Age-related decline in peak oxygen uptake: Cross-sectional vs. longitudinal findings. A review

Jon Magne Letnes ${ }^{\text {a,b,* }}$, Bjarne M. Nes ${ }^{\text {a,b }}$, Ulrik Wisløff ${ }^{\text {a,c }}$
${ }^{\text {a }}$ Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
${ }^{\mathrm{b}}$ Clinic of Cardiology, St. Olavs University Hospital, Trondheim, Norway
${ }^{c}$ School of Human Movement and Nutrition Science, University of Queensland, Queensland, Australia

A R T I C L E I N F O

Handling Editor: Dr D Levy

Keywords:

Peak oxygen uptake
Cardiorespiratory fitness
Cardiopulmonary reference data
Exercise testing

Abstract

Cardiorespiratory fitness is established as an important prognostic factor for cardiovascular and general health. In clinical settings cardiorespiratory fitness is often measured by cardiopulmonary exercise testing determining the gold-standard peak oxygen uptake $\left(\mathrm{VO}_{2 \text { peak }}\right)$. Due to the considerable impact of age and sex on $\mathrm{VO}_{2 \text { peak }}$, results from cardiopulmonary exercise testing are typically assessed in the context of age- and sex-specific reference values, and multiple studies have been conducted establishing reference materials by age and sex using cross-sectional designs. However, crossectional and longitudinal studies have shown somewhat conflicting results regarding age-related declines of $\mathrm{VO}_{2 \text { peak, }}$, with larger declines reported in longitudinal studies. In this brief review, we compare findings from crossectional and longitudinal studies on age-related trajectories in $\mathrm{VO}_{2 \text { peak }}$ to highlight differences in these estimates which should be acknowledged when clinicians interpret $\mathrm{VO}_{2 \text { peak }}$ measurements repeated over time.

Cardiorespiratory fitness (CRF) is established as a powerful marker of present and future health, with higher levels associated with a reduced risk of not only cardiovascular disease and mortality, but also a plethora of other diseases [1-3]. Studies employing machine-learning have shown that age and CRF are the two features with greatest impact on mortality prediction in cardiac rehabilitation settings, outperforming commonly used variables from clinical practice [4]. Still, the potential clinical value of CRF in patient follow-up and preventive settings has received little attention, leading to an initiative from the American Heart Association advocating to increase the uptake of CRF assessment in clinical practice [3]. CRF can be estimated by several methods, including non-exercise methods, but the gold-standard method is direct measurement of peak oxygen uptake $\left(\mathrm{VO}_{2 \text { peak }}\right)$ by ventilatory gas-analysis during dynamic exercise to voluntary exhaustion [5].

Already in 1938, in a comprehensive work of experimental studies of physical fitness in relation to age, Robinson described that "the mechanism for supplying and utilizing O_{2} in exhaustive work are only about 50 per cent as effective in a man of 75 as in a boy of 17" [6], hence underscoring the importance of considering age when assessing fitness levels. Together with age, both sex and exercise training status are key determinants of CRF, but still age alone explains $30-40 \%$ of variation [7,

8]. Using age-adjusted reference data is therefore necessary, and a wide variety of studies have published reference data on $\mathrm{VO}_{2 \text { peak }}$ by age and sex over the last couple of decades $[9,10]$. Comparing with a reference standard is necessary to accurately interpret individual patients' fitness levels in clinical settings. However, considerable variation in the age-related decline of $\mathrm{VO}_{2 \text { peak }}$ has been reported when comparing studies of crossectional and longitudinal designs, as previously discussed by Hawkins and Wiswell [11]. In the years since that publication a plethora of studies have been published, including large studies assessing longitudinal declines by different age-groups.

Still, the age-related decline in fitness is generally referred to be $\sim 10 \%$ per decade, even though this is a simplification, and may be grossly inaccurate as will be discussed. Therefore, in this brief review we overview the current literature and compare findings from crosssectional and longitudinal studies on age-related trajectories in $\mathrm{VO}_{2 \text { peak }}$. We highlight differences, and show how these differences may be of importance when performing long-time patient follow-up and when interpreting repeated $\mathrm{VO}_{2 \text { peak }} / \mathrm{CRF}$ measurements over time. Relevant studies were identified using structured searches in PubMed and by further review of references in the identified publications of interest.

