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Abstract: Linear regression is concerned about fitting a model to a set of data. The weighted
least squares method is a standard tool for performing linear regression. In this paper, we focus
on the case when some of the samples are given priority over others. The residuals for these
samples should be given an infinite weighting compared to other samples. However, due to
numerical limitations, a weight which is finite but sufficiently large must be chosen instead.
We suggest an alternative approach that in practice allows infinite weighting. This is achieved
by reformulating the regression optimization problem as a bilevel program. The method is
illustrated in a numerical example study. The example shows that, without needing to determine
a weighting factor, the proposed method yields the same solution, up to numerical precision, as
to the one obtained by using a large weight.
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1. INTRODUCTION

Linear regression is concerned about fitting a model, which
is linear in its parameters, to a data set of inputs xj ’s and
outputs yj ’s. The least squares method is a widely used
method for linear regression. It finds the parameter vector
p that minimizes the squared errors between predictions
and measurements

min
p

n∑
j=1

wj(yj − ŷ(xj ; p))
2 (1)

where ŷ(·) is the model and n is the number of samples.
In the ordinary least squares method it is assumed that
the variance for all samples is constant, yielding wj =
1. An extension of this method is the weighted least
squares, where the weights are determined based upon the
corresponding estimated variance for the samples, yielding
possibly varying wj ’s. Seen from a less mathematical
perspective, the idea would be to assign higher weights for
the samples that one trusts the most. This latter mindset
is the one taken in this article.

This work is inspired by a curve estimation task encoun-
tered in the oil and gas industry. We look into the case
when there are two sources of data regarding modeling
of oil flow rates from individual wells. First, the oil flow
rate for each well are measured on an infrequent basis.
Second, the total oil flow rate for all the wells are measured
during production. In this paper, it is assumed that all
measurements are taken at steady-states. Further, it is
assumed that the output of the total oil rate sensor is
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of significant higher quality, due to easier measurement
principles (single phase flow compared to multiphase flow
for the individual wells) and better maintenance as its
data is directly related to the amount of sold products and
therefore fiscal reporting. Thus, samples from this sensor
are considered superior.

In this paper, we propose to use bilevel programming as a
tool to achieve prioritization in a weighted linear regression
problem for this estimation task.

Bilevel programs are hierarchical optimization problems.
There is the upper-level problem which has a constraint
that involves the solution of another optimization problem.
The second optimization problem is referred to as the
lower-level problem. Both the upper-level and lower-level
problems may have their own set of constraints. Bilevel
programming is an active field of research, see Dempe
(2020) for an overview on theory, algorithms and appli-
cations of bilevel optimization.

From the viewpoint of multi-objective optimization, the
method we suggest has similarities with the lexicographic
method, which also treats different objectives hierarchi-
cally.

This paper is organized as follows. In Section 2, the sug-
gested method is presented including approaches to solve
the resulting bilevel program. In Section 3, the proposed
theory is applied to a small example, and its performance
is compared to a weighted optimization problem. Finally,
in Section 4, a conclusion is provided.

Bilevel programming as a means of infinite
weighting in regression problems �

Joakim R. Andersen ∗ Lars Imsland ∗

∗ Department of Engineering Cybernetics, Norwegian University of
Science and Technology, Trondheim, Norway (e-mail:

{joakim.r.andersen,lars.imsland}@ntnu.no).

Abstract: Linear regression is concerned about fitting a model to a set of data. The weighted
least squares method is a standard tool for performing linear regression. In this paper, we focus
on the case when some of the samples are given priority over others. The residuals for these
samples should be given an infinite weighting compared to other samples. However, due to
numerical limitations, a weight which is finite but sufficiently large must be chosen instead.
We suggest an alternative approach that in practice allows infinite weighting. This is achieved
by reformulating the regression optimization problem as a bilevel program. The method is
illustrated in a numerical example study. The example shows that, without needing to determine
a weighting factor, the proposed method yields the same solution, up to numerical precision, as
to the one obtained by using a large weight.

