digital replay attacks. While the ID cards are
printed using a variety of printers, the display/replay attacks
correspond to ID cards displayed on smartphones and tablets.
With careful manual annotation on the collected dataset, we
identify 67 unique print attacks resulting in 18,090 frames (9 s
at 30 frames per second). We further eliminate frames with no
ID card in the frame resulting in 14,289 frames. The replay
attack has 368 unique cases with 99,360 (9 s at 30 frames per
second), and further curation of the dataset to eliminate frames
with partial ID cards resulted in 80,388 frames.

4 | OUR APPROACH

Our proposed approach is based on observing minute cues
differing in bona fide versus attack ID cards. Such cues can
correspond to blur and moiré patterns introduced due to
capture and printer related artefacts for attacks, while they tend
to appear less frequently for bona fide presentations. We use
this fact to our advantage by using pixel‐wise supervision
[20, 33] in addition to labelling the whole image with one single
label as shown in Figure 3. We assert that such an approach can
result in a better PAD approach by leveraging both pixel‐level
supervision and label‐level supervision. Thus, our proposed
approach repurposes pixel‐wise supervision and label super-
vision for detecting presentation attacks on ID cards. The ID
cards are pre‐processed before providing it to the proposed
network.

4.1 | Pre‐processing using card alignment
network

The ID cards are cropped from the frames using a card
alignment without any processing. By ensuring no processing is
done except cropping and resizing, no artefacts/artificial pixels
are introduced.

4.2 | Proposed network

The proposed method follows a frame‐wise approach in
detecting the image as bona fide or attack. We train a densely
connected network using both binary and pixel‐wise

F I GURE 2 Illustration of data capture for ID cards using a custom‐
made ID verification software on mobile phone

TABLE 1 Survey of the existing databases for Presentation Attack Detection (PAD) in ID cards

Bona fide Replay Print

Database Videos Frames Videos Frames Videos Frames Publicly available Remarks

Chilean ID ‐ 6588 ‐ 24,778 ‐ 6972 No Bona fide images collected

Cards [7] In varying lighting conditions

Public‐IvS [32] ‐ 54,853 ‐ ‐ ‐ ‐ Yes Only ID Photo of the ID cards available

Ours 433 10,677 366 79,926 67 14,279 No Data collected in unrestricted environments

*Can be used for evaluation of models by request.*

386 - MUDGALGUNDURAO ET AL.

 20474946, 2022, 5, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/bm

e2.12088 by N
T

N
U

 N
orw

egian U
niversity O

f Science &
 T

echnology/L
ibrary, W

iley O
nline L

ibrary on [16/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



supervision. The model outputs a feature map and a predicted
value. The output feature map can be considered to be the
scores generated from the patches based on the filters in the
network. Individual pixel patch is labelled as bona fide/attack
as shown in Figure 3.

4.2.1 | DenseNet architecture

The motivation behind using DenseNet [22] is that in
Convolutional Neural Network (CNN) as the model gets
deeper the path from the input to the output layers grows
immensely and the information to be conveyed is vanished.
In DenseNet, the authors connect every layer with each
other. This helps in the network in needing a smaller amount
of parameters in comparison with standard CNNs. This re-
sults in filtering out redundant feature maps. The advantage

of this network is that it does not take the sum of the output
feature maps with input maps but concatenates them. This
results in creation of DenseBlocks in which the dimensions
of the feature maps are kept constant and the number of
filters are varied. DenseBlocks with the combination of batch
normalisation and downsampling are called the Transition
Layers.
Following the motivation in Refs. [20, 33], our approach

employs a simplified architecture with respect to the DenseNet
architecture, which is modified with only two dense blocks and
two transition blocks with a fully connected layer with sigmoid
activation to produce the binary output. Such a modification
also helps to prevent the over‐fitting of the network under
limited data availability. With the proposed architecture, the
final layer has all the information from all the previous layers,
including the input layer. In addition, a convolutional layer with
a kernel size of 1 � 1 is introduced before the fully connected
layer to generate the feature map for pixel‐wise supervision.
The feature map of size 14 � 14 is generated from this con-
volutional layer and is used to supervise the training of the
network in a pixel‐wise manner.
The architecture as shown in Figure 4 presents our back-

bone network with two transition blocks with a fully connected
layer with sigmoid activation to produce the binary output.
Further, we employ Binary Cross Entropy (BCE) for both
pixel‐wise and binary supervision, which can be represented as

L ¼ λ ⋅ Lpw
BCE þ ð1 − λÞ ⋅ Ll

BCE ð1Þ

where Lpw
BCE presents the loss computed based on pixel‐wise

supervision, Ll
BCE presents the label level loss computed

based on binary output and λ is the regularisation parameter set
to 0.5 in the experiments as motivated in Ref. [20].
The saved model has a size of 6 MB; the inference time for

a video of 9 s with 30 fps with a skip rate of 3 on a Graphics
Processing Unit (GPU) takes approximately 3 s to process a
video.