[^0]https://doi.org/10.1016/j.ijcrp.2023.200171
Received 21 November 2022; Received in revised form 9 January 2023; Accepted 12 January 2023
Available online 13 January 2023
2772-4875/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Age-related declines in cross-sectional studies

Over the last decades a number of studies have reported reference data on $\mathrm{VO}_{2 \text { peak }}$ by age from cross-sectional studies. Meta-analyses in men have shown annual declines of $0.40 \mathrm{~mL} / \mathrm{kg} / \mathrm{min}$ for both active and sedentary men [12], and 0.44 and $0.35 \mathrm{~mL} / \mathrm{kg} / \mathrm{min}$ for active and sedentary women, respectively, thus assuming linear declines [13]. Similarly, a wide variety of regression equations for predicting $\mathrm{VO}_{2 \text { peak }}$ by age and sex have been published as previously summarized in extensive reviews [9,10], typically reporting declines between 0.3 and $0.5 \mathrm{~mL} / \mathrm{kg} / \mathrm{min}$ per year. In line with this the expected decline in $\mathrm{VO}_{2 \text { peak }}$ is generally accepted to be linear and about 10% per decade [11], although some reports have highlighted geographical differences and nonlinear declines [14]. Notable studies from several countries reporting directly measured $\mathrm{VO}_{2 \text { peak }}$ by gas-analysis during maximal exercise is shown in Fig. 1 and Table 1 [8,15-34], indicating more or less constant (linear) declines. The age-related declines are similar across both cycle ergometry and treadmill exercise, although values from treadmill exercise are generally higher [34]. Although the baseline fitness level decreases with higher age, meaning that percentage decline increases, most studies still have reported declines of $10-15 \%$ in older age-groups as well [8,15,16,21,23-25,32,33].

2. Age-related declines in longitudinal studies

Quite a few studies have reported longitudinal data on $\mathrm{VO}_{2 \text { peak }}$, although most have had relatively few participants, narrow selection criteria, a limited age-span, and importantly, data have not been reported stratified by age groups. Generally, it should be noted that cross-
sectional studies typically have reported data on several thousands of participants, while longitudinal studies have smaller sample sizes in the tens or hundreds (Table 1, Table 2). Age-related longitudinal declines from several notable studies are summarized in Fig. 2 [16,35-50]. The studies by Fleg et al. including 375 women and 435 men from the Baltimore Longitudinal Study of Aging (BLSA) [16] and a study from our group on ~ 1500 participants (51% women) from the Trondelag Health Study (HUNT) in Norway [45] both included participants from a wide age range and reported data by ten-year age-groups. Although the estimated longitudinal declines from many of the longitudinal studies vary due to small samples and different inclusion criteria (Table 2, Fig. 2), the findings from the larger BLSA and HUNT studies show the same patterns with increasing declines in both absolute values ($\mathrm{mL} / \mathrm{kg} / \mathrm{min}$) and percentage $\mathrm{VO}_{2 \text { peak }}$ with higher age, with similar estimates for the declines (Fig. 3). The absolute decline for women in the HUNT Study seemed to level off after 60 years at about 15\% decline per decade, but increased towards 20% per decade at high age in the BLSA. In men over 70 years of age the decline approached 25% per decade in both studies. Thus, the decline in both women and men is non-linear throughout life, but based on these two large studies it is clear that this is more pronounced in men than women. The mechanism or explanation for the apparent sex-differences in age-related declines in $\mathrm{VO}_{2 \text { peak }}$ needs further study. Data from the randomized controlled Generation 100 Study following 1567 men and women age >70 years for five years showed annual declines in $\mathrm{VO}_{2 \text { peak }}$ of about 2% after the first year of intervention for both the supervised exercise groups and the control group instructed in national physical activity recommendations. This equated to a 20% ten-year decline despite preserved exercise volumes throughout the study [51].

——Aspenes et al. 2011 --. Dourado et al. 2021 --. Edvardsen et al. 2013

- Fleg et al. 2005 Herdy et al. 2011 . -. Hollenberg et al. 1998
- - Inbar et al. 1994 --. Kaminsky et al. 2022 .--. Nelson et al. 2010
- Paterson et al. 1999 - Rossi Neto et al. 2019 --- Sanada et al. 2007

| - Grigaliuniene et al. 2013 | --.. | Hakola et al. 2011 | --. | Kaminsky et al. 2017 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| - - Koch et al. 2009 | … | Rapp et al. 2018 | - | Singh et al. 1989 |
| - - Triantafyllidi et al. 2021 | --. | Van der Steeg \& Takken 2021 | .-- | Wagner et al. 2021 |

Fig. 1. Cross-sectional reference data for $\mathrm{VO}_{2 \text { peak }}$ by testing modality. Treadmill in the upper panel, and cycle ergometry in the lower panel. Each age-group corresponds to the given decade, not the exact age. Some data collected from graphs or adapted from similar age-groups.