Keywords: Bilevel programming, linear regression, infinite weighting, sample prioritization,
daily production optimization,

1. INTRODUCTION

Linear regression is concerned about fitting a model, which
is linear in its parameters, to a data set of inputs xj ’s and
outputs yj ’s. The least squares method is a widely used
method for linear regression. It finds the parameter vector
p that minimizes the squared errors between predictions
and measurements

min
p

n∑
j=1

wj(yj − ŷ(xj ; p))
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where ŷ(·) is the model and n is the number of samples.
In the ordinary least squares method it is assumed that
the variance for all samples is constant, yielding wj =
1. An extension of this method is the weighted least
squares, where the weights are determined based upon the
corresponding estimated variance for the samples, yielding
possibly varying wj ’s. Seen from a less mathematical
perspective, the idea would be to assign higher weights for
the samples that one trusts the most. This latter mindset
is the one taken in this article.

This work is inspired by a curve estimation task encoun-
tered in the oil and gas industry. We look into the case
when there are two sources of data regarding modeling
of oil flow rates from individual wells. First, the oil flow
rate for each well are measured on an infrequent basis.
Second, the total oil flow rate for all the wells are measured
during production. In this paper, it is assumed that all
measurements are taken at steady-states. Further, it is
assumed that the output of the total oil rate sensor is

� This research is a part of BRU21 – NTNU Research and Inno-
vation Program on Digital and Automation Solutions for the Oil
and Gas Industry (www.ntnu.edu/bru21). Financial support from
Wintershall Dea Norge AS is acknowledged.

of significant higher quality, due to easier measurement
principles (single phase flow compared to multiphase flow
for the individual wells) and better maintenance as its
data is directly related to the amount of sold products and
therefore fiscal reporting. Thus, samples from this sensor
are considered superior.

In this paper, we propose to use bilevel programming as a
tool to achieve prioritization in a weighted linear regression
problem for this estimation task.

Bilevel programs are hierarchical optimization problems.
There is the upper-level problem which has a constraint
that involves the solution of another optimization problem.
The second optimization problem is referred to as the
lower-level problem. Both the upper-level and lower-level
problems may have their own set of constraints. Bilevel
programming is an active field of research, see Dempe
(2020) for an overview on theory, algorithms and appli-
cations of bilevel optimization.

From the viewpoint of multi-objective optimization, the
method we suggest has similarities with the lexicographic
method, which also treats different objectives hierarchi-
cally.

This paper is organized as follows. In Section 2, the sug-
gested method is presented including approaches to solve
the resulting bilevel program. In Section 3, the proposed
theory is applied to a small example, and its performance
is compared to a weighted optimization problem. Finally,
in Section 4, a conclusion is provided.



852 Joakim R. Andersen  et al. / IFAC PapersOnLine 55-7 (2022) 851–856

2. BILEVEL PROGRAMMING AS AN INFINITE
WEIGHTING SCHEME

In this section, the application of bilevel programming as
a means of infinite weighting in regression problems will
be presented. The parameter estimation is performed by
minimizing the sum of squared residuals in a least squares
manner. The formulations are extended to also include
constraints. Lastly, strategies to solve the resulting bilevel
program are provided.

A common parameter estimation situation would be the
need to fit a model to a set of data. In this paper, we are
looking into a situation where there are two models, two
data sets, and three sets of parameters. Each model may
have its own parameters, and in addition, the two models
share some, or all, parameters. The two models are:

ŷp(x̂) := ŷ(x̂; ps, p̂) (2a)

ỹp(x̃) := ỹ(x̃; ps, p̃) (2b)

where ps ∈ Rnps , p̂ ∈ Rnp̂ and p̃ ∈ Rnp̃ are tunable
parameter vectors, ps are shared between the two models,
and the x̂ ∈ Rnx̂ and x̃ ∈ Rnx̃ are input vectors. To keep
the notation clean, the shorter and slightly misleading left
hand side of (2) is used. Further, it is assumed that both
models map to scalar outputs:

