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THE ROLE OF GENTLE ALGEBRAS IN HIGHER HOMOLOGICAL ALGEBRA

JOHANNE HAUGLAND, KARIN M. JACOBSEN, AND SIBYLLE SCHROLL

Abstract. We investigate the role of gentle algebras in higher homological algebra. In the
first part of the paper, we show that if the module category of a gentle algebra Λ contains a
d-cluster tilting subcategory for some d ≥ 2, then Λ is a radical square zero Nakayama algebra.
This gives a complete classification of weakly d-representation finite gentle algebras. In the
second part, we use a geometric model of the derived category to prove a similar result in
the triangulated setup. More precisely, we show that if Db(Λ) contains a d-cluster tilting
subcategory that is closed under [d], then Λ is derived equivalent to an algebra of Dynkin
type A. Furthermore, our approach gives a geometric characterization of all d-cluster tilting
subcategories of Db(Λ) that are closed under [d].

1. Introduction

The research field of higher homological algebra was initiated by Iyama [27,28]. It concerns
the study of d-abelian and (d + 2)-angulated categories, as well as further generalizations
[16, 26, 37]. Distinguished sequences consisting of d + 2 objects, for a fixed positive integer
d, play a fundamental role in these structures. In the case d = 1, one recovers the short exact
sequences and distinguished triangles of abelian and triangulated categories, and the theory
corresponds to classical homological algebra.

Iyama’s work and the axiomatizations of associated categorical structures inspired extensive
research activity, and many ideas from classical homological algebra have been shown to have
an analogue in the higher setting [19, 25, 35, 36, 38, 40, 45, 50]. As connections between
higher homological algebra and other branches of mathematics have been developed, the
importance of the research field has become increasingly evident. Higher homological algebra
is intimately related to higher Auslander–Reiten (AR) theory and representation theory of finite
dimensional algebras [28, 29, 39]. It has connections to commutative algebra, commutative
and non-commutative algebraic geometry, combinatorics and conformal field theory [1, 15,
23,33,41,48,58]. The research field has recently seen interesting applications in homological
mirror symmetry, through which it relates to symplectic geometry and Fukaya categories [13].

The notion of d-cluster tilting subcategories plays a crucial role in higher homological
algebra. A d-cluster tilting subcategory of an abelian category is d-abelian [37, Theorem
3.16], and every d-abelian category has been shown to arise in this way [14, 43]. Similarly, a
d-cluster tilting subcategory of a triangulated category carries a (d + 2)-angulated structure
given that it is closed under d-suspension [16, Theorem 1]. We investigate the role of gentle
algebras in higher homological algebra by studying the d-cluster tilting subcategories both
of their module and their derived categories. While the questions we answer in this paper
are of a higher homological nature, geometric models play a crucial role in our proofs. In
particular, it seems difficult to prove our main result without applying the geometric insights
offered in [46]. Thus, in addition to the new understanding our results provide on the role of
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gentle algebras in higher homological algebra, this also demonstrates the power of geometric
models.

Recall that a finite dimensional algebra is called weakly d-representation finite if it has a
module that generates a d-cluster tilting subcategory. The study of such algebras has played an
important role in the development of higher homological algebra as we know it today. From
the viewpoint of higher AR-theory, the class of weakly d-representation finite algebras can
be thought of as a higher analogue of algebras of finite representation type. In particular,
the definition coincides with the classical notion of a representation finite algebra in the case
d = 1.

Just as the classification of (hereditary) algebras of finite representation type has been one
of the fundamental questions in classical representation theory, the classification of weakly
d-representation finite algebras is an important question in higher representation theory. In
general, this is a difficult problem, but significant progress has been made for particularly
nice classes of algebras. Darpö and Iyama characterize weakly d-representation finite cyclic
Nakayama algebras with homogeneous relations in [11, Theorem 5.1]. The acyclic case was
first studied by Jasso [37, Proposition 6.2], and Vaso gives a complete classification in [56,
Theorem 2]. In the same paper, Vaso also characterizes all d-representation finite d-hereditary
Nakayama algebras [56, Theorem 3]. A classification of iterated tilted d-representation finite
d-hereditary algebras in the case d = 2 is given by Iyama and Oppermann [32, Theorem 3.12].
Very recently, similar classification results have been obtained in the context of radical square
zero algebras [57], monomial algebras [52], and symmetric algebras [12].

A natural question to ask is whether the classification results mentioned above can be
extended to more general classes of algebras. Gentle algebras constitute a large class of
algebras which naturally extends many of the known examples where a classification has
been obtained. In this paper we give a complete classification of weakly d-representation
finite gentle algebras, as well as d-representation finite d-hereditary gentle algebras, see
Corollary 3.3 and Corollary 3.4. The main step towards these results is the theorem below,
where we show that only very few gentle algebras are weakly d-representation finite. More
precisely, we prove the following.

Theorem 1 (see Theorem 3.1). Let Λ be a gentle algebra. If modΛ contains a d-cluster

tilting subcategory for some d ≥ 2, then Λ is a radical square zero Nakayama algebra.

While the existence of d-cluster tilting subcategories of module categories is well-studied
for certain classes of algebras, less is known in the triangulated setup. The main aim of
this paper is to increase this understanding in the case of derived categories associated to
gentle algebras. The class of gentle algebras is special in that not only are these algebras of
tame representation type, but they are also derived tame. The indecomposable objects in the
bounded derived category of a gentle algebra are classified in [7], and a basis of the morphism
space between indecomposable objects is described in [2]. In [46] a geometric model for the
derived category of a gentle algebra is given, see also [17, 44].

Using the geometric model, we characterize d-cluster tilting subcategories of the derived
category of a gentle algebra that are closed under d-suspension. Recall that these subcate-
gories give examples of (d + 2)-angulated categories. The most important step towards the
classification is the following theorem.

Theorem 2 (see Theorem 4.10). Let Λ be a gentle algebra. If Db(Λ) contains a d-cluster

tilting subcategory that is closed under [d] for some d ≥ 2, then Λ is derived equivalent to an

algebra of Dynkin type A.

A crucial tool in the proof of this result is Proposition 4.1, where we observe that, for
any finite dimensional algebra, an indecomposable perfect object contained in a d-cluster
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tilting subcategory that is closed under d-suspension has no non-zero morphisms from its
AR-translate to itself. In particular, the middle term in the AR-triangle ending in such an
object is indecomposable. This excludes a large class of objects.

Knowing that the only possible examples arise in the type A case, we classify the d-cluster
tilting subcategories that are closed under d-suspension when our algebra is derived equivalent
to an algebra of Dynkin type A. This classification is given in Theorem 4.11. In particular,
this yields a geometric interpretation of the examples coming from d-representation finite
d-hereditary gentle algebras. Combining Theorem 4.10 and Theorem 4.11, we see that all
d-cluster tilting subcategories of the derived category of a gentle algebra that are closed under
d-suspension arise in this way.

