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Abstract— For robots to perform real-world force interaction
tasks with human level dexterity, it is crucial to develop
adaptable and compliant force controllers. Learning techniques,
especially reinforcement learning, provide a platform to develop
adaptable controllers for complex robotic tasks. This paper
presents an evaluation of two prominent force control methods,
variable impedance control and hybrid force-motion control
in a robot learning framework. The controllers are evaluated
on a Franka Emika Panda robotic manipulator for a robotic
interaction task demanding force and motion tracking using
a model-based reinforcement learning algorithm, PILCO. Uti-
lizing the learning framework to find the optimal controller
parameters has significantly improved the performance of the
controllers. The implementation of the controllers integrated
with the robot learning framework is available on https:
//github.com/martihmy/Compliant_control.

I. INTRODUCTION

In the field of robotics, physical interaction between robot
and objects in its environment is a key aspect in solving real-
world tasks. Robotic interaction control for robotic manipula-
tors focuses on controlling the dynamic interaction between a
manipulator and its environment. Combined with methods of
motion control, manipulators can be made capable of follow-
ing desired trajectories while ensuring a compliant behavior
with respect to external forces, providing safe and stable
interaction control [1]. Various robotic applications such as
industrial assembly, healthcare robotics, human-robot inter-
action etc. are fundamental robotic force interaction tasks [2].
One key aspect for robots to safely handle such complex real-
world applications is to have compliant interaction skills, and
therefore advanced force and motion control methodologies
are required. Compliant behaviour for robots can be achieved
by means of passive mechanical compliance built in to the
manipulator, or by active compliance control implemented in
the servo control loop, for example, admittance control [3].
Compliant behaviour can also be achieved using direct force
control, where Variable Impedance Control (VIC) [4] and
Hybrid Force-Motion Control (HFMC) [5] are two prominent
approaches.

For robotic systems, learning-based methods offer a plat-
form to design optimal controllers as an alternative to con-
ventional control strategies [2], [6]. While VIC and HFMC
are robust interaction control strategies, their performance
depends heavily on setting the right parameters according to
the environment’s compliance properties [7]. Reinforcement
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Learning (RL) offers a framework to learn flexible controllers
[8], which can be used to find optimal parameters for
controllers such as VIC and HFMC. In [9], the Natural
Actor-Critic algorithm is used in an episodic way to learn
the stiffness matrix for VIC. Policy Improvement with Path
Integrals (PI2) algorithm was used in [10], to find the
optimal policy parameters for VIC. This approach was later
adapted for time-invariant motion representation in [11]. The
iterative Linear-Quadratic-Gaussian based learning approach
was combined with an operational space HFMC to find
the optimal torque control for assembly tasks in [12]. A
comparison between joint position, velocity, and torque, and
Cartesian pose and VIC controllers were presented in [13].
In [14], the authors used Gaussian Processes (GPs) to model
the interaction dynamics and a gradient-based optimization
to find the policy.

RL algorithms have proved to be well suited for learning
robotic manipulation skills [8] [15]. Model-based RL meth-
ods are more relevant for real-world robotic systems as it is
highly sample efficient compared to model-free approaches
[15], [16]. A model-based RL framework is presented in
[17] combining VIC, an ensemble of neural networks to
model human–robot interaction dynamics, and an MPC to
find the optimal impedance parameters. Among the model-
based approaches, the PILCO algorithm is considered to
be state-of-the-art for sample efficiency [18]. Even though
PILCO is not directly scalable to high dimensional problems
and complex dynamical models, it offers a framework to
develop and evaluate learning based controllers with minimal
robot-environment interactions.