Table 1
Key characteristics of cross-sectional studies.

Study	Participants	Characteristics	Country	Modality
Aspenes et al., 2011	$\begin{aligned} & 2263 \text { Men } \\ & 2368 \\ & \text { Women } \end{aligned}$	Health-survey participants from HUNT aged 20-90 years free from cardiovascular, pumonary and malignant disease.	Norway	Treadmill
Dourado et al., 2021	518 Men 777 Women	Adults >18 years without cardiopulmonary disease, locomotor disorders, ECG abnormalities or other reasons for not performing physical exercise safely.	Brazil	Treadmill
Edvardsen et al., 2013	394 Men 365 Women	Participants aged 20-85 years where participants with either two or more cardiovascular risk factors combined with an age >50 years or with a BP $>180 / 110 \mathrm{~mm} \mathrm{Hg}$ were excluded.	Norway	Treadmill
$\begin{gathered} \text { Fleg et al., } \\ 2005 \end{gathered}$	435 Men 375 Women	Health-survey participants from the BLSA age 21-87 years without significant cardiopulmonary disease or major orthopedic/ neurological disability.	US	Treadmill
Herdy et al., 2011	$\begin{aligned} & 2388 \text { Men } \\ & 1564 \\ & \text { Women } \end{aligned}$	Exercise tests from a large referral center for cardiology excluding individuals with any symptom of disease or pathology, athletes, smokers, on any medication or $\mathrm{BMI} \geq 30$. Averaged for active and sedentary individuals.	Brazil	Treadmill
Hollenberg et al., 1998	408 Men 583 Women	Older adults aged 55 years or older without cardiac, cerebrovascular and muskuloskeletal disease able to perform treadmill testing.	US	Treadmill
Inbar et al., 1994	1424 Men	Participants from periodic medical examinations with CPET. Participants with abnormal ECG tracings, or a medical history or physical or laboratory findings of cardiac, respiratory, metabolic or neuromuscular	Israel	Treadmill

Table 1 (continued)

Table 1 (continued)

Table 1 (continued)

Study	Participants	Characteristics	Country	Modality
	diabetes and			
	Alzheimers			
	disease.			

3. Comparison of cross-sectional and longitudinal studies

The age-related decline estimated from cross-sectional studies compared to findings from the two large longitudinal studies reporting data by age-groups is shown in Fig. 4. When comparing cross-sectional and longitudinal age-related declines the estimates are similar in the middle-aged, but differ at higher age with longitudinal declines being consistently larger (Fig. 4). At younger ages the cross-sectional estimates tend to be higher. In addition to the longitudinal data from BLSA and HUNT presented in Fig. 3 only a few other studies have reported both longitudinal and cross-sectional data on $\mathrm{VO}_{2 \text { peak }}$ in older adults over $60-70$ years of age. Stathokostas et al. found 16% and 9% ten-year declines in 34 men and 28 women over 70 years of age, keeping in mind that the sample was relatively small. Also in this study cross-sectional declines were lower than longitudinal declines, although the difference was small in women. In the few studies reporting age-related declines in $\mathrm{VO}_{2 \text { peak }}$ by both cross-sectional and longitudinal measures the mean longitudinal decline is consistently larger than the cross-sectional estimates [8,16,38,40-43,45,47,50]. The only exception is the study by Jackson et al. [41] which may be explained by a large self-selection between the first and second measurement as only 10% returned to repeated testing as well as that the cohort itself consisted of highly selected and healthy National Aeronautics and Space Administration (NASA) employees mainly in their middle age. Also, they increased their activity level and decreased body mass during follow-up. Hollenberg et al. examined 592 adult men with a mean age 65 years with repeated measurements of $\mathrm{VO}_{2 \text { peak }}$ over a minimum of three visits and a mean follow-up of 6.3 years [40]. In their repeated measures model they showed that the magnitude of estimates for longitudinal declines were consistently lower than for the cross-sectional estimates, with -0.39 vs $-0.23 \mathrm{~mL} / \mathrm{kg} / \mathrm{min} /$ year for women, and $-0.69 \mathrm{vs}-0.34 \mathrm{~mL} / \mathrm{kg} / \mathrm{min} /-$ year for men, in line with the findings from BLSA and HUNT.