ŷp : Rnx̂ × (Rnps × Rnp̂) → R (3a)

ỹp : Rnx̃ × (Rnps × Rnp̃) → R. (3b)

If there were no shared parameters, i.e., nps
= 0, then

these two models could be treated separately, e.g., by
solving two least squares problems. A straightforward
extension of that idea to the case with nps

�= 0 would
be to solve a weighted least square problem:

min
ps,p̂,p̃

ŵ

mŷ∑
j=1

(ŷj − ŷp(x̂j))
2 + w̃

mỹ∑
j=1

(ỹj − ỹp(x̃j))
2 (4)

where the subindex j indicates it is a data point. The
values of the weights ŵ and w̃ will have a significant
impact on the final parameters. The focus of this paper
will be where one of these two will have priority over
the other. This corresponds to setting the corresponding
weight “infinitely large”. However, due to limitations in
numerical computing, it may be challenging to find a value
which gives a reliable desired behavior.

Another way of phrasing the desire of prioritizing one over
the other, is to say that the second curve fitting may only
happen in the subspace of those directions which does
not impact the first curve fitting. Such a subspace may
for example exist if there are few data points for the one
with highest priority. In this case, the remaining degrees
of freedom of the shared parameters(?) may be taken by
the other minimization objective. This idea can be posed
as a bilevel program:

min
ps,p̂

mŷ∑
j=1

(ŷj − ŷp(x̂j))
2 (5a)

s.t. min
ps,p̃

mỹ∑
j=1

(ỹj − ỹp(x̃j))
2 (5b)

where the lower-level problem (5b) has the highest priority.

To make the parameter estimation procedure more flex-
ible, constraints may be added to the upper and lower

problem:

min
ps,p̂

mŷ∑
j=1

(ŷj − ŷp(x̂j))
2 (6a)

s.t. ĥ(x̂; ps, p̂) ≥ 0 (6b)

ĝ(x̂; ps, p̂) = 0 (6c)

min
ps,p̃

mỹ∑
j=1

(ỹj − ỹp(x̃j))
2 (6d)

s.t. h̃(x̃; ps, p̃) ≥ 0 (6e)

g̃(x̃; ps, p̃) = 0 (6f)

where (6b) and (6e) also allows for setting bounds on
the variables. The interpretation that the upper-level
problem is minimized in the subspace defined by the
remaining degrees of freedom of the lower-level problem
is not completely valid any longer as the constraints
(6b)-(6c), which contain ps, may restrict the lower-level’s
feasible area. However, the lower-level’s objective function
still has a higher priority than the upper-level one.

2.1 Solving the bilevel program

A common approach to tackle this type of problem is to
replace the lower-level optimization problem by its KKT
conditions, as suggested by Fortuny-Amat and McCarl
(1981). In the rest of this paper, it is assumed that
the lower-level problem is convex and that the Linear
Independence Constraint Qualification (LICQ) (Nocedal
and Wright, 2006) holds at the optimum. In this case,
the KKT conditions are both necessary and sufficient
conditions of optimality. The objective functions will be
convex for any models that are linear in the parameters.
It should be pointed out that the linearity is only required
for the parameters and not the variables. For example, a
polynomial model of any degree will satisfy this criteria.
The KKT conditions for the lower-level problem:

∇ps,p̃L(x̃, ps, p̃, λh̃, λg̃) = 0 (7a)

h̃(x̃; ps, p̃) ≥ 0 (7b)

g̃(x̃; ps, p̃) = 0 (7c)

λh̃ ≥ 0 (7d)

λh̃ � h̃(x̃; ps, p̃) = 0 (7e)

where � represents element-wise multiplication, λhl and
λgl are the Lagrange multiplier vectors, and the La-
grangian is defined as:

L(x̃, ps, p̃, λh̃, λg̃) =

mỹ∑
j=1

(ỹj − ỹp(x̃j))
2 . . .