The majority of the learning based methods in robotic
interaction control has focused on using VIC to solve specific
tasks, with major focus on robotic assembly and human-
robot interaction tasks. This paper focuses on implementation
and evaluation of two prominent force control approaches
(VIC and HFMC) in a model-based learning framework for
an interaction task demanding force and motion tracking.
The PILCO algorithm is chosen for evaluating the con-
troller considering its high sample efficiency which facilitates
learning directly in the experimental set-up in a handful
of trails. The force controllers are implemented as Open-
AI gym environments to seamlessly integrate with various
learning frameworks. The rest of this paper is organised as:
Section II presents the necessary background on controller
implementation. Section III presents the force control as
a learning problem. Section IV presents the evaluation of
the controllers in the learning framework and Section V
concludes the work.
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II. BACKGROUND

A. Robot manipulator system

1) Task space formulation: For a rigid 6-DOF robotic ma-
nipulator, the task space formulation of the robot dynamics
is given by,

Λ(q)v̇e + Γ(q, q̇)ve + η(q) = hc − he , (1)

where hc is the control force, he is the external wrench,
Γ(q, q̇) ∈ R6×6 is the wrench caused by centrifugal and
Coriolis effects, and η(q) ∈ R6×1 is the wrench of the
gravitational effects. The Cartesian inertia matrix, Λ(q) ∈
R6×6 is calculated as,

Λ(q) = (JH(q)−1JT )−1 . (2)

Where H(q) ∈ Rn×n is the symmetric and positive-
definite joint space inertia matrix and J is the end-effector
geometric Jacobian. By additionally knowing the joint space
formulation of the centrifugal and Coriolis effects, V (q, q̇),
the corresponding wrench,

Γ(q, q̇) = J−TV (q, q̇)J−1 −Λ(q)J̇J−1 . (3)

The gravitational wrench is given by,

η(q) = J−Tg(q) , (4)

where g(q) is the joint space quantity.

B. Force interaction control for robotic manipulators

In this work we implement two different active interaction
control strategies: (i) Variable Impedance Control and (ii)
Hybrid Force-Motion Control. Σ represents the robot base
frame and Σe represents the end-effector frame.

1) Variable Impedance Control: VIC is designed to
achieve force regulation by adjusting the system impedance
[19], by adapting the inertia, damping and stiffness compo-
nents. In the presence of a force and torque sensor measuring
he, impedance control can be implemented by enabling
inertia shaping [7]. Casting the control law

hc = Λ(q)α+ Γ(q, q̇)q̇ + η(q) + he , (5)

into the dynamic model in (1) results in, v̇e = α, α being
the control input denoting acceleration w.r.t the base frame.
Identifying v̇e = R̄T

e v̇
e
e + ˙̄RT

e v
e
e with R̄e = diag (Re,Re)

and choosing α = R̄T
e α

e+ ˙̄RT
e v

e
e , leads to v̇ee = αe, where

Re is the rotation matrix w.r.t to the end-effector frame.
The control input αe is the acceleration relative to the end-
effector frame. By setting

αe = v̇ed +K−1
M (KD∆vede + he∆ − hee) , (6)

the closed loop expression is found to be

KM∆v̇ede +KD∆vede + he∆ = hee . (7)

KM and KD are symmetric positive-definite matrices, ∆v̇ede
and ∆vede are the error in acceleration and velocity, and he∆
is the elastic wrench which is equivalent to a pure moment,
all relative to Σe. The gain matrices KM , KP and KD are
adjustable parameters. With no external wrench acting on

the manipulator, under this control scheme the end-effector
frame Σe asymptotically follows the desired frame Σd. In
the presence of external forces, the compliant behavior of
the end-effector is described by (7), limiting the contact
wrench at the expense of a finite displacement in position
and orientation.

Consider the position and force errors defined by E1 =
X −Xd and Ef = Fext − Fd respectively, where Fext is
equivalent to he . The KM , KP and KD are adjusted using
the adaptive law proposed in [19],

β̇ = −(ET
f PK

−1
v ξΓ−1)T = −Γ−1ξTK−1

v PEf . (8)

where Kv ∈ Rn×n is the gain matrix,

ξ = ξ(E1, Ė1, Ë1) , (9)

is a n× 3n matrix and

β = β(∆KM ,∆KD,∆KP ) (10)

is a 3n× 1 vector. The corresponding updates are,

KM →KM + ∆KM ,
KD →KD + ∆KD ,
KP →KP + ∆KP .