4. Explanations for the discrepance between cross-sectional and longitudinal studies

The discrepancy between findings using cross-sectional and longitudinal designs is likely to stem from issues regarding selection and survivor bias (i.e. those living until older age most likely were healthier in their younger years than those becoming ill or dying at a younger age). This is especially important given the strong associations between $\mathrm{VO}_{2 \text { peak }}$ and numerous health outcomes, including longevity. This will have a pronounced effect in older ages as the selection pressure due to disease, ailments, and declining PA levels most likely will lead to superhealthy older adults participating in cross-sectional studies. In longitudinal studies this will also theoretically lead to some underestimation of the true age-related decline, as one would expect sicker individuals to experience faster declines in $\mathrm{VO}_{2 p e a k}$ and also have a higher risk of mortality or other disease limiting participation in studies requiring maximal exercise to measure CRF. Thus, due to the strong association to health-outcomes for $\mathrm{VO}_{2 \text { peak }}$ and the described survivor bias it is likely that a participant in its eight decade in a cross-sectional study on average would have had higher $\mathrm{VO}_{2 \text { peak }}$ than a 30 -year-old in the same study when at the same age, as pointed out also by Fleg et al. [16]. Similarly, cohort effects may play a role in explaining lower declines found in cross-sectional studies. This is evident as studies have shown how CRF has declined on the populational level over the last decades for example in the adult Swedish workforce [52], US youth [53], and children and adolescents from 19 different high-income and upper

Table 2
Key characteristics of longitudinal studies.

Study	Participants (n)	Baseline age (years)	Follow-up (years)	Sex	Characteristics	Country	Modality
Asmussen et al.,	25	24	26	Men	Well-trained physical education students.	Denmark	Cycle
1962	11	23	28	Women			
Åstrand et al.,	35	21.9	21	Women	Physical education students.	Sweden	Cycle
1973	31	25.9	21	Men			
Bahls et al., 2020	353	50	10.6	Men	Participants in the Study of Health in Pomerania without pulmonary disease.	Germany	Cycle
	335	50	10.6	Women			
Dehn \& Bruce 1972	40	52.2	2.3	Men	Healthy men.	US	Treadmill
Eskurza et al., 2002	8	57	7	Women	Healthy, 40-78 years.	US	Treadmill
Fleg et al., 2005	375	48.6	8.3	Women	Participants in the BLSA study without clinically significant cardiovascular or orthopedic/neuromuscular disease.	US	Treadmill
	435	51.9	7.9	Men			
Hollenberg et al., 2006	339	65	5.5	Women	Health-survey participants >55 years without cardiovascular disease or musculoskeletal impairment.	US	Treadmill
	253	66	5.6	Men			
$\begin{aligned} & \text { Jackson et al., } \\ & 1995 \end{aligned}$	156	45.6	4.1	Men	Healthy NASA employees 25 to 70/64 years.	US	Treadmill
$\begin{aligned} & \text { Jackson et al., } \\ & 1996 \end{aligned}$	43	44.2	3.7	Women			
Katzel et al., 2001	47	61	9.3	Men	Healthy volunteers aged 50-79 years.	US	Treadmill
Laukkanen et al., 2016	579	50.7	11	Men	Representative sample of men living in Kuopio participating in the Kuopio Ischaemic Heart Disease Risk Factor study aged 42-60 years.	Finland	Cycle
Letnes et al., 2020	743	48.6	10.2	Women	Adults without cardiovascular, pulmonary or malignant disease at	Norway	Treadmill
	728	50.2	10.2	Men	first exercise test participating in the HUNT study.		
Marti et al., 1990	23	19.7	15	Men	Healthy, untrained men who had volunteered for a randomized short-term training study.	Switzerland	Treadmill
Plowman et al., 1979	36	41.7	5.9	Women	Healthy women without hypertension from the general population.	US	Treadmill
Robinson et al., 1975	37	20	29.3	Men	College/University students.	US	Treadmill
$\begin{aligned} & \text { Rogers et al., } \\ & 1990 \end{aligned}$	14	61.4	7.9	Men	Initially healthy aged 37 to 84 years.	US	Treadmill
Stathokostas	34	63.5	10	Men	Random sample aged 55-85 years healthy at both visits.	Canada	Treadmill
et al., 2004	28	62.0	10.1	Women			