Altogether, our work reveals a lack of d-cluster tilting subcategories arising from gentle
algebras, both in the module category and the derived category. Through our characterization
results, we see that the examples amount to those one can already obtain by studying Nakayama
algebras. This suggests that the role of gentle algebras in higher homological algebra is limited,
which is surprising due to the otherwise rich theory of this class of algebras. Our results also
show that the situation in the derived setup is even more restrictive than in the module category.
In particular, the derived category of a cyclic Nakayama algebra never contains d-cluster tilting
subcategories closed under d-suspension, even though the associated module category may
contain d-cluster tilting subcategories as described in [11].

The paper is structured as follows. In Section 2 we give an overview of some necessary
background and preliminaries. This includes the definition of d-cluster tilting subcategories
and notions related to d-representation finiteness, as well as an introduction to the geometric
model for the derived category of a gentle algebra. In Section 3 we present our results related
to the module category of a gentle algebra, before we discuss the derived case in Section 4.

1.1. Conventions and notation. Throughout this paper, let d denote a positive integer. We
will typically assume d ≥ 2. All algebras considered are connected and finite dimensional
over an algebraically closed field K. The field is assumed to be algebraically closed to be
consistent with [2], but as noted in that paper, this condition could be omitted.

Given a quiver Q, we denote its set of vertices by Q0 and its set of arrows by Q1. For an
arrow α in Q1, we write s(α) for the start vertex of α and t(α) for the end vertex of α. Given
an arrow β with t(α) = s(β), we write αβ for the non-zero product in the path algebra KQ.

We denote the category of finitely generated right modules over an algebra Λ by modΛ.
The subcategory of projectives in modΛ is denoted projΛ. We use the notation Db(Λ) for
the bounded derived category of modΛ. The AR-translation (where it exists) is denoted by τ

and the suspension functor in Db(Λ) by [1].
All subcategories are assumed to be full. Given a set of objects S in an additive category
C, we use the notation addS for the subcategory of C consisting of direct summands of finite
direct sums of objects in S .

2. Background and preliminaries

2.1. d-cluster tilting subcategories. The notions of d-abelian and (d + 2)-angulated cate-
gories were introduced in [16, 37] to axiomatize properties of d-cluster tilting subcategories
of abelian and triangulated categories. The definition of such subcategories plays a crucial
role in this paper.

Before giving the definition, let us recall what it means for a subcategory U of some
category C to be functorially finite. Given an object X in C, a morphism f ∶U → X with U

in U is a right U -approximation of X if any morphism U ′ → X with U ′ in U factors through
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f . The subcategory U is called contravariantly finite if every object in C admits a right U -
approximation. The notions of left U -approximations and covariantly finite subcategories are
defined dually. A subcategory is functorially finite if it is both covariantly and contravariantly
finite.

Given a subcategory U of some abelian or triangulated category C, we associate the subcat-
egories

U⊥d = {X ∈ C ∣ ExtiC(U ,X) = 0 for 1 ≤ i ≤ d − 1}

⊥dU = {X ∈ C ∣ ExtiC(X,U) = 0 for 1 ≤ i ≤ d − 1}.

Note that we writeExtiC(X,Y ) = HomC(X,Y [i]) in the triangulated case. Using this notation,
we give the definition of a d-cluster tilting subcategory. Recall that in the case where C is
abelian, our subcategory U is called generating (resp. cogenerating) if for each object X in C
there exists an epimorphism U ↠X (resp. monomorphism X ↣ U) with U in U .

Definition 2.1 (see [30, 40, 42]). A functorially finite subcategory U of an abelian or trian-
gulated category C is d-cluster tilting if it is generating-cogenerating (in the abelian case)
and

U = U⊥d = ⊥dU .

It follows immediately from the definition that any d-cluster tilting subcategory necessarily
contains all projective and all injective objects. In particular, a d-cluster tilting subcategory is
automatically generating-cogenerating when the ambient category is a module category.

Following [38], a finite dimensional algebra Λ is called weakly d-representation finite if it
has a d-cluster tilting Λ-module. This means that there is a Λ-module M such that add(M)
is a d-cluster tilting subcategory of modΛ. A weakly d-representation finite algebra is called
d-representation finite d-hereditary if the global dimension of Λ is at most d. The reader
should note that terminology related to higher representation finiteness varies in the literature.
For instance, a d-representation finite d-hereditary algebra is in many papers known simply as
d-representation finite, see for example [20–22, 24, 31, 32].

The module category of a d-representation finite d-hereditary algebra Λ contains a unique
d-cluster tilting subcategory U ⊆ modΛ [30, Theorem 1.6]. In this situation, the subcategory

U[dZ] = add{X[di] ∣ X ∈ U and i ∈ Z} ⊆ Db(Λ)

is a d-cluster tilting subcategory of the bounded derived category [30, Theorem 1.23]. This
subcategory is closed under [d], and thus yields an example of a (d + 2)-angulated category
[16].

Example 2.2. Consider Λ = KA3/J2, where A3 is the quiver 1 → 2 → 3 and J denotes
the arrow ideal. The algebra Λ is 2-representation finite 2-hereditary. Figure 1 shows the
AR-quiver of modΛ with the unique 2-cluster tilting subcategory U = addM , where M is
given by the direct sum of all indecomposable projectives and injectives. The lift U[2Z] to
Db(Λ) is shown in Figure 2.

P3

P2

S2

P1

I1

Figure 1. The AR-quiver of modΛ with rectangles around the indecompos-
able objects in the 2-cluster tilting subcategory U .
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⋯ ⋯

P3[−2] ● P1[−2] ● P3 ● P1 ● P3[2] ● P1[2] ●

● ● ● ● ● S2 ● ● ● ● ●

● P2[−2] ● I1[−2] ● P2 ● I1 ● P2[2] ● I1[2]

Figure 2. The AR-quiver ofDb(Λ)with rectangles around the indecomposable
objects in the 2-cluster tilting subcategory U[2Z]. Note that we identify a Λ-
module with its associated stalk complex concentrated in degree 0.

2.2. Gentle algebras. Gentle algebras constitute a large and well-studied class of algebras.
They first appeared as iterated tilted algebras of Dynkin type A [3] and Ã [5], and can be seen
as generalizations of algebras of Dynkin type A.

Definition 2.3. An algebra of the form KQ/I is called gentle if the following conditions hold:

(1) The quiver Q is finite;
(2) For all α ∈ Q1, there exists at most one arrow β such that αβ ∉ I and at most one arrow

γ such that γα ∉ I;
(3) For all α ∈ Q1, there exists at most one arrow β with t(α) = s(β) such that αβ ∈ I and

at most one arrow γ with t(γ) = s(α) such that γα ∈ I;
(4) The ideal I is admissible and generated by the relations in (3).

Note that part (2) and (3) in Definition 2.3 imply that there are at most two incoming and
at most two outgoing arrows at each vertex in the quiver Q. Gentle algebras are special
biserial and their indecomposable modules have been classified in terms of string and band
combinatorics [9]. In this paper we only need to work with string modules, so we briefly recall
their definition here.

For every arrow α in Q1 with s(α) = x and t(α) = y, we define its formal inverse α−1 by
setting s(α−1) = y and t(α−1) = x. A walk is a sequence α1 . . . αr of arrows and inverse arrows
such that t(αi) = s(αi+1) and αi+1 ≠ α−1i for all 1 ≤ i ≤ r − 1. A string is a walk w in Q such
that no subword of w or of w−1 is in I . If w is a string, the associated string module M(w)
is given by the quiver representation obtained by replacing every vertex in w by a copy of K
and every arrow by the identity map.