(11)

If the desired contact force Fd is large and the position error
E1 is small, the adaptive law will adjust KM , KD and KP

until F ∗ −→ Fd, potentially causing instability issues. Hence,
upper bounds should be set for KM , KD and KP , avoiding
instability at the expense of force tracking ability [19].

2) HFMC: First proposed in [5], HFMC aims to achieve
both motion and force control by dividing the task into
two separate, decoupled sub-problems [7]. By specifying
which sub-spaces should be controlled by a motion- and
force controller respectively, the hybrid control intend to
simultaneously solve the two separate control tasks. The
selection matrices Sv and Sf are used to specify these
subspaces. In the case of performing force control along the
z-axis, and motion control in the remaining five dimensions,
given by,

Sv = diag
(
1 1 0 1 1 1

)
,

Sf =
(
0 0 1 0 0 0

)T
.

(12)

When dealing with a compliant environment, the end-
effector twist caused by environmental deformation in the
presence of a wrench is given by [7],

ve = Svv + (I − Pv)CSf λ̇ , (13)

where C = K−1 ∈ R6×6 represents the compliance matrix
between the end-effector and the environment and λ is the
force multiplier. Pv is a projection matrix that filters out all
the end-effector twists that are not in the range space of Sv .
I −Pv has the opposite effect of filtering out the twists that
are in the range space of Sv . Pv is calculated as Pv = SvS

†
v ,

where S†v is a suitable weighted pseudoinverse of Sv ,

S†v = (STvWSv)
−1STvW . (14)



SettingW equal to the inertia matrixH ∈ R6×6 corresponds
to defining a norm in the space of twists based on the kinetic
energy [7]. Assuming, Sv and compliance,

C ′ = (I − Pv)C (15)

to be a constant, (13) leads to the following decomposition
of acceleration

v̇e = Svv̇ +C ′Sf λ̈ . (16)

Casting the control law (5) into the dynamic model (1)
results in, v̇e = α, α is the control input denoting the
acceleration with respect to Σ. By choosing,

α = Svαv +C ′Sffλ , (17)

allows decoupling of the respective controllers, αv relating
to motion control and fλ to force control. By choosing

αv = r̈d(t) +KDr[ṙd(t)− v(t)] +KPr[rd − r(t)] , (18)

guarantees asymptotic tracking of desired velocity vd and
acceleration v̇d with exponential convergence [7]. Choosing,

fλ = λ̈d(t) +KDλ[λ̇d− λ̇(t)] +KPλ[λd(t)−λ(t)] , (19)

guarantees asymptotic tracking of a desired force trajec-
tory (λ̈d(t), λ̇d(t),λd(t)), with exponential convergence [7].
KDλ and KPλ are positive-definite matrices. λ̇ (19) can be
computed from the force measurements he as,

λ̇ = S†f ḣe . (20)

where S†f is the pseudoinverse of Sf , computed using, W =
C in (14). Due to the noisy force measurements, the estimate

λ̇ = S†fK
′J(q)q̇ , (21)

is often preferred, where K ′ = PfK and Pf = SfS
†
f .

C. PILCO
PILCO [18] is a data-efficient model-based Policy Search

method considered as state-of-the-art in terms of sample effi-
ciency in model-based RL. It is formulated to reduce model
bias, one of the key problems of model-based reinforcement
learning. This is achieved by learning a probabilistic dy-
namics model and explicitly incorporating model uncertainty
into long-term planning. This way PILCO can cope with
a small amount of data, facilitating learning in a handful
of trials. Policy evaluation is performed using approximate
inference, and policy improvement by computing policy
gradients analytically. PILCO considers a dynamic system
on the form, xt+1 = f(xt,ut) with unknown transition
dynamics f , and continuous-valued states x ∈ RD and
control-input u ∈ RF , where D and F are the dimensions
of the state and input space respectively. The objective is to
find a policy π that minimizes the expected return

Jπ(θ) =

T∑
t=0

Ext
[c (xt)] , x0 ∼ N (µ0,Σ0) , (22)

over the next T time steps, where c(xt) is the cost associated
with the state x at time t.