F I GURE 3 Representation of the pixel‐wise binary representation of
the labels. Every pixel is given a binary label depending on the input data

F I GURE 4 Proposed approach for ID card PAD using backbone of DenseNet architecture where each layer is connected to every other layer. For each
layer the feature maps of all its previous layers are used as inputs to detect the presentation attacks on ID cards

MUDGALGUNDURAO ET AL. - 387

 20474946, 2022, 5, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/bm

e2.12088 by N
T

N
U

 N
orw

egian U
niversity O

f Science &
 T

echnology/L
ibrary, W

iley O
nline L

ibrary on [16/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4.3 | Hyper‐parameters

We employ Adam optimiser [34] with a learning rate of 10−4

and a weight decay of 10−5 for training. Batch size is set to 32,
and early stopping techniques are used to avoid over‐fitting.
The final score for each test image is computed by a binary
output. Our proposed approach is trained on a GPU for 10
epochs. The performance is reported on the disjoint set unseen
during training.

5 | EXPERIMENTS

We present the details of chosen baselines and metrics
employed for measuring the PAD performance in this section
along with the obtained results.

5.1 | Baseline methods—handcrafted

Due to the absence of direct literature on PAD for ID cards,
we chose widely used face PAD approaches for our baseline
results. Specifically, we utilised Binarised Statistical Image
Features (BSIF) [35] and Co‐occurrence of Adjacent Local
Binary Patterns (CoALBP) with two different classifiers such
as Support Vector Machines (SVM) and Collaborative Repre-
sentation Classifier (CRC). While BSIF extracts features using
statistically independent filters learnt on natural images,
CoALBP is an extension of Local Binary Patterns (LBP),
which utilises four immediate neighbours for calculating the
co‐occurrence frequency of two patterns resulting in a complex
representation. Noting the better performance of joint features
from CoALBP and Local Phase Quantization (LPQ), we resort
to using CoALBP and LPQ on two different colour spaces of
Hue‐Saturation‐Value and YCrCb [36]. Features from both
chosen approaches are further represented using histograms
for computational efficiency.
Specifically, in our experiments, we employ BSIF filters of

size 5 � 5 filter with 12 bits, a combination of 9 � 9 with 12
bits, 11 � 11 filter and a combination of 11 � 11 with 12 bits
with 17 � 17 with 12 bits filters are used to extract the texture
descriptions of the bona fide and attacks data. Furthermore,
SVM classifier is learnt using a Radial Basis Function (RBF)
kernel to classify between the bona fide cases and the attacks.

5.2 | Baseline methods—deep learning

We further use three deep learning models based on ResNet
[37], VGG16 [38] and MobileNet [39] using Imagenet pre‐
trained weights. All the three models learnt employ Adam
optimiser [34] with sparse categorical cross‐entropy as a loss
function to train the models.
We trained the Deep models from scratch for 120 epochs.

We observe that a random weight initialisation to the model
does improve the model when compared to using the ini-
tialised weights from ImageNet as seen from Table 2.

5.3 | Performance evaluation metrics

We report performance of all methods using the standardized
International Organization for Standardization/International
Electrotechnical Commission 30,107‐3:2017 metrics [40]
defined for PAD using Attack Presentation Classification Error
Rate (APCER) and Bona fide Presentation Classification Error
Rate (BPCER). APCER is defined as the proportion of attack
presentations species incorrectly classified as bona fide pre-
sentations in a specific scenario, and BPCER is defined as the
proportion of bona fide presentations incorrectly classified as
attack presentations in a specific scenario. We further report
BPCER at APCER = 5% and APCER = 10% in line with
studies on PAD along with the Detection‐Equal Error Rate
(D‐EER%) as an indicative metric where APCER equals
BPCER. In general, the lower the equal error rate value, the
higher the accuracy of the biometric system. Finally, to com-
plement our results reported at chosen thresholds of APCER,
we present the Detection Error Trade‐off (DET) curves for
the convenience of the reader.

