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A B S T R A C T

A common approach for finding the direction of ocean waves is to use the phase-time-path-differences (PTPDs)
between a static array of various types of sensors mounted on either the sea surface or seabed. However,
some practical drawbacks of such arrays are that they tend to be expensive, difficult to install, and fixed
in location. We show that the PTPD approach can be generalized to a portable shipboard array of spatially
distributed sensors rendering it more practical. In this respect, we derive a nonlinear PTPD model for shipboard
sensor arrays and prove that the wave direction and wave number can be resolved from a minimum of
three noncollinear sensors using observability analysis. Moreover, based on our PTPD model, we propose an
unscented Kalman filter algorithm for online estimation of the wave direction and wave number, which offers
a convenient framework for adding multiple measurements and incorporating uncertainties. Our experimental
results from model basin testing with a model ship equipped with several inertial measurement units (IMUs)
confirm that the wave direction and wave number can be estimated from the wave-induced motions of a
surface vessel with a minimum of three noncollinear IMUs. In this study, we consider parameter estimation
for regular waves and assume a dynamically positioned surface vessel with small roll and pitch angles.
1. Introduction

The physical separation distance between two local sensors embed-
ded on the sea surface introduces a delay between the recorded waves
passing through them. This delay manifests itself as either a phase,
time, or path difference (PTPD) between the wave signals recorded in
each sensor. A common technique for finding the direction of ocean
waves is to use the PTPDs between the recorded wave signals from
several such sensors (e.g., pressure transducers, wave staffs, wave
probes, lasers, echo sounders, current meters) mounted on either the
sea surface or seabed. This configuration of sensors in the ocean is
generally called a wave array, and several works have been reported
analyzing the capabilities of such arrays to resolve the wave direction
(Esteva, 1976, 1977; Fernandes et al., 1988, 2000; Draycott et al.,
2015, 2016, 2018; Luo et al., 2020). However, some important practical
drawbacks of wave arrays are that they tend to be expensive, difficult
to install, and fixed in location with little flexibility to changes in the
design after installation.
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Shipboard arrays, on the other hand, are more practical, offer-
ing a portable platform that is generally not location restricted and
considerably more flexible when it comes to making changes to the
installation. Furthermore, shipboard arrays can be used for wave esti-
mation without ship information since the PTPD approach is inherently
signal-based (i.e., estimation is done directly from sensor measure-
ments). This useful feature distinguishes the PTPD approach from other
signal-based methods using machine learning (Mak and Düz, 2019;
Duz et al., 2019), which require ship-specific datasets, thus limiting its
generalization to other vessels. The PTPD approach also differs from
shipboard model-based methods, which are based on the wave buoy
analogy (Waals et al., 2002; Tannuri et al., 2003; Nielsen, 2006; Pascoal
and Guedes Soares, 2009; Nielsen, 2017; Brodtkorb et al., 2018) and
use sensor measurements together with response amplitude operators
(RAOs). RAOs are ship-dependent transfer functions that enable the
estimation of the amplitude and direction of waves. However, without
ship information, the wave amplitude cannot be estimated in the PTPD
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approach with shipboard arrays. Moreover, to our knowledge, only a
few studies have considered using a shipboard array of sensors for wave
estimation (Fu et al., 2011; Udjus, 2017; Heyn et al., 2017), and these
studies only consider the wave direction, although it is theoretically
possible to obtain the wave number from the same PTPD data (Donelan
et al., 1996; Fernandes et al., 2001).

A prerequisite for the success of both shipboard and standard wave
arrays is accurate measurements of the PTPDs. The PTPD is susceptible
to several sources of error such as sensor noise, sensor imperfections
(e.g., nonlinear sensitivity character and non-orthogonality and mis-
alignment character between the inner sensitive axes), inexact sensor
locations and alignment when installed, and, most prominently, the
sensor sampling rate. Although some of the literature mentioned above
has shown awareness of some of these errors, only a few works have
attempted a formal analysis investigating their quantitative impact
(Pascal et al., 2009; Pascal and Bryden, 2011). However, those analyzes
are mainly restricted to sensor positioning errors with little account
taken for the other abovementioned sources. Additionally, despite the
prevalence of these errors, there currently does not seem to exist a
method indicating the expected uncertainty in the wave estimates.

One of the main goals of the present study is to promote some
of the attractive features of inertial measurements units (IMUs) that
make them particularly suitable as sensors for shipboard wave arrays.
IMUs may add more design flexibility and PTPD accuracy since they are
small, lightweight, cheap, easy to install, and have high sampling rates.
Despite its attractive features, only a few works have, to our knowledge,
considered using shipboard IMU arrays for wave direction estimation
(Udjus, 2017; Heyn et al., 2017). In the latter, the authors mount
multiple IMUs along the hull of a model-ship and use the PTPD from
estimated heave accelerations to determine the direction of incoming
harmonic waves. However, it is not clear from the previous study how
many IMUs are needed, how far they should be separated, or how they
should be arranged to attain reliable estimates of the wave direction.

In this paper, we extend earlier results by the following contri-
butions: First, we derive a nonlinear PTPD model for surface vessels
and prove using observability analysis that the wave number can, in
addition to the wave direction, also be resolved from a minimum of
three noncollinear sensors measuring regular harmonic waves, assum-
ing a dynamically positioned surface vessel with small roll and pitch
angles. Second, we propose an unscented Kalman filter (UKF) algorithm
for online estimation of the wave direction and wave number. Third,
we offer an extended error analysis discussing and quantifying several
sources of error associated with shipboard arrays. Some of these errors
are then reflected in the error covariance of the UKF, which gives
an estimate of the uncertainty to be expected in the computed wave
estimates. To our knowledge, we are the first to offer this type of
error analysis and propose a method capable of yielding uncertainties
in the wave estimates. Fourth, we highlight some important practical
considerations regarding the number, separation, and arrangement of
sensors from traditional wave arrays that should also be considered
when designing shipboard arrays. Finally, the estimation results from
several wave tank experiments considering regular waves and a model
ship equipped with several IMUs are shown. The results, in general,
verify that the wave direction and wave number can be estimated from
a minimum of three IMUs.

2. Methodology

It takes time for a wave to travel from one location to another. This
travel time induces a phase-time-path-difference (PTPD) between the
wave elevation signals recorded at each (sensor) location, which, in
turn, can be used to uniquely determine the wave direction and wave
number. In this section, we derive a kinematic PTPD model for surface
vessels and prove that the relative wave direction and wave number can
be resolved uniquely from a minimum of three noncollinear arranged
sensors, assuming regular harmonic waves and small roll and pitch
2
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angles. The small-angle assumption, which we deem appropriate for
roll and pitch angles up to 2◦, represents a first step in the research
n wave estimation from shipboard sensor arrays utilizing the PTPD
oncept.

.1. A phase-time-path-difference model for surface vessels

The PTPD between two signals recorded at two spatially separated
ocations on a surface vessel can be modeled by considering the dis-
ance a wave must travel to get from one sensor to another. The
eneral scenario is depicted in Fig. 1: A dynamically positioned vessel
s being struck by long-crested waves that must travel a distance 𝑑12
n the tangent plane {𝑤} to get from sensor {𝑠2} to {𝑠1}, which, in
urn, creates a delay between the signals in these sensors. The delay,
epresented by the distance or path difference 𝑑12, is time-varying
ecause of the wave-induced vessel roll and pitch motions (the distance
etween the sensors in the tangent plane {𝑤} changes as the vessel
egins to tilt due to the wave passing through it; see Fig. 1b) and can
e expressed mathematically by transforming the body-fixed position
ector 𝑝𝑠1𝑠2 to the tangent plane and extracting the 𝑥-component of this
ector, i.e.,
𝑤
𝑠1𝑠2

= 𝐑𝑤
𝑠1
𝐩𝑠1𝑠1𝑠2 , (1)

where 𝐩𝑤𝑠1𝑠2 is the position of {𝑠2} relative {𝑠1} expressed in {𝑤}, 𝐩𝑠1𝑠1𝑠2
is the coordinate vector of {𝑠2} relative {𝑠1} expressed in {𝑠1}, and 𝐑𝑤

𝑠1
is a rotation matrix representing a coordinate transformation from {𝑠1}
to {𝑤}. The matrix 𝐑𝑤

𝑠1
can be described by a sequence of principal

rotations based on the 𝑧𝑦𝑥-convention (Fossen, 2021) with angles 𝛽, 𝜋,
𝜃, and 𝜙 (Fig. 2). Following this convention, the resulting transform can
then be expressed as

𝐑𝑤
𝑠1

= 𝐑𝑧,𝛽𝐑𝑥,𝜋𝐑𝑦,𝜃𝐑𝑥,𝜙 =
⎡

⎢

⎢

⎣

𝑐𝛽𝑐𝜃 𝑐𝛽𝑠𝜃𝑠𝜙 + 𝑠𝛽𝑐𝜙 𝑐𝛽𝑠𝜃𝑐𝜙 − 𝑠𝛽𝑠𝜙
𝑠𝛽𝑐𝜃 𝑠𝛽𝑠𝜃𝑠𝜙 − 𝑐𝛽𝑐𝜙 𝑠𝛽𝑠𝜃𝑐𝜙 + 𝑐𝛽𝑠𝜙
𝑠𝜃 −𝑐𝜃𝑠𝜙 −𝑐𝜃𝑐𝜙

⎤

⎥

⎥

⎦

,

where 𝑠 ⋅ = sin(⋅) and 𝑐 ⋅ = cos(⋅). Using the rotational transform above,
an expression for the position vector 𝐩𝑤𝑠1𝑠2 can be obtained by carrying

out the multiplication given by (1), which yields

𝐩𝑤𝑠1𝑠2 =
⎡

⎢

⎢

⎣

𝑅12
(

𝑐𝛽𝑐𝜃𝑐𝛼12 + 𝑐𝛽𝑠𝜃𝑠𝜙𝑠𝛼12 + 𝑠𝛽𝑐𝜙𝑠𝛼12
)

+ 𝑧12(𝑐𝛽𝑠𝜃𝑐𝜙 − 𝑠𝛽𝑠𝜙)
∗
∗

⎤

⎥

⎥

⎦

,

(2)

where the body-fixed coordinate vector 𝐩𝑠1𝑠1𝑠2 is given in terms of
cylindrical coordinates (𝑅12, 𝛼12, 𝑧12) which, respectively, represent the
radial distance, angular displacement in the horizontal plane, and sen-
sor height separation of {𝑠2} with respect to {𝑠1}. The path difference
𝑑12 is simply the 𝑥-component of (2) and the time it takes the wave to
travel from {𝑠2} to {𝑠1} is given by

𝑡12 =
𝑑12
𝑐

=
𝑅12

(

𝑐𝛽𝑐𝜃𝑐𝛼12 + 𝑐𝛽𝑠𝜃𝑠𝜙𝑠𝛼12 + 𝑠𝛽𝑐𝜙𝑠𝛼12
)

+ 𝑧12(𝑐𝛽𝑠𝜃𝑐𝜙 − 𝑠𝛽𝑠𝜙)
𝑐

, (3)

where 𝑡12 represents the time difference between the recorded signals in
{𝑠1} and {𝑠2}. The wave celerity 𝑐 (also known as the phase velocity) is
iven in terms of the wave frequency 𝜔 and wave number 𝑘 by 𝑐 = 𝜔∕𝑘.
sing this fact, the time difference (3) can instead be expressed as a
hase difference in the case of a harmonic wave, i.e.,

12 = 𝑘𝑅12
(

𝑐𝛽𝑐𝜃𝑐𝛼12+𝑐𝛽𝑠𝜃𝑠𝜙𝑠𝛼12+𝑠𝛽𝑐𝜙𝑠𝛼12
)

+𝑘𝑧12(𝑐𝛽𝑠𝜃𝑐𝜙−𝑠𝛽𝑠𝜙), (4)

here 𝛩12 = 𝜔𝑡12 is the time-varying phase difference between {𝑠1}
nd {𝑠2} as a function of 𝑘, 𝛽, 𝜙, and 𝜃. For small 𝜙 and 𝜃 angles
characteristic of large vessels in moderate sea states), (4) reduces to
he following expression