2.3. The geometric model. In [46], building on [53] and [54], a geometric model for the
derived category of a gentle algebra is given in terms of surface dissections. It is closely related
to the partially wrapped Fukaya category of surfaces with stops described in [17] and further
studied in [44]. We give a brief introduction to the geometric model, emphasizing aspects that
are needed in Section 4. The reader is referred to [46] for more detailed explanations.

The geometric model is based on a bĳection between gentle algebras and certain surface
dissections as described in [46], see also [6, 49]. The construction is as follows. Consider a
pair (S,M), where S is a compact oriented surface with boundary and M is a set of marked
points on the boundary. Let Γ be a dissection of (S,M) into polygons. That is, the vertices
of Γ are exactly the marked points in M and the complement of Γ in S is a disjoint union of
polygons. We call the dissection Γ admissible if each polygon either has exactly one boundary
segment or, if it has no boundary segment, encloses a boundary component with no marked
points on it.

Given an admissible dissection Γ of (S,M), we describe how to obtain a quiver Q. The
vertices of Q are in bĳection with the edges of Γ. If two edges γ and γ′ of Γ are incident with
the same vertex of Γ such that γ′ directly follows γ in the orientation of the surface, there is an
arrow from γ to γ′ in Q. We define an ideal of relations I of KQ as follows. Suppose α and
β are two composable arrows in Q. If the edges of Γ corresponding to the vertices s(α), s(β)
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and t(β) in Q are incident with the same vertex of Γ and directly follow each other in the
orientation of S, then αβ ∉ I . Otherwise, we set αβ ∈ I . The resulting algebra Λ = KQ/I is
gentle, and every gentle algebra arises in this way.

Example 2.4. Consider the gentle algebra Λ = KAn/J2, where An is the linearly oriented
quiver of Dynkin type A with n vertices and J is the arrow ideal. This algebra arises from a
dissection of the disk with n + 1 marked points on the boundary, as illustrated in Figure 3.

●

●

●

●

●
1

2

n

Figure 3. The geometric model associated to the gentle algebra KAn/J2. The
dissection Γ is given by the thinner outer curves, while the quiver An is drawn
with thicker blue arrows. The relations are indicated by the dotted line.

Given a surface (S,M) with admissible dissection Γ, we define the dual (embedded) graph
L of Γ as follows. The vertices of L lie on the boundary of S in such a way that on each
boundary component, the vertices of L and Γ alternate. If a boundary component does not
contain any marked points of M , then we replace it by a vertex of L and refer to it as a
puncture. The edges of the dual graph L are in bĳection with the edges of Γ, and for each
edge γ in Γ there exists a unique edge ℓ in L crossing γ and crossing no other edge of Γ. The
dual graph L gives an admissible dissection of (S,M).

Example 2.5. The dual graph L of the dissection Γ given in Example 2.4 is shown in Figure 4.

Figure 4. The dual graph (in red) of an admissible dissection of the disk.
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We let the notion closed curve refer to a homotopy class of closed curves in (S,M).
Similarly, an arc is a homotopy class of curves between marked points or wrapping around
punctures on one or both ends (following the orientation of S). By abuse of notation, we
typically let a representative γ of an arc also denote the arc itself. If the underlying curve of
an arc connects two marked points, we call the arc finite. A finite arc is called minimal if it is
homotopy equivalent to a segment of the boundary with no marked points. In particular, any
minimal arc has both endpoints on the same boundary component.

Let γ be an arc or a closed curve in (S,M). A grading of γ is a function f ∶L ∩ γ → Z

subject to the condition described below. Let p1 and p2 be two consecutive (in the orientation
of γ) intersection points of γ with L. The points p1 and p2 correspond to edges l1 and l2 of
a unique polygon P of the dissection given by L in such a way that γ enters P via l1 and
leaves via l2. The polygon P has exactly one boundary segment. The grading f satisfies
f(p2) = f(p1) + 1 if this boundary segment lies to the left of γ with respect to the orientation
of γ and f(p2) = f(p1)−1 otherwise. A grading f of γ is hence determined by its value f(p)
at one point p ∈ L ∩ γ. Note that in the case where γ is a closed curve, there need not exist a
grading of γ. In the case where a grading f of γ does exist, we refer to the pair (γ, f) as a
graded arc or a graded closed curve.

By [7] the indecomposable objects inDb(Λ) are in bĳection with so-called graded homotopy
strings and bands. This bĳection allows us to divide the indecomposable objects into string

objects and band objects. The graded homotopy strings are in bĳection with graded arcs.
Consequently, graded arcs are in bĳection with string objects in Db(Λ). Band objects occur
in one parameter families, which are in bĳection with graded closed curves. Altogether,
this yields a correspondence between indecomposable objects in Db(Λ) and graded arcs and
graded closed curves in (S,M). Given a string object X in Db(Λ), we use the notation
(γX , fX) for the corresponding graded arc. When we do not need to describe the grading
explicitly, we refer to the graded arc simply by γX .

l3

l2

l1

γ1

γ2

γ3

γX

p1 p2 p3

Figure 5. The geometric model of KA3/J2, with the dual graph L given by
the curves l1, l2 and l3. Objects corresponding to minimal graded arcs are
described in Example 2.6.

Example 2.6. We illustrate how graded arcs in the surface of our running example correspond
to indecomposable objects in the derived category. In Figure 5 we display the geometric model
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of Λ =KA3/J2, where the dual graph L is drawn in red. Recall that we label the vertices in A3

by 1→ 2→ 3. Edges of the dual graph are denoted li for i ∈ {1,2,3}. The arcs corresponding
to indecomposable projectives up to shift are drawn in black, so that the arc γi corresponding
to the stalk complex of the projective in i crosses li.

Consider the blue arc γX which intersects all three edges of L. The intersection of γX and
li is labeled pi. As the grading of an arc is determined by its grading in one intersection point,
we choose fX(p1) = 0, which gives fX(p2) = −1 and fX(p3) = −2. Thus, by the description
in [46], the indecomposable object X in Db(Λ) corresponding to the graded arc (γX , fX) is
given by

⋯ → 0→
−2

P3 →
−1

P2 →
0

P1 → 0→⋯,

where the grading is written above the complex. We recognize this as the projective resolution
of the simple in 1, so X is isomorphic in Db(Λ) to the stalk complex with the simple in 1 in
degree 0.

In Section 4 we also consider the perfect derived category of a gentle algebra Λ. This is the
full isomorphism closed subcategory Db(projΛ) ⊆ Db(Λ) consisting of bounded complexes
of finitely generated projective Λ-modules. The indecomposable perfect objects correspond
to finite graded arcs and graded closed curves. If Λ has finite global dimension, the associated
surface has no punctures and the perfect derived category is equivalent to the bounded derived
category.

By [18], the perfect derived category of a gentle algebra has AR-triangles. The AR-translate
of an indecomposable objectX corresponding to a finite graded arc (γX , fX) can be computed
in terms of the geometric model. More precisely, the AR-translate τX corresponds to the
arc γτX obtained by moving the endpoints of γX to the next marked points on the boundary
(following the orientation of S) equipped with a suitable grading.