5.4 | Database splits

For all the results reported, we employ a disjoint training,
validation and testing set following a disjoint split of 70% for
training, 10% for validation and 20% for testing. The details of
images in each split can be further obtained from Table 3.

5.5 | Results and discussion

As noted from the results presented in Table 2, we see that
the SVM classifier learnt using handcrafted features perform
better than the CRC classifier. The best performing
approach of BSIF with a filter size of 5 � 5 with a bits 5
and SVM performs the best result with an EER of 6.78%
while the BPCER at APCER = 5% equals 9.36%. However,
the same approach deteriorates when learnt using CRC, and
this can be easily explained by the linear classification as
against the RBF kernel in SVM. Equally surprising are the
results from deep models when the networks are learnt
using pre‐trained weights from ImageNet. The best per-
forming deep model here is VGG16 whose EER equals
14.97%; however, the BPCER at APCER = 5% equals
29.22%.
In comparison, our proposed approach results in better

EER equalling 3.24%. While the EER from the proposed
approach is better than that of the other approaches, we note a
superior BPCER at APCER = 5% and APCER = 10%
equalling 2.64% and 2.09% indicating promising directions for
using it in an operational scenario. Similar trends can also be
noted in the DET curves presented in Figure 5.
We also study the proposed approach on data without

frontalisation process. The obtained error rates as shown in
Table 2 is slightly lower than the model with frontalisation. The
key reason for this minor difference can be argued due to the
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presence of background. The presence of background in-
creases the PAD performance by detecting attacks to a better
extent.

5.6 | Individual error analysis

We present the error analysis for attacks individually for print
and replay attacks as presented in Figure 6. We can observe
that the EER of the replay attack is lower compared to that of
the Print attack. The print attacks are more susceptible in the
model to be falsely classified and contribute to the increased
APCER. This can be further investigated by collecting more
data samples and balancing out the attack dataset.

6 | ANALYSIS FOR EXPLAINABILITY
OF PROPOSED PIXEL‐WISE PAD

We further understand the proposed approach of pixel‐wise
binary PAD by utilising class activation maps (CAM).
Through the CAM analysis, we assess the regions of signifi-
cance with respect to every position of ID cards using the
linear combinations of the activations obtained by last
convolution layer and the output weights for the given class.
The obtained CAM are further overlayed on the ID cards to

TABLE 2 Obtained results from
proposed approach and baseline methods. The
Equal Error Rate (EER) of our approach is
lower than that of other approaches evaluated.
*Note—The best performing handcrafted
methods alone are reported based on best
empirical trials

Approach EER% BPCER@5% BPCER@10%

Handcrafted features + SVM

BSIF 5 � 5 6.78 9.36 4.14

BSIF 9 � 9 + BSIF 11 � 11 14.51 19.8 16.25

BSIF 11 � 11 + BSIF 17 � 17 18.95 20.21 17.61

CoALBP + LPQ (HSV + YCrCb) 8.32 12.93 6.64

Handcrafted features + CRC

BSIF 5 � 5 21.56 31.91 24.94

BSIF 9 � 9 + BSIF 11 � 11 14.07 16.69 14.87

BSIF 11 � 11 + BSIF 17 � 17 12.22 22.10 13.05

Deep models

ResNet50 30.27 69.94 67.42

VGG16 14.97 29.22 19.04

MobileNet 14.32 50.29 28.74

Deep models—without imagenet initialisation—120 epochs

ResNet50 17.84 20.47 11.77

VGG16 9.46 11.43 5.85

MobileNet 16.03 34.11 21.09

Proposed—Pixel‐Wise supervision 3.24 2.64 2.09

Proposed—Pixel‐Wise supervision (no frontalisation) 2.22 1.83 1.67

Proposed—Pixel‐Wise supervision—Print 5.05 5.15 2.72

Proposed—Pixel‐Wise supervision—Replay 2.83 2.47 1.95

TABLE 3 Details of the dataset collected in this work with a total of
866 unique ID cards from 866 unique subjects. The attacks are manually
verified by ID verification experts as replay and print attacks