≈ 𝑘𝑅 cos(𝛽 − 𝛼 ), (5)
12 12 12
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Fig. 1. Snapshots showing three independent situations of a dynamically positioned surface vessel being struck by long-crested waves. The induced rigid body vessel motions are
recorded by two spatially distributed sensors denoted {𝑠1} and {𝑠2} with sensor axes (𝑥𝑠1 , 𝑦𝑠1 , 𝑧𝑠1 ) and (𝑥𝑠2 , 𝑦𝑠2 , 𝑧𝑠2 ) aligned with the body frame {𝑏}. The position of {𝑠2} relative to
{𝑠1} is denoted by the body-fixed vector 𝑝𝑠1𝑠2 and angle 𝛼12. The tangent plane {𝑤} moves up and down with the vessel and is defined by its 𝑥𝑤, 𝑦𝑤, and 𝑧𝑤 axes with the origin
coinciding with the chosen reference sensor (here {𝑠1}). The 𝑥𝑤 axis is defined such that it points in the same direction as the propagating waves, the 𝑧𝑤 axis points upwards,
nd the 𝑦𝑤 axis completes the right-handed coordinate system. The distance 𝑑12 between {𝑠1} and {𝑠2} causes a delay in the recorded signals which depends on the roll (𝜙), pitch
𝜃), and relative wave direction (𝛽) angles. The relative wave direction 𝛽 is defined as the counterclockwise angle from 𝑥𝑤 to 𝑥𝑠1 projected onto the tangent plane {𝑤}. Starboard

incident waves are defined by 𝛽 ∈ (−180, 0]◦, whereas port incident waves are defined by 𝛽 ∈ (0, 180]◦. When 𝛽 = 0◦, the waves hit the stern first as the boat heading axis (𝑥𝑠1 ) is
oriented in the same direction as the waves (𝑥𝑤).
Fig. 2. The rotation matrix from {𝑠1} to {𝑤} can be described by a combination of two rotation sequences based on the 𝑧𝑦𝑥-convention: A sequence from tangent plane {𝑤} to
ntermediate tangent plane {2} (with 𝑧-axis pointing downwards) and a sequence from {2} to {𝑠1}. The principal rotations are given in terms of angles 𝛽, 𝜋, 𝜃, and 𝜙.
which is the standard (constant) phase difference equation commonly
found in the literature on wave arrays using the PTPD concept and
is the main research focus of this article. Several experiments were
performed verifying the correctness of the small-angle assumption. In
all experiments considered, the vessel roll and pitch angles were within
the range ±2◦ (Section 5.2), and the height separation between the
lowest and highest sensor was measured to be around 16 cm. Together,
these values justify the transition from (4) to (5), and our experimental
results (Section 5.5.1) also confirm that the small-angle model worked
well for those values. However, it is presently unclear how far the roll
and pitch angles can be extended before the small-angle assumption is
violated.

2.2. Analytical solution

For small roll and pitch angles, an analytical solution of the wave
direction can be found by adding an additional sensor {𝑠3} to the
surface vessel in Fig. 1, which yields an additional phase difference
3

measurement, i.e.,

𝛩13 ≈ 𝑘𝑅13 cos(𝛽 − 𝛼13). (6)

Expanding (5) and (6), and grouping the measurements into a 2 × 1

matrix, yields the system
[

𝛩12
𝛩13

]

= 𝑘
[

𝑅12 cos 𝛼12 𝑅12 sin 𝛼12
𝑅13 cos 𝛼13 𝑅13 sin 𝛼13

] [

cos 𝛽
sin 𝛽

]

.

The wave direction can be isolated by applying the 2 × 2 inverse to the

right-hand side above, thus leaving us with
[

cos 𝛽
sin 𝛽

]

= 1
𝑘𝑅12𝑅13 sin(𝛼13 − 𝛼12)

[

(𝑅13 sin 𝛼13)𝛩12 − (𝑅12 sin 𝛼12)𝛩13
(𝑅12 cos 𝛼12)𝛩13 − (𝑅13 cos 𝛼13)𝛩12

]

.

Hence, the analytical expression of the wave direction becomes

𝛽 = arctan

(

[(𝑅12 cos 𝛼12)𝛩13 − (𝑅13 cos 𝛼13)𝛩12]∕sgn(𝐷)
)

, (7)

[(𝑅13 sin 𝛼13)𝛩12 − (𝑅12 sin 𝛼12)𝛩13]∕sgn(𝐷)
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where

𝐷 = 𝑘𝑅12𝑅13 sin(𝛼13 − 𝛼12). (8)

The above analysis shows that the wave direction can be uniquely
determined from (7) provided that (i) a minimum of three sensors are
used, and (ii) they are arranged in a noncollinear configuration on the
vessel—thus ensuring that (8) is non-zero.

Eq. (7) is arguably the de facto standard for computing the mean
wave direction with arrays (Esteva, 1976, 1977; Fernandes et al., 1988,
2000; Draycott et al., 2015, 2016, 2018; Luo et al., 2020). However,
this approach has some important drawbacks that render it unsuitable
for applications requiring real-time or online estimates of the wave
direction. In particular, the analytical solution (7) neither provides a
measure of uncertainty in the wave direction estimates (despite the
phase difference and sensor locations being subject to error) nor an
estimate of the wave number, although, as we shall see, can be obtained
from the same set of measurements. Also, the analytical solution does
not offer a convenient framework for adding additional measurements.
The Kalman filter framework will alleviate all these issues.

2.3. Kalman filter state–space model

Let 𝑅𝑖𝑗 and 𝛼𝑖𝑗 be the polar coordinates of sensor {𝑠𝑗} (slave) relative
to sensor {𝑠𝑖}, where {𝑠𝑖} is taken to be the chosen master/reference
sensor. Using this notation, (5) and (6) can be expressed more generally
as

𝛩𝑖𝑗 = 𝑘𝑅𝑖𝑗 cos(𝛽 − 𝛼𝑖𝑗 ), (9)

where 𝛩𝑖𝑗 represents the phase difference between the heave signals
recorded by sensors {𝑠𝑖} and {𝑠𝑗}. Expanding (9) and introducing the
state vector 𝐱 = [𝑥1, 𝑥2]⊤ = [𝛽, 𝑘]⊤, the expression can be reformulated
into

𝛩𝑖𝑗 =
[

𝑅𝑖𝑗 cos 𝛼𝑖𝑗 𝑅𝑖𝑗 sin 𝛼𝑖𝑗
]

[

𝑥2 cos 𝑥1
𝑥2 sin 𝑥1

]

.

For 𝑁 ≥ 3 (number of sensors), the final Kalman filter state–space
model becomes

�̇� = 𝟎,

𝐳 = 𝐡(𝐱) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑅12 cos 𝛼12 𝑅12 sin 𝛼12
𝑅13 cos 𝛼13 𝑅13 sin 𝛼13

⋮ ⋮
𝑅1𝑁 cos 𝛼1𝑁 𝑅1𝑁 sin 𝛼1𝑁
𝑅23 cos 𝛼23 𝑅23 sin 𝛼23

⋮ ⋮
𝑅2𝑁 cos 𝛼2𝑁 𝑅2𝑁 sin 𝛼2𝑁

⋮ ⋮
𝑅(𝑁−1)𝑁 cos 𝛼(𝑁−1)𝑁 𝑅(𝑁−1)𝑁 sin 𝛼(𝑁−1)𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
configuration matrix

[

𝑥2 cos 𝑥1
𝑥2 sin 𝑥1

]

,

(10)

where 𝐳 = [𝛩12, 𝛩13,… , 𝛩1𝑁 , 𝛩23, … , 𝛩2𝑁 , … , 𝛩(𝑁−1)𝑁 ]⊤. The
dimension of 𝐳 is given by the maximum number of distinct phase
difference measurements associated with 𝑁 , which can be calculated
using (23).

2.4. Observability results

It was shown in Section 2.2 that a minimum of three noncollinear
arranged sensors is needed to determine the wave direction uniquely.
The analysis, however, does not show that the wave number may
also be resolved from the same set of measurements, which—based
on the reported literature (Donelan et al., 1996; Fernandes et al.,
2001)—seems to be a less known fact. This interesting fact can be
proved by showing that the state–space model in (10) is observable
4

for a minimum of two distinct PTPD measurements (three noncollinear
sensors). The results from the observability analysis (see Appendix A)
are summarized in the following theorem:

Theorem 1 (Minimum Sensor Configuration). Consider a single harmonic
wave with wave number 𝑘 and relative wave direction 𝛽 (Fig. 1), then 𝑘
and 𝛽 can be uniquely determined from a dynamically positioned surface
vessel with small roll and pitch angles using a minimum of three noncollinear
spatially distributed sensors measuring the vessel’s heave motion.

Proof. See Appendix A.

3. Estimation algorithm and error analysis

The PTPD state–space model (10) is by nature nonlinear, indicating
that nonlinear estimation techniques should be considered to find the
wave direction and wave number. It is worth emphasizing that the
wave number should be positive, which introduces a constraint on the
state estimate. In this section, we look at two different methods for
achieving the above goals, namely, the extended Kalman filter (EKF)
and unscented Kalman filter (UKF) algorithms (Brown and Hwang,
1997; Julier and Uhlmann, 2004). Although the EKF is more renowned
and conceptually easier to grasp, the UKF has advantages for highly
nonlinear systems containing state constraints.

3.1. Extended vs. unscented Kalman filter

When a state–space representation contains nonlinearities in either
the process model, measurement model, or both, the EKF algorithm
has proven to be a viable option, capable of providing reliable state
estimates for a wide range of applications. However, despite its success,
the EKF suffers from some serious limitations.

In short, the EKF algorithm linearizes all nonlinear transformations
related to the noise covariance progressions and inserts them in place
of the linear transformations of a regular Kalman filter. While this
estimation strategy has proven successful for many systems, in partic-
ular those whose dynamics can be considered almost linear, the EKF
has not demonstrated the same level of success for highly nonlinear
systems (Julier and Uhlmann, 2004). The reason for this is mainly
due to its inherent use of linearization, which loses accuracy as the
transformations become increasingly nonlinear.

When constraints are imposed on states, the state estimates from
an EKF do not always converge to the true values (Kandepu et al.,
2008). The standard way of handling constraints in the EKF is known as
‘‘clipping’’ (Haseltine and Rawlings, 2005), which involves projecting
the estimates onto the boundary of the feasible region whenever they
are outside it. The drawback of this strategy is that the constraint
information has no effect on the covariances of the EKF estimates.

The UKF overcomes the aforementioned limitations by eliminating
the need for linearization altogether, while simultaneously updating the
covariances to account for constraints. In short, the UKF samples a fixed
number of points around the mean (called sigma points) and propagates
these points through the associated nonlinear transforms to obtain new
sample points—from which new estimates of the mean and covariance
are obtained. If the sampled points are outside the feasible region, they
are projected onto the boundary, similar to ‘‘clipping’’, except that the
updated covariance is based on these points instead.

3.2. UKF algorithm

The UKF may be applied to systems of the form

𝐱𝑘+1 = 𝐟 (𝐱𝑘) + 𝐰𝑘, 𝐰𝑘 ∼  (𝟎, 𝐐𝑘),

𝐳𝑘 = 𝐡(𝐱𝑘) + 𝐯𝑘, 𝐯𝑘 ∼  (𝟎, 𝐑𝑘),
(11)

where 𝐟 and 𝐡 represent nonlinear vector fields, 𝐱𝑘 ∶= 𝐱(𝑘𝑇𝑠) and

𝐳𝑘 ∶= 𝐳(𝑘𝑇𝑠) constitute the sampled state and measurement vectors
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with 𝑇𝑠 and 𝑘 being the respective sampling time and number (not to
e confused with the wave number), and 𝐰𝑘 and 𝐯𝑘 represent white

Gaussian process and measurement noise with covariance 𝐐𝑘 and 𝐑𝑘,
respectively. Discretizing (10) and comparing it with (11) shows that
the former fits the required model form, with 𝐟 (𝐱𝑘) = 𝐱𝑘 and 𝐯𝑘 and 𝐰𝑘
discussed in Sections 3.3 and 3.4.

Our UKF wave estimation algorithm is outlined in Algorithm 1;
for relevant background material on the UKF and constraint handling,
we refer to Brown and Hwang (1997), Julier and Uhlmann (2004),
Kandepu et al. (2008) and Simon (2010) and references therein.