− λT
h̃
h̃(x̃; ps, p̃) . . .

− λT
g̃ g̃(x̃; ps, p̃). (8)

The final optimization problem becomes:
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A common parameter estimation situation would be the
need to fit a model to a set of data. In this paper, we are
looking into a situation where there are two models, two
data sets, and three sets of parameters. Each model may
have its own parameters, and in addition, the two models
share some, or all, parameters. The two models are:

ŷp(x̂) := ŷ(x̂; ps, p̂) (2a)

ỹp(x̃) := ỹ(x̃; ps, p̃) (2b)

where ps ∈ Rnps , p̂ ∈ Rnp̂ and p̃ ∈ Rnp̃ are tunable
parameter vectors, ps are shared between the two models,
and the x̂ ∈ Rnx̂ and x̃ ∈ Rnx̃ are input vectors. To keep
the notation clean, the shorter and slightly misleading left
hand side of (2) is used. Further, it is assumed that both
models map to scalar outputs:

ŷp : Rnx̂ × (Rnps × Rnp̂) → R (3a)

ỹp : Rnx̃ × (Rnps × Rnp̃) → R. (3b)

If there were no shared parameters, i.e., nps
= 0, then

these two models could be treated separately, e.g., by
solving two least squares problems. A straightforward
extension of that idea to the case with nps

�= 0 would
be to solve a weighted least square problem:

min
ps,p̂,p̃

ŵ

mŷ∑
j=1

(ŷj − ŷp(x̂j))
2 + w̃

mỹ∑
j=1

(ỹj − ỹp(x̃j))
2 (4)

where the subindex j indicates it is a data point. The
values of the weights ŵ and w̃ will have a significant
impact on the final parameters. The focus of this paper
will be where one of these two will have priority over
the other. This corresponds to setting the corresponding
weight “infinitely large”. However, due to limitations in
numerical computing, it may be challenging to find a value
which gives a reliable desired behavior.

Another way of phrasing the desire of prioritizing one over
the other, is to say that the second curve fitting may only
happen in the subspace of those directions which does
not impact the first curve fitting. Such a subspace may
for example exist if there are few data points for the one
with highest priority. In this case, the remaining degrees
of freedom of the shared parameters(?) may be taken by
the other minimization objective. This idea can be posed
as a bilevel program:

min
ps,p̂

mŷ∑
j=1

(ŷj − ŷp(x̂j))
2 (5a)

s.t. min
ps,p̃

mỹ∑
j=1

(ỹj − ỹp(x̃j))
2 (5b)

where the lower-level problem (5b) has the highest priority.

To make the parameter estimation procedure more flex-
ible, constraints may be added to the upper and lower

problem:

min
ps,p̂

mŷ∑
j=1

(ŷj − ŷp(x̂j))
2 (6a)

s.t. ĥ(x̂; ps, p̂) ≥ 0 (6b)

ĝ(x̂; ps, p̂) = 0 (6c)

min
ps,p̃

mỹ∑
j=1

(ỹj − ỹp(x̃j))
2 (6d)

s.t. h̃(x̃; ps, p̃) ≥ 0 (6e)

g̃(x̃; ps, p̃) = 0 (6f)

where (6b) and (6e) also allows for setting bounds on
the variables. The interpretation that the upper-level
problem is minimized in the subspace defined by the
remaining degrees of freedom of the lower-level problem
is not completely valid any longer as the constraints
(6b)-(6c), which contain ps, may restrict the lower-level’s
feasible area. However, the lower-level’s objective function
still has a higher priority than the upper-level one.