III. LEARNING FORCE TRACKING

A. Learning Framework

A robot learning framework which can be easily integrated
with different RL algorithms is developed in Python. The
framework has three components, (i) set of force con-
trollers, (ii) RL algorithms and (iii) robot simulator with
the three components interacting with each other. The force
controllers (VIC and HFMC) are implemented as OpenAI
Gym environments [20] for easy integration with various RL
algorithms. A Gazebo-based [21] simulator is setup with a
Franka Emika Panda robotic manipulator using the franka
simulator framework [22]. For performing the learning trials
in simulations and experiments, the framework is integrated
with the robotic manipulator using the Franka ROS Interface
framework [22]. In both simulation and experimental setups,
a python interface is used to fetch the system states and
command the control actions.

Fig. 1. The setup for testing the force controllers. The experimental set-up
is shown on the left and the Gazebo simulator set-up on the right

B. Force Controller Implementation

Accurate modelling of contact interaction behaviour is im-
portant in achieving precise force tracking using model-based
learning approaches. For modelling the contact transition
dynamics, the state vector x was chosen as

(
F pz vz

)
,

where F is the contact force, pz is the z-position and vz is
the z-velocity all defined in Σ. The action spaces for learning
are decided based on the controller, but both the controllers
have one action each related to stiffness and damping, in the
force tracking direction. Consider an action space, u ∈ R2,
the training inputs of the model are (xt,ut) ∈ R5 and the
output targets are given by, ∆t = xt+1−x+ε ∈ R3. Where,
ε ∼ N (0,Σε) ,Σε = diag ([σε1 , . . . , σεD ]). Radial basis
functions (RBF) are used to approximate the policy in the
simulations and a linear policy is used in the experiments. An
exponential cost function is specified based on the desired
behaviour of the system with a constant, σc deciding the
shape of the cost function.

ct = 1− exp
(
−‖Ft − Fd‖2 /σ2

c

)
∈ [0, 1] . (23)

The learning algorithm according to [18] is presented in
Algorithm 1. An additional option for using two different



GP contact models is implemented to separately model the
transition dynamics for the contact establishment and motion
phase.

Algorithm 1 PILCO
init: Sample control parameters θ ∼ N (0, I), π(θ) and
dataset D.
Apply random control signals and record data into D .
repeat

Learn probabilistic (GP) dynamics model, using D .
Model-based policy search
repeat

Approximate inference for policy evaluation,
obtain Jπ(θ) .
Gradient-based policy improvement, obtain
dJπ(θ)/dθ .
Update parameters θ .

until convergence; return θ∗;
Set π∗ ← π(θ∗) .
Apply π∗ to system and record data into D .

until task learned;

VIC implementation: The VIC controller is implemented
by adapting the impedance control law in (5) with a modified
version of the adaptive impedance law in (8). For force
control in z direction, the adaptive laws in (8) only applies
to the z-dimensional properties of (KM ,KD,KP ) ∈ R6×6.
However, since an adaptive gain matrix, KM easily can lead
to instability, KM is chosen to be static. This results in a
system with adaptive damping and stiffness in z. Kv and P
are chosen to be I ∈ R6×6 in the adaptive law (8), the law
is reduced to,

β̇( ˙∆KD, ˙∆KP ) =(
0... ... γ−1

D ĖzEfz 0... γ−1
P EzEfz 0...