The UKF uses a deterministic sampling scheme to select its sample
or sigma points, as it is commonly called. In this paper, we have chosen
the following set of sigma points

𝑋(𝑖)
𝑘 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�̂�−𝑘 , 𝑖 = 0

�̂�−𝑘 +
√

(𝐿 + 𝜆)�̂�−
𝑘 , 𝑖 = 1,… , 𝐿

�̂�−𝑘 −
√

(𝐿 + 𝜆)�̂�−
𝑘 , 𝑖 = 𝐿 + 1,… , 2𝐿

(12)

where

𝜆 = 𝛼2(𝐿 + 𝜅) − 𝐿

𝐿 = dimension of state 𝐱𝑘
𝛼 = spread of samples about the mean
𝜅 = scaling factor

If the sigma points are outside the feasible region, they are projected
onto the boundary using the projection

𝑃 (�̂�2) =

{

𝜖, �̂�2 < 𝜖
�̂�2, otherwise

(13)

where �̂�2 is the wave number estimate and 𝜖 is a small positive number
representing the boundary of the feasible region. The sigma points
are then propagated through the nonlinear transform (10) to yield
a new cloud of transformed points. The statistics of these points are
then computed by weighting them together using the following sets of
weights

𝑊 (0)
𝜇 = 𝜆

𝜆 + 𝐿
, 𝑊 (0<𝑖≤2𝑁)

𝜇 = 1
2(𝜆 + 𝐿)

, (14)

𝑊 (0)
𝜎 = 𝑊 (0)

𝜇 + 1 − 𝛼2 + 𝛾, 𝑊 (0<𝑖≤2𝐿)
𝜎 = 1

2(𝜆 + 𝐿)
. (15)

3.3. Error analysis

Several sources of error are associated with shipboard arrays that
may inhibit high-quality wave estimates from the UKF. The errors can
generally be grouped as (a) errors caused by sensor imperfections and
oscillatory and/or transient effects on the sensors due to structural
vibrations (e.g., from the engine) and external environmental condi-
tions, and (b) errors caused by the array construction (e.g., inexact
sensor locations and alignment). These errors ultimately affect the
obtained phase differences, which, in turn, are used to estimate the
wave direction and wave number. It is, therefore, essential to either
remove these errors or quantify the uncertainties caused by them so
that we may confidently decide whether or not to rely on the wave
estimates. In Sections 3.3.1 and 3.3.2 we quantify and discuss strategies
for removing the errors caused by (a) and (b), respectively.

3.3.1. Sensor errors
The noise 𝐯𝑘 in (11) reflects the uncertainty associated with the

measurement 𝐳𝑘, which, in this case, is the measured phase difference
𝛩𝑖𝑗 . The error in 𝛩𝑖𝑗 can be linked to three primary sources: (i) high-
frequency sensor noise and oscillatory and transient effects caused
by structural vibrations and/or external environmental conditions, (ii)
5

deterministic sensor imperfections such as axis misalignment, nonlinear d
Algorithm 1 Wave algorithm

procedure UKF(�̂�−𝑘 , �̂�
−
𝑘 , 𝐳𝑘)

𝑋(𝑖)
𝑘 ← Sigma(�̂�−𝑘 , �̂�

−
𝑘 ) ⊳ Compute sigma points using (12)

𝑋(𝑖)
𝑐 ← 𝑃 (𝑋(𝑖)

𝑘 ) ⊳ Project sigma points using (13)

�̂�−𝑘 ←
∑2𝐿

𝑖=0 𝑊
(𝑖)
𝜇 𝑋(𝑖)

𝑐 ⊳ Compute the apriori state estimate with

(14)

�̂�−
𝑘 ←

{
∑2𝐿

𝑖=0 𝑊
(𝑖)
𝜎 (𝑋(𝑖)

𝑐 − �̂�−𝑘 )(𝑋
(𝑖)
𝑐 − �̂�−𝑘 )

⊤} +𝐐𝑘 ⊳ Compute the

apriori error covariance with (15)

𝑍(𝑖)
𝑘 ← 𝐡

(

𝑋(𝑖)
𝑐
)

⊳ Propagation of sigma points using (10)

�̂�−𝑘 ←
∑2𝐿

𝑖=0 𝑊
(𝑖)
𝜇 𝑍(𝑖)

𝑘 ⊳ Predicted measurement

�̂�𝑘 ←
{
∑2𝐿

𝑖=0 𝑊
(𝑖)
𝜎 (𝑍(𝑖)

𝑘 − �̂�−𝑘 )(𝑍
(𝑖)
𝑘 − �̂�−𝑘 )

⊤} + 𝐑𝑘 ⊳ Compute the

innovation covariance

�̂�𝐱𝐳
𝑘 ←

∑2𝐿
𝑖=0 𝑊

(𝑖)
𝜎 (𝑋(𝑖)

𝑐 − �̂�−𝑘 )(𝑍
(𝑖)
𝑘 − �̂�−𝑘 )

⊤ ⊳ Compute the

cross-covariance

𝐊𝑘 ← �̂�𝐱𝐳
𝑘 �̂�−1𝑘 ⊳ Compute the Kalman gain

�̂�𝑘 ← �̂�−𝑘 +𝐊𝑘(𝐳𝑘 − �̂�−𝑘 ) ⊳ Compute posterior state estimate

�̂�𝑘 ← �̂�−
𝑘 −𝐊𝑘�̂�𝑘𝐊⊤

𝑘 ⊳ Compute posterior error covariance

return �̂�𝑘, �̂�𝑘

end procedure

sensitivity character, and stochastic bias behavior, and (iii) insufficient
sensor sampling rate. Although temporal aliasing due to (iii) may also
be a concern, the effect is usually minimized by the high inner sampling
rates (typically ≥ 1 kHz) employed in today’s IMU technology.

The high-frequency noise content related to (i) may be alleviated by
applying a digital lowpass filter, which attenuates noise residing out-
side the predefined passband (in this application, the cut-off frequency
was selected above the maximal wave frequency).

The effects of (ii) will generally manifest themselves as a bias in the
specific force measurements of the accelerometers, further impacting
the computed phase difference. One possible strategy to resolve the
axis misalignment offset is to compare the measured specific force with
the gravitational vector during some time when the average linear
acceleration of the vessel is known to be zero, and the vessel is assumed
to be well balanced (i.e., 𝜙 = 𝜃 = 0). This approach will work when the
sensor biases can be considered negligible. Assuming that the above
assumptions hold, the angle offset in roll and pitch between the sensor
and body frames can then be estimated through

𝛿𝜙 ≈ arctan

(

𝑓𝑦
𝑓𝑧

)

, 𝛿𝜃 ≈ arctan

(

𝑓𝑥
√

𝑓 2
𝑦 + 𝑓 2

𝑧

)

,

where 𝛿𝜙 and 𝛿𝜃 are the respective roll and pitch offset angles, and
(𝑓𝑥, 𝑓𝑦, 𝑓𝑧) denote the specific force measurements from the accelerom-
eters (Fossen, 2021). The heading angle offset can, in general, not be
determined from accelerometers alone, but may be estimated from a
magnetometer. The error related to the nonlinear sensitivity behavior
is deemed minimal due to the high-quality sensor technology being
employed.

The error from (iii) can be quantified by examining in detail how the
phase difference is defined and how it is actually measured. The phase
difference between {𝑠𝑖} (master) and {𝑠𝑗} (slave) is defined through the
relationship

𝛩𝑖𝑗 = 𝜔𝑡𝑖𝑗 , (16)

where 𝜔 is the frequency of the wave and 𝑡𝑖𝑗 is the time difference
(i.e., the time it takes the wave to travel from {𝑠𝑗} to {𝑠𝑖}). The time

ifference is estimated by measuring the lag (number of samples) 𝐷𝑖𝑗
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between the recorded signals and multiplying it by the sampling time
𝑇𝑠, i.e., 𝑡𝑖𝑗 = 𝑇𝑠𝐷𝑖𝑗 . Assuming that the effects from (i) and (ii) are
andled and do not affect 𝐷𝑖𝑗 , the error resulting from the sampling

time 𝑇𝑠 can be bounded by

|𝑡𝑖𝑗 − 𝑡𝑖𝑗 | ≤ 𝑡max ∶=
𝑇𝑠(𝐷𝑖𝑗 + 1) − 𝑇𝑠𝐷𝑖𝑗

2
=

𝑇𝑠
2
.

The division by two is a property of the algorithm1 we use to obtain
𝐷𝑖𝑗 . If we assume further that 𝜔 is known precisely, then the maximum
phase error due to 𝑇𝑠 can be quantified as

|𝛩𝑖𝑗 − �̂�𝑖𝑗 | ≤ 𝛩max ∶=
𝜔𝑇𝑠
2

. (17)

he phase difference error bound to (17) implies that the true phase
ifference can be located within the interval [−𝜔𝑇𝑠∕2, 𝜔𝑇𝑠∕2] of the

corresponding phase estimate. Based on this knowledge, it is possible
to use a uniform distribution to model the worst-case phase difference
error. However, when the error character can be considered rather
similar to jitter, a Gaussian distribution is more appropriate over that
specific interval and can be adopted with the same variance as the
uniform distribution. The variance is computed as

𝜎2𝛩max
= 1

12

(

𝜔𝑇𝑠
2

−
(

−
𝜔𝑇𝑠
2

)

)2

= 1
12

𝜔2𝑇 2
𝑠 , (18)

nd, hence, the measurement covariance 𝐑𝑘 can finally be quantified
s

𝑘 = 𝜎2𝛩max
𝐼𝑃 ,

here 𝐼𝑃 is a 𝑃 × 𝑃 identity matrix with 𝑃 denoting the number of
istinct phase difference measurements.

.3.2. Sensor positioning errors
In general, the exact position of each shipboard sensor will be

ubject to uncertainty. We can analyze how this uncertainty influences
he predicted phase difference (9) by carrying out the analysis in
ection 2.1 again, but with errors associated with each sensor location.

Consider again the vessel in Fig. 1 and let (𝑥12, 𝑦12, 𝑧12) denote the
xact coordinate location of sensor {𝑠2} (slave) with respect to sensor
𝑠1} (reference/master), which forms the origin of the local frame with
xes perfectly aligned with the vessel body frame. Further, if we define
�̂�12, �̂�12, �̂�12) to be the corresponding estimated sensor location, then the
oordinates of {𝑠2} with respect to {𝑠1} can be written as

12 = �̂�12 + 𝜖𝑥, 𝑦12 = �̂�12 + 𝜖𝑦, 𝑧12 = �̂�12 + 𝜖𝑧,

where we have introduced Gaussian distributed errors 𝜖𝑥, 𝜖𝑦, 𝜖𝑧 with
zero mean and variance 𝜎2 (representative of uncertainties of Type A,
whereas Type B is considered negligible). The relationships above can
be expressed more compactly using vector notation, i.e.,

𝐩𝑠1𝑠1𝑠2 =
⎡

⎢

⎢

⎣

𝑥12
𝑦12
𝑧12

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

�̂�12
�̂�12
�̂�12

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝜖𝑥
𝜖𝑦
𝜖𝑧

⎤

⎥

⎥

⎦

.

Following the exact same derivation as in Section 2.1, the (time-
varying) phase difference equation between {𝑠1} and {𝑠2} with location
uncertainty becomes

𝛩12 = 𝑘
(

�̂�12𝑐𝛽𝑐𝜃 + �̂�12(𝑐𝛽𝑠𝜃𝑠𝜙 + 𝑠𝛽𝑠𝜙)
)

+ 𝑘�̂�12(𝑐𝛽𝑠𝜃𝑐𝜙 − 𝑠𝛽𝑠𝜙)

+𝑘
(

𝜖𝑥𝑐𝛽𝑐𝜃 + 𝜖𝑦(𝑐𝛽𝑠𝜃𝑠𝜙 + 𝑠𝛽𝑠𝜙)
)

+ 𝑘𝜖𝑧(𝑐𝛽𝑠𝜃𝑐𝜙 − 𝑠𝛽𝑠𝜙),

and assuming small roll and pitch angles (i.e., 𝜙 ≈ 0 and 𝜃 ≈ 0), the
expression above reduces to

𝛩12 ≈ 𝑘(�̂�12 cos 𝛽 + �̂�12 sin 𝛽) + 𝑘(𝜖𝑥 cos 𝛽 + 𝜖𝑦 sin 𝛽).

1 For more details see: https://se.mathworks.com/help/signal/ref/
inddelay.html.
6

q

Fig. 3. Bias standard deviation of (20) vs. wave period for various 𝜎. The wave number
𝑘 is computed for the displayed wave periods using the dispersion relation (21) with
constant water depth, 𝑑 = 1.5 m. The results are almost identical for larger water
epths.

f we let �̂�12 = 𝑘(�̂�12 cos 𝛽 + �̂�12 sin 𝛽) be the estimated phase difference,
hen the phase error can be written as

12 − �̂�12 ≈ 𝑘(𝜖𝑥 cos 𝛽 + 𝜖𝑦 sin 𝛽). (19)

rom (19), it is clear that the location uncertainty of each sensor
anifests itself as a constant bias in the estimated phase difference.

n the following, we determine the noise characteristics (i.e., mean and
ariance) of (19) to have a better understanding of its impact on wave
stimation.