Given two homotopy classes of graded curves (γX , fX) and (γY , fY ) corresponding to
indecomposable objects X and Y inDb(Λ), there is an explicit bĳection between the oriented
graded intersections of γX with γY and a basis ofHomDb(Λ)(X,Y ). Note that when considering
intersections of homotopy classes of curves, we always choose representatives such that the
number of intersections is minimal. We give a summary of the definition of an oriented graded
intersection using Figure 6 and Figure 7, and refer the reader to [46, Definition 3.7] for more
details.

pX

pY

p

γY

γX

Figure 6. Illustration of oriented graded intersection from (γX , fX) to
(γY , fY ). Intersection points of γX and γY with edges of the polygon given by
L as a dissection of the surface are labeled by pX and pY , as indicated.

In the first case, let γX and γY intersect such that the intersection point p is not at a puncture.
The intersection lies in one of the polygons given by the dual graph as a dissection of the
surface, and this polygon has exactly one boundary segment. In Figure 6 we assume that
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this boundary segment does not lie between pX and pY , as indicated by the red dotted line.
Note that the intersection point p can be on the boundary of S and that the edges of the dual
graph are not necessarily distinct. Given a situation as in Figure 6, there is an oriented graded
intersection from (γX , fX) to (γY , fY ), and hence a non-zero morphism from X to Y in the
derived category, whenever fX(pX) = fY (pY ).

γX γY

l

pX

pY

Figure 7. Illustration of oriented graded intersection from (γX , fX) to
(γY , fY ) in the case where γX and γY are infinite arcs wrapping around the
same puncture at one end.

In the second case, assume that γX and γY are infinite arcs, wrapping around the same
puncture p at one end. We then say that the arcs intersect at p (even though they technically
only approach the point of intersection asymptotically). Consider an edge l in the dual graph
L ending at p. Let pX and pY be intersection points of l with γX and γY , respectively. The
situation is shown in Figure 7. In this setup, there is an oriented graded intersection from γX

to γY if fX(pX) = fY (pY ).
The possibilities for an intersection point p of graded curves γX and γY to give rise to a

non-zero morphism in the derived category can be summarized as follows:

● If p corresponds to a point in the interior of the surface and fX is any grading of γX ,
then there exists a unique grading fY of γY such that p corresponds to an oriented
graded intersection from (γX , fX) to (γY , fY ) and to an oriented graded intersection
from (γY , fY ) to (γX , fX[1]).
● If p is on the boundary of S and fX is any grading of γX , then there exists a unique

grading fY of γY such that p corresponds to either an oriented graded intersection from
(γX , fX) to (γY , fY ) or an oriented graded intersection from (γY , fY ) to (γX , fX).
● It remains to consider the case where p is a puncture. For this, let w denote the

number of endpoints of edges of L that are incident with p. If fX is any grading of γX ,
then there exists a grading fY of γY such that p corresponds to a family of oriented
graded intersections from (γX , fX) to (γY , fY [mw]) and a family of oriented graded
intersections from (γY , fY ) to (γX , fX[(m + 1)w]) for m ≥ 0.

Example 2.7. We illustrate the correspondence between morphisms and oriented graded
intersections in our running example. Consider the arcs γX and γ3 from Example 2.6, see
Figure 5. Let fX be the grading of γX that is described in Example 2.6 and define a grading
f3 on γ3 by f3(p) = −2 for the sole intersection point p ∈ L ∩ γ3. The graded arc (γ3, f3)
corresponds to the object P3[2], by which we mean the stalk complex with the projective P3
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in degree −2. As fX(p3) = f3(p), there is an oriented graded intersection from (γX , fX) to
(γ3, f3). This corresponds to a non-zero morphism from X to P3[2] in the derived category.

3. Weakly d-representation finite gentle algebras

In this section we give a complete classification of the weakly d-representation finite gentle
algebras, as well as d-representation finite d-hereditary gentle algebras.

We denote the quivers

0

1 2 ⋯ n and n 1

⋯

by An and Ãn, respectively. A Nakayama algebra is a path algebra of one of these quivers
modulo an admissible ideal, see for instance [4, Chapter V] for more details. Recall that such
an algebra is called radical square zero if the admissible ideal is given by J2, where J denotes
the arrow ideal. In our next result, we show that if Λ is a gentle algebra and modΛ admits a
d-cluster tilting subcategory for some d ≥ 2, then Λ is a radical square zero Nakayama algebra.
In particular, this yields that the only examples of d-cluster tilting subcategories of module
categories that arise from gentle algebras are the ones known from [11, 56].

Theorem 3.1. Let Λ be a gentle algebra. If modΛ contains a d-cluster tilting subcategory

for some d ≥ 2, then Λ is a radical square zero Nakayama algebra.

Proof. Any vertex x in the quiver of the gentle algebra Λ is part of a subquiver

x

a

b

c

d

α

β

γ

δ

with relations as indicated by the dotted lines. Note that we allow arrows to be non-existent.
We write α = ∅ in the case where the arrow α in the above figure does not exist.

The projective module Px associated to the vertex x is represented by the string u−1γ γ−1δuδ,
where uδ and uγ are the (possibly trivial) maximal strings such that δuδ and γuγ are non-zero
strings. Similarly, the injective Ix is represented by vααβ−1v

−1
β , where vα and vβ are maximal

strings such that vαα and vββ are non-zero strings. By [55], there is a short exact sequence

0→M(u−1γ γ−1δuδ)→M(vααδuδ)⊕M(vββγuγ)→M(vααβ
−1v−1β )→ 0

starting inPx and ending in Ix. This sequence does not split as long as the following conditions
are satisfied:

(i) If α = ∅, then γ ≠ ∅;
(ii) If β = ∅, then δ ≠ ∅.

In this case the non-split short exact sequence is known as an overlap extension [10, Definition
3.1], see also [8], and we have Ext1

Λ
(Ix, Px) ≠ 0.

Assume that modΛ contains a d-cluster tilting subcategory for some d ≥ 2. As a d-cluster
tilting subcategory necessarily contains all projective and injective modules, this implies that
Ext

1

Λ
(Ix, Px) = 0 for every vertex x. By our argument above, this means that for every vertex in

the quiver of Λ, at least one of (i) or (ii) does not hold. Considering all possible configurations
of the subquiver associated to a vertex x, we see that this only happens if there is exactly one
arrow adjacent to x or if we have a situation of the type
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x

with exactly one incoming and one outgoing arrow. This yields the result. �

Remark 3.2. Note that the result above does not hold in the more general case where Λ is
assumed to be a string algebra. For examples of this, see for instance [57].

Combining Theorem 3.1 with previously known classification results for Nakayama algebras
[11, 56], we obtain the following characterization of weakly d-representation finite gentle
algebras. Recall that we denote the arrow ideal of a path algebra KQ by J .

Corollary 3.3. LetΛ be a gentle algebra and assume d ≥ 2. Then Λ is weakly d-representation

finite if and only if one of the following statements holds:

(1) Λ =KAn/J2 with n = dk + 1 for some k ≥ 0;

(2) Λ =KÃn/J2 with n = dk − 1 for some k ≥ 1.