)T
,

(24)
where Ez is the error in z-position, Efz is the error in z-
force, and γ−1

D and γ−1
P are the rates of adaptability for

damping and stiffness in z direction respectively. The change
in damping and stiffness matrices due to the adaptive law is
thus given by,

˙∆KD = diag
(
0 0 γ−1

D ĖzEfz 0 0 0
)
,

˙∆KP = diag
(
0 0 γ−1

P EzEfz 0 0 0
)
.

(25)

The parameter space for learning are chosen as γP and γD.

HFMC implementation: In-order to perform force control
in z direction and motion control in the remaining five
dimensions the selection matrices, Sf and Sv are chosen
as, Sv = diag(1 1 0 1 1 1) and Sf = [0 0 1 0 0 0]T . All
parameters of the control law (5) are purely state-dependent
except the compliance matrix C = K−1, the gains of the
motion controller (KDr,KPr ∈ R5×5), and the gains of
the force controller (KDλ,KPλ ∈ R). The motion controller
gains, KDr,KPr are kept unchanged as we are interested
in improving the force tracking behaviour. Considering the
task with a constant desired tracking force, the compliance

matrix, C is chosen to be constant. Therefore, KDλ and
KPλ are chosen for tuning. All matrices are chosen to be
diagonal, with values derived from testing in simulation and
in experiment.

IV. CONTROLLER EVALUATION

The VIC and HFMC were tested and evaluated in both
simulation and experimental set-ups. The controllers were
compared based on their performance with and without
using the learning framework in Section III-A. A common
force-motion tracking task is set up in simulations and
experiments. The task is a sweeping task over a flat surface
demanding force tracking in the vertical (z) direction and
motion tracking in the remaining 5 DOFs (x, y direction
and orientations along x, y and z). The controllers are
implemented such that only the force tracking parameters
are learned by the PILCO algorithm and the motion tracking
parameters are kept unchanged. The desired tracking force
is 3N while performing a sweeping movement of 5cm over
the surface in x direction. The task can be divided into two
phases, where in phase 1 the robot establishes a stable contact
with the object by achieving a desired contact force. Phase
2 is the motion phase, where the robot performs a sweeping
motion across the surface, tracking desired force and motion
trajectories.

The controller is considered to be at steady state when
the actual contact force has reached a steady state value
range around the desired contact force. The force tracking
performance is compared by calculating the Mean Squared
Error (MSE) between the target and actual contact forces,
denoted by ∆F . The motion tracking behaviour is not
considered for evaluation since they are very similar in all the
tests as the motion tracking parameters remained unchanged.
The simulation and experimental set-ups are illustrated in
Fig. 1. In all figures, Fd, denotes the desired force and
F, FPILCO, denotes the actual contact force when not-, and
when using PILCO to learn the parameters respectively. x, y
and xd, yd, represents the actual and desired positions in x
and y directions respectively. ∆qx,∆qy,∆qz represents the
differences in orientations along x, y, z directions in quater-
nions. KPz , KDz and KPz

PILCO, KDz
PILCO represents

the stiffness and damping in the force tracking direction z,
identified without and with learning framework respectively.

A. Simulations

The simulations are performed for force and motion
tracking on a flat compliant surface modelled in Gazebo
simulator with a stiffness coefficient of kp = 5, and a
damping coefficient of kd = 3. In order to test the ro-
bustness of the controllers in simulation, a Gaussian noise
N
(
µ = 0, σ2

ε = 0.015he
)
, is added to force estimate based

on comparing with the real system used in experiments. Fig.
2 and Fig. 3 represents both the contact establishment phase
and sweeping movement over the surface as shown in the
motion trajectories in Fig. 2.c and 3.c.



VIC: Fig. 2 illustrates the force, motion tracking and the
varying damping and stiffness in z. The force tracking error,
∆F in Fig. 2.a is decreased from 0.26 to 0.18 by introducing
learning. Steady state is achieved in 0.35s for the learning-
based controller compared to 1.5s for the adaptive controller.
The mean value of both F and FPILCO is 2.94N and the
variances are 0.009 and 0.007 respectively. Fig. 2.b shows
how the stiffness and damping in z direction are adapted for
achieving the desired force tracking behaviour. The motion
tracking behaviour is shown in Fig. 2.c and 2.d.