If we let 𝑏(𝑘, 𝛽) = 𝑘(𝜖𝑥 cos 𝛽 + 𝜖𝑦 sin 𝛽) denote the state-dependent
onstant bias, then, when calibrated and compensated, the mean can
e considered as

[𝑏(𝑘, 𝛽)] = E[𝑘(𝜖𝑥 cos 𝛽 + 𝜖𝑦 sin 𝛽)]

= 𝑘 cos 𝛽E[𝜖𝑥] + 𝑘 sin 𝛽E[𝜖𝑦]

= 0,

here we have utilized the Gaussian zero-mean assumption of the
ensor positioning errors. Doing the same for the variance, yields

[𝑏(𝑘, 𝛽)2] = E[𝑘2(𝜖𝑥 cos 𝛽 + 𝜖𝑦 sin 𝛽)2]

= 𝑘2
(

cos2 𝛽E[𝜖2𝑥] + 2 sin 𝛽 cos 𝛽E[𝜖𝑥𝜖𝑦] + sin2 𝛽E[𝜖2𝑦 ]
)

= 𝑘2𝜎2,

here we have utilized that 𝜖𝑥 and 𝜖𝑦 are independent random vari-
bles. The noise characteristics above can be generalized to 𝑃 measure-
ents (assuming the same mean and covariance of the location error

or each sensor pair), yielding the mean and covariance information

E[𝐛(𝑘, 𝛽)] = 𝟎𝑃×1
[𝐛(𝑘, 𝛽)𝐛(𝑘, 𝛽)⊤] = 𝑘2𝜎2𝐼𝑃 ,

(20)

here 𝐛(𝑘, 𝛽) = [𝑏1(𝑘, 𝛽), 𝑏2(𝑘, 𝛽),… , 𝑏𝑃 (𝑘, 𝛽)]⊤, 𝑏𝑖(𝑘, 𝛽) =
(𝜖𝑥𝑖 cos 𝛽 + 𝜖𝑦𝑖 sin 𝛽), 𝜖𝑥𝑖 and 𝜖𝑦𝑖 ∼  (0, 𝜎2), and 𝐼𝑃 is a 𝑃 × 𝑃 identity
atrix.

The bias impact on wave estimation can be seen in Fig. 3, which
hows that the standard deviation of the bias is inversely proportional
o the wave period. This result suggests that, for sufficiently long wave
eriods (small frequencies), the biases may be neglected from analysis
ithout incurring substantial errors in the phase difference estimates.

It is worth mentioning that the bias is, in general, not observ-
ble as each new sensor introduces another location error and, conse-
uently, a new bias. This can be verified by augmenting the state–space

https://se.mathworks.com/help/signal/ref/finddelay.html
https://se.mathworks.com/help/signal/ref/finddelay.html
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Table 1
A summary of the initial state estimates, covariances, and internal parameters used in
the UKF.

UKF initialization �̂�−0 = [0, 0.05]⊤

�̂�−
0 = diag([ 𝜋

2

3
, 2])

Process and measurement covariance 𝐐𝑘 = 𝟎2×2
𝐑𝑘 =

( 1
12
𝜔2𝑇 2

𝑠 + 𝑘2𝜎2)𝐼𝑃

UKF parameters 𝐿 = 2, 𝛼 = 0.01, 𝛾 = 2, 𝜅 = 0

model in (10) to include the bias as an unknown state and checking
observability.

3.4. Summary

A summary of the initialization, covariance matrices, and internal
parameters used in our UKF algorithm can be found in Table 1. It is
worth stressing that faster convergence may be achieved by initializing
the wave number to the value given by the dispersion relation, i.e.,

𝜔2 = 𝑘𝑔 tanh(𝑘𝑑), (21)

where 𝑔 is the gravitational constant and 𝑑 is the water depth. In this
paper, however, we chose the initial values in Table 1 to demonstrate
the validity of Theorem 1.

The initial estimated error covariance �̂�−
0 was selected by modeling

he initial wave direction error as a uniform distribution over the
nterval (−𝜋, 𝜋] and approximating it by a Gaussian distribution with
he same variance. The wave number variance was chosen heuristically
ut relatively large, reflecting our uncertainty in the actual value.

The process covariance 𝐐𝑘 was considered zero due to the states
n the process model (10) and conditions of the experiments performed
eing (more or less) constant. However, this value is not universal as 𝐐𝑘

should, in general, be adapted to reflect any discrepancy between the
state model and the properties of the sea environment being considered.
The measurement covariance 𝐑𝑘 was chosen based on our analysis in
Section 3.3.1.

4. Shipboard wave array design

In this section, we highlight some important practical considerations
when designing shipboard wave arrays. As we shall see, care must
be exercised when selecting (a) the separation distance between each
sensor, (b) the geometry of the sensor array, (c) sensor type, and (d)
number of sensors. All these features ultimately contribute towards our
desired end goal—the attainment of accurate estimates of the wave
direction and wave number.

To facilitate analysis, we consider two different types of sensor
arrays (Fig. 4). These arrays will aid us in demonstrating the key issues
with some of the features mentioned above.

4.1. Barber and Doyle criterion

As pointed out by Fernandes et al. (1988, 2000), the criterion
of Barber and Doyle (1956) plays a crucial role in the design and
construction of wave arrays. The criterion states that the separation
distance 𝐷 between two wave sensors should not exceed half the
wavelength 𝜆 of the wave passing through them, i.e.,

𝐷 < 𝜆∕2, (22)

in order for the phase difference between these sensors to be resolved
unambiguously. In other words, as long as (22) is satisfied, the theo-
retical phase difference between the sensors will be restricted to the
interval (−𝜋, 𝜋), thus correctly representing the physical situation. The
7

maximum sensor separation imposed by (22) ultimately implies that the
wave direction and number cannot be resolved for a range of frequen-
cies (Fig. 5). It is thus important to have an idea of the frequency range
of the expected waves and design the separation distances accordingly
using (22). For wind-generated surface gravity waves, the wave periods
generally range between 0.25 and 30 s.

4.1.1. Case study
The problems associated with (22) are illustrated by considering the

polygonal array in Fig. 4a and choosing a wave period for which we
want to resolve the wave direction and number. If we select 𝑇 = 1.0
s and 𝐷 = 1.33 m as our desired wave period and separation distance,
it can be seen that some of the phase differences associated with this
frequency become ambiguous for certain choices of reference sensor
(Fig. 6). When selecting sensor 1 as reference, the separation distance to
sensor 2 and 4 exceeds the limit imposed by 𝑇 = 1.0 s (i.e., 𝑅12 = 𝑅14 =
𝐷 = 1.33 > 0.7806 m), whereas when sensor 3 is chosen as reference,
all separation distances (𝑅31 = 𝑅32 = 𝑅34 = 𝐷′ = 0.768 < 0.7806 m) are
within the boundary. Hence, if sensor 1 is naively chosen as a reference,
a range of wave directions cannot be resolved no matter how the sensor
pairs are selected. It is, however, worth emphasizing that the latter is
valid in relation to the imposed period 𝑇 = 1.0 s. There will always be
a range of periods (and, consequently, wave directions) that cannot be
resolved based on the sensor configuration (Fig. 5), which implies that
the wave period(s) should also be considered a design criterion of the
system.

4.2. Errors due to sampling rate and sensor location

Unfortunately, the satisfaction of (22) alone is no guarantee to avoid
ambiguity in the computed phase difference. As we saw earlier in
Section 3.3, the sensor sampling rate and location error will induce
errors in the phase difference, which may cause it to exceed the interval
(−𝜋, 𝜋)—especially if the separation distance is close to the limit given
by (22). The situation can be simulated by considering the case study
in Section 4.1.1 and adding random Gaussian noise with variances
given by (18) and (20) to the theoretical phase difference (9). The
simulation results (Fig. 7) confirm that errors from the sampling rate
and sensor locations can potentially ‘‘push’’ the phase difference outside
the desired range, making it increasingly challenging to resolve the true
wave direction and wave number. Therefore, one should consider using
sensors with a sufficiently high sampling rate (e.g., IMUs) and ensure
that their positioning is known accurately as possible when designing
shipboard arrays. A high sampling rate (e.g., 1 kHz) will also reduce
the amount of temporal aliasing.

4.3. Multiple measurements

We emphasize that although the wave direction and wave number
can be resolved from a minimum of three noncollinear sensors, this
number only represents a theoretical lower bound for harmonic waves
and does not, in general, reflect optimality. It is, therefore, interesting
to study how additional sensors and measurements may impact wave
estimation.

Consider the polygonal array in Fig. 4a with 𝐷 = 1.33 m again.
The array consists of four sensors yielding a total of six distinct phase
difference measurements, as calculated by

𝑃max(𝑁) =
𝑁(𝑁 − 1)

2
, (23)

where 𝑁 is the number of sensors and 𝑃max(𝑁) is the maximum number
of distinct phase difference measurements associated with 𝑁 (assuming
nonlinear arrays). The phase measurements are generated using (9) for
multiple wave directions, and Gaussian random noise with variances
given by (18) and (20) is added to simulate the uncertainties caused
by the sensor sampling rate and location errors (see Sections 3.3.1
and 3.3.2). By applying the UKF algorithm (Algorithm 1) to this data
and inspecting the resulting error covariance �̂� , it is possible to see
𝑘
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Fig. 4. An illustration of the different sensor arrays considered in the analysis of Section 4. The sensors {1, 2, 4} in (a) form an equilateral triangle on the horizontal plane with
length 𝐷 and a circumscribed circle at {3} with radius 𝐷′ = 𝐷∕
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Fig. 5. Maximum sensor separation vs. wave period for water depths 𝑑 = 1.5 and
𝑑 = 150 m. The wave number 𝑘 = 2𝜋∕𝜆 has been substituted into (22) and plotted
against a range of wave periods using (21). The maximum separation distances for
which the phase difference can be resolved unambiguously are indicated for wave
periods 𝑇 = 1.0, 1.5, 2.0, 2.5 s, and 𝑑 = 1.5 m. The indicated periods and water depth
were chosen to correspond with the periods and water depth used in experiments
(discussed later).

Table 2
The standard deviation of the wave direction error estimates vs. # phase difference
measurements (𝑃 ) based on the polygonal array (Fig. 4(a)) with 𝐷 = 1.33 m and
𝑁 = 4. The particular sensor pairs considered in each simulation are indicated in the
parentheses next to each number in the column 𝑃 with (—"—) representing the sensor

pairs in the above row. The standard deviations (deg) are computed from 100×
√

�̂�𝑘(1, 1)
at simulation time 𝑡 = 1000 s, where �̂�𝑘(1, 1) is the estimated error covariance of the
UKF corresponding to the wave direction estimate. The multiplication factor of 100 is
used to highlight the overall trend. For each wave direction, the UKF was applied to
phase difference data generated by (9) with wave period 𝑇 = 2.0 s and added Gaussian
andom noise with variances given by (18) and (20) with parameters 𝑇𝑠 = 0.1 s and
𝜎 = 1 cm, respectively. The initial conditions and UKF parameters were identical for
each run (see Table 1).
𝑃 0◦ 30◦ 60◦ 90◦ 120◦ 150◦ 180◦

2 : (1-2,1-3) 3.47 8.48 12.9 14.0 11.3 6.05 3.62
3 : (—"—,1-4) 3.41 4.62 5.17 4.65 3.42 2.67 3.43
4 : (—"—,2-3) 2.89 3.72 4.28 4.10 3.30 2.64 2.89
5 : (—"—,2-4) 2.58 2.67 2.77 2.85 2.79 2.59 2.58
6 : (—"—,3-4) 2.58 2.58 2.58 2.59 2.60 2.59 2.58
8

how the accuracy and covariance of the wave estimates change with
the number of phase difference measurements. The simulation results
(Table 2) indicate that the estimated error covariance decreases by
increasing 𝑃 , which corresponds to the number of independent phase
difference measurements. The results also suggest that after a certain
number of measurements, the improvement in the error variance is
minimal. Hence, additional sensors may have benefits, but only up to
a specific limit.

Furthermore, as 𝑃 (≤ 𝑃max(4) = 6) increases, the estimated error
ovariances approach similar values on all wave directions, culminating
n similarity at 𝑃 = 6. It is worth emphasizing that this pattern is not
eneral but a coincidence resulting from the geometry of the considered
ensor array (Fig. 4a). Due to the symmetry of the sensors, the error
ovariance becomes progressively independent of the wave direction
s 𝑃 → 6. This pattern is, in general, not duplicated for asymmetrical
ensor arrays, which produce a greater spread of values.

.4. Linear arrays

In general, the wave direction and wave number cannot be resolved
niquely from a linear shipboard configuration of two or more sensors.
or instance, if a harmonic wave passes through two sensors at the
ame time, a zero phase difference will be detected and a third non-
ollinear sensor is needed to determine the direction. Without this third
oncollinear sensor, there will be a 180◦ ambiguity in the direction
ince we do not know whether the wave is approaching from left or
ight. However, in the special case where information about the general
ave direction is known beforehand (e.g., close to the shoreline such
s in Hardisty (1988)), shipboard linear arrays may be used to find the
ave direction (Fig. 8). As seen in Fig. 8, the wave direction can be
etermined from two sensors alone, provided that we know which side
he waves are approaching. In this case, if the waves suddenly change
irection to the other side (i.e., between 0 and −𝜋), we get an ambiguity
ithin a mirror symmetry (Fernandes et al., 1988, 2000). Also note

hat for linear arrays to work, the wave number should be known in
dvance.