Proof. If one of the statements (1) or (2) holds, it follows from [56, Theorem 2] and [11,
Theorem 5.1] that Λ is weakly d-representation finite. For this, notice that existence of a
d-cluster tilting subcategory implies existence of a d-cluster tilting module as our algebra is
representation finite.

Assume next that Λ is weakly d-representation finite. In particular, this means that modΛ

contains a d-cluster tilting subcategory. By Theorem 3.1, this yields Λ = KAn/J2 or
Λ = KÃn/J2 for some n. Our conclusion now follows by applying [56, Theorem 2] and
[11, Theorem 5.1] and using that Λ has Loewy length 2. �

Our approach also yields a classification of d-representation finite d-hereditary gentle al-
gebras. Recall that a weakly d-representation finite algebra is called d-representation finite
d-hereditary in the case where the global dimension is at most d.

Corollary 3.4. Let Λ be a gentle algebra of global dimension d with d ≥ 2. Then Λ is

d-representation finite d-hereditary if and only if Λ =KAn/J2 with n = d + 1.

Proof. This is an immediate consequence of Theorem 3.1 combined with Vaso’s classification
of d-representation finite d-hereditary Nakayama algebras [56, Theorem 3]. �

In the case where d ≥ 3 or the preprojective algebra of Λ is a planar quiver with potential,
Corollary 3.4 can be recovered by work of Sandøy and Thibault [52, Theorem B]. However,
their result does not cover all gentle algebras, since there exist gentle algebras with a non-planar
quiver and global dimension 2. One algebra of this type is shown in Example 3.5, and it gives
rise to an infinite family of such algebras.

●

● ● ●

●

● ● ●

●

● ● ●

● ● ●

Figure 8. The non-planar quiver used in Example 3.5.

Example 3.5. Consider the path algebra Λ = KQ/I , where Q is the quiver in Figure 8 and I

is any set of relations making Λ gentle, see Definition 2.3. Then Λ has global dimension 2.
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4. d-cluster tilting subcategories ofthe derived category

In this section we study the derived category of a gentle algebra. We discuss under what
circumstances this category contains d-cluster tilting subcategories that are closed under
[d]. Our main tool in this investigation is the geometric model from [46], as described in
Section 2.3. All Hom sets in this section are considered in the derived category.

Our proofs are based on the observation below, which gives a useful condition satisfied by
perfect objects contained in a d-cluster tilting subcategory closed under [d]. This result can be
deduced from [34, Proposition 3.4] in the case where the algebra has finite global dimension.
Note that Proposition 4.1 holds for any finite dimensional algebra.

Proposition 4.1. Let Λ be a finite dimensional algebra and consider a d-cluster tilting sub-

category U ⊆ Db(Λ) that is closed under [d] for some d ≥ 2. If an indecomposable perfect

object X is contained in U , then Hom(τX,X) = 0.

Proof. Recall that as the subcategory U is d-cluster tilting in Db(Λ), we have

U ={Y ∈ Db(Λ) ∣ Hom(U , Y [i]) = 0 for 1 ≤ i ≤ d − 1}

={Y ∈ Db(Λ) ∣ Hom(Y,U[i]) = 0 for 1 ≤ i ≤ d − 1}.

As in Section 2.1, we denote the first of these sets by U⊥d and the second one by ⊥dU .
Suppose towards a contradiction that there exists an indecomposable perfect object X in U

with Hom(τX,X) ≠ 0. This yields

Hom(τX[1],X[1]) ≅ Hom(τX,X) ≠ 0.

Since d ≥ 2 and U is d-cluster tilting, this means that τX[1] ∉ ⊥dU = U⊥d. Thus, there exists
an object Y ∈ U such that Hom(Y, τX[1][i]) ≠ 0 for some 1 ≤ i ≤ d − 1.

Using that τ[1]∶Db(projΛ) → Db(Λ) is a partial Serre functor in the sense of [47], see in
particular [47, Example 3.7], we obtain

Hom(Y, τX[1][i]) ≅ Hom(Y [−i], τX[1])

≅DHom(X,Y [−i])

≅DHom(X[d], Y [d − i]) ≠ 0.

Since U is closed under [d], we have X[d] ∈ U . Noting that 1 ≤ d − i ≤ d − 1, this yields
Y ∉ U⊥d = U , which is a contradiction. �

Our next aim is to show that for gentle algebras there are limitations on arcs corresponding
to objects in a d-cluster tilting subcategory. Recall that we use the notation (γX , fX) for the
graded arc that corresponds to a string object X in the derived category and that a finite arc
is called minimal if it is homotopy equivalent to a segment of the boundary with no marked
points.

Lemma 4.2. Let Λ be a gentle algebra. If X ∈ Db(Λ) corresponds to a finite graded arc that

is not minimal, then Hom(τX,X) ≠ 0.

Proof. As the graded arc γX corresponding toX is finite, we can use the algorithm described in
[46, Section 5] to compute τX . We obtain the graded arc γτX corresponding to τX by moving
the endpoints of γX to the next marked points following the orientation of the boundary. This
is illustrated in Figure 9, where the marked points in the figure are not necessarily distinct.

Note that the arc γX is minimal if and only if either γY1
or γY2

is contractible to a point.
When γX is not minimal, the objects Y1 and Y2 are hence non-zero. This yields an almost split
sequence

τX → Y1 ⊕ Y2 → X
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●

●

●

●

γX

γY1

γY2

γτX

Figure 9. Geometric computation of τX .

with two indecomposable summands in the middle term. The morphism τX → Y1 → X is
non-zero, and the conclusion follows. �

As a consequence of our two previous results, we find that if an indecomposable perfect
object is contained in a d-cluster tilting subcategory that is closed under [d], then it corresponds
to a minimal graded arc.

Lemma 4.3. LetΛ be a gentle algebra and consider a d-cluster tilting subcategoryU ⊆ Db(Λ)
that is closed under [d] for some d ≥ 2. If an indecomposable perfect object is contained in

U , then it corresponds to a minimal graded arc.

Proof. Let X be a perfect object that is contained in U . If X is a band object, then τX ≅ X ,
which contradicts Proposition 4.1. As X is perfect, this implies that γX is a finite graded arc.
Our statement now follows by combining Lemma 4.2 and Proposition 4.1. �

We next investigate how the gradings of minimal arcs giving rise to objects in a d-cluster
tilting subcategory are related. Let Λ be a gentle algebra and recall that L denotes the
associated dual graph as explained in Section 2.3.

Consider two graded arcs (γX , fX) and (γY , fY ) with a common endpoint m, as indicated
in Figure 10. Let pX (resp. pY ) denote the intersection point of γX (resp. γY ) and L that is
closest to m. We say that γX and γY have compatible grading in m if fX(pX) = fY (pY ).
Note that by the description of morphisms in the bounded derived category in terms of graded
intersections, this implies that Hom(Y,X) ≠ 0. Similarly, we say that the two arcs have
d-compatible grading in m if fX(pX) ≡ fY (pY ) (mod d).

pX pY

γX γY

m

Figure 10. Illustration of compatible grading. The graded arcs γX and γY

have d-compatible grading in m if fX(pX) ≡ fY (pY ) (mod d).