0 1 2 3 4 5

0

1

2

3

fo
rc

e
 [

N
]

(a)

Fd

FPILCO

F

0 1 2 3 4 5

15

45

75

105

(b)

KPz
PILCO

KDz
PILCO

KPz

KDz

0 1 2 3 4 5

simulated time [s]

0.0

0.1

0.2

0.3

0.4

p
o
s
ti

o
n
 [

m
]

(c)

x

y

xd

yd

0 1 2 3 4 5

simulated time [s]

0.00

0.25

0.50

0.75

1.00

(d)

qx

qy

qz

Fig. 2. Simulation results for VIC using PILCO for the set-up in Fig.
1. (a) Force tracking behaviour, (b) stiffness and damping behaviour in z
direction, (c) and (d) motion tracking behaviour.

HFMC: The performance of the HFMC in the simulation
is shown in Fig. 3, illustrating the force and motion tracking
results. Introducing learning has reduced ∆F from 0.28
to 0.14, but the force tracking behaviour of the learned
controller is not smooth as desired. Steady state is achieved
in 0.32s for learning-based controller with a mean value of
FPILCO is 3.03N and variance of 0.01 compared to 2.77N
and 0.03 for F . The motion tracking behaviour is hand-tuned
and is comparable with VIC.

B. Experiments

The simulation task is replicated in the experimental setup
to perform force-motion tracking on a flat surface. In-order
to have a compliant contact between the robot and the rigid
surface, the manipulator’s end-effector is equipped with a
soft ball as shown in Fig. 1. The robot should perform
a contact establishment to reach a desired force of 3N
and then perform a sweeping motion over the surface for
5cm tracking a desired force. The results of the experiment
for both VIC and HFMC in the learning framework is
shown in Fig. 4. The introduction of learning in VIC has
has reduced ∆F from 0.13 to 0.04 as shown in Fig. 4.a.
During the contact establishment phase, the leaning-based
VIC converged to steady state with an overshoot of 0.51N
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Fig. 3. Simulation results for HFMC using PILCO for the set-up in Fig.
1. (a) Force tracking behaviour, (b) stiffness and damping behaviour in z
direction, (c) and (d) motion tracking behaviour.

in 1.2s whereas VIC with fixed adaptive law (8) converged
to steady state in 3.5s. The learning-based VIC has a steady
state variance of 0.002 compared to 0.028 for the VIC
with fixed adaptive law. While experimented learning-based
HFMC with single GP model for contact establishment and
motion phase, the ∆F was increased to 1.20 compared to
1.17 for the manually tuned HFMC. But this drawback was
eliminated by introducing separate contact models for the
two phases and thereby significantly reducing the ∆F to
0.29. By introducing dual contact models for the learning-
based HFMC, the ∆F of the motion phase (phase 2) was
decreased from 1.8 to 0.35.

Fig. 5.a represents how the variance of the learned force
GP model changed over the learning iterations in two differ-
ent experimental trials using learning-based VIC. In Each
trial, the experimental task was executed for 14 learning
iterations. The trial 1 failed in force tracking with reaching
unsafe forces above 5N. Whereas, the successful trial 2
corresponds to the results in Fig. 4.a. Fig. 5.b represents the
corresponding change in the cost for the successful trial (trial
2). The decrease in variance after the initial step is minimal
during all the successful learning trials conducted with the
noisy force data.