2.1 Solving the bilevel program

A common approach to tackle this type of problem is to
replace the lower-level optimization problem by its KKT
conditions, as suggested by Fortuny-Amat and McCarl
(1981). In the rest of this paper, it is assumed that
the lower-level problem is convex and that the Linear
Independence Constraint Qualification (LICQ) (Nocedal
and Wright, 2006) holds at the optimum. In this case,
the KKT conditions are both necessary and sufficient
conditions of optimality. The objective functions will be
convex for any models that are linear in the parameters.
It should be pointed out that the linearity is only required
for the parameters and not the variables. For example, a
polynomial model of any degree will satisfy this criteria.
The KKT conditions for the lower-level problem:

∇ps,p̃L(x̃, ps, p̃, λh̃, λg̃) = 0 (7a)

h̃(x̃; ps, p̃) ≥ 0 (7b)

g̃(x̃; ps, p̃) = 0 (7c)

λh̃ ≥ 0 (7d)

λh̃ � h̃(x̃; ps, p̃) = 0 (7e)

where � represents element-wise multiplication, λhl and
λgl are the Lagrange multiplier vectors, and the La-
grangian is defined as:

L(x̃, ps, p̃, λh̃, λg̃) =

mỹ∑
j=1

(ỹj − ỹp(x̃j))
2 . . .

− λT
h̃
h̃(x̃; ps, p̃) . . .

− λT
g̃ g̃(x̃; ps, p̃). (8)

The final optimization problem becomes:

min
ps,p̂,p̃,λh̃

mŷ∑
j=1

(ŷj − ŷp(x̂j))
2 (9a)

s.t. ĥ(x̂; ps, p̂) ≥ 0 (9b)

ĝ(x̂; ps, p̂) = 0 (9c)

∇ps,p̃L(x̃, ps, p̃, λh̃, λg̃)= 0 (9d)

h̃(x̃; ps, p̃) ≥ 0 (9e)

g̃(x̃; ps, p̃) = 0 (9f)

λh̃ ≥ 0 (9g)

λh̃ � h̃(x̃; ps, p̃) = 0. (9h)

The optimization problem in (9) is a Nonlinear Program
(NLP), and a regular NLP solver may be used. However,
the constraint (9h), which arises from the complementary
conditions of the first order conditions of optimality of
the lower-level problem, may be a tough challenge for the
solver.

2.2 The complementary condition

The complementary condition, e.g., λi · hi = 0, says that
either λi or hi is zero, or both. However, both may not
be nonzero simultaneously. In the bilevel literature, there
exists several ways to handle (9h). The two approaches
given next were suggested by Fortuny-Amat and McCarl
(1981).

Big-M reformulation The complementary condition can
be formulated using a binary variable. If the integer
variable takes the value zi = 1, then the constraint is
active, and a value of 0 indicates it is inactive.

λi · hi = 0 ⇐⇒



hi ≤ M1(1− zi)

λi ≥ 0

λ ≤ M2zi

(10)

where zi ∈ {0, 1}, and M1 and M2 are chosen “large
enough” such that desirable behavior is achieved. If there
is a known finite upper value of hi, then this may be used
as M1. The other constant, M2, is more challenging to
determine.

Special Ordered Set of Type 1 Another approach, which
avoids the determination of any big-M, involves catego-
rizing variables within Special Ordered Sets of Type 1
(SOS1). At most one variable within a SOS1 may be
nonzero. For each complementary condition, a SOS1 is
created containing two variables: {hi, λi}, and the solver
must be informed of these sets.

3. EXAMPLE STUDY

The methodology was inspired by a part of the daily pro-
duction optimization (DPO) challenge within the oil and
gas industry. The DPO focuses on utilizing the production
system in an optimal manner. The goal is to increase
revenue while obeying constraints arising from the facility.
See Fig. 1 for an illustrative setup. The fluid flow from
a well is typically a mixture of oil, gas and water which
must be separated into three single-phase streams by the
facility. As a simple example of a DPO, the revenues come

from selling the oil and gas, whereas the constraints could
be on how much water and gas the facility may process.