Dataset

Bona fide Replay Print

Videos Frames Videos Frames Videos Frames

Train 303 74,148 256 56,513 47 9831

Validate 43 11,649 37 8435 6 1311

Test 87 20,870 73 14,978 14 3137

F I GURE 5 DET curves for ProCRC evaluated along with our
proposed approach
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illustrate the areas of significance in making the decisions as
bona fide or attack presentations.
To further study the proposed approach in a detailed

manner, we employ three different CAM such as GradCAM
[41], ScoreCAM [42] and AblationCAM [43]. GradCAM
employs the gradient loss with respect to the last convolu-
tion layer and computes the weighted combination of acti-
vation maps and ReLU for its respective feature maps.
ScoreCAM [42] in contrast uses the weights of the activation
maps from each forward pass and uses linear combination
of the weights and activation maps. Using such an approach
the ScoreCAM minimises the unstable nature of GradCAMs
under the presence of noise. Similar to the GradCAM, the
authors perform a linear combination of the target class to
the target class score and each activation map. By applying
ReLU to the resulting activation maps in ScoreCAM, the
relevant areas used for learning the model can be obtained.
AblationCAM [43] further finds weights based on the
changes in the class scores by eliminating the specific re-
gions of the feature maps corresponding to a class. In
comparison to the GradCAM, AblationCAM is reported not
to be sensitive to noisy images, saturation and vanishing
gradients.
In GradCAM Figure 7a, we notice that the bona fide maps

have uniform attention over entire image whereas the attention
varies in the attack presentations. The varying attention in-
tensity for attack presentations can be attributed to moiré
patterns from videos and the artefacts left behind by the
printers are highlighted in warmer and colder colour scales.
Further analysis indicates the need to focus on different

regions either through a patch‐wise approach or weighted
patch‐wise approach to be investigated in future works. While

the outputs from GradCAM and ScoreCAM Figure 7b
correlate to our intuition of using pixel‐wise supervision for
PAD, we note not so consistent results in AblationCAM
Figure 7c.

7 | ABLATION STUDIES

We conduct ablation studies on the proposed network to
demonstrate the effectiveness of the chosen parameters and
the proposed framework. The results from ablation studies are
presented in Table 4 and correspondingly we present the CAM
analysis in Figure 8.

7.1 | Role of BCE loss

In order to study the effectiveness of employed Binary Cross‐
Entropy (BCE) loss, we replace the BCE to Mean Squared
Error Loss (MSE) [44]. Cross‐entropy calculates the score,
which summarises the average difference between the true and
the predicted probabilities for a given class, while the MSE is
used as a regression metric where in the model is punished
heavily if the variation of the predicted value is a large value.
We note that such a loss does not outperform the BCE loss in
our proposed approach as noted in Table 4. Despite not
obtaining the lowest EER as against the best chosen config-
uration, we can anticipate an increase in performance if the loss
is used in conjunction with the BCE and this aspect will be
studied in future works.

7.2 | Contribution of independent losses

As noted in Equation (1), our proposed approach utilises pixel‐
wise supervision loss Lpw

BCE and binary label supervision loss
Ll
BCE. We thus study the contributions of each of the inde-
pendent losses by varying the λ values in our loss function in
Equation (1). By setting the λ = 1, we only make use of pixel‐
wise supervision loss Lpw

BCE and by setting λ = 0, we only utilise
binary label supervision loss Ll

BCE. Further, we also set
different weights to λ to study the impact of various combi-
nations. As noted from the Table 4, pixel‐wise supervision
alone results in a reasonable EER but with high BPCER at
APCER = 5%, while the binary label supervision loss alone
results in better EER and better BPCER at APCER = 5% and
APCER = 10%. However, a balanced combination of both
losses obtains the best EER and BPCER at both
APCER = 5% and APCER = 10%.
The obtained results can further be correlated to the ob-

servations made through CAM analysis as shown in Figure 8
for the same set of images shown in Figure 7. As observed
from GradCAM and ScoreCAM analysis, one can note that the
network does not provide a clear decision on bona fide and
attacks with just one of the losses. Such an observation further
asserts our intuition of chosen network design.

F I GURE 6 DET curves evaluated for our proposed approach with
comparison to Print and Replay Attacks
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7.3 | Role of transition layer

Considering the superior performance of the proposed
approach and to reduce the number of parameters of the
model, we further conduct another analysis to study the

feasibility of making network compact. We therefore analyse
the proposed approach by eliminating one of the transition
blocks—which contains six dense layers and the block of
activation layers and average pooling blocks. As noted from the
results presented in Table 4, removing one of the transition

(a)

(b)

(c)

F I GURE 7 CAM Analysis on bona fide and
attack images
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blocks deteriorates the performance of the proposed model by
increasing both EER and BPCER. While removal of the block
significantly decreases the training time and the GPU con-
sumption, the performance of the model drops asserting our
design choice. However, alternative strategies will be studied in
future works to make the model compact while retaining the
performance.