Consider an object X in Db(Λ) corresponding to a minimal graded arc. Let BX be the
boundary component containing the endpoints of γX . Denote the marked points on BX by
m1,m2, . . . ,mt, where m1 and mt are the endpoints of γX . The marked point mj+1 follows
mj , as illustrated in Figure 11. Use the notation γ1 = γX for the graded arc corresponding to
X1 = X . For j = 2, . . . , t, let γj be the minimal graded arc with endpoints mj−1 and mj for
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which γj−1 and γj have compatible grading in mj−1. Denote the object corresponding to γj by
Xj . We now define Vd

X to be the subcategory

Vd
X = add{Xj[di] ∣ i ∈ Z and 1 ≤ j ≤ t} ⊆ Db(Λ).

Note that as every indecomposable object in Vd
X corresponds to a minimal graded arc, we

have Vd
X ⊆ D

b(projΛ).

BX

m3

m2

m1
mt

mt−1

γ3

γ2

γ1 = γX

γt

Figure 11. Minimal arcs sharing a boundary with γX .

Example 4.4. In Example 2.2 we considered the algebraΛ=KA3/J2, which is 2-representation
finite 2-hereditary. Note that the 2-cluster tilting subcategory U[2Z] ⊆ Db(Λ) as illustrated in
Figure 2 can also be obtained as V2

X for any indecomposable object X ∈ U[2Z].

Our next two lemmas demonstrate that the notion of d-compatibility is useful to describe
when indecomposable objects are contained in a d-cluster tilting subcategory. In Lemma 4.5
we consider the general case, before restricting to perfect objects in Lemma 4.6.

Lemma 4.5. LetΛ be a gentle algebra and consider a d-cluster tilting subcategoryU ⊆ Db(Λ)
that is closed under [d] for some d ≥ 2. The following statements hold for an indecomposable

object X in U :

(1) X[j] ∈ U if and only if d divides j.

(2) Let Y correspond to a graded arc γY and assume that γX and γY have a common

endpoint m. If Y ∈ U , then γX and γY have d-compatible grading in m.

Proof. Notice that as the subcategoryU is closed under [d], it is also closed under [id] for every
integer i. It follows that if d divides j, then X[j] ∈ U . Suppose that d does not divide j. We
may assume without loss of generality that 1 ≤ j ≤ d − 1. As we have Hom(X[j],X[j]) ≠ 0,
this implies that X[j] is not contained in ⊥dU = U , which proves the first statement.

For the second statement, denote by pX (resp. pY ) the intersection point of γX (resp. γY ) and
L that is closest to m. Assume that γX and γY do not have d-compatible grading in m, i.e. that
fX(pX) ≢ fY (pY ) (mod d). By (1), it is enough to consider the case where fX(pX) = 0 and
fY (pY ) = i for some 1 ≤ i ≤ d − 1. It follows from the description of morphisms in terms of
graded intersections that this yields Hom(X,Y [i]) ≠ 0 or Hom(Y [i],X) ≠ 0. In either case,
this implies that Y is not contained in U by the definition of a d-cluster tilting subcategory. �

For perfect objects, there is a converse to part (2) of the lemma above, as described in
Lemma 4.6 part (1). This yields a complete description of the perfect objects that are
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contained in a d-cluster tilting subcategory U that is closed under [d]. In particular, we see
that the inclusion of one indecomposable perfect object X in U fully determines what other
perfect objects associated to the boundary BX are contained in U . Note that the object X in
the lemma below must correspond to a minimal graded arc by Lemma 4.3.

Lemma 4.6. LetΛ be a gentle algebra and consider a d-cluster tilting subcategoryU ⊆ Db(Λ)
that is closed under [d] for some d ≥ 2. The following statements hold for an indecomposable

perfect object X in U :

(1) Let Y correspond to a minimal graded arc γY that shares an endpoint m with γX .

Then Y ∈ U if and only if γX and γY have d-compatible grading in m.

(2) Let Y correspond to a minimal graded arc with endpoints on the same boundary

component as γX . Then Y ∈ U if and only if Y ∈ Vd
X . In particular, we have Vd

X ⊆ U .

Proof. If Y ∈ U , the arcs γX and γY have d-compatible grading in m by part (2) of Lemma 4.5.
For the reverse direction, assume that Y ∉ U . As U = ⊥dU , this means that there is an
indecomposable object Z ∈ U such that Hom(Y,Z[i]) ≠ 0 for some 1 ≤ i ≤ d−1. Without loss
of generality we can assume the intersection of γX and γY in m to be of the type illustrated in
Figure 10, as the proof in the case where the position of the two arcs is interchanged is dual.
Consequently, using that γY is minimal, a non-zero morphism from Y toZ[i]must correspond
to a graded intersection of γY and γZ[i] in the endpoint m. In particular, this implies that the
arcs γY and γZ do not have d-compatible grading in m. On the other hand, the gradings of γX

and γZ are d-compatible in m by Lemma 4.5 part (2), as X and Z are in U . Combining this,
we see that γX and γY do not have d-compatible grading in m.

The second statement follows directly. �

Using the description in Lemma 4.6, we are now able to prove that the only examples of
d-cluster tilting subcategories of the perfect derived category that are closed under [d] arise in
the type A case. This result provides an important step in the proof of Theorem 4.10, where
we show that the analogue statement holds for Db(Λ).

Remark 4.7. Note that Proposition 4.1, Lemma 4.3, Lemma 4.5 and Lemma 4.6 hold also
when considering a d-cluster tilting subcategory U ⊆ Db(projΛ). These results can hence be
applied in the setup of Proposition 4.8.

Proposition 4.8. Let Λ be a gentle algebra. If Db(projΛ) contains a d-cluster tilting subcat-

egory that is closed under [d] for some d ≥ 2, then Λ is derived equivalent to an algebra of

Dynkin type A.

Proof. Assume that Λ is not derived equivalent to an algebra of Dynkin type A. By [46,
Corollary 1.23], this means that the surface in the geometric model of Db(Λ) is not a disk.

Assume towards a contradiction that there exists a d-cluster tilting subcategory U of
Db(projΛ) that is closed under [d] for some d ≥ 2. Let X be an indecomposable object
in U , which by Lemma 4.3 corresponds to a minimal graded arc (γX , fX) as X is perfect. The
boundary component containing the endpoints of γX is denoted by BX . Lemma 4.6 part (2)

yields that an object corresponding to a minimal graded arc with endpoints on BX is contained
in U if and only if it is in Vd

X .
Denote one of the endpoints of γX by m. As the surface in the geometric model associated

to Λ is not a disk, there exists an arc γ starting and ending in m that is not contractible to
a point. For simplicity, we assume that γ has no self-intersections except in the endpoint.
Let γi be the arc obtained by concatenating i copies of γ and γX in such a way that γi has i
self-intersections. Note that when choosing a representative of γi, it is helpful to choose one
such that all the self-intersections are separated and occur before the concatenation with γX .
See Figure 12 for an illustration of γ2.
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pe

p2

e

ps

p2

s

γX

γ2

BX

●

●

●

m

Figure 12. The arc γi for i = 2, as used in the proof of Proposition 4.8.