Facility 

Fig. 1. An example of a production network with one
reservoir, three wells, and a production facility.

There are (at least) two different categories of oil flow
rates. These will be discussed next.

First, a well’s fluid production may be routed to what
is known as a test separator. From the data collected at
the test separator, the relationship between the downhole
pressure, i.e. the pressure at the wellbore, and the oil flow
rate can be estimated for that well. Because of a limitation
on the availability of the test separator, the most recent
test data for a well may be old.

Second, the total oil production, i.e. the oil production
of all the wells, is measured during operation This mea-
surement is often more accurate as it is both newer/more
frequent and it is used to determine how much oil the
platform exports which needs to be reported for fiscal
reasons. The measurements of the downhole pressures for
the wells are also available during operation.

Both for the well-based and total measurements, it is
assumed that the wells must be in a steady-state before
measurements can be taken. This may imply that there
will be few recordings of the total oil production.

The problem that motivated this paper was the challenge
of merging these two sources of measurements. In the rest
of this section, we will study a constructed example where
the proposed method is applied. The study focuses on
utilizing the available data to estimate the relationship
between the downhole pressure and gaslift rate for the
wells.

3.1 Setup

In this setup, we have chosen to look at three wells.
Each well has a linear model of its relationship between
downhole pressure and oil production:

q̂i(P
w) = αi(P

w
i,0 − Pw) + βi (11)

where αi and βi are the two to-be-determined parameters,
and q̂i(P

w) is the predicted oil production for well i at
the downhole pressure Pw. Finally, βi is the predicted oil
production at downhole pressure Pw

i,0. P
w
i,0 is set to 120,100

and 110 bar for the three wells. For each well test, it is
assumed three data points. These points are given in Fig. 2
as the points marked by blue circles.

The upper-level objective function for the bilevel formu-
lation in (6) is set as the sum of the squared prediction
errors for the well tests of all three wells:
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Jul =

3∑
i=1

3∑
j=i

(
q̂i(P

w
i,j)− qi,j

)2
(12)

where i and j indicates the well and sample number,
respectively.

The prediction of the total oil rate is a sum of these
individual models:

q̂tot(Pj) =

3∑
i=1

q̂i(Pj,i). (13)

with Pj = [Pj,1, Pj,2, Pj,3]. The lower-level objective func-
tion in (6) is set as the sum of the squared prediction errors
of the total oil production:

Jll =

nsl∑
j=1

(q̂tot(Pj)− qtot,j)
2

(14)

where nsl is the number of samples of the total oil rate.
These samples are hereafter referred to as system-level
samples. The system-level samples used in this example
were arbitrarily chosen and are given in Tab. 1. These
samples are assumed to be perfect. I.e., both the sensors
for downhole pressures and the sensor for the total oil rate
have no type of measurement error.

Table 1. The table shows the different opera-
tion points for the system-level samples. Each
column gives the data for one operation point,
where the second to fourth rows give the down-
hole pressures in bar, and the last row tells the

total oil production in Sm3/d.

j 1 2 3 4 5

Well 1 (Pj,1) 117 96 100 100 90
Well 2 (Pj,2) 118 96 104 100 90
Well 3 (Pj,3) 119.5 99 108 100 95

Oil (qtot,j) 17.08 62.50 48.33 56.33 73.83

In this setup, there are only shared parameters, np̃ =
np̂ = 0 and nps

= 6. In the first example, there are no
constraints.

The optimization formulations were formulated by using
CasADi (Andersson et al., 2019) 3.5.5. The nonlinear pro-
grams were solved by Ipopt (Wächter and Biegler, 2006).
The mixed integer nonlinear programs in Section 3.4 were
solved by BONMIN (Bonami et al., 2008). No changes
were made to the default settings of the solver.