. Experimental verification

In this section, we give experimental verification of the UKF al-
orithm by applying it to experimental data from multiple shipboard
MUs. The raw IMU data needs to be processed through several steps
uch as data processing, choice of reference sensor, and wave frequency
nd phase difference estimation to ensure that the phase differences are
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Fig. 6. The theoretical phase difference is plotted against the wave direction using (9) for two different choices of reference sensor in the polygonal array (Fig. 4a) with 𝐷 = 1.33
m and 𝐷′ = 0.768 m. For sensor pairs 1–2 and 1–4, several of the phase differences lie outside (−𝜋, 𝜋), whereas for sensor pairs 3-1, 3-2, and 3-4, all reside within (−𝜋, 𝜋).
Fig. 7. Gaussian random noise with variance given by (18) and (20) has been added separately to the phase differences in Fig. 6b. In (a) and (b) we can see how the sensor
sampling time (𝑇𝑠) and location error (𝜎), respectively, may cause some of the phase differences to become ambiguous.
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Fig. 8. Online estimates of the wave direction given by the UKF algorithm (Algorithm
1) with the linear array shown in Fig. 4b (𝐷 = 0.5 m). The phase differences were
imulated using (9) with wave period 𝑇 = 2.0 s and Gaussian random noise with
ariance given by (18) and (20) with 𝑇𝑠 = 0.01 s and 𝜎 = 0.5 cm, respectively. The
ave estimates are based on two sets of measurements (i.e., sensor pair 1–2 and all

ensor pairs 1–2, 1–3, 1–4) with sensor 1 as reference. The wave number is assumed
nown.

btained with as little error as possible. In the following subsections,
e discuss each of these steps. The experimental data considered in this
9

ork was originally collected as part of the Master’s thesis of Udjus
2017).

.1. Experimental design

As explained in Udjus (2017), the authors equipped a 1:90 scaled
odel C/S Inocean Cat I Drillship (CSAD) (Fig. 9) with four spatially
istributed ADIS16364 IMUs along the hull to record the vessel motions
aused by waves. The IMU array configuration considered in the exper-
ments is illustrated in Fig. 10. Each IMU is connected to an Arduino
icroprocesser, which is responsible for sampling the IMU data. The

ime synchronization of all four IMUs was handled by an interrupt
ignal from one (master) Arduino microprocessor to the other (slave)
rduinos. We refer to the Master’s thesis of Udjus (2017) and references

herein for additional details on the hardware and experimental design.
The experiments were carried out in the NTNU Marine Cybernetics

aboratory, which contains a 1.5 m deep wave basin equipped with a
avemaker. The wavemaker is a 6-meter wide paddle operated by an
lectrical servo actuator and has a DHI wave synthesizer for producing
egular and irregular waves.2 The CSAD position and orientation was
onfined using ropes with 1 kg weights attached to each end (Fig. 9).
his setup ensured that motions in surge, sway, and yaw were limited,
hile still allowing nearly free motions in heave, roll, and pitch.

A total of 52 regular wave experiments were carried out in the wave
asin. For each relative wave direction {0◦, 30◦, 60◦, 90◦, 120◦, 150◦,

2 For more details see: https://www.ntnu.edu/imt/lab/cybernetics.

https://www.ntnu.edu/imt/lab/cybernetics
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Fig. 9. The model ship C/S Inocean Cat I Drillship (CSAD) used in experiments. The position and orientation were held fixed by ropes with 1 kg weights attached to each end.
Image reproduced with courtesy of Udjus (2017).
Fig. 10. An illustration of the sensor configuration used in the wave experiments
by Udjus (2017). IMUs 1, 2, 3, and 4 are denoted {𝑠1}, {𝑠2}, {𝑠3}, and {𝑠4}, respectively.
The location of each sensor is given in millimeters with respect to the body-fixed
reference frame {𝑏}, which is defined midships with the 𝑧-axis pointing downwards
(into the page).

180◦}, regular waves with wave periods {1.0 s, 1.5 s, 2.0 s, 2.5 s} lying
within the frequency range of wind-generated surface gravity waves
(Holthuijsen, 2007), were tested. A wave height of 5 cm was considered
in all wave basin experiments, which, in reality, corresponds to a 4.5 m
wave height (using Froude scaling with model scale 1:90). Although
a 4.5 m wave height can be considered a very rough sea state (Price
and Bishop, 1974), the roll and pitch responses in the experiments
were small owing to the large vessel size.3 According to the authors,
the beach was not functioning as intended during the day of exper-
imentation and, to avoid the impact of reflected waves, experiments
were stopped after approximately 50 s, which, consequently, became
the time duration of the recorded IMU data.

5.2. Data processing

In this section, we discuss some data processing steps needed to ob-
tain an estimate of the vessel heave acceleration from the specific force

3 The model drillship corresponds to a 232 m × 40 m × 19 m vessel which
are the standard dimensions of many drillships.
10
measurements of each IMU. As we shall see, the heave accelerations are
needed to compute the phase differences, which, in turn, will be used
to estimate the desired wave quantities.

The accelerometers in an IMU measure the specific force 𝐟𝑎 with
respect to the inertial reference frame {𝑖}. The readings are expressed
in the accelerometer frame {𝑎}, defined by the orientation of the
accelerometer-sensitive axes. The {𝑎}-frame may be non-orthogonal
and misaligned and can be compensated via the rotation matrix 𝐑𝑠

𝑎,
which converts raw measurements into the IMU sensor frame {𝑠}
defined by the IMU manufacturer. The {𝑠}-frame may suffer from
installation errors caused by the alignment and inner distances of the
sensor array. In order to align the {𝑠}-frame with the body frame {𝑏},
which is the referential frame used in the evaluation of the following
heave acceleration, an additional rotation matrix 𝐑𝑏

𝑠 is required. The
matrices 𝐑𝑠

𝑎 and 𝐑𝑏
𝑠 can be respectively obtained via the calibration

procedures available at the site of the IMU manufacturer and after the
IMUs have been installed into the array on the vessel. The sensor array
positioning errors and their effects are discussed in Section 3.3.2.

For an ideal three-axis accelerometer, the specific force is given by

𝐟𝑏𝑖𝑠 = 𝐚𝑏𝑖𝑠 − 𝐠𝑏 = 𝐑𝑏
𝑠𝐑

𝑠
𝑎𝐟

𝑎,

where 𝐚𝑏𝑖𝑠 is the linear acceleration of the IMU sensor frame {𝑠} with
respect to the inertial frame {𝑖} expressed in {𝑏}, and 𝐠𝑏 is the gravity
vector expressed in {𝑏}. In practice, after treating the deterministic
sensor imperfections discussed in Section 3.3.1, the measurements
from a three-axis accelerometer are, in general, still subject to several
stochastic errors. A common approach is to separate these errors and
model them, respectively, as additive zero-mean Gaussian white noise
and a drifting bias term. Following this approach, we can use the
standard three-axis accelerometer sensor model from Fossen (2021),
i.e.,

𝐟𝑏𝑖𝑠 = 𝐚𝑏𝑖𝑠 − 𝐠𝑏 + 𝐛𝑏acc + 𝐰𝑏
acc, (24)

where 𝐛𝑏acc and 𝐰𝑏
acc denote the respective bias and noise of the three-

axis accelerometer. In general, (24) should be transformed to the
navigational frame {𝑛} such that the linear heave acceleration from each
sensor can be extracted and used to compute the phase differences.
However, since we are only considering small roll and pitch angles, it
is sufficient in this case to only consider the 𝑧-component of (24), i.e.,

𝑓 𝑏
𝑧,𝑖𝑠 = 𝑎𝑏𝑧,𝑖𝑠 − 𝑔 cos𝜙 cos 𝜃 + 𝑏𝑏𝑧,acc +𝑤𝑏

𝑧,acc, (25)

where 𝜙 and 𝜃 are the roll and pitch angles between {𝑛} and {𝑏}, and
𝑔 is the gravitational constant. In the following, we walk through the
steps needed to obtain an estimate of the linear acceleration 𝑎𝑏𝑧,𝑖𝑠, which
corresponds to the heave acceleration when assuming small angles.

As explained in Udjus (2017), a separate camera-based tracking
system called Qualisys was used to obtain measurements of the roll
and pitch angles. These measurements showed that, in all experiments,

◦ ◦
𝜙 and 𝜃 were less than 1 during the first 15 s and less than 2 for
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Table 3
The separation distance 𝑅𝑖𝑗 in meters between sensors {𝑠𝑖} and {𝑠𝑗} for the experimental
configuration in Fig. 10.

𝑗

𝑅𝑖𝑗 1 2 3 4

𝑖

1 - 0.4293 1.2452 0.9153
2 0.4293 - 0.9855 0.7746
3 1.2452 0.9855 - 0.4101
4 0.9153 0.7746 0.4101 -

the remaining time of the experiments with wave excitation. Since
cos(2◦)2 ≈ 1, (25) can be approximated by
𝑏
𝑧,𝑖𝑠 ≈ 𝑎𝑏𝑧,𝑖𝑠 − 𝑔 + 𝑏𝑏𝑧,acc +𝑤𝑏

𝑧,acc. (26)

he initial bias in each accelerometer was estimated by computing the
xpected value of (26) and assuming that the accelerometers were level
nd at rest. Applying these assumptions to (26), yields
[

𝑓 𝑏
𝑧,𝑖𝑠

]

= E
[

𝑎𝑏𝑧,𝑖𝑠 − 𝑔 + 𝑏𝑏𝑧,𝑎𝑐𝑐 +𝑤𝑏
𝑧,𝑎𝑐𝑐

]

[

𝑓 𝑏
𝑧,𝑖𝑠

]

= E
[

𝑎𝑏𝑧,𝑖𝑠
]

⏟⏟⏟
=0

−𝑔 + 𝑏𝑏𝑧,𝑎𝑐𝑐 + E
[

𝑤𝑏
𝑧,𝑎𝑐𝑐

]

⏟⏞⏞⏟⏞⏞⏟
=0

𝑏𝑏𝑧,𝑎𝑐𝑐 = E
[

𝑓 𝑏
𝑧,𝑖𝑠

]

+ 𝑔, (27)

where 𝑤𝑏
𝑧,𝑎𝑐𝑐 vanishes due to the Gaussian zero-mean assumption. Since

the vessel only underwent wave excitation for 30–35 s, it is assumed
that the initial sensor bias remained more or less constant throughout
each experiment. This assumption is validated by the accelerometer
Allan Variance curve found in the ADIS16364 datasheet, which states
that for a 30 s time interval the in-run bias stability is around ±0.1 m𝑔.

The high-frequency noise components were removed by lowpass
filtering the specific force measurements above the maximal wave
frequency, resulting in the final estimated acceleration signal

�̂�𝑏𝑧,𝑖𝑠 = 𝑓 𝑏
𝑧,𝑖𝑠 + 𝑔 + �̂�𝑏𝑧,acc, (28)

where 𝑓 𝑏
𝑧,𝑖𝑠 is the lowpass filtered specific force and �̂�𝑏𝑧,acc is the initial

ias estimate obtained through (27).

.3. Choice of reference sensor

To resolve the wave direction and wave number associated with
ll the experimental wave periods {1.0 s, 1.5 s, 2.0 s, 2.5 s}, care must

be exercised when selecting the reference sensor. As we shall see, the
appropriate reference IMU can be chosen by examining the criterion
(22) for each wave period and checking which IMU has all its neigh-
boring separation lengths within the imposed limits. As discussed in
Section 4.1, abidance to this criterion ensures that the theoretical phase
differences are restricted to (−𝜋, 𝜋), thus avoiding spatial aliasing.

A comparison between the separation distances given by the exper-
imental configuration (Table 3) and the separation limits imposed by
Barber and Doyle (Fig. 5) reveals that only some of the IMUs can be
used to resolve waves with period 𝑇 = 1.0 s. In particular, we see that
IMU 2 or 4 should be considered as a reference along with sensor pairs
2-1 and 2-4 or 4-2 and 4-3. With these choices, the Barber and Doyle
criterion (22) is (in theory) satisfied for all experimental wave periods
with the given IMU configuration.