Fig. 2. Overview of longitudinal declines in $\mathrm{VO}_{2 \text { peak }}$ from various studies on non-athletes. Mean age at first measurement and length of follow-up for each study is depicted by the start and length of the given lines, respectively. The average annual change is denoted in text with corresponding colour as the given study. Some data are extracted from figures in corresponding publications, and thus may be somewhat inaccurate. The study by Plowman et al., 1979 reported values by different age groups, but values were pooled due to low numbers in several groups. Annotation * = cycle ergometry. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 3. Comparison of data on absolute (left panel) and percentage (right panel) declines in $\mathrm{VO}_{2 \text { peak }}$ from the HUNT (Letnes et al., 2020) and BLSA (Fleg et al., 2005) studies.

Fig. 4. Comparison of cross-sectional and longitudinal age-related declines in $\mathrm{VO}_{2 \text { peak }}$.
middle-income countries [54]. Also, the same trend has been shown in US adults from the 1970s to the 2000s, with some evidence of an increase in the 2010s, with these trends linked to changes in body mass index [55]. Pooled data from eight high- and upper-middle-income countries showed a 1.6% decline in CRF per decade from the 1960 s until 2016 [56].

Longitudinal, repeated observations are therefore necessary to obtain reliable estimates on declines in $\mathrm{VO}_{2 \text { peak }}$ associated with aging [11,16,38]. Aging itself, but also increasing risk of ceasing or reducing physical activity with higher age is possible explanations behind the accelerating decline in $\mathrm{VO}_{2 \text { peak }}$ with higher age, although this is still not well understood. Based on e.g. longitudinal studies on athletes Hawkins and Wiswell proposed that not only aging itself but inability to maintain exercise training with higher age is also responsible for the accelerated decline seen at older age [11]. Although not elaborated on here it should be noted that statistical model choices and artifacts from various models may also explain differences between crossectional and longitudinal designs [57]. The differences in sample sizes between cross-sectional and longitudinal studies should be kept in mind as well when interpreting differences across these designs. Furthermore, there is also a lack of data regarding differences across ethnicities. These limitiations highlight some of the further research opportunities in the field.

5. Clinical implications and concluding remarks

Age is a strong determinant of CRF, and the decline in CRF increases
with higher age to $15-20 \%$ per decade for women and $20-25 \%$ per decade for men after 70 years of age. Age-related declines are consistently larger from longitudinal studies compared to cross-sectional studies possibly due to survivorship bias in the latter. When following patients over time and interpreting trajectories of CRF one should make these assessments in light of findings from longitudinal studies, and not only from findings in cross-sectional studies.

Author statement

JML designed the study, performed analyses and data visualization, and drafted the first draft. BMN and UW designed the study and revised the draft.

Funding

The work was funded by The Liaison Committee for Education, Research and Innovation in Central Norway. There are no relations to industry associated with this work.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The results of the study are presented clearly, honestly, and without fabrication, falsification, or inappropriate data manipulation.