3.2 Results

In the example, we started without any system-level sam-
ples in the curve fitting, and then added one sample at
a time. First, the first column of Tab. 1 was added, then
the second, and so on. The results are given in Fig. 2.
For each well, we have plotted, in dashed-style, the result-
ing estimated linear relationships provided an increasing
availability of system-level samples. The small numbers
with arrows indicates the amount of system-level samples
that was used in the estimation of that line. The graphs
resulting from using 3,4 or 5 system-level samples all lie
on top of each other. According to the figure, the slope
of all the final lines are the same as those of the red
lines. Comparing the blue lines, which are estimated purely
based on the well-test data, with the dashed lines, it can
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Fig. 2. The blue filled circles are points measured during
well tests. The blue lines are the linear relationship
given only well-test data. The red lines are the real
(unknown) relationships. The dashed lines are the
estimated linear relationships given more and more
system level points. The small numbers indicates the
number of system level points used in the estimation.

be concluded that all the dashed lines provide a better
approximation of the slopes of the red lines.

It should be pointed out that the biases, the βi’s, are not
perfect. This is to be expected as the system-level samples
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The optimization formulations were formulated by using
CasADi (Andersson et al., 2019) 3.5.5. The nonlinear pro-
grams were solved by Ipopt (Wächter and Biegler, 2006).
The mixed integer nonlinear programs in Section 3.4 were
solved by BONMIN (Bonami et al., 2008). No changes
were made to the default settings of the solver.

3.2 Results

In the example, we started without any system-level sam-
ples in the curve fitting, and then added one sample at
a time. First, the first column of Tab. 1 was added, then
the second, and so on. The results are given in Fig. 2.
For each well, we have plotted, in dashed-style, the result-
ing estimated linear relationships provided an increasing
availability of system-level samples. The small numbers
with arrows indicates the amount of system-level samples
that was used in the estimation of that line. The graphs
resulting from using 3,4 or 5 system-level samples all lie
on top of each other. According to the figure, the slope
of all the final lines are the same as those of the red
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Fig. 2. The blue filled circles are points measured during
well tests. The blue lines are the linear relationship
given only well-test data. The red lines are the real
(unknown) relationships. The dashed lines are the
estimated linear relationships given more and more
system level points. The small numbers indicates the
number of system level points used in the estimation.

be concluded that all the dashed lines provide a better
approximation of the slopes of the red lines.

It should be pointed out that the biases, the βi’s, are not
perfect. This is to be expected as the system-level samples

does not provide information on the value of the individual
βi’s, only the sum of them. Having system-level samples
where some of the wells are shut and other open, should
improve the bias estimation. However, for the current
example with 3 (or more) system-level samples the result
is that the αi’s are determined by the lower-level problem,
and also the sum of the biases. Then the distribution
of this sum to the individual βi’s happens through the
minimization of the upper-level objective function which
focuses on the well-test data.

In Fig. 3, the prediction of the total oil rate is plotted
at a test point. The test point is [119.5, 99.5, 109.5] bar
which was chosen arbitrary except that it does not coincide
with any of the system-level samples. The fact that the
prediction does not change by adding more than 3 points
can be explained by the lack of measurement error or noise
in the total oil rate and the downhole pressures. From
Tab. 1, it can be seen that any system-level point after
the three first points must be a linear combination of the
three previous ones. Thus, no more information can be
extracted from the system for this setup unless wells are
allowed to be shut.
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Fig. 3. The red line is the real oil production at operation
point [119.5, 99.5, 109.5] bar. The blue dot is the
prediction done with only well-test data, whereas the
black also contains system level points. The number
of samples is given on the x-axis.

3.3 Comparison with weighted optimization

As mentioned in Section 2, the suggested approach can
be viewed as a way of performing infinite weighting in
a weighted objective function. E.g., ŵ = 1 and w̃ = ∞
in (4). Here we will illustrate by example that solving
this weighted minimization problem with an increasing w̃
will yield an almost identical solution as the one obtained
by the bilevel programming. In this test, all the well-test
samples and the system-level samples are used.