8 | FAILURE ANALYSIS OF PROPOSED
APPROACH

In addition to other analysis noting a constant increase in
BPCER at APCER<5% and increasing APCER at
BPCER>1% as seen in Figure 5, we conduct another analysis
to closely understand where the network fails. Specifically, we
present a set of presentations where we obtain false negative
(bona fides classified as attacks) and false positive (attacks
classified as bona fides) in Figure 9. Visual analysis of the
frames indicates that when the cropped frames are skewed and
not aligned, the model fails to classify. To support our visual
analysis, we provide CAM analysis of the misclassified frames,
which show that the attention of the model is not focused to
provide a clear decision.
First, we observe that the proposed approach is challenged

when the presented ID card is not well aligned with the
presence of fingertips in the background. We note that in such
a case, the model rejects the bona fide attempt as attack
attempt as shown in Figure 9a. We can further observe that the
bright reflection on the face region in replay attacks as shown
in Figure 9c leads the proposed approach to conclude the
attack attempt as a bona fide attempt. Such errors lead to
classification errors (APCER and BPCER) in the lower regions
of the DET curve as shown in Figure 10. We further
hypothesise that such errors can be easily mitigated by
improved pre‐processing approaches that can align the cards in
a better manner and eliminate the artefacts arising out of
illumination. Both these aspects will be studied in the follow‐
up works of this article.

9 | LIMITATIONS OF OUR WORK

While the proposed approach provides a promising result, we
note certain limitations in the current work. Specifically, in this
work, the proposed approach is tested on a single in‐house
dataset limiting the robustness testing against different types

(a)

(b)

(c)

(d)

F I GURE 8 CAM Analysis on bona fide and attack images for the
ablation studies

TABLE 4 Analysis of results for various ablation studies that include
different combination (weights) of losses, alternative loss and presence of
single transition block in proposed approach

Approach EER%
BPCER @ BPCER @
APCER = 5% APCER = 10%

Combination of losses

λ = 0 3.86 4.26 2.11

λ = 0.2 3.64 4.12 1.89

λ = 0.9 2.93 3.89 2.24

λ = 1 4.44 10.39 16.95

Proposed (λ = 0.5) 3.24 2.64 2.09

MSE Loss [44] 4.94 10.26 15.68

Single transition block 8.43 27.72 6.26
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of ID cards. A diverse dataset of ID cards from different
countries needs to be further investigated to identify the po-
tential drawbacks of the proposed approach. Similarly, we have
used pixel‐wise supervision with DenseNet, and the general-
isation of pixel‐wise supervision against other networks are
studied here; however, DenseNet has proven to generalise well
over different architecture for the task of face PAD [45].
Further, the heavily imbalanced nature of the dataset with
more bona fide can be seen as a case of anomaly detection, and

such an approach has not been considered in our current work.
Finally, the approach can be complemented by looking at the
face region and other cues on the ID cards to make PAD
further robust. All the limitations mentioned above shall be
investigated in future works.

10 | CONCLUSION AND FUTURE
DIRECTIONS

The verification of ID cards in unsupervised settings can be
challenged by presentation attacks where an attack can simply
employ digital copies or photocopied ID cards. To detect such
presentation attacks on ID card verification systems, in this
work, we have proposed a pixel‐wise supervised learning
paradigm using DenseNet to detect both printed and digital
replay attacks. With a newly constructed in‐house database
obtained from an operational system consisting of 886 users
with 433 bona fide, 67 print, 366 display attacks, future works
in this direction can study the generalisation across ID cards
and different attacks. Our model achieves an EER of 2.22%
and lowest compared to the handcrafted features, pattern
classifier and the deep learning models. The future works
include in generalising the model to detect PAD on various
kind of ID cards and ICAO documents, which can differ

(a)

(b)

(c)

(d)

F I GURE 9 Illustrative examples on which
proposed approach failed and their
corresponding class activation maps using
GradCAM

F I GURE 1 0 DET curves for SVM approaches evaluated along with
our proposed approach
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significantly in appearance and design. As we focus on model
generalisability and detection of edited photographs, personal
information can also be checked. However, the NFC details on
the cards cannot be read on all devices. Depending on the
make and model of smartphone and issued year of the ID card,
the attack detection can make use of data from NFC chips. We
shall consider these aspects in the future works.
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