References

[1] S. Kodama, K. Saito, S. Tanaka, et al., Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women, JAMA 301 (19) (2009) 2024-2035.
[2] M.P. Harber, L.A. Kaminsky, R. Arena, et al., Impact of cardiorespiratory fitness on all-cause and disease-specific mortality: advances since 2009, Prog. Cardiovasc. Dis. 60 (1) (2017) 11-20.
[3] R. Ross, S.N. Blair, R. Arena, et al., Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the American Heart association, Circulation 134 (24) (2016) e653-e699.
[4] C.G. de Souza e Silva, G.C. Buginga, E.A. de Souza e Silva, et al., Prediction of Mortality in Coronary Artery Disease: Role of Machine Learning and Maximal Exercise Capacity, Mayo Clin. Proc. 97 (8) (2022) 1472-1482, https://doi.org/ 10.1016/j.mayocp.2022.01.016.
[5] M. Martin-Rincon, J.A.L. Calbet, Progress update and challenges on VO2max testing and interpretation, Front. Physiol. 11(September) (2020) 1-8.
[6] S. Robinson, Experimental studies of physical fitness in relation to age, Arbeitsphysiologie 10 (3) (1938) 251-323.
[7] L.A. Talbot, E.J. Metter, J.L. Fleg, Leisure-time physical activities and their relationship to cardiorespiratory fitness in healthy men and women 18-95 years old, Med. Sci. Sports Exerc. 32 (2) (2000) 417-425.
[8] S.T. Aspenes, T.I.L. Nilsen, E.A. Skaug, et al., Peak oxygen uptake and cardiovascular risk factors in 4631 healthy women and men, Med. Sci. Sports Exerc. 43 (8) (2011) 1465-1473.
[9] D. Paap, T. Takken, Reference values for cardiopulmonary exercise testing in healthy adults: a systematic review, Expert Rev. Cardiovasc Ther. 12 (12) (2014) 1439-1453.
[10] T. Takken, C.F. Mylius, D. Paap, et al., Reference values for cardiopulmonary exercise testing in healthy subjects - an updated systematic review, Expert Rev. Cardiovasc Ther. 17 (6) (2019) 413-426.
[11] S.A. Hawkins, R.A. Wiswell, Rate and mechanism of maximal oxygen consumption decline with aging, Sports Med. 33 (12) (2003) 877-888.
[12] T.M. Wilson, H. Tanaka, Meta-analysis of the age-associated decline in maximal aerobic capacity in men: relation to training status, Am. J. Physiol. Heart Circ. Physiol. 278 (3 47-3) (2000) 829-834.
[13] M.D. Fitzgerald, H. Tanaka, Z.V. Tran, D.R. Seals, Age-related declines in maximal aerobic capacity in regularly exercising vs. sedentary women: a meta-analysis, J. Appl. Physiol. 83 (1) (1997) 160-165.
[14] M. Milani, J.G.P.O. Milani, G.F.B. Cipriano, I. de Castro, G. Cipriano Junior, Reference standards for cardiorespiratory fitness in Brazil: a pooled analysis and overview of heterogeneity in national and international studies, J Cardiopulm Rehabil Prev 42 (5) (2022) 366-372.
[15] E. Edvardsen, B.H. Hansen, I.M. Holme, S.M. Dyrstad, S.A. Anderssen, Reference values for cardiorespiratory response and fitness on the treadmill in a 20- to 85-year-old population, Chest 144 (1) (2013) 241-248.
[16] J.L. Fleg, C.H. Morrell, A.G. Bos, et al., Accelerated longitudinal decline of aerobic capacity in healthy older adults, Circulation 112 (5) (2005) 674-682.
[17] A.H. Herdy, D. Uhlendorf, Reference values for cardiopulmonary exercise testing for sedentary and active men and women, Arq. Bras. Cardiol. 96 (1) (2011) 54-59.
[18] M. Hollenberg, L.H. Ngo, D. Turner, I.B. Tager, Treadmill exercise testing in an epidemiologic study of elderly subjects, J Gerontol - Ser Biol Sci Med Sci. 53 (4) (1998) 259-267.
[19] O. Inbar, A. Oren, M. Scheinowitz, A. Rotstein, R. Dlin, R. Casaburi, Normal cardiopulmonary responses during incremental exercise in 20 - to 70 -yr-old men, Med. Sci. Sports Exerc. 26 (5) (1994) 538-546.
[20] M.D. Nelson, S.R. Petersen, R.A. Dlin, Effects of age and counseling on the cardiorespiratory response to graded exercise, Med. Sci. Sports Exerc. 42 (2) (2010) 255-264.