5.4. Wave frequency and phase difference estimation

We have in the analysis thus far tacitly assumed the wave frequency
𝜔 to be perfectly known. The reliance on 𝜔 can be seen in the computa-
ion of the phase difference (16), the measurement covariance related
o (18) and (20), and implicitly in the lowpass filtered acceleration
ignals (28). Hence, the wave frequency is an important cornerstone
nd requires accurate determination in order for our wave algorithm
11

o function optimally. d
For regular waves it is reasonable to assume that the vessel acceler-
tion (28) can be modeled by a single sinusoid and perturbation of the
orm

�̂�𝑏𝑧,𝑖𝑠(𝑡) = 𝐴 sin(𝜔𝑡 + 𝜖) + 𝛿(𝑡), (29)

here 𝐴, 𝜔, 𝜖, and 𝛿 represent the respective amplitude, frequency,
hase, and perturbation of the acceleration signal pertaining to sensor
𝑠}. Hence, the task at hand is to find an accurate estimate of 𝜔 from
�̂�𝑏𝑧,𝑖𝑠 assuming it can be modeled according to (29) with unknown
arameters 𝐴, 𝜔, 𝜖, and bounded perturbation 𝛿(𝑡). In the following
hree subsections, we describe three different methods that can be used
o achieve this goal.

.4.1. Averaging the time intervals between successive peaks
A straightforward approach to finding the frequency of a sinusoid is

o average the time intervals between the (detected) successive peaks of
he signal. The averaged time intervals should be identical to the period
iven that the signal in question is a simple sinusoid. A prerequisite for
his approach to work on signals of the form (29) is that the amplitude
f the perturbation term 𝛿 is significantly smaller than the amplitude 𝐴.
n other words, the signal (29) should have a sufficiently high signal-
o-noise ratio (SNR). A high SNR will help prevent noisy spikes from
eing detected and confused as the actual signal peaks. In cases where
he signal is significantly corrupted by noise, the SNR may be improved
hrough various filtering techniques.

.4.2. The Aranovskiy frequency estimator
The frequency identification algorithm of Aranovskiy et al. (2007)

s designed based on a sinusoid of the form (29) and is attractive for
wo reasons. First, it offers a real-time implementation, rendering it
uitable for many applications in need of quick frequency estimates
here the measured signal can be approximated by a sinusoid. Second,

t has shown robustness in the presence of unaccounted perturbations
n the measurement signal.

The algorithm comprises an auxiliary filter and an adaptive observer
f the form
̇1 = 𝜉2,
̇2 = −2𝜔𝑓 𝜉2 − 𝜔2

𝑓 𝜉1 + 𝜔2
𝑓𝑤(𝑡),

̇̂𝜃 = 𝑘𝜉1(�̇�2 − �̂�𝜉1),

(30)

here 𝑤(𝑡) = �̂�𝑏𝑧,𝑖𝑠(𝑡) is the measured signal (here chosen as the
stimated acceleration signal), 𝜔𝑓 is the user-specified filter cut-off
requency, 𝑘 > 0 is the observer gain (not to be confused with the
ave number), and 𝜃 ∶= −𝜔2. Both 𝜔𝑓 and 𝑘 affect the convergence

ate and steady state error of �̂� to 𝜃 and should be selected based
n the desired performance. In general, small 𝜔𝑓 and 𝑘 will result in
slower convergence rate, whereas larger values will result in faster

onvergence but with some induced oscillation in steady-state (Belleter
t al., 2015).

For marine craft operating in situations with little wave excitation,
lgorithm (30) can be modified to include an adaptive gain-switching
echanism for the observer gain 𝑘, as proposed by Belleter et al.

2015). This mechanism enables 𝑘 to be switched between a high and
low gain depending on the amplitude of the measured roll, pitch,

r heave responses, which may improve the convergence rate of the
stimator. The reader is referred to Belleter et al. (2015) for additional
heory and implementation details of the gain-switching mechanism.

.4.3. The fast Fourier transform
In reality, ocean waves are usually irregular, exhibiting a broad

pectrum of frequencies. In such situations, the time-averaging and
ranovskiy frequency estimator algorithms may be limited due to their

nherent single-frequency model assumption. Unless the wave spectrum
s sufficiently narrow, these approaches may struggle to identify the

ominant (peak) frequency, which is the frequency component often
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Fig. 11. The phase difference 𝛩𝑖𝑗,𝑘 between IMUs {𝑠𝑖} and {𝑠𝑗} at time 𝑡𝑘 can be
estimated online by considering the linear heave acceleration signals within a window,
before being passed on to the UKF. In this time window, the lag (i.e., the number
of samples) between the respective heave signals is estimated by computing the cross-
correlation between them and converting it to a phase difference using (16). The initial
width of the window is set equal to the wave period and increases from 𝑡0 as the signals
continue to develop.

sought in marine applications. For a signal comprising multiple fre-
quencies, the fast Fourier transform (FFT) can be used to deconstruct its
spectral composition and identify any potential peaks. Unlike the above
methods, the FFT does not make any assumptions on the structure
or shape of the signals considered, thus making it a more viable
option for analyzing signals comprising multiple frequencies. However,
a drawback of this approach is that it cannot be implemented in real-
time as it relies on back-dated information, which, as a consequence,
produces a lag in the estimation.

Despite the attractive features of the Aranovskiy frequency esti-
mator, the FFT was selected as the main method in this paper. This
decision was based on two points: First, the FFT gave the most con-
sistent frequency estimates for all experimental wave periods, in close
agreement with the ground truth values, whereas the Aranovskiy esti-
mator was somewhat less accurate and had difficulties identifying wave
period 𝑇 = 1.0 s (the reasons are discussed in Section 5.5.3). Second,
as a proof of concept of Theorem 1 and in the compromise between
accuracy and computational lag, we currently deem a higher accuracy
in the wave estimates more important than real-time performance.

5.4.4. Phase difference estimation
After an estimate of the wave frequency has been obtained us-

ing either of the approaches described in Sections 5.4.1–5.4.3, the
phase difference between the respective heave acceleration signals (28)
can be estimated by computing the cross-correlation between them.
This operation can be performed online by considering the heave
acceleration signals within an increasing time window (Fig. 11).

5.5. Results and discussion

In this section, we present the results from our UKF wave algorithm
on the experimental IMU data of Udjus (2017). The raw IMU data
was processed according to the previous subsections to ensure that
the phase differences could be obtained with as little error as possible
and reduce the risk of ambiguities before being passed on to the UKF
algorithm (Fig. 12). In the following results, the reference wave number
was computed using the dispersion relation (21) with pool depth 𝑑 =
1.5 m and the true wave period (i.e., the wave period used as input to
the wavemaker machine). The reference wave direction was computed
by fixing the boat heading (Fig. 9) and confirming this value with the
12

Qualisys camera system.
5.5.1. Experimental verification of Theorem 1
The experimental results (Fig. 13) show that in 91% and 86% of

experiments considered, the absolute wave direction and wave number
errors based on three IMUs are less than 5◦ and 0.1 m−1, respectively.
These numbers provide strong evidence in favor of Theorem 1 and also
validate the UKF capabilities in estimating those quantities. Experimen-
tal verification of Theorem 1 extends previous findings (Udjus, 2017;
Heyn et al., 2017), which only seem to consider the wave direction,
and not the wave number—although, as we have now shown, can
also be determined simultaneously from the same data. Additionally,
we have demonstrated that as few as three IMUs are in theory suffi-
cient, provided that they are noncollinearly arranged and separated in
accordance with (22).

The experimental results (Fig. 13) also show that in 71% and 52%
of experiments considered, the measurement set {𝛩23, 𝛩24} (yellow)
constitutes the largest error in each wave quantity, with some errors
significantly exceeding the other sets of phases within each experiment.
The large deviations observed can be linked to large errors in the
estimated phase differences �̂�23 and �̂�24, which, in turn, are caused
by several potential sources of error affecting IMUs {𝑠3} and {𝑠4}. In
general, the error between the estimated and actual phase differences
can be attributed (either directly or indirectly) to one or more of
the following sources: sensor imperfections, inexact sensor positioning
and alignment, insufficient sensor sampling rate, shortcomings in the
experimental design (e.g., from using ropes to confine boat heading
and position), modeling errors due to small-angle approximation, wave
frequency estimation, and oscillations and/or transient effects on the
sensors due to structural vibrations and external environmental influ-
ences. From the above list, however, only inaccuracies in the sensor
positioning and alignment of {𝑠3} and {𝑠4} may realistically explain the
significant separation of errors within the sets of some experiments (we
expect the errors caused by the other sources to manifest themselves
roughly equally among the phase differences). As we have seen earlier,
errors in the sensor locations can produce significant biases in the phase
difference estimates (especially for short wave periods; see Fig. 3),
which may translate to biases in the wave direction and wave number
estimates. In order to test this theory, we have conducted a small simu-
lation study investigating how the positioning errors of sensors {𝑠3} and
{𝑠4} may impact the wave estimate errors associated with measurement
sets {𝛩21, 𝛩23}, {𝛩21, 𝛩24}, and {𝛩23, 𝛩24}. The results (Fig. 14) exhibit
a similar error pattern to the results in Fig. 13, indicating that the
location uncertainty of {𝑠3} and {𝑠4} is a plausible cause for the large
separation of errors observed. This argument is further substantiated
by Udjus (2017), which states that the sensor positions were obtained
using a folding ruler and that some measurement errors may transpire
because of this.

5.5.2. Multiple independent phase measurements
The experimental results also suggest that using additional indepen-

dent phase measurements by adding more IMUs may reduce overall
errors by having an ‘‘averaging’’ effect on the various measurement
sets. Indeed, by studying the errors in Fig. 13 carefully, we see that
the error obtained from the set of all six phase measurements is, in
general, lower than the worst performing set constituting two phases.
The reasons for this can be linked to the error variance, which is
discussed in Section 4.3.

5.5.3. High-frequency waves
Contrary to wave periods 𝑇 = 1.5 s, 2.0 s, and 2.5 s, obtaining

accurate estimates of the wave direction and wave number proved
difficult for the IMU data corresponding to 𝑇 = 1.0 s (Fig. 15). The
significant errors observed are caused by large errors in the estimated
phase differences (Fig. 16), which, in turn, can be linked to several
sources of error. In the following, we discuss some potential sources
that we believe can have contributed to the deviations observed in

Fig. 16.
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Fig. 12. A block diagram illustrating the general procedure of going from raw IMU measurements to obtaining estimates of the wave direction 𝛽 and wave number 𝑘. The
procedure can be summarized in three steps: (a) data processing, (b) PTPD estimation, and (c) state estimation. In (a) sensor biases and high-frequency (HF) noise are removed
from the IMU measurements, yielding an estimate of the linear heave acceleration associated with each IMU (assuming small roll and pitch angles). The HF noise is filtered using a
lowpass filter with cut-off above �̂�, obtained from a fast Fourier transform (FFT) applied to the entire data sequence. In (b) we estimate the phase difference �̂� online by following
the procedure explained in Fig. 11. Finally, in (c) we apply the UKF algorithm to obtain the desired wave estimates.
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A close look at some of the IMU data corresponding to 𝑇 = 1.0 s
(Fig. 17a) shows that the heave responses are non-sinusoidal, indicating
that some distortion has taken place. This suspicion is confirmed by
the corresponding FFTs of the data (Fig. 17b), which reveal additional
frequencies in proximity to the expected single peak frequency. The
existence of additional frequencies is a violation of the fundamental
regularity/single-frequency assumption that our PTPD model is built
on and may, as a result, be the reason for the poor estimation quality.

The distortion observed in Fig. 17a can most likely be attributed
to the lowpass wave filtering characteristics of a ship (Nielsen, 2007,
2008; de Souza et al., 2018; Nielsen et al., 2019; Nielsen and Dietz,
2020), which occur whenever the waves are sufficiently short. For suf-
ficiently short waves, multiple wave crests (and troughs) will affect the
vessel simultaneously, resulting in a non-sinusoidal (filtered) response.
This high-frequency filtering effect happens when the wavelength is
shorter than the length of the wave trajectory through the vessel
(i.e., the vessel length as seen by the waves). As seen in Fig. 18, the
length of the wave trajectory depends on the orientation of the vessel
relative to the waves, meaning that high-frequency filtering will not
necessarily happen for all wave directions when considering waves of
a given wavelength. It can be shown (see Appendix B) that the wave
trajectory distance 𝑊 through a box-shaped vessel along the wave
propagation axis 𝑥𝑤 (see Fig. 1 for definition) is

𝑊 = 𝐿| cos 𝛽| + 𝐵| sin 𝛽|, (31)

where 𝛽 is the relative wave direction, and 𝐿 and 𝐵 are the respective
length and beam dimensions of the vessel. In order to avoid the high-
frequency filtering effect, the wavelength 𝜆 should ideally be larger
than 𝑊 for a given 𝛽. This result can be generalized for all 𝛽 if 𝜆 > 𝑊
for 𝛽 = arctan(𝐵∕𝐿) (see Appendix B for proof).