Denote by ps (resp. pi
s) the intersection point of γX (resp. γi) and L that is closest to m,

as indicated in Figure 12. Similarly, we use the notation pe (resp. pi
e) for the intersection

point of γX (resp. γi) and L that is closest to the second endpoint of γX . Note that ps and
pe might coincide. Let fi be the grading of γi for which fi(pi

s) = fX(ps). Denote by Yi the
indecomposable object in Db(projΛ) corresponding to the finite graded arc (γi, fi).

Notice that for each loop of γi, the grading increases by an integer w. As the last segment in
the construction of γi follows the trajectory of γX , this yields fi(pi

e) = fX(pe)+ iw. Choosing
i = d, we hence obtain fd(pd

e) ≡ fX(pe) (mod d). By construction, the arc γd does not
intersect any minimal arcs except in the endpoints. This implies that

Hom(U , Yd[j]) = Hom(V
d
X , Yd[j]) = 0

for 1 ≤ j ≤ d − 1. Consequently, the object Yd is contained in U⊥d = U . This contradicts
Lemma 4.3 as γd is not a minimal arc. �

Our next aim is to show that the same conclusion as in Proposition 4.8 holds when working
with the entire bounded derived category. We hence need to consider objects corresponding
to graded arcs wrapping around punctures on one or both ends. To determine whether such
objects can be contained in a d-cluster tilting subcategory, the following lemma is useful.

Lemma 4.9. LetΛ be a gentle algebra and consider a d-cluster tilting subcategoryU ⊆ Db(Λ)
that is closed under [d] for some d ≥ 2. If X and Y are two indecomposable objects in U ,

then the corresponding graded arcs γX and γY do not intersect in the interior of the surface

in the geometric model.

Proof. Let X and Y be in U and assume that γX and γY do intersect in the interior of the
surface in the geometric model. This intersection lies in a polygon P of the dissection given
by the dual graph L as illustrated in Figure 13. Denote intersection points of γX and γY with
the edges of P as indicated in the figure. Using that Hom(Y,X[i]) = 0 for 1 ≤ i ≤ d − 1 and
applying Lemma 4.5 part (1), we can assume fX(pX) = fY (pY ). As fY (p′Y ) = fY (pY ) + 1,
this implies that Hom(X,Y [1]) ≠ 0, which yields a contradiction. �

We are now ready to prove Theorem 4.10.



THE ROLE OF GENTLE ALGEBRAS IN HIGHER HOMOLOGICAL ALGEBRA 17

p′Y

pY

pX

●

γX

γY

Figure 13. The oriented graded intersection discussed in the proof of Lemma 4.9.

Theorem 4.10. Let Λ be a gentle algebra. If Db(Λ) contains a d-cluster tilting subcategory

that is closed under [d] for some d ≥ 2, then Λ is derived equivalent to an algebra of Dynkin

type A.

Proof. If Λ has finite global dimension, then the bounded derived category coincides with the
perfect derived category and the result follows from Proposition 4.8. We hence assume that
Λ has infinite global dimension, which is equivalent to the existence of at least one puncture
in the surface of the associated geometric model. The strategy from here is to show that if
there exists a d-cluster tilting subcategory U ⊆ Db(Λ) that is closed under [d], then U contains
a certain non-perfect object X . This enables us to construct a perfect object Z that must be
contained in U but does not correspond to a minimal graded arc. Similarly as in the proof of
Proposition 4.8, this leads to a contradiction.

So suppose there exists a d-cluster tilting subcategory U ⊆ Db(Λ) that is closed under [d].
We claim that U must contain an objectX corresponding to a graded arc that starts in a marked
point and ends wrapping around a puncture. To see this, assume to the contrary that each
indecomposable object in U is either perfect or corresponds to a graded arc wrapping around
punctures on both ends. Let B denote a boundary component with at least one marked point,
and consider the arc γ that starts and ends in this marked point and follows the boundary B up
to homotopy. Note that by our assumptions, this arc is not contractible to a point. Applying
the iterative construction from the proof of Proposition 4.8 to γ, we obtain a finite arc γd.
This arc can be equipped with a grading that is d-compatible with the grading of any minimal
graded arc that corresponds to an object in U and starts or ends in the endpoints of γd. By
Lemma 4.3 combined with our assumption on the non-perfect objects in U , this yields that
the object Yd corresponding to the graded arc γd is contained in U . Similarly as in the proof
of Proposition 4.8, this is a contradiction as γd is not minimal.

Thus, we can assume that U contains an indecomposable objectX such that the correspond-
ing graded arc (γX , fX) starts in a marked point m and ends wrapping around a puncture r.
Before defining the object Z, we label some useful points in the model and make some obser-
vations. Denote by l an edge in the dual graph L that is adjacent to r. Let p be an intersection
of γX and l such that after this intersection, the arc γX wraps infinitely many times around the
single puncture r. The next intersection of γX and l is denoted by p′, as indicated in Figure 14.
Note that by our assumption on p, any arc that intersects l between p and p′ and does not
intersect γX , has an end that wraps infinitely many times around r. Let w be the integer
defined by the equation fX(p′) = fX(p) +w, and observe that the grading at the intersections
of γX and l increases by w each time γX loops around r. By the description of morphisms
arising from punctures, we deduce that d divides w as X is in U .
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We now construct the arc γZ by concatenating the following four segments:

(i) The first segment of γZ starts in m and follows the trajectory of γX until the point p′;
(ii) The second segment of γZ follows l from p′ to p;
(iii) The third segment of γZ follows the trajectory of γX from p and back to m;
(iv) The last segment of γZ follows the minimal arc γm starting in m and ending in a

marked point m′ in such a way that γZ has exactly one self-intersection.

We equip γZ (resp. γm) with the grading fZ (resp. fm) that is compatible with fX in m and
denote the indecomposable object in Db(Λ) corresponding to (γZ, fZ) by Z.

γm

l

m

m′

r

ps

pt

pZ
e

pe

pZ
u

p

p′

γZ

γX

Figure 14. The arc γZ as used in the proof of Theorem 4.10

The last step in our proof is to show that Z ∈ ⊥dU = U . Let pe (resp. pZ
e ) denote the

intersection point of γm (resp. γZ) that is closest to the marked point m′. By similar arguments
as in the proof of Proposition 4.8, we see that fZ(pZ

e ) = fm(pe)+w. As d dividesw, this implies
that the gradings of γZ and γm are d-compatible in m′. Lemma 4.5 part (2) hence allows us to
conclude that intersections in the endpoints of γZ give rise to no non-zero morphisms from Z

to U[i] for 1 ≤ i ≤ d − 1.
We claim that the same holds for any intersection between γZ and a graded arc corresponding

to an object inU in the interior of the surface. Notice first that this is immediate for the segments
of γZ described in (i) and (iii), as an intersection here would also yield an intersection with γX

and hence contradict Lemma 4.9. If a graded arc corresponding to an object in U intersects
γZ in the interior along the segment described in (iv), this yields a graded intersection of the
same type as the one denoted by pt in Figure 14.