In Fig. 4 the value of (14) is plotted for different values of
w̃. The weight start at w̃ = 10 and increases by a factor of
10 up to the final value w̃ = 106. The correct value of Jll,
the y-axis value, is zero. It should be zero because there
is no measurement noise on the system-level samples, and
both the model and the real relationship are linear. In

other words, the prediction of the total oil rate should be
perfect at the operation points given in Tab. 1. From the
figure, it can be seen that the Jll keeps decreasing towards
zero as the weight increases. Notice that the scales are
logarithmic. The Jll from the weighting through bilevel
approach gave a value of “numerically” 0, O(10−25).

101 102 103 104 105 106

10−9

10−6

10−3

weight, w̃

J
ll

Fig. 4. The objective function value of the lower-level
problem converges towards the one resulting from the
bilevel approach as the weighting factor increases.

As a side note, When increasing the weight to 1014,
the solver fails. This is reasonable as the problem is ill-
conditioned due to scaling. However, it highlights another
weakness one may encounter when trying to find a “suffi-
ciently” large weight.

To illustrate that the parameters found through the
weighted optimization, with an increasing weight, con-
verges towards those found by the bilevel program, the
norm between the parameters are shown in Tab. 2. The
norm decreases as the weight increases.

Table 2. The table shows the �2-norm of
the difference between the parameters ob-
tained from solving the bilevel program and a
weighted problem with the weight given in the
first column. In the third column, the value of
the lower-level objective function (14) is given.

Weight �2-norm Jll
1.0 · 10+01 1.85 · 10+00 1.21 · 10−01

1.0 · 10+02 9.26 · 10−01 2.48 · 10−02

1.0 · 10+03 1.5 · 10−01 6.39 · 10−04

1.0 · 10+04 1.6 · 10−02 7.24 · 10−06

1.0 · 10+05 1.61 · 10−03 7.33 · 10−08

1.0 · 10+06 1.61 · 10−04 7.34 · 10−10

3.4 Example with constrained bias parameter

In this example the proposed method of weighting through
bilevel programming is applied on a similar setup as in
Section 3.1. Everything remains the same except that there
is introduced a constraint on the bias parameter belonging
to Well 2: β2 ≥ 7.8. The real bias value is 8. All the
well-test samples and system-level samples are used for
the curve fitting.

The Big-M method mentioned in Section 2 was used to
deal with the complementary condition. The M ’s in (10)
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were set to M1 = M2 = 100. This value was large enough
to give the correct behavior.

The resulting linear predictors are shown in Fig. 5. The
bias parameter of Well 2 is at the given constraint: β2 =
7.8. As before, the slopes of the estimated lines and the red
lines are all the same according to the figure. The lines for
both Well 1 and Well 3 is shifted downwards. By looking
at the figures, one may be convinced that these two shifts
do indeed reduce the prediction error with respect to the
well-test data; the green lines are moved “closer to” the
blue circles.

4. CONCLUSION

This paper presented an application of bilevel program-
ming where the formulation was used to introduce infi-
nite weighting. In the studied example, we saw that the
proposed method allows for prioritization without having
to determine a weighting factor. A disadvantage of the
proposed method, compared to the weighting approach, is
that integer decision variables will be introduced if there
are constraints on the lower-level problem and a Mixed
Integer Nonlinear Program (MINLP) solver is required
instead of an NLP solver. MINLP solvers are typically
slower than its integer-free counterpart. Nonetheless, the
method removes issues with ill-conditioned formulations
due to a large weight. Further, as no weight is used, the
tuning process is eliminated.
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Fig. 5. The blue filled circles are points measured during
well tests. The red lines are the real (unknown)
relationships. The dashed lines are those obtained
with no constraints. The green lines were estimated
with the constraint β2 ≥ 7.8
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