To quantitatively assess the potential occurrence of high-frequency
filtering in our experiments, (31) was computed for all wave directions
and compared to the wavelengths associated with each wave period
(Fig. 19). In all the conducted experiments with 𝑇 = 1.0 s (𝜆 = 1.5613
m), except for 𝛽 = 90◦, 𝑊 exceeds the wavelength, thus confirming the
presence of high-frequency filtering in the vessel dynamics. Moreover,
this result corresponds well with the observed estimation errors in
Fig. 15, which shows significant errors for all wave directions except
𝛽 = 90◦.

The effect of high-frequency filtering is a known problem and,
in general, a core limitation of wave estimation methods based on
wave-induced vessel motions (Nielsen, 2007, 2008; de Souza et al.,
2018; Nielsen et al., 2019; Nielsen and Dietz, 2020). Unfortunately,
the problem can, as of now, only be alleviated by considering other
responses that are less affected by filtering (Nielsen, 2008; de Souza
et al., 2018). However, this requires additional complementary sensors
not installed on the ship in the present study.

Phase ambiguities resulting from a precarious selection of sensor
pairs represent another potential error source for wave period 𝑇 = 1.0
13

f

Table 4
The sum of wave direction 𝛽 and wave number �̃� errors corresponding to ‘‘All’’ phases
in Figs. 13 and 15 for each respective wave period 𝑇 . The total errors 𝛽 and �̃� are
given in degrees and m−1, respectively. Notice that the total errors decrease as the
wave period gets longer and vice versa.
𝑇 𝛽 �̃�

1.0 366.23 27.12
1.5 74.05 0.95
2.0 44.80 0.62
2.5 41.74 0.56

s. As discussed in Section 5.3, only sensor pairs 2-1 and 2-4 will (in
theory) satisfy the Barber and Doyle criterion (22), thus guaranteeing
that phase differences 𝛩21 and 𝛩24 are within (-𝜋, 𝜋). This result can
be seen from Fig. 16, which also shows that the theoretical phase
difference 𝛩23 is outside (-𝜋, 𝜋) for wave directions {0◦, 30◦, 150◦, 180◦},
indicating that 𝛩23 should not be relied upon in the computation of
those values. Nevertheless, the theoretical values of 𝛩23 were computed
under the assumption that the sensor locations given in Fig. 10 are
correct. However, as pointed out in Section 5.5.1, this is not necessarily
true, meaning that the actual 𝛩23 may be within the range of (-𝜋, 𝜋)
for several wave directions. In particular, we suspect that this may be
the case for wave directions {0◦, 30◦, 150◦}, since the estimated phases
remain somewhat close to the theoretical values and should ideally
have been wrapped to angles of opposite sign.

Recall from the analysis of Section 3.3.2 that inexact sensor po-
sitions produce a bias in the computed phase difference that grows
exponentially as the wave period becomes smaller (Fig. 3). This effect
may be one of the reasons for the overall growth of errors observed
in the wave estimates when comparing them with the respective wave
periods (Table 4). The bias caused by the sensor positioning may also
render some of the phase differences ambiguous by ‘‘pushing’’ them
outside the range (-𝜋, 𝜋), as discussed in Section 4.2. Studying Fig. 16
closely, it is possible that this may have occurred for 𝛩24 at wave
directions {120◦, 150◦, 180◦} since the angles below the boundary -𝜋

rap to values in proximity to the estimates of 𝛩24.

.5.4. Future work
Today, most shipboard wave estimation methods are based on

esponse amplitude operators (RAOs) that are capable of producing es-
imates of the complete directional wave spectrum (Waals et al., 2002;
annuri et al., 2003; Pascoal and Guedes Soares, 2009; Brodtkorb et al.,
018). These methods differ from our approach, which is signal-based
i.e., it requires no ship information) and built on regular harmonic
aves, thus limiting it to information about the main (dominant) wave
irection and wave number. It is currently unknown how well this
ethod will work for more irregular wave patterns comprising many
requencies and directions. Hence, future investigations will aim at
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Fig. 13. Results from wave experiments with wave periods 𝑇 = 1.5 s, 2.0 s, 2.5 s, and sampling time 𝑇𝑠 = 0.01 s (100 Hz). The various sets of phase difference measurements are
𝛩21 , 𝛩23}, {𝛩21 , 𝛩24}, {𝛩23 , 𝛩24}, {𝛩12 , 𝛩13 , 𝛩14 , 𝛩23 , 𝛩24 , 𝛩34} (all) corresponding to IMUs {𝑠1 , 𝑠2 , 𝑠3}, {𝑠1 , 𝑠2 , 𝑠4}, {𝑠2 , 𝑠3 , 𝑠4}, {𝑠1 , 𝑠2 , 𝑠3 , 𝑠4}, respectively, and are shown with different

colors. For each set of IMUs, the bar plots show the absolute error between the wave estimates (after convergence) and the true values. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
experimental testing of the UKF in such wave environments, with the
possibility of extending the algorithm to utilize the complete phase
model (4) with roll-pitch compensation such that the UKF may be
applied to all vessels in both moderate and higher sea states.

The transition from geographically fixed wave arrays to portable
shipboard wave arrays has increased the practical usefulness of the
PTPD approach. As a next research step, the possibility of using the
PTPD approach for moving vessels with a non-zero forward speed shall
be investigated. In order to accommodate this capability, the forward
vessel speed should be considered in the PTPD model derivation, which
generally causes frequency shifts in the measured vessel motions due to
the Doppler effect. Hence, future work will also target wave direction
estimation for underway vessels by extending our PTPD approach to
consider the shifted wave (encounter) frequency.
14
6. Conclusions

This paper has added several extensions to the existing literature
on shipboard and traditional wave arrays considering the phase-time-
path-difference (PTPD) concept. We have shown (through observability
analysis and experimental data) that both the wave direction and
wave number can be obtained from a minimum of three noncollinear
sensors (e.g., IMUs) measuring regular harmonic waves, assuming a
dynamically positioned surface vessel with small roll and pitch angles.
In this regard, we proposed a signal-based unscented Kalman filter
(UKF) algorithm to estimate these wave quantities, which offers several
benefits over the standard analytical solution (7) in terms of address-
ing uncertainties and incorporating multiple measurements. We have
discussed and quantified several sources of error related to the sensors
(e.g., sensor imperfections, insufficient sampling rate, and oscillations
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Fig. 14. Results from simulation with sensor positioning errors. The various sets of phase difference measurements are {𝛩21 , 𝛩23}, {𝛩21 , 𝛩24}, {𝛩23 , 𝛩24}, {𝛩21 , 𝛩23 , 𝛩24} (all)
orresponding to IMUs {𝑠1 , 𝑠2 , 𝑠3}, {𝑠1 , 𝑠2 , 𝑠4}, {𝑠2 , 𝑠3 , 𝑠4}, {𝑠1 , 𝑠2 , 𝑠3 , 𝑠4}, respectively, and are shown with different colors. For each set of IMUs, the bar plots show the absolute
rror between the wave estimates (after convergence) and the true values. The respective phase differences {𝛩21 , 𝛩23 , 𝛩24} were simulated using (9) with 𝑇 = 1.5 s, sampling time
𝑠 = 0.01 s, and adding positioning errors to all sensors (configured according to Fig. 10). The errors were added as Gaussian random noise to the configuration matrix of (10)
ith variance given by (20) using 𝜎21 = 2 cm, 𝜎23 = 10 cm, and 𝜎24 = 10 cm. (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)
Fig. 15. Results from wave experiments with wave period 𝑇 = 1.0 s and sampling time 𝑇𝑠 = 0.01 s (100 Hz). The various sets of phase difference measurements are {𝛩21 , 𝛩23},
𝛩21 , 𝛩24}, {𝛩23 , 𝛩24}, {𝛩12 , 𝛩13 , 𝛩14 , 𝛩23 , 𝛩24 , 𝛩34} (all) corresponding to IMUs {𝑠1 , 𝑠2 , 𝑠3}, {𝑠1 , 𝑠2 , 𝑠4}, {𝑠2 , 𝑠3 , 𝑠4}, {𝑠1 , 𝑠2 , 𝑠3 , 𝑠4}, respectively, and are shown with different colors. For
ach set of IMUs, the bar plots show the absolute error between the wave estimates (after convergence) and the true values. (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)
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nd transient effects) and array construction (e.g., inexact sensor loca-
ions) and shown how some of these errors can be incorporated into the
KF to yield the estimated uncertainty in the wave estimates. Finally,
e have shown how the Barber and Doyle criterion (22), together
ith some of the errors above, should be considered in the design of

hipboard wave arrays.
Our proposed PTPD model and UKF algorithm hinge on regular har-

onic waves, meaning that the practicality of this approach is currently
estricted to ocean waves resembling such wave patterns (e.g., narrow-
anded wave trains such as swell). It is presently unknown how well
he UKF will work in more complex sea environments. Future study
ill aim at experimental testing of the UKF in such environments, with

he possibility of extending the algorithm to estimate vessel roll and
itch motions, thus enabling the complete phase model (4) to be used
nstead. Such an extension will render the UKF algorithm appropriate to
ny surface vessel in moderate and higher sea states. Future work will
lso target wave direction estimation for underway vessels by extending
ur PTPD approach to consider the wave encounter frequency.
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Fig. 16. The theoretical (solid) vs. estimated (dotted) phase differences {𝛩21 , 𝛩23 , 𝛩24}
for wave period 𝑇 = 1.0 s and sensor configuration given by Fig. 10 using {𝑠2} as
reference. The theoretical values were computed using (9), whereas the corresponding
estimates were calculated from cross-correlations (Fig. 11) between the processed IMU
data for 𝑇 = 1.0 s.

Appendix A. Observability analysis

In this appendix, we show that the relative wave direction 𝛽 and
wave number 𝑘 of a harmonic wave can be uniquely determined from a
minimum of three noncollinear sensors, given a dynamically positioned
surface vessel with small roll and pitch angles. In the following analysis,
we consider two separate cases: wave number 𝑘 known and wave
number 𝑘 unknown. As we shall see, the minimum sensor requirements
stated in Theorem 1 apply in both cases. Theorem 1 shall be proven
by showing that the nonlinear state–space model (10) is (locally) ob-
servable for a minimum of two phase difference measurements, which
corresponds to three sensors. The forthcoming observability analysis
hinges on the definitions of nonlinear observability (Nijmeijer, 1990;
Marino and Tomei, 1996), which are stated below for convenience.

Definition 1. The system

�̇� = 𝐟 (𝐱), 𝐱 ∈ R𝑛,

𝐳 = 𝐡(𝐱),
(A.1)

is said to be locally observable in 𝑈0, a neighborhood of the origin, if

rank{𝑑𝐡,… , 𝑑(𝐿𝑛−1
𝐟 𝐡)} = 𝑛, ∀𝐱 ∈ 𝑈0, (A.2)

If (A.2) holds for every 𝐱 ∈ R𝑛 we say that the system is observable.

Definition 2. The observation space O of the system (A.1) is the linear
space (over R𝑛)

O = span{𝐿𝑛−1
𝐟 ℎ𝑖}, 𝑖 = 1,… , 𝑝.

The observability codistribution is given by the observation space by

𝑑𝐡 = span{𝑑𝐇(𝐱) ∶ 𝐇 ∈ O},

where

𝑑𝐇 = 𝜕𝐇
𝜕𝑥1

𝑑𝑥1 +
𝜕𝐇
𝜕𝑥2

𝑑𝑥2 +⋯ + 𝜕𝐇
𝜕𝑥𝑛

𝑑𝑥𝑛.

ase A: Wave number known

ensors 𝑁 = 2
If we assume the wave number to be a known quantity, then the
16

tate–space model in (10) can be reduced to the following scalar system
̇ = 0,

𝑧 = ℎ(𝑥) = 𝑘
[

𝑅12 cos 𝛼12 𝑅12 sin 𝛼12
]

[

cos 𝑥
sin 𝑥

]

,
(A.3)

where 𝑧 = 𝛩12 and 𝑥 = 𝛽 ∈ (−𝜋, 𝜋]. The measurement equation can be
expanded and written more compactly as

𝑧 = 𝑘𝑅12 cos(𝑥 − 𝛼12),

which, for a single phase difference 𝑧 = 𝛩12 (two sensors), has two
solutions given by ±(𝑥 − 𝛼12). Hence, (A.3) is not observable from a
single pair of sensors.

Sensors 𝑁 = 3
Adding an additional sensor, (A.3) now becomes

̇ = 0,

𝐳 = 𝐡(𝑥) =
[

𝑅12 cos 𝛼12 𝑅12 sin 𝛼12
𝑅13 cos 𝛼13 𝑅13 sin 𝛼13

] [

cos 𝑥
sin 𝑥

]

,
(A.4)

here 𝐳 = [𝛩12, 𝛩13]⊤ and 𝑥 = 𝛽 ∈ (−𝜋, 𝜋]. The system above can be
condensed by defining constants 𝑎1, 𝑎2, 𝑏1, 𝑏2 such that

(𝑥) =
[

ℎ1
ℎ2

]

=
[

𝑎1 𝑏1
𝑎2 𝑏2

] [

cos 𝑥
sin 𝑥

]

=
[

𝑎1 cos 𝑥 + 𝑏1 sin 𝑥
𝑎2 cos 𝑥 + 𝑏2 sin 𝑥

]

.