To study this graded intersection, let ps (resp. pZ
u ) denote the intersection of γX (resp. the

fourth segment of γZ) and L that is closest to m, as indicated in Figure 14. By similar
arguments as before, we have fZ(pZ

u ) = fX(ps) + w. Again using that d divides w, this
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implies that the intersection in pt does not give rise to non-zero morphisms from Z to U[i] for
1 ≤ i ≤ d − 1.

It remains to consider intersections of graded arcs corresponding to objects in U along the
segment of γZ described in (ii). As such a graded arc does not intersect γX , it wraps around
r on one end by the assumption on p. Close to r, the grading of such an arc hence agrees
with that of γX up to shifts by d. Using this, we look at the polygon of the dissection given by
L that the intersection lies in. Considering different possibilities for the marked point of this
polygon, we see that an intersection of this type also does not give rise to non-zero morphisms
from Z to U[i] for 1 ≤ i ≤ d−1. This allows us to conclude thatZ ∈ ⊥dU = U , which contradicts
Lemma 4.3 as γZ is finite but not minimal. �

The fact that a gentle algebra is derived equivalent to an algebra of Dynkin type A if
and only if the surface in the associated geometric model is a disk [46, Corollary 1.23],
played an important role in the proofs of Proposition 4.8 and Theorem 4.10. We now
move on to characterizing d-cluster tilting subcategories of the derived category in this case.
Our classification gives a geometric interpretation of the d-cluster tilting subcategories of the
derived category arising from d-representation finite d-hereditary gentle algebras, as described
in Section 2.1. By our classification in Corollary 3.4, these algebras are of the form KAn/J2

for n = d + 1.

Theorem 4.11. Assume n ≥ 3 and let Λ be a gentle algebra that is derived equivalent to an

algebra of Dynkin type An. A subcategory U ⊆ Db(Λ) is d-cluster tilting and closed under

[d] for some d ≥ 2 if and only if d = n − 1 and U = Vd
X for some object X corresponding to a

minimal graded arc.

Proof. Without loss of generality, we can assume Λ ≅ KAn/J2. As demonstrated in Ex-
ample 2.4, the geometric model associated to Λ is a disk with n + 1 marked points on the
boundary. The dual graph L is shown in Example 2.5.

pn+1 p1γn+1 γ1

mn+1mn m1

Figure 15. The notation used in the proof of Theorem 4.11

Given an object X in Db(Λ) corresponding to a minimal graded arc γX , we follow the
notation introduced in the definition of Vd

X with t = n+1, see Figure 11. We use the notation fi
for the grading of γi. Consider the intersection p1 (resp. pn+1) of γ1 = γX (resp. γn+1) with the
dual graph L that is closest to the endpoint mn+1, as indicated in Figure 15. By the description
of L and the compatibility of grading from the construction of Vd

X , we see that

(∗) fn+1(pn+1) = f1(p1) + n − 1.

Assume that U ⊆ Db(Λ) is d-cluster tilting and closed under [d] for some d ≥ 2. Let X be
an indecomposable object in U , and note that X is perfect as Λ has finite global dimension.
By Lemma 4.3, the corresponding graded arc γX is hence minimal. As the surface in the
geometric model associated to Λ only has one boundary component, Lemma 4.6 part (2)

implies that U = Vd
X .

Since X and Xn+1 are contained in Vd
X = U , Lemma 4.6 part (1) combined with (∗) yields

that d divides n−1. If d < n−1, there exists a non-minimal arc that crosses precisely d+1 edges
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of L. For this arc, we can choose a grading such that the corresponding object is contained in
U⊥d = U . This contradicts Lemma 4.3, and we can thus conclude that d = n − 1.

For the reverse direction, let d = n − 1. As n ≥ 3, this yields d ≥ 2. Consider U = Vd
X

for some indecomposable object X in Db(Λ) corresponding to a minimal graded arc. Note
that Vd

X is closed under [d] by definition. It remains to show that Vd
X is a d-cluster tilting

subcategory ofDb(Λ).
By the compatibility of grading in the definition ofVd

X combined with (∗) and the assumption
d = n− 1, graded arcs corresponding to indecomposable objects in U = Vd

X have d-compatible
grading in common endpoints. This implies that

Hom(Vd
X ,V

d
X[j]) = 0

whenever d ∤ j. In particular, we have Vd
X ⊆ U

⊥d and Vd
X ⊆

⊥dU .
Consider an indecomposable object Y that is not contained in Vd

X . If the corresponding
graded arc γY is minimal, this means that the grading of γY in its endpoints is not d-compatible
with the graded arcs corresponding to indecomposable objects in Vd

X . This gives Y ∉ U⊥d and
Y ∉ ⊥dU . If γY is not minimal, we see that γY crosses precisely l edges of L for some 2 ≤ l ≤ d.
This implies that for any possible grading of γY , one has Y ∉ U⊥d and Y ∉ ⊥dU , which yields
U⊥d ⊆ Vd

X and ⊥dU ⊆ Vd
X . We can hence conclude that Vd

X = U
⊥d = ⊥dU .

It remains to observe that Vd
X is functorially finite in Db(Λ). For this, consider an inde-

composable object Y in the derived category. If the grading of γY in its endpoints is not
compatible with the grading of any minimal arc corresponding to an object in Vd

X , left and
right approximations of Y are given by the zero morphism. If the grading is compatible at
one of the endpoints, we get left and right approximations by the morphisms corresponding
to the graded intersection. Our subcategory U = Vd

X is hence d-cluster tilting, which finishes
the proof. �

Note that it is possible to show a version of Theorem 4.11 by working directly with the
AR-quiver of Db(Λ) instead of using the geometric model.

Remark 4.12. AsΛ =KAn/J2 is d-representation finite d-hereditary for n = d+1, the module
category contains a unique d-cluster tilting subcategory U ⊆ modΛ. Notice that the d-cluster
tilting subcategories described in the theorem above are equivalent to the subcategory U[dZ]
of Db(Λ), see Example 2.2 and Example 4.4. Combining Theorem 4.10 and Theorem 4.11,
we see that all d-cluster tilting subcategories of the derived category of a gentle algebra that
are closed under [d] arise in this way.

Combining our results in this section with [46, Corollary 1.23], we obtain the following
corollary.

Corollary 4.13. Let Λ = KQ/I be a gentle algebra which is not a field. The following

statements are equivalent:

(1) There exists a d-cluster tilting subcategory U ⊆ Db(Λ) that is closed under [d] for

some d ≥ 2.

(2) The algebra Λ is derived equivalent to an algebra of Dynkin type An with n ≥ 3.

(3) The quiver Q is a tree with ∣Q0∣ ≥ 3.

(4) The surface in the geometric model associated to Λ is a disk with at least four marked

points on the boundary.

Remark 4.14. In the case where Λ = K is a field, there exists a d-cluster tilting subcategory
Ud ⊆ D

b(Λ) that is closed under [d] for any d ≥ 1. This subcategory is given by

Ud = add{K[di] ∣ i ∈ Z} ⊆ D
b(Λ),
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where the notation K is used for the stalk complex with K in degree 0. Any d-cluster tilting
subcategory of Db(Λ) is equivalent to Ud.
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