[21] D.H. Paterson, D.A. Cunningham, J.J. Koval, C.M. St Croix, Aerobic fitness in a population of independently living men and women aged 55-86 years, Med. Sci. Sports Exerc. 31 (12) (1999) 1813-1820.
[22] J.M. Rossi Neto, A.S. Tebexreni, A.N.F. Alves, et al., Cardiorespiratory fitness data from 18,189 participants who underwent treadmill cardiopulmonary exercise testing in a Brazilian population, PLoS One 14 (1) (2019), e0209897.
[23] K. Sanada, T. Kuchiki, M. Miyachi, K. McGrath, M. Higuchi, H. Ebashi, Effects of age on ventilatory threshold and peak oxygen uptake normalised for regional skeletal muscle mass in Japanese men and women aged 20-80 years, Eur. J. Appl. Physiol. 99 (5) (2007) 475-483.
[24] L. Hakola, P. Komulainen, M. Hassinen, et al., Cardiorespiratory fitness in aging men and women: the DR's EXTRA study, Scand. J. Med. Sci. Sports 21 (5) (2011) 679-687.
[25] B. Koch, C. Schäper, T. Ittermann, et al., Reference values for cardiopulmonary exercise testing in healthy volunteers: the SHIP study, Eur. Respir. J. 33 (2) (2009) 389-397.
[26] D. Rapp, J. Scharhag, S. Wagenpfeil, J. Scholl, Reference values for peak oxygen uptake: cross-sectional analysis of cycle ergometry-based cardiopulmonary exercise tests of 10090 adult German volunteers from the Prevention First Registry, BMJ Open 8 (3) (2018), e018697.
[27] R. Singh, H.J. Singh, R.G. Sirisisnghe, Cardiopulmonary fitness in a sample of Malaysian population, Jpn. J. Physiol. 39 (4) (1989) 475-485.
[28] H. Triantafyllidi, D. Benas, D. Birba, P. Trivilou, E. Iliodromitis, Reference values for aerobic capacity estimated by cardiopulmonary exercise test on a cycle ergometer in a healthy Greek population, Hellenic J. Cardiol. 62 (2) (2021) 121-126.
[29] J. Wagner, R. Knaier, D. Infanger, et al., Novel CPET reference values in healthy adults, Med. Sci. Sports Exerc. 53 (1) (2020) 26-37.
[30] G.E. van der Steeg, T. Takken, Reference values for maximum oxygen uptake relative to body mass in Dutch/Flemish subjects aged 6-65 years: the LowLands Fitness Registry, Eur. J. Appl. Physiol. 121 (4) (2021) 1189-1196.
[31] A. Grigaliuniene, A. Ramonas, J. Celutkiene, Al E, Cardiorespiratory Parameters of Exercise Capacity in a Healthy Lithuanian Population: The Pilot Study 54 (2) (2013) 107-118.
[32] V.Z. Dourado, R.K. Nishiaka, M.S.M.P. Simões, et al., Classification of cardiorespiratory fitness using the six-minute walk test in adults: comparison with cardiopulmonary exercise testing, Pulmonology 27 (6) (2021) 500-508.
[33] L.A. Kaminsky, R. Arena, J. Myers, et al., Updated reference standards for cardiorespiratory fitness measured with cardiopulmonary exercise testing, Mayo Clin. Proc. 97 (2) (2022) 285-293.
[34] L.A. Kaminsky, M.T. Imboden, R. Arena, J. Myers, Reference standards for cardiorespiratory fitness measured with cardiopulmonary exercise testing using cycle ergometry: data from the fitness registry and the importance of exercise national database (FRIEND) registry, Mayo Clin. Proc. 92 (2) (2017) 228-233.
[35] E. Asmussen, P. Mathiasen, Some physiological functions in physical education students re-investigated after twenty-five years, J. Am. Geriatr. Soc. 10 (5) (1962) 379-387.
[36] I. Astrand, P.O. Astrand, I. Hallbäck, A. Kilbom, Reduction in maximal oxygen uptake with age, J. Appl. Physiol. 35 (5) (1973) 649-654.
[37] M. Bahls, T. Ittermann, R. Ewert, et al., Physical activity and cardiorespiratory fitness - a ten year follow-up, Scand. J. Med. Sci. Sports (2020; (August) 1-10.
[38] M.M. Dehn, R.A. Bruce, Longitudinal variations in maximal oxygen intake with age and activity, J. Appl. Physiol. 33 (6) (1972) 805-807.
[39] I. Eskurza, A.J. Donato, K.L. Moreau, D.R. Seals, H. Tanaka, Changes in maximal aerobic capacity with age in endurance-trained women: 7-yr follow-up, J. Appl. Physiol. 92 (6) (2002) 2303-2308.