The observation space O (Definition 2) of (A.4) is determined by
computing the Lie derivatives up to 𝑛 = 1, i.e.,
0
𝑓𝐡 = [ℎ1, ℎ2]⊤,

hich yields the observation space

= span{ℎ1, ℎ2}
= span{𝑎1 cos 𝑥 + 𝑏1 sin 𝑥, 𝑎2 cos 𝑥 + 𝑏2 sin 𝑥}.

Using this result, the observability codistribution can be formed as

𝑑𝐇 = 𝜕𝐡
𝜕𝑥

𝑑𝑥 =
[

𝜕ℎ1
𝜕𝑥

𝜕ℎ2
𝜕𝑥

]⊤
𝑑𝑥

=
[

−𝑎1 sin 𝑥 + 𝑏1 cos 𝑥
−𝑎2 sin 𝑥 + 𝑏2 cos 𝑥

]

𝑑𝑥

=
[

−𝑎1 𝑏1
−𝑎2 𝑏2

] [

sin 𝑥
cos 𝑥

]

𝑑𝑥,

and, finally, we get

𝑑𝐡 = span{𝑑𝐇}

= span
{

[

−𝑎1 𝑏1
−𝑎2 𝑏2

] [

sin 𝑥
cos 𝑥

]

𝑑𝑥

}

.

The observability codistribution 𝑑𝐡 will have full rank as long as the
above coefficient matrix is non-singular. This condition can easily be
checked by evaluating when the determinant is zero, i.e.,

det
(

[

−𝑎1 𝑏1
−𝑎2 𝑏2

]

)

= −𝑎1𝑏2 + 𝑏1𝑎2 = 0.

Inserting the expressions for 𝑎1, 𝑎2, 𝑏1, 𝑏2 into the above expression and
simplifying it, yields

𝑘2𝑅12𝑅13 sin(𝛼12 − 𝛼13) = 0.

Since 𝑘,𝑅12, 𝑅13 > 0, the above expression is zero only when the sensors
lie on the same line, i.e., 𝛼12 = 𝛼13. Hence, for 𝑁 = 3 (three sensors)
we have from Definition 1 that

rank{𝑑𝐡} = 1 = 𝑛 ∀𝑥 ∈ (−𝜋, 𝜋] ⊆ R,

as long as the sensors are arranged in a noncollinear configuration.
Since 𝑥 is only defined between (−𝜋, 𝜋], which is a subset of R, the
system (A.4) is by definition locally observable.
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Fig. 17. (a) Heave accelerations (after processing) for wave experiments with period 𝑇 = 1.0 s and wave directions {0◦ , 30◦ , 180◦}, and (b) the corresponding FFTs. The FFTs were
normalized by dividing all values in each respective plot by the corresponding maximum. The peak wave frequency in all the FFTs is located at 𝑓 = 1.015 Hz, which corresponds
to a wave period 𝑇 = 0.985 s.
Case B: Wave number unknown

Sensors 𝑁 = 2

If we assume the wave number to be an unknown quantity, then the
state–space model in (10) reduces to

�̇� = 𝟎,

𝑧 = ℎ(𝐱) =
[

𝑅12 cos 𝛼12 𝑅12 sin 𝛼12
]

[

𝑥2 cos 𝑥1
]

,
(A.5)
17

𝑥2 sin 𝑥1
where 𝑧 = 𝛩12, 𝐱 = [𝑥1, 𝑥2]⊤ = [𝛽, 𝑘]⊤, and 𝑥1 ∈ (−𝜋, 𝜋] and
𝑥2 ∈ R+. The measurement equation can be expanded and written more
compactly as

𝑧 = 𝑅12𝑥2 cos(𝑥1 − 𝛼12),

which, for a single phase difference 𝑧 = 𝛩12 (two sensors), has multiple
solutions. Hence, the system (A.5) is not observable from a single pair
of sensors.
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Fig. 18. The length of the wave trajectory 𝑊 (represented by dashed lines) depends on the relative wave direction 𝛽. When 𝛽 = 180◦ (left), the vessel will filter the waves (shown
in blue) passing through it as the wavelength 𝜆 < 𝑊 = 𝐿, where 𝐿 is the vessel length. However, when 𝛽 = 90◦ (right), the vessel motion responses will be unaffected by filtering
as 𝜆 > 𝑊 = 𝐵, where 𝐵 is the vessel beam.
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Fig. 19. The wave trajectory distance 𝑊 (solid blue line) computed from (31) vs.
experimental wavelengths 𝜆 (dashed lines). The value of 𝑊 associated with each
experimental wave direction 𝛽 is indicated with an asterisk. The length and beam
dimensions of the model ship used in the experiments are 𝐿 = 2.58 m and 𝐵 = 0.44 m,
espectively. For each wave period 𝑇 = 1.0 s, 1.5 s, 2.0 s, and 2.5 s, the corresponding
avelength 𝜆 = 2𝜋∕𝑘 is computed using (21) with 𝑑 = 1.5 m.

ensors 𝑁 = 3
Adding an additional sensor, (A.5) now becomes

̇ = 𝟎,

𝐳 = 𝐡(𝐱) =
[

𝑅12 cos 𝛼12 𝑅12 sin 𝛼12
𝑅13 cos 𝛼13 𝑅13 sin 𝛼13

] [

𝑥2 cos 𝑥1
𝑥2 sin 𝑥1

]

,
(A.6)

here 𝐳 = [𝛩12, 𝛩13]⊤, 𝐱 = [𝑥1, 𝑥2]⊤ = [𝛽, 𝑘]⊤, and 𝑥1 ∈ (−𝜋, 𝜋] and
2 ∈ R+. The system above can be condensed by defining constants
1, 𝑎2, 𝑏1, 𝑏2 such that

(𝐱) =
[

ℎ1
ℎ2

]

=
[

𝑎1 𝑏1
𝑎2 𝑏2

] [

𝑥2 cos 𝑥1
𝑥2 sin 𝑥1

]

=
[

𝑎1𝑥2 cos 𝑥1 + 𝑏1𝑥2 sin 𝑥1
𝑎2𝑥2 cos 𝑥1 + 𝑏2𝑥2 sin 𝑥1

]

.

he observation space O (Definition 2) of (A.6) is then determined by
omputing the Lie derivatives up to 𝑛 = 2, i.e.,
0
𝐟 𝐡 = [ℎ1, ℎ2]⊤,
1
𝐟 𝐡 = 𝜕𝐡

𝜕𝐱
𝐟 = 𝟎, since 𝐟 (𝐱) = 𝟎,

which yields the observation space

O = span{ℎ , ℎ }
18

1 2
= span{𝑎1𝑥2 cos 𝑥1 + 𝑏1𝑥2 sin 𝑥1, 𝑎2𝑥2 cos 𝑥1 + 𝑏2𝑥2 sin 𝑥1}.

sing this result, the observability codistribution can be formed as

𝐇 = 𝜕𝐡
𝜕𝑥1

𝑑𝑥1 +
𝜕𝐡
𝜕𝑥2

𝑑𝑥2 =

[ 𝜕ℎ1
𝜕𝑥1

𝜕ℎ1
𝜕𝑥2

𝜕ℎ2
𝜕𝑥1

𝜕ℎ2
𝜕𝑥2

]

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝜕𝐡∕𝜕𝐱

[

𝑑𝑥1
𝑑𝑥2

]

=
[

−𝑎1𝑥2 sin 𝑥1 + 𝑏1𝑥2 cos 𝑥1 𝑎1 cos 𝑥1 + 𝑏1 sin 𝑥1
−𝑎2𝑥2 sin 𝑥1 + 𝑏2𝑥2 cos 𝑥1 𝑎2 cos 𝑥1 + 𝑏2 sin 𝑥1

] [

𝑑𝑥1
𝑑𝑥2

]

,

with

𝑑𝐡 = span{𝑑𝐇}.

The observability codistribution 𝑑𝐡 will have full rank as long as the
Jacobian 𝜕𝐡∕𝜕𝐱 is non-singular. This condition can easily be checked
y evaluating the determinant, i.e.,

et
(

[

−𝑎1𝑥2 sin 𝑥1 + 𝑏1𝑥2 cos 𝑥1 𝑎1 cos 𝑥1 + 𝑏1 sin 𝑥1
−𝑎2𝑥2 sin 𝑥1 + 𝑏2𝑥2 cos 𝑥1 𝑎2 cos 𝑥1 + 𝑏2 sin 𝑥1

]

)

= (−𝑎1𝑥2 sin 𝑥1 + 𝑏1𝑥2 cos 𝑥1)(𝑎2 cos 𝑥1 + 𝑏2 sin 𝑥1)

− (𝑎1 cos 𝑥1 + 𝑏1 sin 𝑥1)(−𝑎2𝑥2 sin 𝑥1 + 𝑏2𝑥2 cos 𝑥1)

= −𝑎1𝑏2𝑥2(sin
2 𝑥1 + cos2 𝑥1)

+ 𝑏1𝑎2𝑥2(sin
2 𝑥1 + cos2 𝑥1)

= 𝑥2(−𝑎1𝑏2 + 𝑏1𝑎2).

Inserting the expressions for 𝑎1, 𝑎2, 𝑏1, 𝑏2 into the equation above, sim-
plifying, and equating it to zero, yields

𝑥2𝑅12𝑅13 sin(𝛼12 − 𝛼13) = 0.

Since 𝑥2, 𝑅12, 𝑅13 > 0, the above expression is zero only when the
sensors lie on the same line, i.e., 𝛼12 = 𝛼13. Hence, for 𝑁 = 3 (three
sensors), we have from Definition 1 that

rank{𝑑𝐡} = 2 = 𝑛 ∀𝑥1 ∈ (−𝜋, 𝜋], ∀𝑥2 ∈ R+,

as long as the sensors are arranged in a noncollinear configuration.
Since 𝑥1 and 𝑥2 are only defined in (−𝜋, 𝜋] and R+, respectively, which
are both subsets of R, the system in (A.6) is by definition locally
observable.

Appendix B. Finding an expression of the wave trajectory distance

In this appendix, we derive an analytical expression of the wave
trajectory distance through the vessel (i.e., the vessel length as seen
by the waves) for a box-shaped vessel. With this expression, we can
quantitatively assess when high-frequency filtering due to the vessel is
likely to influence the measured motion responses for different wave

periods and wave directions.
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Fig. B.20. A vessel with length 𝐿 and beam 𝐵 dimensions measured at the waterline,
riented at an angle 𝛽 relative to the incoming harmonic waves (wave crests shown in
lue). The vessel hull has been approximated with a rectangle of length 𝐿 and width
to simplify analysis. The definitions of the wave direction 𝛽, the tangent wave frame

𝑤} with wave propagation axis 𝑥𝑤, and reference sensor {𝑠1} with sensor axis 𝑥𝑠1
re given in Fig. 1. The wave trajectory distance 𝑊 is the distance the wave should
ravel across the vessel (i.e., the total distance in which the wave is in contact with
he vessel).

Consider a vessel with length 𝐿 and beam 𝐵 measured at the
aterline, oriented at an angle 𝛽 relative to the incoming harmonic
aves, as shown in Fig. B.20. In general, the first point on the vessel

hat the wave will affect is the corner closest to the initial wave,
hereas the final exit point will be the diagonally-opposite corner.
sing rudimentary trigonometric identities, the distance between these
oints along the wave propagation axis 𝑥𝑤 can be expressed as

= 𝐿| cos 𝛽| + 𝐵| sin 𝛽|, (B.1)

here 𝑊 is the wave trajectory distance and 𝛽 is the relative wave
irection. The maximum wave trajectory distance can be determined
y taking the derivative of (B.1) with respect to 𝛽, which yields the
ollowing expression

𝑑𝑊
𝑑𝛽

= 𝐿

(

−cos 𝛽 sin 𝛽
| cos 𝛽|

)

+ 𝐵

(

cos 𝛽 sin 𝛽
| sin 𝛽|

)

= 0

⇒ | tan 𝛽| = 𝐵
𝐿
,

and has four possible solutions

𝛽 = ±arctan(𝐵∕𝐿) and 𝛽 = 𝜋 ± arctan(𝐵∕𝐿). (B.2)

When the vessel is oriented at each of these wave directions, two of the
corners will be furthest apart along the axis 𝑥𝑤. Hence, the wavelength

should ideally be greater than 𝑊 when 𝛽 is given by (B.2) to avoid
igh-frequency filtering for all wave directions in the recorded motion
esponses.
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