C. Discussions

The simulation and experimental evaluation demonstrated
the advantage of introducing model-based learning to achieve
better force tracking in both VIC and HFMC for the robotic
interaction task demanding both force and motion tracking.
The simulated and experimental results for VIC, shown in
Fig. 2 and 4.a suggests significant improvement in force
tracking by introducing model-based learning to adapt the
stiffness and damping parameters. The robust adaptive law
(8) ensures better force tracking capabilities in VIC even
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set-up in Fig. 1. (a) Force tracking behaviour of VIC, (b) force tracking
behaviour of HFMC, where F1
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PILCO represents the contact

establishment and motion phase while using separate contact models for
both the phases. While, FPILCO represents the force behaviour when
using a single model for both the phases as in the case of VIC.
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Fig. 5. (a) Variance of the force GP model for two different training trials,
(b) cost for the successful trial (trial 2) across the learning iterations.

without introducing learning in simulations. Faster conver-
gence to the steady state is a major impact of learning-
based VIC which is consistent in both simulation and ex-
periment. The fast convergence to the desired contact force
and less noisy force tracking behaviour is a result of a better
impedance strategy optimized by PILCO. Furthermore, the
flexibility of the controller allowed it to start off with a
high compliance in z direction, avoiding a high initial force
overshoot.

The effect of learning in the stiffness and damping pa-
rameters are well demonstrated in Fig. 2.b. Similar to VIC,
introducing learning has significantly improved the force
tracking behaviour of HFMC. The learned stiffness in Fig.
3.b has a noticeable decrease in-order to reduce high impact
forces during the contact establishment phase. Introducing
learning produced significant improvement the force tracking
capabilities as shown in Fig. 3.a except for a higher over-
shoot in the initial phase. The learned impedance strategy
could exploit the force tracking capabilities of HFMC to
produce better steady state behaviour both in simulations and
experiments. Introducing learning in HFMC had significant
improvement in the force tracking error and slightly faster
convergence to the desired contact force. The learning-
based VIC executed a smooth force tracking behaviour while
performing the sweeping motion. Even though the motion
tracking ability is not evaluated thoroughly, it was difficult
to hand-tune the VIC to achieve accurate motion tracking.

In simulations, a single GP model was used to model both

contact establishment phase and motion phase. However,
this could not be translated into the experiments because
of the frictional effects. The HFMC has no integral ac-
tion on the force and relies on accurate models to avoid
steady state errors. The introduction of separate models
for the two phases found to yield better force tracking in
the experiments. As in all model-based RL algorithms, the
performance of the PILCO algorithm is highly dependent
on the accuracy of the dynamics model. The GP model has
limited ability in modelling complex dynamics and is not
well suited for highly noisy data. Fig. 5.a represents the
variance for different GP models across different trials, where
difficulty in learning model is translated into the performance
as shown using the variances and the cost. The unsuccessful
trials failed at reducing the model variances, thereby learning
largely uncertain models. This could be improved using more
complex models such as ensembles of Neural Networks or
Bayesian Neural Networks. There are few promising model-
based RL frameworks using such approaches [16], but these
methods have a lower sample efficiency compared to PILCO.
However, further improvements in model-based RL and the
scope of sim2real transfer of task space controllers [13] could
realise learning-based force controllers for robotic interaction
tasks.

V. CONCLUSIONS

This paper presented the implementation and evaluation of
two fundamental approaches in robotic force control, HFMC
and a Force-based VIC in the PILCO framework. It was
shown that combining a learning-based approach with force
controllers has the ability to improve robotic interaction
control. For the HFMC, the framework was used to learn
direct strategies for its damping- and stiffness parameters.
In the VIC, strategies were learned for the parameters
of an adaptation law. Both controllers showed significant
improvement in force tracking ability by introducing model-
based learning. While introducing learning lead to faster
convergence to the desired force in VIC, it led to a significant
improvement in the force tracking error in HFMC. The
results showed that having highly accurate contact dynamics
models are key to have accurate force tracking. GP model
does not offer the flexibility required to model the complex
robot-object contact dynamics. Hence, in future work, we
focus on modelling the interaction dynamics using Ensemble
of probabilistic neural network and Bayesian Neural Network
models in the learning framework with more model-based
RL algorithms like PETS [23]. One important aspect of
the future work is to improve the sample efficiency while
utilizing such complex models.
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