[40] M. Hollenberg, J. Yang, T.J. Haight, I.B. Tager, Longitudinal changes in aerobic capacity: implications for concepts of aging, J Gerontol A Biol Sci Med Sci 61 (8) (2006) 851-858.
[41] A.S. Jackson, E.F. Beard, L.T. Wier, R.M. Ross, J.E. Stuteville, S.N. Blair, Changes in aerobic power of men, ages 25-70 yr, Med. Sci. Sports Exerc. 27 (1) (1995) 113-120.
[42] A.S. Jackson, L.T. Wier, G.W. Ayers, E.F. Beard, J.E. Stuteville, S.N. Blair, Changes in aerobic power of women, ages 20-64 yr, Med. Sci. Sports Exerc. 28 (7) (1996) 884-891.
[43] L.I. Katzel, J.D. Sorkin, J.L. Fleg, A comparison of longitudinal changes in aerobic fitness in older endurance athletes and sedentary men, J. Am. Geriatr. Soc. 49 (12) (2001) 1657-1664.
[44] J.A. Laukkanen, F. Zaccardi, H. Khan, S. Kurl, S.Y. Jae, R. Rauramaa, Long-term change in cardiorespiratory fitness and all-cause mortality, Mayo Clin. Proc. 91 (9) (2016) 1183-1188.
[45] J.M. Letnes, H. Dalen, S.T. Aspenes, \varnothing. Salvesen, U. Wisløff, B.M. Nes, Age-related change in peak oxygen uptake and change of cardiovascular risk factors. The HUNT Study, Prog. Cardiovasc. Dis. 63 (6) (2020) 730-737.
[46] B. Marti, H. Howald, Long-term effects of physical training on aerobic capacity: controlled study of former elite athletes, J. Appl. Physiol. 69 (4) (1990) 1451-1459.
[47] S.A. Plowman, B.L. Drinkwater, S.M. Horvath, Age and aerobic power in women: a longitudinal study, J. Gerontol. 34 (4) (1979) 512-520.
[48] S. Robinson, D.B. Dill, S.P. Tzankoff, J.A. Wagner, R.D. Robinson, Longitudinal studies of aging in 37 men, J. Appl. Physiol. 38 (2) (1975) 263-267.
[49] M.A. Rogers, J.M. Hagberg, W.H. Martin, A.A. Ehsani, J.O. Holloszy, Decline in VO2max with aging in master athletes and sedentary men, J. Appl. Physiol. 68 (5) (1990) 2195-2199.
[50] L. Stathokostas, S. Jacob-Johnson, R.J. Petrella, D.H. Paterson, Longitudinal changes in aerobic power in older men and women, J. Appl. Physiol. 97 (2) (2004) 781-789.
[51] J.M. Letnes, I. Berglund, K.E. Johnson, et al., Effect of 5 years of exercise training on the cardiovascular risk profile of older adults: the Generation 100 randomized trial, Eur. Heart J. 43 (21) (2022) 2065-2075.
[52] E. Ekblom-Bak, Ö. Ekblom, G. Andersson, et al., Decline in cardiorespiratory fitness in the Swedish working force between 1995 and 2017, Scand. J. Med. Sci. Sports 29 (2) (2019) 232-239.
[53] G. Raghuveer, J. Hartz, D.R. Lubans, et al., Cardiorespiratory fitness in youth: an important marker of health: a scientific statement from the American Heart association, Circulation 142 (7) (2020) e101-e118.
[54] G.R. Tomkinson, J.J. Lang, M.S. Tremblay, Temporal trends in the cardiorespiratory fitness of children and adolescents representing 19 high-income and upper middle-income countries between 1981 and 2014, Br. J. Sports Med. 53 (8) (2019) 478-486.
[55] M.P. Harber, M. Metz, J.E. Peterman, M.H. Whaley, B.S. Fleenor, L.A. Kaminsky, Trends in cardiorespiratory fitness among apparently healthy adults from the Ball State Adult Fitness Longitudinal Lifestyle STudy (BALL ST) cohort from 1970-2019, PLoS One 15 (12) (2020), e0242995.
[56] N.R. Lamoureux, J.S. Fitzgerald, K.I. Norton, T. Sabato, M.S. Tremblay, G. R. Tomkinson, Temporal trends in the cardiorespiratory fitness of 2,525,827 adults between 1967 and 2016: a systematic review, Sports Med. 49 (1) (2019) 41-55.
[57] T.A. Louis, J. Robins, D.W. Dockery, A. Spiro, J.H. Ware, Explaining discrepancies between longitudinal and cross-sectional models, J. Chron. Dis. 39 (10) (1986) 831-839.

[^0]: * Corresponding author. Jon Magne Letnes, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, NTNU, Postbox 8905, 7491 Trondheim, Norway.

 E-mail address: jon.m.letnes@ntnu.no (J.M. Letnes).

